
Deep-Learning-Aided Wireless Video Transmission
Tze-Yang Tung∗ and Deniz Gündüz∗†

∗ Information Processing and Communications Lab (IPC-Lab), Imperial College London, UK
† Enzo Ferrari Department of Engineering, University of Modena and Reggio Emilia, Italy

{tze-yang.tung14, d.gunduz}@imperial.ac.uk

Abstract—We present DeepWiVe, the first-ever end-to-end joint
source-channel coding (JSCC) video transmission scheme that
leverages the power of deep neural networks (DNNs) to directly
map video signals to channel symbols, combining video com-
pression, channel coding, and modulation steps into a single
neural transform. Our DNN decoder predicts residuals without
distortion feedback, which improves video quality by accounting
for occlusion/disocclusion and camera movements. We simulta-
neously train different bandwidth allocation networks for the
frames to allow variable bandwidth transmission. Then, we train
a bandwidth allocation network using reinforcement learning
(RL) that optimizes the allocation of limited available channel
bandwidth among video frames to maximize overall visual
quality. Our results show that DeepWiVe can overcome the cliff-
effect, which is prevalent in conventional separation-based digital
communication schemes, and achieve graceful degradation with
the mismatch between the estimated and actual channel qualities.
DeepWiVe outperforms H.264 video compression followed by low-
density parity check (LDPC) codes in all channel conditions by
up to 0.0485 on average in terms of the multi-scale structural
similarity index measure (MS-SSIM).

Index Terms—Joint source-channel coding, wireless video
transmission, deep learning, reinforcement learning.

I. INTRODUCTION

Video content contributes to more than 80% of Internet
traffic and this number is expected to increase [1]. Video
compression is widely used to reduce the bandwidth require-
ment when transmitting video signals wirelessly. This follows
the separation principle, where the end-to-end transmission
problem is divided into source coding and channel coding. The
former removes redundancy within the video data, such that a
prescribed reconstruction quality is achieved, while the latter
introduces structured redundancy to allow reliable decoding
under the presence of channel noises.

This separate source and channel coding design provides
modularity and allows independent optimization of each com-
ponent, and has been applied successfully in a large variety
of applications from mobile video streaming to video confer-
encing. However, the limits of the separation-based designs
are beginning to rear, with the emergence of more demanding
and challenging video delivery applications, such as wireless
virtual reality (VR) and drone-based surveillance systems.
These applications have ultra-low latency requirements, suffer
from highly unpredictable channel conditions, and need to be
implemented on energy limited mobile devices, making the
separation-based approach highly suboptimal.

This work was supported by the European Research Council (ERC) through
project BEACON (No. 677854).

In the context of wireless video transmission, separation-
based designs lead to what is known as the cliff-effect. That
is, when the channel condition deteriorates below the level
anticipated by the channel encoder, the source information
becomes irrecoverable. This leads to a cliff edge deterioration
of the system performance. An alternative to the separation-
based architecture is joint source-channel coding (JSCC).
It has been shown theoretically that for finite delay, JSCC
achieves lower distortion for a given code length than separate
source and channel coding [2]. Nevertheless, JSCC schemes
have found limited use in practice due to the difficulty in
designing such codes in the digital domain. An alternative
is to design the transmission system without considering any
digital interfaces. In [3] it was shown that deep neural net-
works (DNNs) can break the complexity barrier in designing
effective JSCC schemes, focusing particularly on the image
transmission problem. The authors showed that DNN based
JSCC schemes not only provide graceful degradation with
channel quality, but also achieve results superior to state-of-
the-art separation-based digital designs.

Herein, we propose an end-to-end optimized deep learning-
based JSCC solution for wireless video transmission, called
DeepWiVe. DeepWiVe directly maps each group-of-pictures
(GoP) of the video sequence to a limited channel bandwidth.
Our results show that DeepWiVe can meet or beat industry
standard video compression codecs, such as H.264, combined
with low density parity check (LDPC) codes, in all the channel
conditions tested, while achieving graceful degradation of
video quality with respect to channel quality, thereby avoiding
the cliff-effect. The contributions of this paper are:

1) We propose DeepWiVe, a JSCC-based wireless video
transmission scheme leveraging DNNs to jointly com-
press and channel code video frames in an end-to-end
manner to maximize the end video quality.

2) We optimize the bandwidth allocation among video
frames using RL.

3) Numerical results show that DeepWiVe is superior to
industry standard H.264 [4] codec combined with state-
of-the-art LDPC channel codes [5] in all the channel
conditions considered, and can avoid the cliff-effect.
This is particularly attractive for highly mobile scenar-
ios, in which accurate channel estimation is challenging.

II. RELATED WORK

JSCC for video delivery has consistently received attention
over the years. The earliest work we could find is [6],

which studies the problem of video multicast to heterogeneous
receivers. They approached the problem from the receivers’
perspective, where the source video is encoded in a hierar-
chical manner, with each layer of the hierarchy distributed
on a separate network channel. In a similar line of work, [7]
uses scalable video coding (SVC), which encodes the source
video into multiple bitstreams, with a base layer that represents
the lowest supported quality and a set of enhancement layers
representing versions of the video at different qualities. How-
ever, these types of schemes typically do not achieve adequate
performance gains for the increased complexity they introduce.

A completely refreshed approach to JSCC video delivery,
called SoftCast, utilizing low complexity methods to map
videos or images from the pixel domain to channel symbols
directly was first introduced in [8]. SoftCast involves a hybrid
digital and analog design by leveraging frequency domain
sparsity. Since then, various works have improved upon [8]
by optimizing different aspects of the hybrid digital and
analog design [9]–[11]. Although these methods have been
shown to overcome the cliff-effect, they are not competitive to
separation-based schemes when it comes to video quality and
cannot exploit the available bandwidth efficiently, or adapt to
channel and network conditions dynamically.

The closest prior art to our work are [3], [12]–[14], which
explore the JSCC image transmission problem. In the context
of video transmission, there are unique challenges, such as
exploiting the inter-frame redundancies to improve coding
efficiency and optimizing resource allocation across frames.
Therefore, extending the problem from image to video trans-
mission is not a trivial task.

III. PROBLEM FORMULATION

We consider the problem of wireless video transmission
in a constrained bandwidth setting. Let X = {Xn}Tn=1

be a video sequence made up of T GoPs, where Xn =
{xn

1 , . . . ,x
n
N}, xn

i ∈ RH×W×3, ∀i ∈ [1, N], represents the
nth GoP of size N frames in the video sequence. Here, H
and W represent the height and width of the video frames.
Each frame xn

i is represented as a 24bit RGB image. We wish
to design an encoding function E : RTN×H×W×3 7→ CTk,
which maps the video sequence X to a set of complex symbols
z = E(X) ∈ CTk, and a decoding function D : CTk 7→
RTN×H×W×3, which maps the additive white Gaussian noise
(AWGN) channel output y = z + n, to an approximate
reconstruction of the original video sequence X̂ = D(y).
Here, n ∼ CN(0, σ2I) follows a complex Gaussian noise
distribution with zero mean and covariance σ2I (I is the
identity matrix). We will assume that the transmitter and
receiver are able to estimate the noise power σ2 using, for
example, pilot symbols [15].

In this setting, we restrict the number of channel uses to k
per GoP, which can be considered as a bandwidth constraint,
and we define the bandwidth compression ratio as ρ = k

3HWN .
We impose an average power constraint P per channel use
at the transmitter, such that Ez

[
||z||22

]
≤ TkP , where the

expectation is taken over the distribution of the encoder output.

Accordingly, the channel signal-to-noise ratio (SNR) is defined
as SNR = 10 log10(P/σ

2) dB.
We measure the average quality of the reconstructed video

using two metrics: peak signal-to-noise ratio (PSNR) and MS-
SSIM [16]. They are defined as

PSNR(X, X̂) =
1

TN

T∑
n=1

N∑
i=1

10 log10

(
2552

lPSNR(xn
i , x̂

n
i)

)
dB,

(1)
and

MS-SSIM(X, X̂) =
1

TN

T∑
n=1

N∑
i=1

1− lMS-SSIM(xn
i , x̂

n
i), (2)

where lPSNR(x
n
i , x̂

n
i) =

1
3HW ||x

n
i − x̂n

i ||22, lMS-SSIM(xn
i , x̂

n
i) =

1 − MS-SSIM(xn
i , x̂

n
i). The goal is to maximize the video

quality, measured by either Eqn. (1) or (2), between the input
video X and its reconstruction X̂, under the given constraints
on the available bandwidth ratio ρ and the average power P .

A. Joint Source-Channel Video Coding

In this section, we present our proposed DNN-based joint
source-channel video encoding and decoding scheme. We will
deconstruct the design of the encoder (E) and decoder (D)
into three parts: the key frame encoder/decoder (fθ, fθ′),
parameterized by (θ,θ′), the interpolation encoder/decoder
(gϕ, gϕ′), parameterized by (ϕ,ϕ′), and the bandwidth allo-
cation function qψ , parameterized by ψ. We will represent
all these functions with DNNs, where the parameters of the
functions correspond to the weights of these DNNs.

Consider the nth GoP, Xn. The last (xn
N) frame is called

the key frame and is compressed and transmitted using the key
frame encoder fθ : RH×W×3 7→ Ck, zni = fθ(x

n
i , σ̂

2), i =
N , where σ̂2 is the estimated channel noise power at the
transmitter. Each element of zni , denoted by zni,j , is first
normalized according to

ẑni,j =
√
kP

zni,j√
(zni)

Hzni
, j = 1, . . . , k, (3)

where H refers to the Hermitian transpose. These values are
then directly sent through the channel as, ŷn

i = ẑni + n.
Consequently, the key frame decoder fθ′ : Ck 7→ RH×W×3

that maps the channel output ŷn
i ∈ Ck observed at the

receiver to a reconstructed frame x̂n
i ∈ RH×W×3 is defined

as x̂n
i = fθ′(ŷn

i , σ̂
2), i = N . The loss between the original

frame xn
i and the reconstructed frame x̂n

i is computed using
lPSNR or lMS-SSIM depending on which performance measure is
being used. The network weights (θ,θ′) are then updated via
backpropagation with respect to the gradient of the loss.

The network architectures of the key frame encoder and
decoder are shown in Fig. 1. The attention feature (AF) mod-
ule, proposed by [12], allows the network to learn to assign
different weights to different features for a given SNR, similar
to resource assignment strategies in traditional JSCC schemes
[17]. By randomizing the channel SNR during training, the AF
module allows us to obtain a single model that works over a
range of SNRs. The Attention layer refers to the simplified

AF
 m

od
ul

e

At
te

nt
io

n
m

od
ul

e

R
es

id
ua

l b
lo

ck
 s

tri
de

 2
(2

56
)

R
es

id
ua

l b
lo

ck
 (2

56
)

R
es

id
ua

l b
lo

ck
 s

tri
de

 2
(2

56
)

AF
 m

od
ul

e

R
es

id
ua

l b
lo

ck
 s

tri
de

 2
(2

56
)

AF
 m

od
ul

e

R
es

id
ua

l b
lo

ck
 (2

56
)

R
es

id
ua

l b
lo

ck
 s

tri
de

 2
(

)

AF
 m

od
ul

e

At
te

nt
io

n
m

od
ul

e

Po
w

er
 n

or
m

al
iz

at
io

n

Wireless Channel

At
te

nt
io

n
m

od
ul

e

R
es

id
ua

l b
lo

ck
 (2

56
)

R
es

id
ua

l b
lo

ck
up

sa
m

pl
e

(2
56

)

AF
 m

od
ul

e

R
es

id
ua

l b
lo

ck
 (2

56
)

R
es

id
ua

l b
lo

ck
up

sa
m

pl
e

(2
56

)

AF
 m

od
ul

e

At
te

nt
io

n
m

od
ul

e

R
es

id
ua

l b
lo

ck
 (2

56
)

R
es

id
ua

l b
lo

ck
up

sa
m

pl
e

(2
56

)

AF
 m

od
ul

e

R
es

id
ua

l b
lo

ck
 (2

56
)

R
es

id
ua

l b
lo

ck
up

sa
m

pl
e

(2
56

)

AF
 m

od
ul

e

R
es

id
ua

l b
lo

ck
 (2

56
)

3x
3

C
on

v,
 C

, s
2

3x
3

C
on

v,
 C

, s
1

Le
ak

yR
eL

U

G
D

N

3x
3

C
on

v,
 C

,
s1

3x
3

C
on

v,
 C

,
s1

Le
ak

yR
eL

U

Le
ak

yR
eL

U

Residual block stride 2 (C)Residual block (C)

3x
3

C
on

v,
 4

xC
,

s2

3x
3

C
on

v,
 C

, s
1

Le
ak

yR
eL

U

G
D

N

Residual block upsample (C)

3x
3

C
on

v,
 4

xC
,

s2

Pi
xe

l S
hu

ffl
e,

 2
Pi

xe
l S

hu
ffl

e,
 2

Fig. 1. Key frame encoder/decoder (fθ , fθ′) network architectures.

attention module proposed in [18], which has been shown
to improve the compression efficiency by focusing the neural
network on regions in the image that require higher bit rate.

For the remaining frames, i.e., xn
i , i = 1, 2, . . . , N − 1,

we use the interpolation encoder gϕ(·) to encode the motion
information (δni−t, δ

n
i+t) and residual information (rni−t, r

n
i+t)

of xn
i with respect to two reference frames (x̄n

i−t, x̄
n
i+t) that are

t frames away from the current frame. The reference frames
x̄n
i−t, x̄n

i+t are what the encoder expects the corresponding
reconstructed frames x̂n

i−t, x̂
n
i+t to be. This is done via channel

emulation and decoding at the transmitter side to obtain an
approximation of what the transmitter expects the receiver to
reconstruct. We follow the same interpolation structure as the
one presented in Fig. 2 for a GoP size N = 4. That is,
for i = 2, t = 2, while for i = 1, 3, t = 1. We define
x̄n
0 = x̄n−1

N , and assume that the GoPs are encoded and
decoded sequentially, such that the frames from the previous
decoded GoP are available as reference for the current GoP. To
interpolate xn

i from x̄n
i−t and x̄n

i+t, we use scaled space flow
(SSF), which was first proposed by [19] as a more general
description of pixel warping than optical flow [20], used in
traditional video codecs. The idea is to blur regions of the
frame where the motion is difficult to model and instead
compensate those regions using the residual. To that end, in
scale-space warping (SSW), a frame is first transformed into a
fixed-resolution volume X̄n

i+t = [x̄n
i+t, x̄

n
i+t ⊗ G(σ0), x̄

n
i+t ⊗

G(2σ0), . . . , x̄
n
i+t⊗G(2V−1σ0)], where x̄n

i+t⊗G(σ0) denotes
Gaussian blurring of the frame x̄n

i+t by convolving x̄n
i+t with

a Gaussian kernel G(σ0) with standard deviation σ0 and ⊗
is the convolution operation. V is the number of levels in
the volume. X̄n

i+t ∈ RH×W×(V+1) represents a progressively
blurred version of xn

i+t, which can be sampled at continuous
points via trilinear interpolation.

The scaled space flow δni+t ∈ RH×W×3 that warps
frame x̄n

i+t to an approximation of xn
i denoted by x̃n

i+t

is then defined as x̃n
i+t = SSW(x̄n

i+t, δ
n
i+t) = X̄n

i+t[x +
δni+t[x, y, 1], y + δni+t[x, y, 2], δ

n
i+t[x, y, 3]]. To estimate the

scaled space flow δni+t, we use the network architecture
hη : RH×W×6 7→ RH×W×3 proposed in [19], to obtain
δni+t = hη(x

n
i , x̄

n
i+t). Given the above definition of SSF,

the residual rni+t is defined as rni+t = xn
i − x̃n

i+t. The
interpolation encoder gϕ : RH×W×21 7→ Ck defines the map-
ping zni = gϕ(x

n
i , x̄

n
i−t, x̄

n
i+t, r

n
i−t, r

n
i+t, δ

n
i−t, δ

n
i+t, σ̂

2), i =
1, 2, . . . , N − 1. The vector zni ∈ Ck is power normalized ac-

cording to Eqn. (3) and sent across the channel as ŷn
i = ẑni +n.

Given the noisy ŷn
i , the decoder first estimates the SSF, the

residual, and a mask. That is, the interpolation decoder gϕ′ :

Ck 7→ RH×W×12 defines the mapping (δ̂
n

i−t, δ̂
n

i+t, r̂
n
i ,m

n
i) =

gϕ′(ŷn
i , σ̂

2), where δ̂
n

i±t ∈ RH×W×3, r̂ni ∈ RH×W×3,
and mn

i ∈ RH×W×3. mn
i,c ∈ RH×W , c = 1, 2, 3, a 2D

matrix in the third dimension of mn
i , satisfies

∑3
c=1 m

n
i,c =

1H×W . That is, for each H and W index of the mask mn
i ,

the sum of values along the channel dimension is equal
to 1, which is achieved by using the softmax activation.
The reconstructed frame is then defined as x̂n

i = (mn
i)1 ∗

SSW(x̂n
i−t, δ̂

n

i−t) + (mn
i)2 ∗ SSW(x̂n

i+t, δ̂
n

i+t) + (mn
i)3 ∗ r̂ni ,

where ∗ refers to element-wise multiplication. The architec-
tures of gϕ and gϕ′ are functionally the same as fθ and fθ′ ,
except the size of the input tensor, which is the concatenation
of (xn

i , x̄
n
i−t, x̄

n
i+t, r

n
i−t, r

n
i+t, δ

n
i−t, δ

n
i+t) along the channel

dimension.

B. Bandwidth Allocation

In the previous section, we have assumed that each frame
utilizes the full bandwidth of k channel uses allowed for
each GoP. In order to satisfy the bandwidth constraint defined
in Section III, the encoder must decide how to allocate k
channel uses to the N frames in a GoP. Since the last frame
of a previous GoP becomes the reference frame of the next
GoP (x̄n

N = x̄n+1
0), we formulate the problem of allocating

available bandwidth in each GoP as a Markov decision process
(MDP) and solve the optimal bandwidth allocation policy
using reinforcement learning.

An MDP is defined by the tuple (S,A,P, r), where S is the
set of states, A is the action set, P is the probability transition
kernel that defines the probability of one state transitioning to
another state given an action, and r : S×A 7→ R is the reward
function. At each time step n, an agent observes state sn ∈ S
and takes an action an ∈ A based on its policy π : S 7→ A.
The state then transitions to sn+1 according to the probability
P(sn+1|sn,an), and the agent receives a reward rn(sn,an).
The objective is to maximize the expected sum of rewards
J(π) = Es1∼ωs1 ,π

[
∑∞

i=1 γ
(i−1)ri(si,ai)], where ωs1 is the

initial state distribution and γ ∈ (0, 1) is the reward discount
factor to ensure convergence.

Herein, we define each GoP as one time step with the
nth state sn = {{x̄n

i }Ni=0, {rni±t}
N−1
i=1 , {δni±t}N−1

i=1 , σ̂2}, where
x̄n
0 = x̄n−1

N . The action set A is the set of all the different

Key
Frame

Key
Frame

Fig. 2. Diagram of a typical interpolation structure used in video compression
algorithm.

ways the available bandwidth k can be allocated to each frame
in the GoP. In order for the decoder functions fθ′ and gϕ′ to
be able to decode each frame that has been given different
amounts of bandwidth, we use a result in [13], which showed
that joint source-channel encoded images can be successively
refined by sending increasingly more information. This is
achieved by dividing the latent vectors zni into U equal sized
blocks (i.e., zni = {zni,1, . . . , zni,U}, zni,u ∈ C k

U , u = 1, ..., U),
while randomly varying the number of blocks un

i of the latent
code transmitted in each batch. This training process leads
to the descending ordering of information from zni,1 to zni,U .
Each action represents an = [un

1 , ..., u
n
N]. We implement this

training process in the algorithm described in Section III-A
by zeroing out the blocks in the latent vector not transmitted.
As such, the action set is all the ways to assign U blocks
to the N frames in the GoP. We define the reward function
as rn = − log10(l(X

n, X̂n)), where l(·, ·) is either lPSNR
or lMS-SSIM depending on the metric used. Note that in the
previous section, we said that the transmitter performs channel
emulation in order to obtain the reference frames (x̄n

i−t, x̄
n
i+t).

Since the precise estimate of the reference frames is boot-
strapped to the amount of bandwidth allocated, we initially
assume a uniform bandwidth allocation (i.e., un

i = k/U)
when computing the SSF and residuals; but once the allocation
has been done, the reference frame in the next state (i.e.,
x̄n+1
0 ∈Mn+1) is estimated based on the bandwidth allocated.
To learn an optimal allocation policy, we use deep Q-

learning [21], where the network qψ seeks to approximate
the Q-function Q : S × A → R. The purpose of the Q-
function is to map each state and action pair to a Q value,
which represents the total discounted reward from step n given
the state and action pair (sn,an). That is,

Q(sn,an) = E

[∞∑
i=n

γi−nri

∣∣∣∣∣sn,an
]
, ∀(sn,an) ∈ S ×A.

As is typical in DQN methods, we use replay buffer, target
network, and ϵ-greedy to aid the learning of the Q-function. We
use target parameters ψ−, which are copies of ψ, to compute
the DQN loss function:

LDQN(ψ)=
(
rn+γmax

a

{
qψ−

(
sn+1,a

)}
−qψ

(
sn,an

))2

.

The parameters ψ are then updated via gradient descent ac-
cording to the gradient ∇ψLDQN(ψ), while the target network
parameters are updated via ψ− ← τψ+(1− τ)ψ−, 0 ≤ τ ≤
1. To promote exploration, we use ϵ-greedy, which chooses a
uniformly random action with probability ϵ at each GoP. A
diagram of the architecture used for qψ is shown in Fig. 3.

Li
ne

ar
(2

57
, 2

56
)

Le
ak

yR
eL

U

Av
er

ag
e

Po
ol

in
g

Li
ne

ar
(2

56
, 2

56
)

Le
ak

yR
eL

U

Li
ne

ar
 (2

56
,

)

ar
gm

ax

Fig. 3. Architecture of the bandwidth allocation network qψ . The convolu-
tional part of the network for feature extraction is functionally the same as
the key encoder network (fθ) but with 21(N − 1) + 6 channels to account
for all the tensors in the state sn.

Upon initialization, we send the first frame x1
1 using full

bandwidth k. The first frame can be considered as a GoP on its
own. For all subsequent GoPs, we perform optimal bandwidth
allocation as described in this section.

IV. NUMERICAL RESULTS

We train our models on the UCF101 dataset [22] using
Pytorch [23], with the Adam optimizer [24] at learning rate
1e−4. We then test the model using the BVI-DVC dataset
[25]. We train the JSCC (fθ, fθ′ , gϕ, gϕ′ , hη) networks first
until convergence, before we train the bandwidth allocation
network qψ to find the optimal bandwidth allocation policy.
We define the SNR estimated by the transmitter and receiver
to be SNREst = 10 log10(P/σ̂

2). For training the bandwidth
allocation network, we choose DQN hyper-parameters γ =
0.99, τ = 0.005, and a replay buffer size |R| = 1000. The
function used for ϵ-greedy exploration is ϵ = ϵend + (ϵ0 −
ϵend) exp (−episode/λ), where λ controls the decay rate of ϵ.
We choose ϵ0 = 0.9, ϵend = 0.05, and λ = 1000. We train
our model at different channel SNRs and evaluate each model
at the same range of SNRs. In each batch, the training SNR
is sampled uniformly from the range [−5, 20]dB. We chose
N = 4, V = 5 and U = 20 to train our models. We let P = 1
and compute the necessary σ2 to achieve the desired SNR.

We compare the performance of our model with that of
the conventional separation-based schemes. In particular, we
use the H.264 [4] codec for source coding, LDPC codes
[5] for channel coding, and QAM modulation. We plot the
average video quality across the test dataset using each of
the schemes considered herein and error bars representing the
standard deviation of the video qualities. In Fig. 4, we show
the effect of channel estimation error on the performance of
DeepWiVe in an AWGN channel by fixing SNREst. It is clear
that DeepWiVe is able to overcome the cliff-effect, as video
quality gracefully degrades as the SNR decreases for a given
SNREst. This is in contrast to the cliff edge drop off that
separation-based designs suffer from. When given accurate
estimate of the channel SNR (i.e., SNREst = SNR), we see
that DeepWiVe is superior to the separation based scheme
using H.264 in all the SNRs tested. This shows that DeepWiVe
can indeed learn an end-to-end optimized JSCC scheme that
achieves lower distortion for a given rate than separation based
schemes, demonstrating the theoretical superiority of JSCC
in finite block length regimes, as shown in [2]. On average,
for the AWGN channel and ρ = 0.031, DeepWiVe is 0.46dB
better in PSNR and 0.0081 better in MS-SSIM than H.264
for SNR ∈ [13, 20]dB, 3.07dB better in PSNR and 0.0485

−6 −4 −2 0 2 4 6 8 10 12 14 16 18 20
20.0

22.0

24.0

26.0

28.0

30.0

32.0

34.0

36.0

SNR (dB)

PS
N

R
(d

B
)

DeepWiVe (SNREst = SNR)

DeepWiVe (SNREst = −1dB)

DeepWiVe (SNREst = 6dB)

DeepWiVe (SNREst = 13dB)

H.264 + LDPC 1/2 BPSK

H.264 + LDPC 3/4 QPSK

H.264 + LDPC 3/4 16QAM

(a) PSNR

−6 −4 −2 0 2 4 6 8 10 12 14 16 18 20
0.75

0.80

0.85

0.90

0.95

1.00

SNR (dB)

M
S-

SS
IM

DeepWiVe (SNREst = SNR)

DeepWiVe (SNREst = −1dB)

DeepWiVe (SNREst = 6dB)

DeepWiVe (SNREst = 13dB)

H.264 + LDPC 1/2 BPSK

H.264 + LDPC 3/4 QPSK

H.264 + LDPC 3/4 16QAM

(b) MS-SSIM

Fig. 4. Comparison of DeepWiVe to H.264 paired with LDPC codes (ρ =
0.031).

better in MS-SSIM for SNR ∈ [3, 6]dB. For more results,
including ablation studies of different bandwidth allocation
schemes, please refer to the journal version [26].

V. CONCLUSION

We presented the first ever DNN-aided joint source-channel
wireless video transmission scheme in the literature, called
DeepWiVe. DeepWiVe is capable of dynamic bandwidth al-
location and residual estimation without the need for distor-
tion feedback. Our results show that DeepWiVe overcomes

the cliff-effect that all separation-based schemes suffer from,
and achieves a graceful degradation with channel quality.
DeepWiVe also outperforms the separation-based scheme using
industry standard H.264 codec and LDPC channel codes in all
the channel conditions considered.

REFERENCES

[1] “Cisco visual networking index: forecast and methodology 2016-2021.,”
2017.

[2] V. Kostina and S. Verdú, “Lossy joint source-channel coding in the finite
blocklength regime,” IEEE Transactions on Information Theory, vol. 59,
pp. 2545–2575, May 2013.

[3] E. Bourtsoulatze, D. Burth Kurka, and D. Gündüz, “Deep joint source-
channel coding for wireless image transmission,” IEEE Trans. on
Cognitive Communications and Networking, vol. 5, no. 3, 2019.

[4] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, pp. 560–576, July 2003.

[5] R. Gallager, “Low-density parity-check codes,” IRE Transactions on
Information Theory, vol. 8, pp. 21–28, Jan. 1962.

[6] G. Cheung and A. Zakhor, “Joint source/channel coding of scalable
video over noisy channels,” AIP Conference Proceedings, vol. 387,
pp. 957–962, Jan. 1997.

[7] M. Stoufs, A. Munteanu, J. Cornelis, and P. Schelkens, “Scalable joint
source-channel coding for the scalable extension of H.264/AVC,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 18,
pp. 1657–1670, Dec. 2008.

[8] S. Jakubczak and D. Katabi, “SoftCast: One-size-fits-all wireless video,”
in Proceedings of the ACM SIGCOMM 2010 Conference, Sept. 2010.

[9] T. Tung and D. Gündüz, “SparseCast: Hybrid digital-analog wireless
image transmission exploiting frequency domain sparsity,” IEEE Com-
munications Letters, pp. 1–1, 2018.

[10] R. Xiong, J. Zhang, F. Wu, and W. Gao, “High quality image recon-
struction via non-local collaborative estimation for wireless image/video
softcast,” in 2014 IEEE International Conference on Image Processing
(ICIP), pp. 2542–2546, Oct. 2014.

[11] A. Trioux, F.-X. Coudoux, P. Corlay, and M. Gharbi, “Performance
assessment of the adaptive GoP-size extension of the wireless SoftCast
video scheme,” in 2020 10th International Symposium on Signal, Image,
Video and Communications (ISIVC), pp. 1–6, Apr. 2021.

[12] J. Xu, B. Ai, W. Chen, A. Yang, P. Sun, and M. Rodrigues, “Wireless
image transmission using deep source channel coding with attention
modules,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, pp. 1–1, 2021.

[13] D. B. Kurka and D. Gündüz, “Bandwidth-agile image transmission
with deep joint source-channel coding,” IEEE Transactions on Wireless
Communications, pp. 1–1, 2021.

[14] D. B. Kurka and D. Gündüz, “DeepJSCC-f: Deep joint source-channel
coding of images with feedback,” IEEE Journal on Selected Areas in
Information Theory, vol. 1, pp. 178–193, May 2020.

[15] M. Morelli and U. Mengali, “A comparison of pilot-aided channel
estimation methods for OFDM systems,” IEEE Transactions on Signal
Processing, vol. 49, pp. 3065–3073, Dec. 2001.

[16] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural
similarity for image quality assessment,” in The Thrity-Seventh Asilomar
Conference on Signals, Systems Computers, 2003, vol. 2, Nov. 2003.

[17] K. Sayood, H. H. Otu, and N. Demir, “Joint source/channel coding for
variable length codes,” IEEE Transactions on Communications, vol. 48,
pp. 787–794, May 2000.

[18] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learned image com-
pression with discretized Gaussian mixture likelihoods and attention
modules,” in 2020 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[19] E. Agustsson, D. Minnen, N. Johnston, J. Balle, S. J. Hwang, and
G. Toderici, “Scale-space flow for end-to-end optimized video com-
pression,” in 2020 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8500–8509, June 2020.

[20] S. S. Beauchemin and J. L. Barron, “The computation of optical flow,”
ACM Computing Surveys, vol. 27, pp. 433–466, Sept. 1995.

[21] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[22] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A Dataset of 101
Human Actions Classes From Videos in The Wild,” arXiv:1212.0402
[cs], Dec. 2012. arXiv: 1212.0402.

[23] A. Paszke et al., “Automatic differentiation in PyTorch,” Oct. 2017.
[24] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”

arXiv:1412.6980 [cs], Jan. 2017. arXiv: 1412.6980.
[25] D. Ma, F. Zhang, and D. Bull, “Bvi-dvc: A training database for deep

video compression,” IEEE Transactions on Multimedia, 2021.
[26] T.-Y. Tung and D. Gündüz, “DeepWiVe: Deep-Learning-Aided Wireless

Video Transmission,” arXiv:2111.13034 [cs, eess], Nov. 2021.

