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Abstract—Proactive content caching at user terminals is stud-
ied from an energy efficiency perspective. Assuming that the
variable-rate demands of a user can be predicted accurately
over a certain time period, the optimal transmission strategy
that minimizes the total energy consumption is characterized.
The reduction in the energy consumption is obtained both
by increasing the total transmission time of a request, and
by downloading it at better channel conditions, rather than
downloading it at the time of use. Both gains are possible thanks
to the limited cache memory at the user device, in which the
pre-downloaded content is stored until it is requested by the
application layer, such as a video player. We formulate the
optimal proactive transmission strategy as the solution of a
convex optimization problem, and evaluate the minimum total
energy requirement numerically. We also provide a backward
water-filling interpretation for the optimal caching strategy.

I. INTRODUCTION

A significant portion of the growing mobile data traffic
is caused by streaming pre-stored video content, such as
YouTube, MUBI, Netflix videos [1]. Streaming applications
require high-bandwidth connection to the network, and impose
additional delay constraints to avoid interruptions on the user
side. The growing demand is typically addressed by increasing
the achievable data rates. On the other hand, the access points
which users connect to are shared by more and more users,
and their limited backhaul links are becoming more and
more congested. Additionally, most of the streaming content
is accessed through mobile devices with limited batteries,
which puts additional constraints on the data rates that can
be achieved even in low traffic periods.

Moving content to the network edge is a potential solution to
these problems; it reduces backhaul bandwidth requirements,
and improves users’ perceived quality of experience (both
delay and reconstruction fidelity). Content caching at wireless
access points has been studied in [3], [4], [6]. In this paper,
we go one step further and consider caching directly at the
user devices. Considering the low cost and wide availability of
memory, proactive caching directly at user devices can provide
significant gains for the next generation wireless networks by
exploiting the available distributed storage space.

Proactive caching can provide two types of gains. First,
it allows the user to download the same file over a longer
period of time. For most common channel coding and mod-
ulation schemes energy required to transmit a data packet
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is reduced by increasing the transmission time. Second, it
gives the user an additional degree-of-freedom to download the
content at better channel and traffic conditions. For example,
if the transmitter knows in advance which movie is going to
be watched by the user, and at which desired quality, the
download can start prior to the playback time, rather than
being streamed in real-time. This can lead to significant energy
savings, especially when the playback time coincides with a
peak traffic period or a weak channel condition.

On the other hand, pre-downloaded data needs to be stored
in user’s cache memory, which is typically limited. Hence,
only a certain level of energy saving can be achieved through
proactive caching. Our goal here is to study the fundamental
performance limits of proactive caching in terms of energy
efficiency under a cache capacity constraint. We assume that
all the future data request rates and channel conditions of the
user are known non-causally over a given period of time, i.e.,
offline optimization. The offline solution will serve as an upper
bound on the potential gains of proactive caching, and also
provide heuristics for the design in more uncertain scenarios.

We consider the total energy consumption until the deadline
as the measure of performance, and show that the energy
minimization under a given cache capacity constraint can be
formulated as a convex optimization problem. Focusing on
a Gaussian channel with time-varying channel quality, the
optimal solution is characterized as a backward water-filling
algorithm. The detailed characteristics of the algorithm and
numerical results are also provided.

Proactive caching has been considered previously for vari-
ous other goals. Client’s local buffer is exploited in [12] to re-
duce the rate variability in the transmission of variable-bit-rate
(VBR) compressed video. Downlink of multiple VBR video
streams in a cellular network is studied in [9] with the goal
of maximizing the total transmitted data. In [2] the authors
investigate energy-efficient downlink video transmission by
predicting user download rates. In [5], by controlling the buffer
in an anticipatory manner, the authors minimize the delay and
the number of buffered video segments, and maximize the
video quality for wireless streaming. Similarly, [10] presents
proactive seeding in order to reduce the peak traffic, taking
into account the background load. In [11] the number of
utilized subchannels is minimized over a time-varying channel



by controlling user’s buffer. Proactive caching is proposed in
[13] to minimize the delay for mobile users, by caching files
in base stations that are located on the estimated trajectory of a
user. In these works, caching is utilized to minimize lateness
[5], delay [13] or peak demand [10], or maximizing video
quality [5]. We , on the other hand, focus on energy efficient
variable-rate content delivery over a time-varying channel. In
[8] we have extended the approach here to proactive caching
at access points, in which case, the proactive caching gain is
combined with local caching gain thanks to the downloading
of the same file by multiple users.

The system model and the problem statement are presented
in Section II. We describe the optimal transmission strategy
in Section III, and illustrate the water-filling interpretation
first for an infinite, and then for a finite cache capacity. The
numerical results for the optimal proactive caching scheme,
and comparisons with reactive caching are presented in Section
IV, followed by conclusions in Section V.

II. SYSTEM MODEL

We consider variable-rate content requests corresponding to
different media types and qualities. We model these requests
using a slotted time framework, such that the user request rate,
d(t), is constant within each time slot (TS). Let 0 < ¢] < t§ <
-+ < t7, < T denote the time instants at which d(t) changes,
where T is the end of the time frame over which we want to
minimize the total energy consumption. We assume that the
variations in the quality of the channel from the access point
to the user are slow. Similarly to the data rates, we assume that
the channel quality, h(t), remains constant within a TS (not
necessarily the same TSs as demand variations), and changes
from one TS to the next. Let 0 < t§ < t5 <--- <t < T be
the time instants at which h(t) changes.

We can combine the time instants at which the channel state
or the user’s download rate changes, into a single time series
to=0<t; <ty <---<itny_1 <ty =T. We denote the
channel power gain and the request rate of the user within TS
i as h; and d;, respectively. That is, h(t) = h; and d(t) = d;
for t € [t;_1,t;). We denote the length of TS ¢ as 7, i.e.,
72t —t_q, fori = 1,2,..., N. Note that the TSs do not
necessarily have the same duration.

Instantaneous transmission rate at time ¢ from the base
station to the user is a function of the channel power gain h(t)
and the transmission power p(t), and is given as follows':

r(t) = log(1 + h(t)p(t)). (D

We will use transmission rate and download rate interchange-
ably to refer to r(t). We also highlight that the main results and
conclusions of our paper are not dependent on the particular
rate function. This will only impact the nature of the resultant
optimal solution (i.e., the water-filling interpretation) and the
numerical results, but these can easily be extended to other
concave, non-decreasing rate-power functions.

IFor simplicity, all logarithms are in the natural basis, and the rates are
considered in nats/sec.

In conventional reactive streaming, the user downloads the
content at the rate and time of request, i.e., r(t) = d(t).
With our channel model, the total energy cost of reactive
transmission over the period of interest is found as
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Our goal here is to come up with a proactive caching strategy
that can potentially download content to the user in advance
in order to reduce the energy consumption.

We assume that the contents are transmitted in the order they
are requested by the user, and the bits that are transmitted to
the user which are not requested yet are stored in the user’s
cache memory. Data is removed from the cache at the time
they are requested by the application layer. We assume that all
the user’s demands must be satisfied; hence, the rates assigned
to the TSs have to satisfy the following constraints:
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This constraint on the download rate guarantees that the user
does not experience any outages. On the other hand, the data
that has been downloaded, but that has not yet been requested
by the application layer, needs to be stored in the cache
memory. Since the cache memory is limited, we have the

following constraint:

t t
/ r(u)du — / d(u)du < B,¥t € [0,T]. 4)
0 0

This constraint assures that no data is lost due to the overflows
in the cache memory.

Our goal is to minimize the total energy consumption of
the system over a given time frame [0,7]. Accordingly, the
corresponding optimization problem can be written in terms
of the download rates as follows:

. Ter(w) _q
r?tl)lgo /0 I o) du 4)
s.t.  (3) and (4). (6)

Note that this is an infinite dimensional optimization prob-
lem, which is challenging to solve in its current form. How-
ever, it can be shown that, thanks to the slotted nature of
the variations in the demand rate and the channel conditions,
the dimensionality of the problem can be reduced. Since the
channel gain and the user’s request rate remain constant within
each TS, it follows from the convexity of the objective function
(5) that the optimal transmission rate and power also remain
constant within a TS [14]. This means that we only need
to optimize the transmission rates, r;, or, equivalently, the
transmission powers p;, for ¢ = 1,2,..., N. Hence, we can
rewrite the optimization problem (5) as follows:
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(a) Channel states. (b) First request is satisfied.

Fig. 1.

s.t. Zn(di—n)g(),for n=1,...,N,
i=1
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It is not hard to see that (7) is a convex optimization problem
with a convex objective function and linear constraints. Hence,
it can be numerically solved in polynomial time. In the next
section we provide some of the characteristics of the optimal
solution, and provide a water-filling interpretation.

(r; —d;) —B<0,for n=1,...,N.

III. OPTIMAL TRANSMISSION STRATEGY

For the optimization problem in (7), the following La-
grangian function is defined with the Lagrangian multipliers
Ai >0, ,ul->0and77i>0
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Additional complementary slackness conditions are given as
follows:

>\j <Z Ti(dl - Tz)) =0, V3, &)
=1
Hj <<Z Ti(ri - dl)) - B) =Y V], (10)
i=1

(1)

The only difference between the two sets of slackness
conditions is that the second one includes another constant
(cache capacity B); therefore, when, for some j, one of these
conditions is satisfied with its parameter (\; or ;) being
positive, then the parameter of the other condition has to be
zero to satisfy the slackness condition. In other words, the
following equation always holds:
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(d) Third request is satisfied.

(c) Second request is satisfied.

Illustration of the water-filling algorithm for rate allocation with an infinite cache memory.

We apply the KKT optimality conditions on the Lagrangian
to obtain:

a1 a o
d_ri = h—iTieri _ZAjTi+ZMjTi_ni:0' (13)
j=i j=i
Then the optimal transmission rate is found as follows:
11+
T = |:G‘i —log h_z:| , (14)

where [z]T is equal to = if z > 0, and 0 otherwise, and we
have defined the water level in TS i as

'é Z)\ — My

A. Infinite Cache Capacity

We first consider the special case of a user with an infinite
cache capacity. When B — oo, from the second set of slack-
ness conditions in (10), we have p; =0 for j =1,..., N,

N
o; = log E Aj
j=i

Since \; > 0, Vi, it follows that oy > --- > oy, that is,
the water level is decreasing with time. Moreover, if part of
the user’s demand in TS ¢ is transmitted in advance in TS
i — 1, and stored in the cache memory, this implies that the
i-th condition in (3) is satisfied with strict inequality. From
the slackness condition in (9) this means that \; = 0; which,
from Eqn. (16), leads to the fact that o; = 0,41, i.e., the water
level remains constant.

When the cache memory is infinite the optimum transmis-
sion rate r; can be written in the following form

. log o;
’I“i =
0,

which has a water-filling interpretation.

Note that the water levels are decreasing over time. This is
because the water can only flow backwards as the demands
are required to be satisfied by their individual deadline; that
is, the rates can only be allocated to preceding TSs, not to

(15)

(16)
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Fig. 2. Rate allocation over time without proactive caching. Each user request
is satisfied within the timeslot it arrives.

the future ones. As an example, we illustrate the optimal
transmission strategy with infinite cache memory over three
TSs. To obtain the optimal transmission policy, we first plot
the inverse channel gains as in Fig. 1(a). Then, by considering
the requests in the order they arrive, water-filling should be
performed as illustrated in Fig. 1. The request in the first TS
has to be satisfied within that TS, as seen in Fig. 1(b). For
the second request, rate is allocated using the water-filling
algorithm in the backwards direction as in Fig. 1(c). Since
the channel is relatively poor in the second TS, some of the
bits are downloaded in advance within the first TS, and r; is
readjusted accordingly. The request in the third TS is satisfied
within that TS. Thus, the rate in the first TS depends on the
user’s requests and channel conditions in the following TSs.
By N iterations of the water-filling algorithm all the optimal
rate values can be obtained. Since each request is satisfied by
rate allocation over the previous TSs, the algorithm is called
sequential backwards water-filling.

B. General Case

For the general case with finite cache memory and channel
variations, we need to take into account the parameters y;. As
the cache gets filled, p; increases; and therefore, r; is limited.
In other words, the cache memory introduces an upper bound
on the rate at each TS, and this bound is imposed through the
Lagrange multipliers ;.

The optimal solution for the general case is similar to the
sequential backwards waterfilling solution in Section III-A;
however, the amount of water that can be poured into a TS
is now bounded by the cache capacity, since when the cache
is full, increasing the rate would result in loss of data. As
u;’s are also non-negative, the water level o; is not necessarily
decreasing, and can now increase from one TS to the next. This
happens when the cache is full at a TS. We will illustrate this
phenomenon through numerical examples in the next section.

Transmission Rate (Mnats/sec)
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Fig. 3. Rate allocation for proactive caching with limited cache capacity. The
optimal downloading rate values are obtained through backwards water-filling
algorithm.

IV. NUMERICAL RESULTS

In this section, some numerical results are presented in order
to provide further insights into the optimal proactive caching
algorithm introduced in the previous sections. As an input
to our system, we fix the requested demand rates, channel
gains and TS durations. For the rate-power function we
consider r(t) = Wlog(1 + h(t)p(t)), where h(t) denotes the
instantaneous channel signal-to-noise ratio, that is, the channel
power gain divided by the noise power over the transmission
bandwith W. We fix the bandwidth as W =1 MHz.

We consider the scenario with ten TSs, i.e.,
N = 10. Demand rates for these 10 TSs are
chosen as d= [0.5,2,1,1.5,1.5,2,2.5,1.5,1,0.5]
Mnats per second; the channel SN Rs are

h= [0.75,0.55,0.35,0.75,0.15,0.01, 0.35,0.1, 0.45, 0.65];
and finally the TS durations are 7= [2,1,2,1,4,3,2,2,1, 3]
seconds. Under this model the channel changes relatively
slowly, and the user demand profile has a time-scale similar to
channel variations. Note that our model is sufficiently general
to study different time scales for the channel and the demand
rates. We set the cache memory size to B = 2 Mnats.

We first consider reactive resource allocation; that is, the
base station does not track the user’s future demands or
channel conditions, and the user demand within each TS is
satisfied at exactly the requested data rate. This would result in
r; = d;, Vi, and the corresponding rate allocation is illustrated
in Fig. 2. Note that the cache memory is not utilized in the
reactive scenario. The total energy requirement for reactive
transmission is found to be 2173 J. On the other hand, when
proactive caching is utilized, and the sequential backwards
water-filling algorithm is employed, the optimal rate allocation
is as given in Fig. 3. The total energy consumption drops
significantly, to 323 J with proactive caching.

In Fig. 2 and Fig. 3 the black rectangles at the bottom
correspond to channel states, and the portions above the black
rectangles correspond to the optimal rate values for the TSs.
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Fig. 4. Required total transmission energy vs. the available cache capacity
at the user.

Note that all the demands are satisfied and the total energy
requirement is minimized for each transmission strategy. In
Fig. 3 the water levels are equalized to the extend the water-
filling direction and the cache memory constraints allow. For
instance, the data requested in TS 6 is downloaded in advance,
and no transmission occurs in this TS, which has the worst
channel gain. We also observe that the water level increases
from TS 1 to TS 2 even though the channel is worse in the
latter. This is because the cache capacity is already filled in
TS 1, and no more data can be stored.

We also investigate the impact of the cache capacity on the
required total energy. In Fig. 4, we study the same demand
vector over time for the exact same channel conditions with
increasing cache capacity from B = 0 to B = 4 Mnats.
As expected, as the cache memory gets larger; first, the total
energy requirement drops significantly thanks to the degree-
of-freedom provided by the cache memory. However, after a
certain point, increase in the cache capacity does not improve
the energy performance any more. This is due to the fact that,
once all the demands are satisfied at the best TS, there is no
gain from an increase in the cache capacity.

V. CONCLUSIONS

We have studied proactive caching of content directly at a
user device in order to minimize the total energy consumption.
We have considered time-varying channel conditions, which
may be caused due to mobility of the user or changing traffic
conditions, and assumed that the channel conditions and user’s
requested download rates are known in advance over a certain
period of time. Under the requirement that all the user’s
requests need to be satisfied, we have minimized the total
energy requirement by proactively downloading the requested
data when the channel is in a better state, and over a longer
period of time.

The user has a local cache memory with finite capacity to

store the proactively downloaded data. We have shown that the
optimal transmission schedule can be formulated as a convex
optimization problem, and the solution has suggested that a
sequential backwards water-filling algorithm can be used to
optimally download the content over time. Our simulation
results consistently show that the proposed water-filling al-
gorithm brings about significant energy gains compared to
the conventional reactive data download, typically used in
practical systems today. We have also identified how the
energy requirement decays with the increasing cache capacity.
Our results indicate that there is a lower bound for the total
energy requirement, which can be achieved with a relatively
low cache capacity.

Ongoing and future work [7], [8] embraces the extension of
the proposed scenario to those with more than one user. In such
a scenario broadcasting and device-to-device transmissions can
be exploited in addition to proactive caching to further reduce
the energy requirement of the system.
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