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Abstract—We consider federated edge learning among mobile
devices that harvest the required energy from their surroundings,
and share their updates with the parameter server (PS) through
a shared wireless channel. In particular, we consider energy
harvesting FL with over-the-air (OTA) aggregation, where the
participating devices perform local computations and wireless
transmission only when they have the required energy available,
and transmit the local updates simultaneously over the same
channel bandwidth. In order to prevent bias among the hetero-
geneous devices, we utilize a weighted averaging with respect to
their latest energy arrivals and data cardinalities. We provide a
convergence analysis and carry out numerical experiments with
different energy arrival profiles, which show that the proposed
scheme is robust against heterogeneous energy arrivals in error-
free scenarios while having less than 10% performance loss for
fading channels.

Index Terms—Federated learning, energy harvesting devices,
wireless communications, machine learning.

I. INTRODUCTION

Developments in Internet-of-things (IoT) paradigm have
helped machine learning (ML) approaches to be used in
many domains such as healthcare, automation, and forecasting,
thanks to the endless data collection capabilities. While mobile
devices are at the center of attention for collecting data,
traditional ML approaches require the collected data to be
assembled in a cloud server for model training. However, this
approach may not be feasible due to several reasons. Firstly,
the participants are typically reluctant to share their private
data; secondly, sending all the data to a server has a high
communication cost, particularly in bandwidth and energy-
limited scenarios. Finally, latency can be a critical limitation
for time-sensitive applications [1]. Federated learning (FL) is
a recently emerging framework that aims to mitigate these
issues, where the participating devices perform model training
with local data and send their parameter updates to the
parameter server (PS), which orchestrates the learning process,
instead of sharing the local data itself to preserve privacy [2],
[3].

In FL, participating devices called mobile devices (MDs)
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can be selected based on their available energy, computing
capability, and quality of their channel to the PS [4]. Before
the local training, the PS sends the global model to the MDs.
Selected MDs perform stochastic gradient descent (SGD)
iterations using their local dataset. After completion, a subset
of the MDs shares their model updates with the PS, where the
model aggregation is performed to obtain the updated global
model. These steps are repeated either for a prescribed number
of iterations or until a certain condition is met. Recent studies
on FL include investigating the effects of data heterogeneity
[2], [5], [6], design of communication-efficient approaches
[7]–[12], and latency and power analysis [13], [14].

Even though FL has many potential benefits in terms of
privacy and communication cost, bandwidth limitations and
adverse channel conditions in wireless setups may threaten
its feasibility in certain practical scenarios. To reduce the
required bandwidth in FL, over-the-air (OTA) aggregation has
become the de facto approach where the same bandwidth is
shared by all the participating MDs, enabling the aggregation
of gradients during the transmission [9]. The adverse channel
effects can be alleviated using multiple receive antennas and
combining techniques at the PS [15]–[18].

Despite the success of FL in practical scenarios, the energy
consumption and carbon footprint of MDs for training and
sharing their local models create serious concerns about the
sustainability of future smart systems [19]. As a more sustain-
able approach, energy harvesting devices, which can acquire
energy from their surroundings [20], have been widely consid-
ered for mobile networks. These devices are typically equipped
with a rechargeable battery to store the harvested energy and
perform the required computations and communications if they
have available energy in their battery.

Energy harvesting communication devices have been pre-
viously studied in detail from different perspectives. The
results include optimal transmission policies [21]–[23], and
channel capacity computation for unit-sized battery [24]. FL
with energy harvesting MDs has also been considered lately
[25], [26]. However, existing approaches do not consider
the wireless channel effects or OTA aggregation in energy
harvesting FL setups, which constitutes the basis of this work.

To examine the performance of FL with energy harvesting
in practical settings, we introduce OTA FL with energy har-
vesting MDs. In this setting, the participating MDs perform
local SGD iterations and transmit their gradients using wireless978-1-6654-3540-6/22/$31.00 © 2022 IEEE



links simultaneously over the same frequency band. Using
OTA aggregation and combining techniques, the PS updates
the global model based on the received signal, and the updated
model is sent back to the users for the next global iteration.
We compare the performance of our setup with the error-free
scenarios and conventional FL using different energy arrival
profiles. Numerical and experimental results show that even
under energy harvesting limitations, the proposed algorithm
can perform well for practical channel models with large
number of users with convergence guarantees.

The rest of the paper is organized as follows. In Section II,
we introduce the FL setup as well as the energy harvesting
processes at the devices with different energy arrival profiles.
In Section III, we study the OTA communication model of FL
with MDs that have intermittent energy arrivals. In Section IV,
a convergence analysis of energy harvesting FL is presented
under certain convexity assumptions on the loss function. We
give several numerical results in Section V, and conclude the
paper in Section VI.

II. SYSTEM MODEL

A. FL Setup

The main goal in FL is to minimize a global loss function
F (θ) with respect to the model weights θ ∈ R2N , where 2N
is the dimension of the weights in the model. Our system has
M single-antenna MDs and a PS equipped with K antennas.
Each MD has a dataset Bm with cardinality |Bm|, and we
define B ≜

∑M
m=1 |Bm| as the number of total data samples.

We define the global loss function as

F (θ) =

M∑
m=1

|Bm|
B

Fm(θ), (1)

where Fm(θ) ≜ 1
|Bm|

∑
u∈Bm

f(θ, u), with f(θ, u) corre-
sponding to the loss of the u-th data sample.

In every global iteration, the MDs perform τ local SGD
iterations using their local data to obtain model updates that
need to be shared with the PS for the global aggregation. The
SGD steps at the m-th MD at the i-th local and t-th global
iteration are performed as

θi+1
m (t) = θi

m(t)− ηim(t)∇Fm(θi
m(t), ξim(t)), (2)

where ηim(t) is the learning rate, ∇Fm(θi
m(t), ξim(t)) is the

unbiased local gradient estimate for the local weights θi
m(t)

with the randomly sampled batch ξim(t) from the dataset
Bm, i.e., Eξ [∇Fm(θm(t), ξm(t))] = ∇Fm(θm(t)), where the
expectation is over the random batch of data samples.

Having computed the local SGD steps, MDs calculate their
model difference to be shared with the PS as

∆θm(t) = θτ
m(t)− θ1

m(t). (3)

In the case where all the devices participate in the global
aggregation with error-free transmission, the PS computes

θPS(t+ 1) = θPS(t) +

M∑
m=1

pm(t)∆θm(t), (4)

where θPS(t) represents the model weight vector at the PS at
the t-th global iteration and pm(t) = |Bm|∑M

m=1 |Bm| denotes the
ratio of the number of data samples of the m-th device to the
total number of samples participating in the aggregation. Note
that the denominator can change depending on the number of
participating devices. The updated global weights at the PS
are shared with the MDs for the next global iteration.

Global aggregation can also be performed via OTA aggre-
gation, where the local model updates can be transmitted over
a shared wireless medium to the PS, whose output for the k-th
receive antenna becomes 1

yPS,k(t) =

M∑
m=1

hm,k(t) ◦ xm(t) + zPS,k(t), (5)

where xm(t) is the transmitted signal from the m-th MD, ◦
denotes the element-wise product, zPS,k(t) ∈ CN is the circu-
larly symmetric additive white Gaussian noise (AWGN) vector
with independent and identically distributed (i.i.d.) entries with
zero mean and variance of σ2

z ; i.e., znPS,k(t) ∼ CN (0, σ2
z). The

channel coefficients are given as hm,k(t) =
√
βm gm,k(t),

where gm,k(t) ∈ CN with each entry gnm,k(t) ∼ CN (0, σ2
h)

(i.e., Rayleigh fading), βm is the large-scale fading coefficient
modeled as βm = (dm)

−p, where p denotes the path loss
exponent, and dm represents the distance between the m-th
MD and the PS.

B. Energy Harvesting Devices

We consider OTA FL with energy harvesting devices where
each MD has a unit battery. The MDs harvest either unit
energy, or no energy at all from various sources such as solar,
kinetic, or RF energy in every global iteration. For simplicity,
we assume that τ local SGD steps and the transmission of
gradients to the PS cost a unit amount of energy.

We denote the binary energy arrival process of the m-th
MD at the t-th global iteration as Em(t). If Em(t) = 1, then
the m-th MD receives enough energy to participate in the
global iteration t. Em(t) = 0, if no energy is harvested. We
also define the elapsed time between the current iteration and
the previous energy arrival as λm(t)=maxt′:t′<t,Em(t′)=1 t

′.
Lastly, for a given t, we define a quantity called the cooldown
multiplier as cm(t) = t−λm(t), which represents the number
of iterations for which the m-th MD has not been harvesting
energy.

We investigate the use of MDs with stochastic energy arrival
profiles, where the harvested energy has an underlying prob-
ability distribution, and the MDs have no prior information
about the next energy arrival time. Note that the MDs do not
know the underlying distribution of the stochastic process. We
will consider two different stochastic energy arrival processes:
Bernoulli and uniform energy arrivals.

1Note that OTA aggregation can be implemented using orthogonal fre-
quency division multiplexing (OFDM) in practice.



1) Bernoulli: At the t-th global iteration, the m-th MD
receives energy with probability αm(t), i.e.,

Em(t) =

{
1 with probability αm(t),

0 with probability 1− αm(t).
(6)

2) Uniform: Global iterations are divided into blocks of
length Tm, and the m-th MD receives energy once for every
Tm iterations. This means that with probability 1, an energy
arrival is observed in

{
t, . . . , t+ Tm − 1

}
.

III. OTA FL WITH ENERGY HARVESTING

We now describe the proposed FL scheme with energy
harvesting MDs where the gradients are sent through wireless
channels using OTA aggregation. Since the mobile devices
do not always have sufficient energy to perform local SGD
computations or gradient transmissions, only the MDs that
have harvested enough energy, i.e., those with Em(t)=1 can
participate in the t-th global iteration. We define S(t) as the
set of devices participating in the t-th global iteration.

Before each training round, the MDs receive the current
global model θPS(t) from the PS. If an MD has sufficient
energy to participate in the t-th iteration, the SGD calculations
are performed. Then, based on the cooldown multiplier of each
MD, the weighted model differences are computed using

∆θs
m(t) = Cm(t)∆θm(t), (7)

where Cm(t) = pm(t)cm(t), and ∆θs
m(t) denotes the scaled

model differences for the m-th MD at the t-th global iteration.
Considering error-free transmission of the scaled gradients, the
PS performs global update for the next iteration as

θPS(t+ 1) = θPS(t) + ∆θPS(t), (8)

where ∆θPS(t) is defined as

∆θPS(t) =
1

C(t)

∑
m∈St

∆θs
m(t) (9)

with C(t) =
∑

m∈St
Cm(t), which is assumed to be known by

the PS [25]. The reader is referred to [27] and the references
therein for related algorithms to estimate the number of
participating users.

We now consider the OTA aggregation of the local model
differences. The PS receives a noisy target signal due to the
wireless channel and the noise. In the proposed scheme, we
assume perfect channel state information (CSI) at the receiver
side and no CSI at the MDs.

For a more spectrally efficient approach, the model differ-
ences are written in terms of a complex signal ∆θs,cx

m (t) ∈ CN

by grouping the symbols into its real and imaginary parts as

∆θs,re
m (t) ≜

[
∆θs,1m (t),∆θs,2m (t), . . . ,∆θs,Nm (t)

]T
, (10a)

∆θs,im
m (t)≜

[
∆θs,N+1

m (t),∆θs,N+2
m (t), . . . ,∆θs,2Nm (t)

]T
.

(10b)

For the k-th antenna, the PS receives the following signal

yPS,k(t) =
∑
m∈St

hm,k(t) ◦∆θs,cx
m (t) + zPS,k(t), (11)

With the assumption that perfect CSI is available at the
receiver side, combining can be performed as (see [15])

yPS(t)=
1

K

K∑
k=1

( ∑
m∈St

hm,k(t)
)∗
◦yPS,k(t). (12)

For the n-th symbol, the combined signal becomes

ynPS(t)=
∑
m∈St

( 1

K

K∑
k=1

|hn
m,k(t)|2

)
∆θn,cxm,s (t)︸ ︷︷ ︸

yn,sig
PS (t) (signal term)

+
1

K

∑
m∈St

∑
m′∈St

m′ ̸=m

K∑
k=1

(hn
m,k(t))

∗hn
m′,k(t)∆θn,cxm′,s(t)

︸ ︷︷ ︸
yn,int
PS (t) (interference term)

+
1

K

∑
m∈St

K∑
k=1

(hn
m,k(t))

∗znPS,k(t)︸ ︷︷ ︸
yn,noise
PS (t) (noise term)

. (13)

We recover the aggregated model differences from the received
signal as

∆θ̂nPS(t) =
1

C(t)σ2
hβ̄

Re{ynPS(t)}, (14a)

∆θ̂n+N
PS (t) =

1

C(t)σ2
hβ̄

Im{ynPS(t)}. (14b)

Finally, the global update can be performed as

θPS(t+ 1) = θPS(t) + ∆θ̂PS(t), (15)

where ∆θ̂PS(t) =
[
∆θ̂1PS(t) ∆θ̂2PS(t) · · · ∆θ̂2NPS(t)

]T
.

IV. CONVERGENCE ANALYSIS

In this section, we analyze the convergence rate of the
proposed algorithm by upper bounding the difference between
the global loss of the FL model and the optimal model.

We denote the minimum local loss as F ∗
m, the optimal

weights of the model as θ∗ ≜ argminθ F (θ), and the
minimum total loss function is given as F ∗ = F (θ∗). The
dataset bias is defined as Γ ≜ F ∗ −

∑M
m=1 pmF ∗

m ≥ 0.
Moreover, it is assumed that the same learning rate is used
accross different MDs, i.e., ηim(t) = η(t).

Assumption 1. Squared l2 norm of the local stochastic
gradients are bounded; i.e.,

Eξ

[
∥∇Fm(θm(t), ξm(t))∥22

]
≤ G2, (16)

which implies ∀n∈ [2N ], Eξ[∇Fm(θnm, ξnm(t))] ≤G.

Assumption 2. Local loss functions are assumed to be L-
smooth and µ-strongly convex; i.e., ∀a, b ∈ R2N , ∀m ∈ [M ],

Fm(a)−Fm(b)≤⟨a−b,∇Fm(b)⟩+L

2
∥a− b∥22, (17)

Fm(a)−Fm(b)≥⟨a−b,∇Fm(b)⟩+µ

2
∥a− b∥22. (18)



Theorem 1. In energy harvesting OTA FL with Bernoulli
energy arrivals αm = α and equal data distribution pm =
p,∀m ∈ [M ], for 0 ≤ η(t) ≤ min{1, 1

τµ}, we can upper
bound the model difference between the global and the optimal
weights as

E
[
∥θPS(t)− θ∗∥22

]
≤
( t−1∏

a=1

X(a)

)
∥θPS(0)−θ∗∥22+

t−1∑
b=1

Y (b)

t−1∏
a=b+1

X(a), (19)

where X(a) = (1− µη(a) (τ − η(a)(τ − 1))) and

Y (a)= τ2G2η2(a)
∑

m1∈Sa

∑
m2∈Sa

A(m1,m2)

+
τ2G2η2(a)

Kβ̄2

∑
m∈Sa

∑
m′∈Sa

m′ ̸=m

βmβm′ +
σ2
zN

p2Kσ2
h

∑
m∈Sa

βm

β̄2

+ (1 + µ(1− η(a)) η2(a)G2 τ(τ − 1)(2τ − 1)

6
+ η2(a)(τ2 + τ − 1)G2 + 2η(a)(τ − 1)Γ. (20)

with A(m1,m2) =
(
1− βm1

β̄
− βm2

β̄
+

(Mα+1)(K+1)βm1
βm2

MαKβ̄2

)
.

Proof: Define an auxiliary variable v(t + 1)≜θPS(t)+
∆θPS(t), where ∆θPS(t) is defined in (9). Then, we have

∥θPS(t+1)−θ∗∥22=∥θPS(t+1)−v(t+1) + v(t+1)−θ∗∥22
= ∥θPS(t+ 1)− v(t+ 1)∥22 + ∥v(t+ 1)− θ∗∥22
+ 2⟨θPS(t+ 1)− v(t+ 1),v(t+ 1)− θ∗⟩. (21)

In the following lemmas, we provide upper bounds for (21).

Lemma 1. E
[∥∥θPS(t+ 1)− v(t+ 1)

∥∥2
2

]
≤ τ2G2η2(t)

∑
m1∈St

∑
m2∈St

A(m1,m2) +
σ2
zN

p2Kσ2
h

∑
m∈St

βm

β̄2

+
τ2G2η2(t)

Kβ̄2

∑
m∈St

∑
m′∈St

m′ ̸=m

βmβm′ . (22)

Proof: See Appendix A.

Lemma 2. E
[∥∥v(t+1)−θ∗

∥∥2
2

]
≤(1−µη(t)(τ−η(t)(τ−1)))E

[∥∥θPS(t)−θ∗∥∥2
2

]
+ (1 + µ(1− η(t)) η2(t)G2 τ(τ − 1)(2τ − 1)

6
+ η2(t)(τ2 + τ − 1)G2 + 2η(t)(τ − 1)Γ. (23)

Proof: The proof follows the same line as in Lemma 2
in [15].

Lemma 3. E [⟨θPS(t+ 1)− v(t+ 1),v(t+ 1)− θ∗⟩] = 0.

Proof: The derivation is the same as in Lemma 3 in
[18] by using the independence between local updates and
individual channel realizations.

The theorem is concluded after applying recursion to the
results of Lemmas 1-3.

Corollary 1. Using Assumption 2, the global loss can be
upper bounded after T global iterations as

E [F (θPS(T ))− F ∗] ≤ L

2
E
[
∥θPS(T )− θ∗∥22

]
≤ L

2

( T−1∏
n=1

X(n)

)
∥θPS(0)−θ∗∥22+

L

2

T−1∑
p=1

Y (p)

T−1∏
n=p+1

X(n). (24)

Assuming τ = 1, βm = 1,∀m ∈ [M ], η(t) = η,∀t and
knowing that K≫M , we get

E
[
F
(
θPS(T )

)]
− F ∗ ≈ L

2

(
1− µη

)T ∥θPS(0)−θ∗∥22

+
L

2µη

(
2η2G2 +

σ2
zN

p2Kσ2
h

)(
1−

(
1− µη

)T)
. (25)

Remark. The noise term in Y (t) does not depend on η(t),
so we have lim

t→∞ E[F (θPS(t))] − F ∗ ̸= 0 even though
lim
t→∞ η(t) = 0. As expected, having more receive antennas and
more data contribution from devices increases the convergence
rate, whereas the model size and the noise variance have
negative effects.

V. SIMULATION RESULTS

We consider an FL environment with M = 40 MDs and a
PS with K = 5M receive antennas. MDs are spread around
the PS randomly in such a way that their distances to the PS
is uniformly distributed between 0.5 and 2 units.

We use the CIFAR-10 dataset [28] with Adam optimizer
[29], and consider an i.i.d. data distribution where the data
samples are randomly and equally distributed among MDs.
The architecture presented in [15] is used with 2N = 307498.

We study the performance of conventional FL (without any
communication constraints), OTA FL where all the MDs have
available energy to participate at all iterations, and energy
harvesting FL where MDs have intermittent energy arrivals
with both error-free and OTA aggregation schemes. To make
a comparison with the previous studies, we also consider
the setup used in [25] with Bernoulli energy arrivals, which
corresponds to the energy harvesting FL setup with no channel
errors without any normalization at the PS with respect to the
cooldown multipliers. Moreover, the MDs are divided into 4
equal-sized groups with different energy profiles. For Bernoulli
energy arrivals, we have αm(t) ∈

{
1, 1/5, 1/10, 1/20

}
, and

for uniform energy arrivals, we have Tm ∈
{
1, 5, 10, 20

}
for

MDs in 4 groups as in [25]. The training is performed for
T = 1000 global iterations for τ = 1, and T = 400 for τ = 3
with mini-batch size |ξm(t)| = 128, the path loss exponent
p = 4, σ2

h = 1, and σ2
z = 1.

Accuracy plots for the case with Bernoulli energy arrival
profiles with τ =1 and τ =3 are presented in Figs. 1 and
2, respectively. The results show that the energy harvesting
FL with error-free links has a convergence rate close to that
of FL with full participation, and that adding a normalization
term with respect to the cooldown multipliers leads to a faster
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convergence and less fluctuations compared to the results in
[25]. Moreover, the performance of OTA FL is very similar
to the scenario used in [25] with error-free links. It can be
seen that even though the links are wireless, the gap in the
performance can be compensated as the number of global
iterations increases. One reason is that the increased number
of receive antennas at the PS can reduce the adverse affects of
the small-scale fading and noise. Increasing τ achieves a better
performance with faster convergence at the cost of making
more computations at the edge. It can also be observed that
performances of Bernoulli and uniform arrivals are very close
to each other due to the energy arrival profile similarities.

In Fig. 3, we numerically evaluate the convergence rates
of the scenarios in Fig. 2, using the expression in (24) with
M = 40, 2N = 307498, L= 10, µ= 1, τ = 1, G2 = 1, η(t) =
10−2−10−6t, σ2

z =5, σ2
h = 1,K =M, ∥θPS(0)−θ∗∥22 =103.

We observe a close convergence rate between the conventional
FL and the error-free energy harvesting FL as expected due
to weighted averaging operation with respect to the cooldown
multipliers. Energy harvesting FL with OTA aggregation has a
slower convergence rate when compared to the others because
of the wireless channel effects as well as the decreased number
of participants at each iteration due to energy harvesting
devices. Since the number of participating devices |St| is
random in nature, and it affects C(t), the shifts and fluctuations
on the convergence rates are observed.

VI. CONCLUSIONS

We study OTA FL with energy harvesting devices with
intermittent and heterogeneous energy arrivals. Our framework
consists of local SGD computations at the MDs that have
available energy, and OTA aggregation of the gradients over
a shared wireless medium. A comparison of the performance
of the OTA FL with energy harvesting devices through neural
network simulations and an analysis of its convergence rate
through numerical experiments are performed. The results
with different energy profiles demonstrate that performing
a weighted averaging using the latest energy arrival and
dataset cardinality in energy harvesting FL can give a similar
performance to the full-participation scheme in both error-free
and OTA cases. As a future direction, one can investigate set-
ups with different battery capacities, and optimize the amount
of power to allocate for computation versus transmission.

APPENDIX A

We can write ∆θ̂nPS(t) =
∑3

p=1 ∆θ̂nPS,p(t), for the n-th
symbol using (13), because of the i.i.d. of channel realizations,
we obtain

E
[
||θPS(t+1)−v(t+1)||22

]
= E

[∥∥∆θ̂PS(t)−∆θPS(t)
∥∥2
2

]
=

2N∑
n=1

(E
[(
∆θ̂nPS,1(t)−∆θnPS(t)

)2]
+

3∑
p=2

E
[(
∆θ̂nPS,l(t)

)2]
. (26)

Lemma 4.
2N∑
n=1

E
[(
∆θ̂nPS,1(t)−∆θnPS(t)

)2]
≤

2N∑
n=1

∑
m1∈St

∑
m2∈St

A(m1,m2)E
[
∆θnm1

(t)∆θnm2
(t)

]
. (27)

where A(m1,m2) =
(
1−βm1

β̄
−βm2

β̄
+

2+(Mα−1)(K−1)βm1βm2

MαKβ̄2

)
.

Proof: For a single symbol, we can write

E
[(
∆θ̂nPS,1(t)−∆θnPS(t)

)2]
= E

[ 1

C(t)2

∑
m1∈St

∑
m2∈St

Cm1
(t)Cm2

(t)∆θnm1
(t)∆θnm2

(t)

×
(
1− 1

Kσ2
hβ̄

K∑
k1=1

|hn
m1,k1

(t)|2− 1

Kσ2
hβ̄

K∑
k2=1

|hn
m2,k2

(t)|2

+
1

K2σ4
hβ̄

2

K∑
k1=1

K∑
k2=1

|hn
m1,k1

(t)|2|hn
m2,k2

(t)|2
)]
. (28)



Using Cm(t) ≤ p and C2(t) ≤ p2 and utilizing the i.i.d.
channel realizations result in (27).

Lemma 5.
2N∑
n=1

E
[(
∆θ̂nPS,2(t)

)2]≤∑
m∈St

∑
m′∈St

m′ ̸=m

βmβm′

Kβ̄2 E
[∥∥∆θm′

(
t
)∥∥2

2

]
.

Proof: For the real part, using the independence of
channels for different m’s and k’s, we obtain

E
[(
∆θ̂nPS,2(t)

)2]
= E

[( ∑
m∈St

∑
m′∈St

m′ ̸=m

1

C(t)Kσ2
hβ̄

×
K∑

k=1

Re
{(

hn
m,k(t)

)∗
hn
m′,k(t)Cm′(t)∆θn,cxm′ (t)

})2]
≤ E

[ ∑
m∈St

∑
m′∈St

m′ ̸=m

βmβm′

2Kβ̄2

((
∆θnm′(t)

)2
+
(
∆θn+N

m′ (t)
)2

+∆θnm(t)∆θnm′(t)−∆θn+N
m (t)∆θn+N

m′ (t)
)]

(29)

We obtain a similar expression for N + 1 ≤ n ≤ 2N , and
summing the two parts concludes the lemma.

Lemma 6.
2N∑
n=1

E
[(
∆θ̂nPS,3(t)

)2]≤ σ2
zN

p2Kσ2
h

∑
m∈St

βm

β̄2
.

Proof: The first half of the signal yields to

E
[(
∆θ̂nPS,3(t)

)2]
= E

[( ∑
m∈St

K∑
k=1

1

C(t)Kσ2
hβ̄

Re
{(

hn
m,k(t)

)∗
znPS,k(t)

})2]
≤ 1

p2K2σ4
hβ̄

2
E
[ ∑
m∈St

K∑
k=1

(
Re

{(
hn
m,k(t)

)∗
zi,nPS,k(t)

})2]
(a)
=

σ2
z

2p2Kσ2
h

∑
m∈St

βm

β̄2
. (30)

where (a) is obtained using the independence between the
channel realizations and the noise. The result also holds for
N + 1 ≤ n ≤ 2N . Summing with respect to all the symbols
completes the proof.

The proof is completed using Assumption 1 and (2), and
summing up the results in Lemmas 4-6.
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[2] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
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[9] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge:
Distributed stochastic gradient descent over-the-air,” IEEE Trans. Signal
Process., vol. 68, pp. 2155–2169, 2020.

[10] M. Chen, N. Shlezinger, H. V. Poor, Y. C. Eldar, and S. Cui,
“Communication-efficient federated learning,” Proc. Nat. Academy of
Sciences, vol. 118, no. 17, 2021.

[11] B. Tegin and T. M. Duman, “Blind federated learning at the wireless
edge with low-resolution ADC and DAC,” IEEE Trans. on Wireless
Commun., 2021.

[12] ——, “Federated learning over time-varying channels,” Madrid, Spain,
Dec. 2021.

[13] C. T. Dinh et al., “Federated learning over wireless networks: Con-
vergence analysis and resource allocation,” IEEE/ACM Trans. Netw.,
vol. 29, no. 1, pp. 398–409, 2020.

[14] D. Liu and O. Simeone, “Privacy for free: Wireless federated learning
via uncoded transmission with adaptive power control,” IEEE J. Sel.
Areas Commun., vol. 39, no. 1, pp. 170–185, 2021.

[15] M. M. Amiri, T. M. Duman, D. Gündüz, S. R. Kulkarni, and H. V.
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