
Context-Aware Effective Communications
Tze-Yang Tung, Szymon Kobus, Deniz Gündüz
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Abstract—We investigate the effective communications prob-
lem, in which the goal of the transmitter is to impact the actions
of the receiver over a time frame in order to maximize the
prescribed reward function. This problem is formulated as a
multi-agent partially-observable Markov decision process (MA-
POMDP), where one agent can communicate to the other through
a noisy communication channel. In this paper, we show that not
only should the communication scheme be jointly designed with
the underlying learning objective, but the context of the problem
can also be exploited to achieve even greater effectiveness. Here,
the context refers to a function of the state of the environment
that is available to both agents. We then show that, using different
communication schemes depending on the context is beneficial
to the effectiveness of the solution. We emphasize that this is
different from sending different messages at different states;
with the proposed context-aware communication scheme, the
same message is interpreted differently by the receiver depending
on the context, similarly to human communications, where the
meaning of a sentence may change depending on the context.

Index Terms—Reinforcement learning, learn to communicate,
semantic communications, effective communications, multi-agent
systems, deep learning.

I. INTRODUCTION

In his article “Recent Contributions to the Mathematical
Theory of Communication”, which appeared in the same vol-
ume with Shannon’s “The Mathematical Theory of Communi-
cations” in [1], Weaver categorized communication problems
into three levels:

1) Technical problem: How accurately can the symbols of
communication be transmitted?

2) Semantic problem: How precisely do the transmitted
symbols convey the desired meaning?

3) Effectiveness problem: How effectively does the received
meaning affect conduct in the desired way?

Following Shannon’s original formulation, communication
systems have been designed with the technical problem as
its sole focus. This allows the separation of the high level
problem, such as the control signals to be sent in a swarm
of drones, from the technical communication problem, such
as the delivery of these signals to the desired recipient [2].
Shannon’s theorem [1], which proved that the separation
of source and channel coding is without loss of optimality
when the blocklength goes to infinity, can be seen as the
theoretical basis for the technical communication problem
should be treated exclusively. However, this approach can lead
to inefficiencies and delays, making certain control problems
that require ultra-low latency, such as autonomous vehicle-to-
vehicle coordination [3], challenging.

There is an increasing interest for future communication
systems to adopt a goal-oriented approach [4], [5]. The idea is
for the technical communication problem to be solved jointly
with the high level problem, such that the communication
allows the goal of the communication to be achieved most effi-
ciently. In many cases, the goal can be considered as a general
fidelity metric imposed on the reconstruction at the receiver.
For example, in many learning applications, the goal of the
receiver is to carry out some inference on the source signal,
rather than reconstructing it [6]. In these problems, which can
be considered within the semantic communication framework,
the inferred parameter can be considered as the underlying
source signal to be reconstructed, and the overall problem
can be formulated as a remote joint source-channel coding
problem. In this paper, we instead consider the effectiveness
problem that goes beyond reconstructing a latent variable that
may or may not be observable to the encoder.

An early work by Goldreich et al. [7], put forward a
general theory of goal-oriented communication, where they
defined “reliable communication” as means to overcome any
“misunderstanding” between parties towards achieving a given
goal with the help of signals received from the environ-
ment. This is closer to the effectiveness problem in Weaver’s
classification. Another formulation of the goal-oriented com-
munication can be within multi-agent reinforcement learning
(MARL) settings, where agents communicate with each other
to accomplish a goal collaboratively [8]–[19]. Particularly, in
[19], an effective communication framework is introduced,
where communication enables agents to collaboratively solve
a task, which can be formulated as a multi-agent partially
observable Markov decision process (MA-POMDP). The au-
thors showed that by jointly solving the high level MDP with
the communication problem using a reinforcement learning
framework, the agents are able to learn a communication
scheme which achieves the goal of the MDP most effectively.

In this work, we show that not only does a communication
scheme that most effectively solves a particular high level
MDP problem arises from the joint optimization of commu-
nication and learning problems, the context of the problem
can also be exploited, such that the communication scheme
itself changes depending on the context. To demonstrate this,
we consider a MA-POMDP problem, where the agents must
communicate with each other over a noisy communication
channel to collaboratively achieve a task. We then define
the context of the problem as a function of the environ-
ment state, and provide a solution, in which changing the



communication scheme depending on the context improves
the performance. Finally, we solve the MA-POMDP using
reinforcement learning (RL) techniques, such that the agents
learn a communication scheme that solves the POMDP and
the communication problem jointly. Our main contributions
are as follows:

1) For a particular MA-POMDP problem with one-way
communication, we propose a heuristic solution, and
show that changing the communication scheme depend-
ing on the context can improve the end performance.

2) Using RL, we obtain solutions that are jointly solved
with the higher level POMDP, and show that they
outperform the heuristic solution.

II. RELATED WORKS

Goal oriented communication has received increasing in-
terest recently [5]. The requirement for low latency and ultra
reliable communications in settings such as factory automation
[20], autonomous vehicle-to-vehicle communications [3], [21],
and remote image classification [6], has given rise to the
demand for future generations of communication systems to be
jointly designed with the problems they intend to solve. An
early work by Goldreich et al. [7], developed a framework
that redefined reliable communication as overcoming any
“misunderstanding” between parties towards achieving a given
goal, rather than reproducing “at one point either exactly
or approximately a message selected at another point”, as
technical solutions to communications has been designed for.

In parallel, there are growing number of works studying the
emergence of languages among agents in a multi-agent system
that can arise from the need to coordinate and collaborate to
accomplish a goal. Foerster et al. [8] investigated the role of
communications in cooperative multi-agent systems and the
type of machine learned “languages” that may arise from it.
Many subsequent works have used communications as a means
to coordinate policies of individual agents [9]–[18]. However,
these works generally treat the communication channel as a
perfect bit pipe, ignoring channel imperfections.

The effective communication problem over a noisy channel
is formulated in [19], [22]. Here, unlike in [3], [5], [6], [20],
[21], goal-oriented communication is defined over a time-
horizon, where communication takes place in steps, and the
goal in each step is to maximize the accumulated reward over
the time horizon. In this framework, two or multiple agents
must communicate via a noisy communication channel in
order to coordinate and accomplish a goal. As such, the com-
munication scheme must be learned jointly with the MARL
policy. A similar problem was also considered in [23] in the
context of emergent communications among agents commu-
nicating over noisy channels. It is shown in [19], [22] that
by considering the communication scheme and the learning
algorithm jointly, the resultant policy is more robust to channel
errors than a policy that combines the learning algorithm
with an existing communication scheme. However, they do
not exploit the context of the problem as the solutions to
the problems introduced in those works can be deconstructed

to a sequence of instructions to the other agent. It can be
argued that the joint learning and communication scheme that
arise from [19], [22] are basically joint source-channel coding
(JSCC) schemes that are more robust to channel distortions,
with the difference that the quality measure in defining the
JSCC scheme depends on the value function derived from the
underlying POMDP, rather than being specified externally.

In the context-aware communications literature, there have
been some works that utilize contextual information in vehic-
ular to infrastructure (V2X) networks to improve quality of
service (QoS), such as traffic routing and road safety [24]. In
[25], contextual information, such as the number of vehicles on
a road, is used to improve communication network congestion
in a V2X network. However, the contextual information is used
only to update the parameters in a communication scheme,
while the scheme itself remains the same. Our goal in this
work is to show that the contextual information, which we
will define in the sequel, in a MA-POMDP can be utilized
such that the communication scheme changes depending on
the context in order to achieve the goal most effectively.

III. PROBLEM FORMULATION

Consider a MA-POMDP with two agents, defined by
(S, {Oi}2i=1, {Ai}2i=1, P, r), where S represents all possible
states of the environment, Oi and Ai are the observation
and action sets of agent i = 1, 2, respectively. P is the
transition kernel that governs the environment, and r : S ×∏2
i=1Ai 7→ R is the reward function. Although in general

the reward function for each agent can be different, herein
we consider a fully cooperative environment with a common
reward function. To coordinate, the agents are endowed with
a noisy communication channel. Let the channel be defined
by a conditional probability distribution Pc(m̂(t)|m(t)), where
m(t) = (m

(t)
1 ,m

(t)
2 ) are the transmitted messages from agent

1 and 2, respectively, at time step t, and m̂(t) = (m̂
(t)
1 , m̂

(t)
2 )

are the received messages. This communication channel is
independent of the environment, such that, the environment
transitions based only on environmental actions, and the only
impact of the communication channel is that the actions of
the agents can now depend on the received messages as well.
We define the received message as part of the observation
and the transmitted message as part of the action taken. As
such, at each time step t, agent i makes an observation o

(t)
i =

(e
(t)
i , m̂

(t)
i ) ∈ Oi, where e

(t)
i ∈ s(t) is the environmental

observation, and takes an action a
(t)
i = (a

(t)
i ,m

(t)
i ) ∈ Ai,

where a(t)
i is the environmental action taken by agent i. The

state of the MA-POMDP then transitions from s(t) to s(t+1)

based on the joint actions of the agents via the probability
transition kernel P (s(t+1)|s(t),a

(t)
1 ,a

(t)
2 ). The observations

in the next time step follow the conditional distribution
P (o(t+1)|s(t),a

(t)
1 ,a

(t)
2 ). Each agent then receives a common

reward based on the state and actions r(s(t),a
(t)
1 ,a

(t)
2 ).

In this paper, to simplify the presentation, we will consider
a particular 2D world example of size H × W . Inside the
world, there is a scout agent (i = 2) and a treasure, which



is located on one of the integer grid points in G = [H] ×
[W ], where [G] = {0, . . . , G}. As such, the treasure can only
exist on a finite number of locations, whereas the world itself
is a 2D continuous plane. The scout knows its own location
in the world but does not know the location of the treasure.
A guide agent (i = 1), which can observe the state of the
world must communicate with the scout agent in order for the
scout agent to arrive at the treasure as quickly as possible.
Let the position of the scout agent at time step t be denoted
by p(t) = (p

(t)
x , p

(t)
y ) ∈ RH×W and that of the treasure by

g = (gx, gy) ∈ G. As such, the state of the environment at
time t is defined as e(t) = (p(t),g). We define the action set
of the guide to be a codebook C ∈ C (i.e., A1 = C) and the
action set of the scout to be A2 = [−k, k]2, meaning it can
take a maximum step size of k in both the x and y directions.

At each time step t, the guide makes an observation
o

(t)
1 = e(t) and chooses a message m(t)

1 from the codebook
C ∈ C, as its action based on its policy m

(t)
1 = π1(o

(t)
1 ),

where π1 : O1 7→ C. The message is transmitted to the
scout via an additive white Gaussian noise (AWGN) channel,
m̂

(t)
2 = m

(t)
1 + z(t), where z(t) ∼ CN(0, σ2

zI) is complex
Gaussian distributed with zero mean and covariance σ2

zI. We
impose a per channel use power constraint on the message
to be |m(t)

1 |2 ≤ 1. The received message forms part of
the observation of the scout o

(t)
2 = (m̂

(t)
2 ,p(t), ξ(t)), where

ξ(t) = I{||g−p(t)||∞≤k/2} is an indicator for when the scout
is within k × k square around the treasure. The scout then
takes an action a

(t)
2 = (a

(t)
x , a

(t)
y ) ∈ A2 based on its policy

such that a(t)
2 = π2(o

(t)
2 ), where π2 : O2 7→ A2, and updates

its position to p(t+1) = (p
(t)
x + a

(t)
x , p

(t)
y + a

(t)
y ). The episode

terminates when ||g−p(t)||∞ ≤ 0.5; that is, the scout is within
the 0.5× 0.5 unit square around the treasure.

Given the above MA-POMDP, we define the state as s(t) =
(g,p(t), m̂

(t)
2 , ξ(t)). Also, given the power constraint of the

message |m(t)
1 |2 ≤ 1, we define the signal-to-noise ratio (SNR)

of the communication channel as SNR = 10 log10

(
1/σ2

z

)
dB.

We measure the effectiveness of the agents’ policy by con-
sidering the probability of successfully arriving at the treasure
within a certain number of time steps. This is analogous to
the block error rate (BLER) for a particular channel codeword
length in the technical level, except here we are concerned with
the effectiveness of the policy with respect to the “goal”. The
reward is therefore defined to encourage the fewest number of
steps to reach the treasure and will be specified in the sequel.

We can define the value function VΠ(s) and the state-action
function, also known as the Q-function, QΠ(s,a) as

VΠ(s) = EΠ

[ ∞∑
t=1

γt−1r(t)

∣∣∣∣∣s(1) = s

]
, (1)

QΠ(s(t),a(t)) = EΠ

[ ∞∑
n=t

γ(n−t)r(t)

∣∣∣∣∣s(t),a(t)

]
, (2)

where a(t) = (a
(t)
1 ,a

(t)
2 ) and Π = π1 × π2 is the joint policy

of the 2 agents. The expected return from the distribution of

initial states can then be defined as

J(Π) = Es(t)∼ρΠ,a(t)∼Π

[ ∞∑
t=1

γt−1r(t)(s(t),a(t))

]
, (3)

where ρΠ is the discounted state visitation distribution for the
joint policy Π. The optimization problem can be defined as

Π∗ = arg max
Π

J(Π) (4)

IV. PROPOSED SOLUTIONS

A. Heuristic Solution

Herein, we construct a two-phase solution, where a different
communication scheme is employed in each phase, and the
agents switch between the two phases depending on the
context of the MA-POMDP, as shown in Algorithm 1. The
notation diag(A) refers to the main diagonal of a square matrix
A, sgn(x) refers to the sign of the value x, and clip(x, a, b)
clips the value x between a and b, for a < b. We endow
each agent with memory, denoted by b

(t)
1 and b

(t)
2 , with

b
(t)
2 = E[g|ĝ(t), . . . , ĝ(0)] the minimum mean-squared error

(MMSE) estimate of the treasure location based on all prior
estimates (ĝ(t), . . . , ĝ(0)), where ĝ(t) is the minimum variance
unbiased (MVU) estimate of the treasure location based only
on the message from time step t. We will refer to b

(t)
2 as the

scout’s belief on the location of the treasure at time step t.
Then b

(t)
1 = E[diag((g − b

(t)
2 )(g − b

(t)
2 )>)|p(t), . . . ,p(0)] is

the mean-squared error (MSE) of the scout’s belief. At each
time step t, the guide transmits the difference between the
treasure location g and the scout’s location p(t−1), denoted by
u(t), to the scout. A message v(t) is first formed by pairing the
x and y values of u(t) to form a complex symbol, such that
v(t) = u

(t)
x + ju

(t)
y . To satisfy the average power constraint

E[m
(t)
1 ] ≤ 1, the transmitted message m

(t)
1 is normalized

by scaling it as m(t)
1 = d(t)v(t), where d(t) = 1/σ(t) and

σ(t) = E[||u(t)||2|p(t−1),b
(t−1)
1 ] is the expected magnitude

of u given the scout’s location in the previous time step and
the MSE of the scout’s belief. The scout then updates its belief
based on the new MVU estimate of the treasure location ĝ(t)

from the message received in this time step m̂
(t)
2 . Note that

here we assume the scout knows the scaling factor d(t) for
computing its belief b(t)

2 .
It can be seen from Algorithm 1 that there are two phases

of the solution, separated by conditions involving the expected
l2 distance to treasure σ(t) and the scout’s l∞ distance to
the treasure ||u(t)||∞. As such, we can view the context in
each step as a function of the joint history of observations
{(o(j)

1 ,o
(j)
2 )}tj=1. The key difference between the two phases

is that, in the first phase, the scout computes the MMSE
estimate of the location of the treasure g to determine the
best action to take, whereas in the second phase, it switches
to the maximum likelihood estimate (MLE). In both phases,
the scout takes the action that brings it closest to its estimate
of the treasure location. An intuitive explanation for why this
two-phased scheme is better than using only the first phase
is that, initially, the scout is unsure about where the treasure



Algorithm 1: Heuristic context-aware communication
scheme.

Initialize:
p(0) = (H/2,W/2), b(0)

1 = (2G+1)2−1
12

, ξ(t) = 0, t = 0
Start phase-1:
while σ(t) ≥ (4

√
2σz)

−1 and ξ(t) = 0 do
t = t+ 1
u(t) = (u

(t)
x , u

(t)
y ) = g − p(t−1)

σ(t) = E[||u(t)||2|p(t−1),b
(t−1)
1 ]

d(t) = 1

σ(t)

v(t) = u
(t)
x + ju

(t)
y

m
(t)
1 = d(t)v(t)

m̂
(t)
2 = m

(t)
1 + z(t)

v̂(t) = m̂
(t)
2 /d(t)

û(t) = (Re{v̂(t)}, Im{v̂(t)})
ĝ(t) = p(t−1) + û(t)

b
(t)
2 = E[g|ĝ(t), . . . , ĝ(0)]

b
(t)
1 = E[diag((g − b

(t)
2 )(g − b

(t)
2 )>)|p(t), . . . ,p(0)]

a
(t)
2 = clip(b(t)

2 − p(t−1), k,−k)
p(t) = p(t−1) + a

(t)
2

ξ(t) = I{||g−p(t)||∞≤k/2}

Start phase-2:
while ||g − p(t)||∞ > 0.5 and ξ(t) = 1 do

t = t+ 1
u(t) = g − p(t−1)

d(t) = 2 exp
(

(d(t−1))2

16σ2
z

)
v(t) = u

(t)
x + ju

(t)
y

m
(t)
1 = d(t)v(t)

m̂
(t)
2 = m

(t)
1 + z(t)

v̂(t) = m̂
(t)
2 /d(t)

û(t) = (Re{v̂(t)}, Im{v̂(t)})
ĝ(t) = p(t−1) + û(t)

b
(t)
2 = E[g|ĝ(t), . . . , ĝ(0)]

p(t) = argmaxg∈G P (b
(t)
2 |g)

is, characterized by the large MSE of its belief b
(t)
2 . As the

MSE of the scout’s belief decreases, the scout becomes more
confident about the location of the treasure and it is better for
it to choose the action that corresponds to the MLE. Indeed,
we will show that switching between these two options will
be beneficial.

Note that, in the grid world example considered in [19],
the scout did not know either its own position, or that of the
treasure. Therefore, the only option for the guide was to send
the actions to be taken by the scout. However, when the scout
knows its own location, the guide can also send the treasure
location (approximately) for the scout to move towards it, as
can be seen by the solution provided herein.

To prove that the two-phased scheme is better than a scheme
using only the first phase, we first introduce a lemma.

Lemma 1: [26] For any d ≥ 4σz , let U be a uniform d-
quantization of a Gaussian random variable Z ∼ N(0, σ2

z), in
the sense that for each integer l, if Z ∈ (dl − d/2, dl + d/2],
then U = l. Then, E[U2] is upper-bounded by

E[U2] ≤ 1.6σz
d

exp

(
−d2

8σ2
z

)
. (5)

Given Lemma 1 and Algorithm 1, at time step t = n, if
d(n) ≥ 4

√
2σz and the distance to the treasure ||u(n)||∞ ≤

k/2, then, with a slight exception, the scout’s position based
on the MLE p(n) = arg maxg∈G P (b

(n)
2 |g) is equivalent to a

d(n)-quantization of the belief b(n)
2 in 2D. The exception is due

to the finite set of goal locations G, but since this restriction
only serves to reduce the second moment, Lemma 1 still holds.
Moreover, Algorithm 1 also implies the following lemma:

Lemma 2: [26] If d(n) ≥ 4
√

2σz and ξ(n) = 1, for t ≥ n,
Algorithm 1 satisfies:

∞∑
t=n

E[|m(t)
1 |2] ≤ 5, and (6)

P (p(t) 6= g) ≤ 1

ht−n+1(2σ2
z)
, (7)

where ht(x) = exp(· · · (exp(x)) · · · ) with t exponentials.
Therefore, not only the total power of the messages trans-

mitted in the second phase of Algorithm 1 is finite, and
therefore, satisfy the average power constraint, but also the
probability that the scout does not arrive at the treasure
decreases in the order of t − n + 1 exponentials. This is in
contrast to the first order exponential decrease in probability of
the scout not arriving at the treasure if the scout had continued
to use the MMSE strategy of phase-1:

PMMSE(||g − p(t)||∞ ≤ 0.5) ≤ 2Q(γt), (8)

where γt = 1

2

√
b

(t)
1

,

Q(x) =
1

2π

∫ ∞
u1=x1

∫ ∞
u2=x2

e
−(u2

1+u2
2)

2 du1du2,

and x = (x1, x2). Therefore, switching from phase-1 to phase-
2 of Algorithm 1 leads to the scout finding the treasure faster
on average. Note that, this result is based on the average power
constraint E[|m(t)

1 |2] ≤ 1 being met, whereas the problem
formulation in Sec. III calls for a per channel use power
constraint |m(t)

1 |2 ≤ 1. To meet the per channel use power
constraint, we scale the gain d(t) such that |m(t)

1 |2 ≤ 1.
Although Lemma 2 no longer holds with this constraint, we
observe in our numerical results in Sec. V that phase 2 is still
beneficial.

B. Reinforcement Learning
We now detail the RL method used to optimize Eqn. (4).

Since the objective is to reach the goal in the least number of
steps, we define the reward function as

r(t) = r
(t)
end + r

(t)
dist, (9)

where

r
(t)
end =

{
10, if ||g − p(t)||∞ ≤ 0.5,

0, otherwise,
(10)

which encourages the scout to reach the treasure in the least
number of steps, and

r
(t)
dist = − 10

stepsmax
log(||u(t)||1 + 1), (11)



learning rate 10−3

γ 0.99
τ 0.05

batch size 1024
exploration noise decay ν 1500

nn layer shape [64,64,64(GRU cell)]
nn hidden activation function leaky ReLU

nn out activation function tanh
stepsmax [40, 45, 50, 55]

TABLE I
RL TRAINING HYPERPARAMETERS.

which encourages the scout to move towards the treasure in
each step. Here, stepsmax is the maximum number of steps
per episode. The logarithm is introduced to normalize the
magnitude of the reward.

The policy of each agent is implemented as a recurrent
neural network (RNN), with hidden states b

(t)
i for i = 1, 2,

such that the hidden states act as the memory of the policy,
as in the heuristic solution shown in the previous section. To
deal with non-stationarity when learning with multiple agents
in an environment, the agents are optimized jointly. We employ
an adapted recurrent multi-agent deep deterministic policy
gradient (R-MADDPG) algorithm, proposed in [12]. Each
agent is defined as an actor πθi network, parameterized by
θi. We also utilize an RNN critic network Qφ, parameterized
by φ, to provide gradients for the update of the actor networks,
with h(t) being its hidden state.

During training, each agent keeps a reply buffer Bi, contain-
ing experiences (o

(t)
i ,o

(t+1)
i ,a

(t)
i ,a

(t+1)
i ,b

(t)
i ,b

(t+1)
i , r(t),

h(t),h(t+1)). The critic is updated via temporal difference
(TD) learning loss

L(φ) = EB1,2

[(
Qφ
(
{o(t)

i ,a
(t)
i }i∈{1,2},h

(t)
)

+ r(t)

− γQφ−
(
o

(t+1)
1 , ō

(t+1)
2 , ā

(t+1)
1 , ā

(t+1)
2 ,h(t+1)

)2
]
, (12)

where

ā
(t+1)
1 = πθ−1

(o
(t+1)
1 ,b

(t+1)
1 ), ā

(t+1)
2 = πθ−2

(ō
(t+1)
2 ,b

(t+1)
2 ),

are actions chosen by the guide and scout, respectively,
given the current policies. We define ō

(t+1)
2 = (ā

(t+1)
1 +

z,p(t+1), ξ(t)), where z ∼ CN(0, σ2
zI) is a complex Gaussian

random variable, emulating the channel. The TD loss uses
target networks, parameterized by φ− and θ−i , which are
copies of φ and θi but updated via a soft update θ− ←
τθ + (1 − τ)θ−, where 0 ≤ τ ≤ 1, and (θ,θ−) are any
set of network parameters and its target parameters. This soft
update helps to stabilize the bootstrapped parameters in TD
learning, as shown in Eqn. (12). To update the actor πθi , the
gradient is computed via the chain rule as shown in [27],

L(θ1,2) = EB1,2

[
∇θ1,2

πθ2
((πθ1

(o
(t)
1 ,b

(t)
1 ) + z,p(t)),b

(t)
2 )

∇
a

(t)
1,2
Qψ
(
o

(t)
1 , ō

(t)
2 , ā

(t)
1 , ā

(t)
2 ,h(t)

)∣∣∣
ā

(t)
i =πθi

(o
(t)
i ,b

(t)
i )

]
. (13)
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Fig. 1. Probability of the scout not arriving at the treasure within the episode
(stepsmax = 45).
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Fig. 2. Probability of the scout not arriving at the treasure within the episode
for different stepsmax (SNR = 0dB).

To promote exploration, we add noise to the actions taken
during training as follows:

a
(t)
i = πθi(o

(t)
i ,b

(t)
i ) + w(t), (14)

where w(t) ∼ N(0, e−
episode

ν ) is a Gaussian random variable
with exponentially decaying variance with the episode number,
and ν is a hyperparameter controlling the rate of decay.

As can be seen from Eqn. (12), the critic network Qφ
utilizes full knowledge of the state of the MA-POMDP during
training to avoid the non-stationarity of the environment from
the perspective of any individual agent. During testing, the
agents’ policies πθi only utilize their respective observations
o

(t)
i and memory states b(t)

i . Although the expectation is taken
over the entire replay buffer in Eqns. (12) and (13), in practice,
we uniformly sample mini-batches bi ∼ Bi and compute the
empirical average of both losses.

V. NUMERICAL RESULTS

We consider a 512× 512 world and initialize each episode
by placing the scout at p(0) = (H/2,W/2) and the treasure
at a location uniformly randomly chosen on the integer grid
of possible treasure locations g ∼ U(G). We let the maximum
step size of the scout be k = 32. The hyperparameters used
to train the RL agents are shown in Table I. To observe the
performance of each scheme with respect to a fixed number
of channel uses, we limit the maximum number of steps
per episode to stepsmax ∈ [40, 45, 50, 55]. We compare the
performance of the RL solution with the heuristic solution in



Algorithm 1, denoted by “HC (2 Phase)”, and the version that
only uses the first phase with MMSE estimation, denoted by
“HC (MMSE)”. The results are obtained by averaging over one
million episodes. Note that the “HC (MMSE)” scheme does
not utilize the indicator ξ(t) that signifies that the scout is near
the treasure. Moreover, when trained without the indicator ξ(t),
the RL solution failed to converge, indicating that the context
is important for the RL algorithm to solve the MA-POMDP
effectively. We emphasize that the HC schemes assume the
gain d(t) is known at each time step and that the scout knows
the grid of possible treasure locations G, whereas the RL
solution must learn these through exploration since we are
using a model free RL algorithm.

Fig. 1 shows the probability of failure to arrive at the trea-
sure within 45 steps for each scheme. It can be seen that the RL
solution performs much better than both HC solutions. It can
also be seen from Fig. 1, that the probability of failure for the
HC (2 Phase) scheme is lower than the HC (MMSE) scheme,
as the proof in Sec. IV-A suggests. This shows the RL solution
performs more effectively than the HC schemes, driven by the
reward function we defined in Eqn. (9). Similar conclusions
can be drawn from Fig. 2, where the failure probability is
shown for different stepsmax at SNR = 0dB. It can be seen
that the RL solution performs much better than both HC
solutions. Moreover, as can be seen from both Figs. 1 and 2,
the improvement induced by the HC (2 Phase) scheme can still
be observed despite the constraint |m(t)

1 |2 ≤ 1. This is likely
due to the probability that |m(t)

1 |2 > 1 is small in the second
phase when using the gain d(t) = 2 exp

(
(d(t−1))2/16σ2

z

)
, as

the MSE of the scout’s belief would be small at this point,
meaning E[|m(t)

1 |2] ≈ |m(t)
1 |2.

VI. CONCLUSIONS

We have investigated the effectiveness problem in commu-
nications by considering a MA-POMDP with two agents, a
guide and scout, where the guide needs to help the scout
to reach a treasure in a grid world. We showed through a
heuristic scheme that changing the communication protocol
depending on the context, which is defined as a function of
the agents’ observations which they can agree on, can help
improve the performance. Finally, we solve the MA-POMDP
problem using RL techniques and numerically show that the
obtained RL solution is more reliable on average than the
heuristic schemes.
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[22] J. S. P. Roig and D. Gündüz, “Remote reinforcement learning over a
noisy channel,” in GLOBECOM 2020 - 2020 IEEE Global Communi-
cations Conference, pp. 1–6, Dec. 2020.

[23] A. Mostaani, O. Simeone, S. Chatzinotas, and B. Ottersten, “Learning-
based physical layer communications for multiagent collaboration,” in
IEEE PIMRC, pp. 1–6, Sept. 2019.

[24] J. Wan, D. Zhang, S. Zhao, L. T. Yang, and J. Lloret, “Context-aware
vehicular cyber-physical systems with cloud support: Architecture,
challenges, and solutions,” IEEE Communications Magazine, vol. 52,
pp. 106–113, Aug. 2014.

[25] M. Sepulcre, J. Gozalvez, J. Härri, and H. Hartenstein, “Contextual
communications congestion control for cooperative vehicular networks,”
IEEE Trans. on Wireless Comms., vol. 10, pp. 385–389, Feb. 2011.
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