
1 Reinforcement Learning for
Minimizing Age of Information
over Wireless Links
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1.1 Introduction

In this chapter, we study the age of information (AoI) when status updates of an under-
lying process of interest, sampled and recorded by a source node, must be transmitted
to one or more destination nodes over error prone wireless channels. We consider the
practical setting, in which the statistics of the system are not known a priori, and must
be learned in an online fashion. This requires designing reinforcement learning (RL)
algorithms that can adapt their policy dynamically through interactions with the envir-
onment. Accordingly, the aim of this chapter is to design and analyze RL algorithms to
minimize the average AoI at the destination nodes taking into account retransmissions
due to channel errors.

Retransmissions are essential for providing reliability of status updates over error-
prone channels, particularly in wireless settings, and are incorporated into almost all
wireless communication standards. In the standard automatic repeat request (ARQ)
protocol, failed transmissions are repeated until they are successfully received, or a
maximum retransmission count is reached. Some of the recent standards including Zig-
Bee (Alliance 2008), Bluetooth IEEE 802.15.1, WiFi IEEE 802.11ac and UWB (Ultra-
wideband) IEEE 802.15.4a (Oppermann, Hamalainen & Iinatti 2004) use cyclic redun-
dancy check (CRC) together with ARQ. On the other hand, in the hybrid ARQ (HARQ)
protocol, the receiver combines information from previous transmission attempts of the
same packet in order to increase the success probability of decoding. Recent communi-
cation standards including IEEE 802.16m, 3GPP LTE, LTE-A (E-UTRA 2013), IEEE
802.11be, and Narrow-Band IoT (NB-IoT) have adopted HARQ techniques to enhance
the system performance, typically through a combination of CRC and forward error
correction (FEC) (802.16e 2005 2006). In this chapter, we study both ARQ and HARQ
protocols for the minimization of AoI.

Until recently, prior literature in the AoI framework assumed that the perfect sta-
tistical information regarding the random processes governing the status-update sys-
tem is available to the source. However, an increasing number of works are focus-
ing on the practically relevant problem (e.g. sensors embedded in unknown or time-
varying environments) and study RL for AoI optimization (Hsu, Modiano & Duan
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2017, Ceran, Gündüz & György 2018, Ceran, Gündüz & György 2018, Ceran, Gündüz
& György 2019, Sert, Sönmez, Baghaee & Uysal-Biyikoglu 2018, Ceran, Gündüz &
György 2019, Beytur & Uysal 2019, Leng & Yener 2019, Abd-Elmagid, Ferdowsi,
Dhillon & Saad 2019, Elgabli, Khan, Krouka & Bennis 2019, Abd-Elmagid, Dhillon &
Pappas 2020, Hatami, Jahandideh, Leinonen & Codreanu 2020). Sert et al. (2018) con-
siders an end-to-end IoT application running over the Internet without prior assumptions
about the network topology and apply a deep RL algorithm. An RL approach to min-
imize the AoI in an ultra-reliable low-latency communication system is considered by
Elgabli et al. (2019). (Hsu et al. 2017, Beytur & Uysal 2019) investigate the scheduling
decisions with multiple receivers over a perfect channel, where the goal is to learn data
arrival statistics. Q-learning (Sutton & Barto 1998) is used for a generate-at-will model
by Hsu et al. (2017), while policy gradients and DQN methods are used for a queue-
based multi-flow AoI-optimal scheduling problem by Beytur & Uysal (2019). In (Leng
& Yener 2019), policy gradients and DQN methods are employed for AoI minimization
in a wireless ad-hoc network, where nodes exchange status updates with one another
over a shared spectrum. Average-cost RL algorithms are proposed by Ceran, Gündüz &
György (2018),Ceran, Gündüz & György (2019) and Ceran, Gündüz & György (2018)
to learn the decoding error probabilities in a status-update system with HARQ. The
work of Ceran, Gündüz & György (2019) exploits RL methods in order to learn both
decoding error probabilities and energy harvesting characteristics.

The rest of the chapter is organized as follows. Section 1.2 provides a brief back-
ground on Markov decision processes (MDPs) and RL methods, which will be used to
model and solve the AoI minimization problems addressed in this chapter. Section 1.3
investigates a point-to-point status-update system with HARQ under a resource con-
straint and exploits an average-cost RL algorithm to minimize the average AoI. Sec-
tion 1.4 extends the results in Section 1.3 to a multi-user status-update system, and
presents various RL algorithms with different complexity-performance trade-offs. Sec-
tion 1.5 considers an energy harvesting status-update system with HARQ and considers
sensing cost at the source node, as well as the transmission cost of the updates. Finally,
Section 1.6 concludes the chapter.

1.2 Preliminaries

Reinforcement learning is an important area of machine learning where a learning
agent learns how to behave in an environment by performing actions and observing
the results of its actions in the form of state transitions and costs in order to learn to
minimize some notion of cumulative cost (Sutton & Barto 1998). In recent years, RL
methods have attracted significant attention thanks to groundbreaking achievements in
this area of research. Examples include AlphaGo, which incorporates deep RL, beat-
ing the world champions at the game of Go (Silver et al. 2016) as well as the Deep
Q-Network (DQN) algorithm (Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare,
Graves, Riedmiller, Fidjeland, Ostrovski, Petersen, Beattie, Sadik, Antonoglou, King,
Kumaran, Wierstra, Legg & Hassabis 2015) beating humans playing numerous Atari
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Figure 1.1 Illustrations of
the interactions between
the agent and the
environment in the RL
framework.

video games. RL methods have also been widely adopted for many wireless network-
ing and mobile communication systems and applications (Clancy, Hecker, Stuntebeck
& O’Shea 2007, Somuyiwa, György & Gündüz 2018, Luong, Hoang, Gong, Niyato,
Wang, Liang & Kim 2019).

In the RL framework, as depicted in Figure 1.1, an agent repeatedly interacts with its
environment: At time t the state of the environment is S t. The agent takes an action At,
which makes the environment to transition to another state S t+1, and the agent suffers a
cost ct. The agent’s goal is to minimize its long term costs.

This process can be conveniently modeled as a Markov decision process (MDP)
(Puterman 1994): An MDP is defined with a tuple 〈S,A,P, c〉, where S denotes a
countable set of states and A denotes a countable set of actions.1 The transition kernel
P : S × A × S → [0, 1] defines the transition probabilities: that is, if action a ∈ A
is taken in state s ∈ S, the environment transitions to state s′ ∈ S with probabil-
ity P(s′|s, a), independently of previous states and actions (note that P(·|s, a) defines
a distribution over S and hence

∑
s′∈S P(s′|s, a) = 1 for all s ∈ S, a ∈ A). Thus, if

S t and At denote the state and action at time t, then P(s′|s, a) = Pr(S t+1 = s′|S t =

s, At = a), and for any s0, . . . , st+1 ∈ S and a0, . . . , at ∈ A, the state action sequence
S 0, A0, S 1, A1, . . . , S t, At, S t+1 satisfies Pr(S t+1 = st+1|S t = st, At = at) = Pr(S t+1 =

st+1|S t = st, At = at, . . . , S 0 = s0, A0 = a0). Finally, the cost suffered by the agent is
determined by the state of the environment and the action taken in that state via the cost
function c : S ×A→ R.

In the MDP formulation it is assumed that in every time step the agent observes the
state of the MDP, and it can select its action based on its past observations. Therefore, an
agent’s strategy can be described by a policy, defined as a sequence of decision rules πt :
(S ×A)t → [0, 1], which maps the past states and actions and the current state to a dis-
tribution over the actions. That is, after the state-action sequence s0, a0, . . . , st−1, at−1, st,
action at is selected (in state st) with probability πt(at |st, at−1, st−1 . . . , a0, s0). We use sπt
and aπt to denote the sequences of states and actions, respectively, induced by policy
π = {πt}. A policy π = {πt} is called stationary if the distribution of the next action is
independent of the past states and actions given the current state, and it is time invariant;
that is, with a slight abuse of notation, πt(at |st, at−1, st−1 . . . , s0, a0) = π(at |st) for all t
and (si, ai) ∈ S ×A, i = 1, . . . , t. Finally, a policy is said to be deterministic if it chooses
an action with probability one; with a slight abuse of notation, we use π(s) to denote the
action taken with probability one in state s by a stationary deterministic policy.

The goal of the agent is to select a policy that minimizes its expected average cost

1 Assuming that S and A are countable is not necessary, but simplifies the treatment of MDPs and is
sufficient for our applications concerning the age of information (what is more, we also assume in the rest
of the chapter that the action set is finite).
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suffered after starting from state s0 ∈ S:

Jπ(s0) , lim sup
T→∞

1
T + 1

E
 T∑

t=0

c(sπt , a
π
t )
∣∣∣∣s0

 .
A policy π∗ achieving the minimum is called optimal. Under general conditions, there
exists an optimal policy which is stationary, deterministic, and is independent of the
start state s0 (Puterman 1994).

Oftentimes, in practical problems, the agent has constraints on the actions it can take.
For example, in an energy harvesting system it is not possible to make a transmission if
the transmitter’s battery does not contain enough energy (Gündüz, Stamatiou, Michelusi
& Zorzi 2014). While such information can be included in the state, it is often simpler
to keep the original state space and introduce some extra constraints governing the be-
havior of the agent. This can be modeled using a constrained Markov decision process
(CMDP) (Altman 1999), which is an extension of an MDP: A CMDP is defined by the
5-tuple 〈S ,A,P, c, d〉, where S,A,P and c are defined as before, but an additional cost
function d : S ×A → R, is introduced to describe the constraints to the system (in the
update systems we consider, this can be the energy cost of a transmission).

Letting Cπ(s0) denote the infinite horizon average cost for the constraint, starting from
state s0 ∈ S, the goal of the agent in a CMDP is to minimize its average cost Jπ subject
to a constraint Cmax on Cπ; that is, to find and use a policy π solving the optimization
problem

Minimize Jπ(s0) , lim sup
T→∞

1
T + 1

E
 T∑

t=0

c(sπt , a
π
t )
∣∣∣∣s0

 ,
subject to Cπ(s0) , lim sup

T→∞

1
T + 1

E
 T∑

t=0

d(sπt , a
π
t )
∣∣∣∣s0

 ≤ Cmax.

An optimal policy in an CMDP is a solution of the above problem. Under general
conditions, an optimal policy is stationary and deterministic except for a single state
(Altman 1999, Sennott 1993).2

The differential value function hπ : S → R and the action-value function Qπ : S ×
A→ R of a policy π are defined as

hπ(s0) = lim sup
T→∞

E
 T∑

t=0

c(sπt , a
π
t ) − Jπ(sπt )

∣∣∣∣s0

 ;

Qπ(s0, a0) = lim sup
T→∞

= E
 T∑

t=0

c(sπt , a
π
t ) − Jπ(sπt )

∣∣∣∣s0, a0

 .
Under general conditions (Puterman 1994, Bertsekas 2000), hπ and Qπ are the unique
solutions (up to an additive constant) of the so-called Bellman equations: for all states

2 In general, there could be more than one constraints in a CMDP, in which case the optimal policy needs
to randomize in more states. In fact, the number of states where randomization is necessary is equal to the
number of constraints (Altman 1999, Sennott 1993).
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Figure 1.2 System model of a
status-update system over an error-prone
point-to-point link in the presence of
ACK/NACK feedback from the destination.

s ∈ S and actions a ∈ A,

Qπ(s, a) = c(s, a) − Jπ(s, a) +
∑
s′∈S

P(s′|s, a)hπ(s′);

hπ(s) =
∑
a∈A

π(a|s)Qπ(s, a) .

An optimal policy π∗ for an MDP satisfies a slightly modified version of these equations,
called the Bellman optimality equations: for all s ∈ S,

hπ
∗

(s) + Jπ
∗

(s) = min
a

c(s, a) +
∑
s′∈S

P(s′|s, aπ
∗

)hπ
∗

(s′).

On the other hand, no sub-optimal policy can satisfy these equations. We will use Q
and J to denote the state-action value function and the differential value function of an
optimal policy π∗. It is easy to see that the Bellman optimality equations imply that, in
every state s, an optimal policy chooses the greedy action minimizing the action-value
function Q(s, a) in a. There exists several algorithms in the literature which are based on
the Bellman optimality equations and iteratively improve a policy whenever it violates
these optimality conditions.

In the following sections, we model the AoI minimization problem under resource
constraints using the MDP formulation defined above. We study many RL techniques
for the AoI minimization problem in different settings, and compare their performances
under different scenarios when the system characteristics are not known in advance, or
change with time. We present average-cost RL algorithms to learn transmission policies
when the environment determined by the status-update system is not known a priori,
including, in particular, the case of unknown decoding error probabilities in a status-
update system with HARQ (Ceran, Gündüz & György 2018, Ceran, Gündüz & György
2019, Ceran, Gündüz & György 2018), and unknown energy harvesting characteristics
of the source node (Ceran, Gündüz & György 2019).

1.3 RL for Minimizing AoI in Point-to-Point Status-Update Systems

In this section, we consider a point-to-point wireless status-update system. The source
monitors an underlying time-varying process, and can generate a status update at any
time slot. The status updates are communicated from the source node to the destina-
tion over a time-varying channel (see Figure 1.2). Each transmission attempt of a status
update takes constant time, set as one time slot. Throughout the chapter, we will nor-
malize all time durations by the duration of one time slot. We assume that the wireless
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channel changes randomly from one time slot to the next in an independent and iden-
tically distributed (i.i.d.) fashion, and the channel state information is available only
at the destination node. We further assume the availability of an error- and delay-free
single-bit feedback from the destination to the source node for each transmission at-
tempt. Successful receipt of a status update is acknowledged by an ACK signal, while a
NACK signal is sent in case of a failure. In the classical ARQ protocol, a packet is re-
transmitted after each NACK feedback, until it is successfully decoded (or a maximum
number of allowed retransmissions is reached), and the received signal is discarded af-
ter each failed transmission attempt. Therefore, the probability of error is the same for
all retransmissions. However, in the AoI framework there is no point in retransmitting a
failed out-of-date status packet if it has the same error probability as that of a fresh up-
date. Hence, we assume that if the ARQ protocol is adopted, the source always removes
failed packets and transmits a fresh status update. If the HARQ protocol is used, the re-
ceived signals from all previous transmission attempts for the same packet are combined
for decoding. Therefore, the probability of error decreases with every retransmission. In
general, the error probability of each retransmission attempt depends on the particular
combination technique used by the decoder, as well as on the channel conditions.

AoI measures the timeliness of the information at the receiver. It is defined as the
number of time slots elapsed since the generation of the most up-to-date packet suc-
cessfully decoded at the receiver. Formally, denoting the latter generation time for any
time slot t by U(t), the AoI, denoted by δt, is defined as

δt , t − U(t). (1.1)

A transmission decision is made at the beginning of each slot. The AoI increases by
one when the transmission fails. When it is successfully received, it decreases to one
in the case of ARQ, or to the number of retransmissions plus one in the case of HARQ
(minimum age is set to 1 to reflect that the transmission is one slot long).

The probability of error after r retransmissions, denoted by g(r), depends on r and
the HARQ scheme. We assume that g(r) is non-increasing in the number of retransmis-
sions r. For simplicity, we assume that 0 < g(0) < 1, that is, the channel is noisy and
there is a possibility that the first transmission is successful. Also, we will denote the
maximum number of retransmissions by rmax, which may take the value ∞, unless oth-
erwise stated. However, if g(r) = 0 for some r (i.e., a packet is always correctly decoded
after r retransmissions), we set rmax to be the smallest such r. Note that practical HARQ
methods only allow a finite number of retransmissions (802.16e 2005 2006).

Let δt ∈ Z
+ denote the AoI at the beginning of the time slot t, and rt ∈ {0, . . . , rmax}

denote the number of previous transmission attempts. Then the state of the system can
be described by st , (δt, rt). In each time slot, the source node takes one of the three
actions, denoted by a ∈ A, where A = {i, n, x}: (i) remain idle (a = i); (ii) transmit a
new status update (a = n); or (iii) retransmit the previously failed update (a = x).

If no resource constraint is imposed on the source, remaining idle is clearly subop-
timal since it does not contribute to decreasing the AoI. However, continuous trans-
mission is typically not possible in practice due to energy or interference constraints.
Accordingly, we impose a constraint on the average number of transmissions, and we
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require that the long-term average number of transmissions do not exceed Cmax ∈ (0, 1]
(note that Cmax = 1 corresponds to the case in which transmission is allowed in every
slot).

This leads to the CMDP formulation, defined in Section 1.2: The countable set of
states (δ, r) ∈ S and the finite action set A = {i, n, x} have already been defined. P will
be explicitly defined in (1.4). The cost function c : S × A → R, is the AoI at the
destination, and is defined as c((δ, r), a) = δ for any (δ, r) ∈ S, a ∈ A, independently of
action a. The transmission cost d : S ×A→ R is independent of the state and depends
only on the action a, where d = 0 if a = i, and d = 1 otherwise.

Let Jπ(s0) and Cπ(s0) denote the infinite horizon average age and the average number
of transmissions, respectively. The CMDP problem can be stated as follows:

Problem 1

Minimize Jπ(s0) , lim sup
T→∞

1
T + 1

E
 T∑

t=0

δπt

∣∣∣∣s0

 , (1.2)

subject to Cπ(s0) , lim sup
T→∞

1
T + 1

E
 T∑

t=0

1[aπt , i]
∣∣∣∣s0

 ≤ Cmax. (1.3)

Without loss of generality, we assume that the sender and the receiver are synchro-
nized, that is, s0 = (1, 0); and we omit s0 from the notation for simplicity.

Before formally defining the transition function P, we present a simple observation
that simplifies P: Retransmitting a packet immediately after a failed attempt is better
than retransmitting it after waiting for some slots. This is true since waiting increases
the age, without increasing the success probability.

Proposition 1 For any policy π there exists another policy π′ (not necessarily distinct
from π) such that Jπ

′

(s0) ≤ Jπ(s0), Cπ′ (s0) ≤ Cπ(s0), and π′ takes a retransmission action
only following a failed transmission, that is, the probability Pr(aπ

′

t+1 = x|aπ
′

t = i) = 0.

P are given as follows (omitting the parenthesis from the state variables (δ, r)):

P(δ + 1, 0|δ, r, i) = 1,

P(δ + 1, 1|δ, r, n) = g(0),

P(1, 0|δ, r, n) = 1 − g(0),

P(δ + 1, r + 1|δ, r, x) = g(r),

P(r + 1, 0|δ, r, x) = 1 − g(r),

(1.4)

and P(δ′, r′|δ, r, a) = 0 otherwise. Note that the above equations set the retransmission
count to 0 after each successful transmission, and it is not allowed to take a retrans-
mission action in states where the transmission count is 0. Also, the property in Propo-
sition 1 is enforced by the first equation in (1.4), that is, P(δ + 1, 0|δ, r, i) = 1 (since
retransmissions are not allowed in states (δ, 0)). Since the starting state is (1, 0), it also
follows that the state set of the CMDP can be described as

S = {(δ, r) : r < min{δ, rmax + 1}, δ, r ∈ N} . (1.5)
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1.3.1 Lagrangian Relaxation and the Structure of the Optimal Policy

In this section, we derive the structure of the optimal policy for Problem 1 based on
(Sennott 1993). A detailed treatment of finite state-finite action CMDPs is considered
by Altman (1999), but here we need more general results that apply to countable state
spaces. These results require certain technical conditions; roughly speaking, there must
exist a deterministic policy that satisfies the transmission constraint while maintain-
ing a finite average AoI, and any “reasonable” policy must induce a positive recurrent
Markov chain. The precise formulation of the requirements is given by Ceran, Gündüz
& György (2019), wherein Proposition 2 of Ceran, Gündüz & György (2019) shows
that the conditions of Sennott (1993) are satisfied for Problem 1. Given this result, we
follow (Sennott 1993) to characterize the optimal policy.

While there exists a stationary and deterministic optimal policy for countable-state
finite-action average-cost MDPs (Sennott 1989, Puterman 1994, Bertsekas 2000), this
is not necessarily true for CMDPs (Sennott 1993, Altman 1999). To solve the CMDP,
we start by rewriting the problem in its Lagrangian form. The average Lagrangian cost
of a policy π with Lagrange multiplier η ≥ 0 is defined as

Lπη = lim
T→∞

1
T + 1

E  T∑
t=0

δπt

 + ηE
 T∑

t=0

1[aπt , i]

 , (1.6)

and, for any η, the optimal achievable cost L∗η is defined as L∗η , minπ Lπη. If the con-
straint on the transmission cost is less than one (i.e., Cmax < 1), then we have η > 0,
which will be assumed throughout the chapter.3 This formulation is equivalent to an
unconstrained countable-state average-cost MDP with overall cost δt + η1[aπt , i]. A
policy π is called η-optimal if it achieves L∗η. Since the assumptions of Proposition 3.2
of Sennott (1993) are satisfied by Proposition 2 of Ceran, Gündüz & György (2019),
the former implies that there exists a differential cost function hη(δ, r) satisfying

hη(δ, r) + L∗η = min
a∈{i,n,x}

(
δ + η · 1[a , i] + E

[
hη(δ′, r′)

] )
, (1.7)

for all states (δ, r) ∈ S, where (δ′, r′) is the next state after taking action a.
We also introduce the state-action cost function defined as

Qη(δ, r, a) , δ + η · 1[a , i] + E
[
hη(δ′, r′)

]
(1.8)

for all (δ, r) ∈ S, a ∈ A. Then, also implied by Proposition 3.2 of Sennott (1993), the
optimal deterministic policy for the Lagrangian problem with a given η takes, for any
(δ, r) ∈ S, the action achieving the minimum in (1.8):

π∗η(δ, r) ∈ arg min
a∈{i,n,x}

Qη(δ, r, a) . (1.9)

Focusing on deterministic policies, we can characterize the optimal policies for the
CMDP problem: Based on Theorem 2.5 of Sennott (1993), we can prove the following:
3 If Cmax = 1, a transmission is allowed in every time slot, and we have an infinite state-space MDP with

unbounded cost. It follows directly from part (ii) of the theorem of Sennott (1989) (whose conditions can
be easily verified for Problem 1) that there exists an optimal stationary policy that satisfies the Bellman
equations. In this chapter, we concentrate on the more interesting constrained case.
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theorem 1.1 There exists an optimal stationary policy for the CMDP in Problem 1
that is optimal for the unconstrained problem considered in (1.6) for some η = η∗,
and randomizes in at most one state. This policy can be expressed as a mixture of two
deterministic policies π∗η∗,1 and π∗η∗,2 that differ in at most a single state s, and are both
optimal for the Lagrangian problem (1.6) with η = η∗. More precisely, there exists µ ∈
[0, 1] such that the mixture policy π∗η∗ , which selects, in state s, π∗η∗,1(s) with probability
µ and π∗η∗,2(s) with probability 1 − µ, and otherwise follows these two policies (which
agree in all other states) is optimal for Problem 1, and (1.3) is satisfied with equality.

Proof By Proposition 2 of Ceran, Gündüz & György (2019), Theorem 2.5, Proposi-
tion 3.2, and Lemma 3.9 of Sennott (1993) hold for Problem 1. By Theorem 2.5 of Sen-
nott (1993), there exists an optimal stationary policy that is a mixture of two determin-
istic policies, π∗η∗,1 and π∗η∗,2, which differ in at most one state and are η∗-optimal by
Proposition 3.2 of Sennott (1993) satisfying (1.7) and (1.8). From Lemma 3.9 of Sen-
nott (1993), the mixture policy π∗µ, for any µ ∈ [0, 1], also satisfies (1.7) and (1.8), and
is optimal for the unconstrained problem in (1.6) with η = η∗. From the proof of Theo-
rem 2.5 of Sennott (1993), there exists a µ ∈ [0, 1] such that π∗η∗ satisfies the constraint
in (1.3) with equality. This completes the proof of the theorem. �

Some other results of Sennott (1993) will be useful in determining π∗η∗ . For any η > 0,
let Cη and Jη denote the average number of transmissions and average AoI, respectively,
for the optimal policy π∗η. Note that these are multivalued functions since there might be
more than one optimal policy for a given η. Note also that, Cη and Jη can be computed
directly by finding the stationary distribution of the chain, or estimated empirically by
running the MDP with policy π∗η. From Lemma 3.4 of Sennott (1993), L∗η, Cη and Jη are
monotone functions of η: if η1 < η2, we have Cη1 ≥ Cη2 , Jη1 ≤ Jη2 and L∗η1

≤ L∗η2
. This

statement is also intuitive since η effectively represents the cost of a single transmission
in (1.7) and (1.8), as η increases, the average number of transmissions of the optimal
policy cannot increase, and as a result, the AoI cannot decrease.

To determine the optimal policy, one needs to find η∗, the policies π∗η∗,1 and π∗η∗,2, and
the weight µ. In fact, (Sennott 1993) shows that η∗ is defined as

η∗ , inf{η > 0 : Cη ≤ Cmax}, (1.10)

where the inequality Cη ≤ Cmax is satisfied if it is satisfied for at least one value of
(multivalued) Cη. By Lemma 3.12 of Sennott (1993), η∗ is finite, and η∗ > 0 if Cmax < 1.

If Cπ∗
η∗ ,i = Cmax for i = 1 or i = 2, then it is the optimal policy, that is, π∗µ = π∗η∗,i and

µ = 1 if i = 1 and 0 if i = 2. Otherwise one needs to select µ such that Cπ∗µ = Cmax: that
is, if Cπ∗

η∗ ,2 < Cmax < Cπ∗
η∗ ,1 , then

µ =
Cmax −Cπ∗

η∗ ,2

Cπ∗
η∗ ,1 −Cπ∗

η∗ ,2
, (1.11)

which results in an optimal policy.
In practice, finding both η∗ and the policies π∗η∗,1 and π∗η∗,2 is hard. However, given two

monotone sequences ηn ↑ η
∗ and η′n ↓ η

∗, there is a subsequence of ηn (resp., η′n) such
that the corresponding subsequence of the ηn-optimal policies π∗ηn

(η′n-optimal policies
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π∗
η′n

, resp.) satisfying the Bellman equation (1.7) converge4. Then the limit points π and
π′ are η∗-optimal by Lemma 3.7 (iii) of Sennott (1993) and Cπ ≥ Cmax ≥ Cπ′ by the
monotonicity of Cη and the same Lemma 3.7. Although there is no guarantee that π and
π′ only differ in a single point, we can combine them to get an optimal randomized pol-
icy using µ defined in (1.11). In this case, Lemma 3.9 of Sennott (1993) implies that the
policy that first randomly selects if it should use π or π′ (choosing π with probability µ)
and then uses the selected policy forever is η∗-optimal. However, since (1, 0) is a positive
recurrent state of both policies and they have a single recurrent class by Proposition 3.2
of Sennott (1993), we can do the random selection of between π and π′ independently
every time the system gets into state (1, 0) without changing the long-term average or
expected AoI and transmission cost (note that one cannot choose randomly between the
two policies in, e.g., every step). Thus, the resulting randomized policy is η∗-optimal,
and since µ is selected in such a way that the total transmission cost is Cmax, it is also
an optimal solution of Problem 1 by Lemma 3.10 of Sennott (1993). Note that to derive
two η∗-optimal policies, which provably differ only in a single state, a much more elab-
orate construction is used in (Sennott 1993). However, in practice, π and π′ obtained
above are often the same except for a single state. Furthermore, we can approximate π1

and π2 by π∗ηn
and π∗

η′n
for n large enough.

Theorem 1.1 and the succeeding discussion present the general structure of the op-
timal policy. In Section 1.3.2, for practical implementation, a computationally efficient
heuristic algorithm is proposed based upon the discussion in this section.

1.3.2 Relative Value Iteration (RVI)

While the state space is countably infinite, since the age can be arbitrarily large, in
practice we can approximate the countable state space with a large but finite space by
setting an upper bound on the age (which will be denoted by N), and by selecting a
finite rmax. When we consider the finite state space approximation of the problem, we
can employ the relative value iteration (RVI) (Puterman 1994) algorithm to solve (1.7)
for any given η, and hence find (an approximation of) the optimal policy π∗η.

Starting with an initialization of h0(δ, r), ∀(δ, r), and setting an arbitrary but fixed
reference state (δre f , rre f ), a single iteration for the RVI algorithm is given as follows:

Qn+1(δ, r, a)← δ + η · 1[aπ , i] + E
[
hn(δ′, r′)

]
, (1.12)

Vn+1(δ, r)← min
a

(Qn+1(δ, r, a)), (1.13)

hn+1(δ, r)← Vn+1(δ, r) − Vn+1(δre f , rre f ), (1.14)

where Qn(δ, r, a), Vn(δ, r) and hn(δ′, r′) denote the state action value function, value
function and differential value function for iteration n, respectively. Then, hn converges
to hη, and π∗n(δ, r) , arg mina Qn(δ, r, a) converges to π∗η(δ, r) (Puterman 1994).

After computing the optimal deterministic policy π∗η for any given η (more precisely,
an arbitrarily close approximation in the finite approximate MDP), we need to find η∗ as

4 πn → π if for any state s, πn(s) = π(s) for n large enough.
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Algorithm 1 Average-cost SARSA with Softmax
Input: Lagrange parameter η /* error probability g(r) is unknown */

1: n← 0 /* time iteration */

2: τ← 1 /* softmax temperature parameter */

3: QN×M×3
η ← 0

4: Lη ← 0 /* initialization of the gain */

5: for n do
6: Observe current state sn

7: for a ∈ A do π(a|sn) =
exp(−Qη(sn, a)/τ)∑

a′∈A
exp(−Qη(sn, a′)/τ)

/* since it is a minimization problem, use minus Q

function in softmax */

8: end for
9: Sample an from π(a|S n)

10: Observe next state sn+1 and cost cn = δn + η1{an=1,2}
11: for a ∈ A do

π(a|sn+1) =
exp(−Qη(sn+1, an+1)/τ)∑

a′n+1∈A
exp(−Qη(sn+1, a′n+1)/τ)

12: end for
13: Sample an+1 from π(an+1 |sn+1)
14: Update
15: αn ← 1/

√
n /* update parameter */

16: Qη(sn, an)← Qη(sn, an) + αn[δ + η · 1[an , i] − Jη + Qη(sn+1, an+1) − Qη(sn, an)]
17: Lη ← Lη + 1/n[δ + η · 1[an , i] − Jη] /* update Lη at every step */

18: n← n + 1 /* increase iteration count */

19: end for

defined by (1.10). We can use the following heuristic: With the aim of finding a single
η value with Cη ≈ Cmax, we start with an initial parameter η0, and update η iteratively
as ηm+1 = ηm + αm(Cηm −Cmax) for a step size parameter αm

5.

1.3.3 Practical RL Algorithms

We now assume that the source does not have a priori information about the decoding
error probabilities, and has to learn them. The literature for average-cost RL is quite lim-
ited compared to discounted cost problems (Mahadevan 1996, Sutton & Barto 1998).
SARSA (Sutton & Barto 1998) is a well-known RL algorithm, originally proposed
for discounted MDPs, that iteratively computes the optimal state-action value function
Q(s, a) and the optimal policy for an MDP based on the action performed by the cur-
rent policy in a recursive manner. We employ an average-cost version of SARSA with
Boltzmann (softmax) exploration to learn g(r) without degrading the performance sig-
nificantly. The resulting algorithm is called average-cost SARSA with softmax.

Average-cost SARSA with softmax starts with an initial estimate of Qη(s, a) and finds
the optimal policy by estimating state-action values in a recursive manner. In the nth

iteration, after taking action an, the source observes the next state sn+1 and the instanta-
neous cost value cn. Based on this, the estimate of Qη(s, a) is updated by weighing the

5 αm is a positive decreasing sequence and satisfies the following conditions:
∑

m αm = ∞ and
∑

m α
2
m < ∞

from the theory of stochastic approximation (Kushner & Yin 1997).
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previous estimate and the estimated expected value of the current policy in the next state
sn+1. The instantaneous cost cn is the sum of AoI and the weighted cost of transmission,
i.e. δn + η · 1[an , i]; hence, it is readily known at the source node. In each time slot,
the learning algorithm (see Algorithm 1)

• observes the current state sn ∈ S,
• selects and performs an action an ∈ A,
• observes the next state sn+1 ∈ S and the instantaneous cost cn,
• updates its estimate of Qη(sn, an) using the current estimate of η by

Qη(sn, an)← Qη(sn, an) + αn[δ + η · 1[an , i] − Lη + Qη(sn+1, an+1) − Qη(sn, an)],
(1.15)

where αn is the update parameter (learning rate) in the nth iteration.
• updates its estimate of Lη based on empirical average.

As we discussed earlier, with the accurate estimate of Qη(s, a) at hand the transmitter
can decide for the optimal actions for a given η as in (1.9). However, until the state-
action cost function is accurately estimated, the transmitter action selection method
should balance the exploration of new actions with the exploitation of actions known to
perform well. In particular, the Boltzmann action selection method, which chooses each
action probabilistically relative to its expected cost, is used in this chapter. The source
assigns a probability to each action for a given state sn, denoted by π(a|sn):

π(a|sn) ,
exp(−Qη(sn, a)/τ)∑

a′∈A
exp(−Qη(sn, a′)/τ)

, (1.16)

where τ is called the temperature parameter such that high τ corresponds to more uni-
form action selection (exploration) whereas low τ is biased toward the best action (ex-
ploitation).

The constrained structure of the average AoI problem requires additional modifica-
tions to the algorithm, which is achieved by updating the Lagrange multiplier according
to the empirical resource consumption. In each time slot, we keep track of a value η
resulting in a transmission cost close to Cmax, and then find and apply a policy that is
optimal (given the observations so far) for the MDP with Lagrangian cost as in Algo-
rithm 1.

1.3.4 Simulation Results

For the numerical simulation, we assume that decoding error reduces exponentially with
the number of retransmission, that is, g(r) , p0λ

r for some λ ∈ (0, 1), where p0 denotes
the error probability of the first transmission, and r is the retransmission count (set to
0 for the first transmission). The exact value of λ depends on the particular HARQ
protocol and the channel model. Note that ARQ corresponds to the case with λ = 1
and rmax = 0. Following the IEEE 802.16 standard(802.16e 2005 2006), the maximum
number of retransmissions is set to rmax = 3.

Figure 1.3 shows the evolution of the average AoI over time with the average-cost
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Figure 1.3 Performance of the average-cost
SARSA for rmax = 3, p0 = 0.5, λ = 0.5,
Cmax = 0.4 and n = 10000, averaged over
1000 runs (both the mean and the variance
are shown).
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Figure 1.4 Performance of the proposed
RL algorithm (average-cost SARSA) and its
comparison with the RVI algorithm for
n = 10000 iterations, and values are
averaged over 1000 runs for different p0 and
rmax values when λ = 0.5 (both the mean
and the variance are shown).

SARSA algorithm. The average AoI achieved by Algorithm 1, denoted by RL in the fig-
ure, converges to the one obtained from the RVI algorithm, which has a priori knowl-
edge of g(r). We can observe from Figure 1.3 that the performance of SARSA ap-
proaches that of RVI in about 10000 iterations. Figure 1.4 shows the performance of the
two algorithms (with again 10000 iterations in SARSA) as a function of Cmax in two
different setups. We can see that SARSA performs very close to RVI with a gap that
is roughly constant for the whole range of Cmax values. We can also observe that the
variance of the average AoI achieved by SARSA is much larger when the number of
transmissions is limited, which also limits the algorithm’s learning capability.

1.4 RL for Minimizing AoI in Multi-User Status-Update Systems

In this section, we consider a status-update system with M users. The source can trans-
mit the status update to only a single user in each time slot. This can be either because
of dedicated orthogonal links to the users, or because the users are interested in distinct
processes. As before, each transmission attempt takes one time slot, and the channels
change randomly from one time slot to the next in an i.i.d. fashion, with states known
only at the corresponding receivers. Successful reception of the status update is ac-
knowledged by an ACK signal (denoted by Kt = 1), while a NACK signal is sent in
case of a failure (denoted by Kt = 0).

Since, in practice, the utility of status updates typically becomes zero beyond a certain
age, and also to simplify the analysis, we assume that the age cannot grow larger than
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some finite constant δmax. Then, if the most up-to-date packet received by the jth user
( j ∈ [M] , {1, . . . ,M}) before time slot t was generated in slot U j(t), then the AoI at
user j at the beginning of time slot t is defined as δ j,t , min{t − U j(t), δmax} ∈ [δmax] ,
{1, . . . , δmax}.

In each time slot t, the source node takes an action at from the set of actions A =

{i, n1, x1, . . . , nM , xM}: in particular, the source can i) remain idle (at = i); ii) generate
and transmit a new status update packet to the jth user (at = n j, j ∈ [M]); or, iii)
retransmit the most recent failed status update to the jth user (at = x j, , j ∈ [M]). We
have |A| = 2M + 1. For the jth user, the probability of error after r retransmissions,
denoted by g j(r).

Let δtx
j,t denote the number of time slots elapsed since the generation of the most

recently transmitted (whether successfully or not) packet to user j at the transmitter,
while δrx

j,t denote the AoI of the most recently received status update at receiver of the
user j. δtx

j,t resets to 1 if a new status update is generated in time slot t − 1, and increases
by one (up to δmax) otherwise, i.e.,

δtx
j,t+1 =

1 if at = n j;

min(δtx
j,t + 1, δmax) otherwise.

On the other hand, the AoI at the receiver side evolves as follows:

δrx
j,t+1 =


1 if at = n j and Kt = 1;

min(δtx
j,t + 1, δmax) if at = x j and Kt = 1;

min(δrx
j,t + 1, δmax) otherwise .

Note that once the AoI at the receiver is at least as large as at the transmitter, this
relationship holds forever; thus it is enough to consider cases when δrx

t ≥ δ
tx
t .

Therefore, δrx
j,t increases by 1 when the source chooses to transmit to another user, or

if the transmission fails, while it decreases to 1 or, in the case of HARQ, to min(δtx
j,t +

1, δmax), when a status update is successfully decoded. Also, δtx
j,t increases by 1 if the

source chooses not to generate a new packet and transmit it to user j (at , n j).
For the jth user, let r j,t ∈ [rmax] , {0, . . . , rmax} denote the number of previous trans-

mission attempts of the most recent packet. Thus, the number of retransmissions is zero
for a newly sensed and generated status update and increases up to rmax as we keep
retransmitting. Then, the state of the system can be described by st , (δrx

1,t, δ
tx
1,t, r1,t, . . . ,

δrx
M,t, δ

tx
M,t, rM,t), where st ∈ S ⊂ ([δmax] × [δmax] × [rmax])M .

Similarly to previous section, we impose a constraint on the average number of trans-
missions, denoted by Cmax ∈ (0, 1]. This leads to CMDP formulation, defined in Sec-
tion 1.2: The set of states S and the finite set of actions A have already been defined. P
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can be summarized as follows.

Ps,s′ (a) =



1 if a = i, δrx′
i = min{δrx

i + 1, δmax}, δ
tx′
i = min{δtx

i + 1, δmax},

r′i = ri, ∀i;

1 − g j(0) if a = n j, δ
rx′
j = 1, δtx′

j = 1, r′j = 0, δrx′
i = min{δrx

i + 1, δmax},

δtx′
i = min{δtx

i + 1, δmax}, r′i = ri, ∀i , j;

g j(0) if a = n j, δ
rx′
j = min{δrx

j + 1, δmax}, δ
tx′
j = 1, r′j = 1, r′i = ri;

δrx′
i = min{δrx

i + 1, δmax}, δ
tx′
i = min{δtx

i + 1, δmax},∀i , j;

1 − g j(r j) if a = x j, δ
rx′
j = δtx

j + 1, δtx′
j = min{δtx

j + 1, δmax}, r′j = 0, r′i = ri,

δrx′
i = min{δrx

i + 1, δmax}, δ
tx′
i = min{δtx

i + 1, δmax},∀i , j;

g j(r j) if a = x j, δ
rx′
j = min{δrx

j + 1, δmax}, δ
tx′
j = min{δtx

j + 1, δmax},

δrx′
i = min{δrx

i + 1, δmax}, δ
tx′
i = min{δtx

i + 1, δmax},

r′j = min{r′j + 1, rmax}, r′i = ri,∀i , j;

0 otherwise.

(1.17)

The instantaneous cost function c : S ×A → R is defined as the weighted sum of AoI
for multiple users, independently of a. Formally, c(s, a) = ∆ , w1δ

rx
1 + · · · + wMδ

rx
M ,

where the weight w j > 0 represents priority of user j. The instantaneous transmis-
sion cost d : A → R is defined as d(i) = 0 and d(a) = 1 if a , i. We use sπt =

(δrx
1,t
π, δtx

1,t
π, rπ1,t, . . . , δ

rx
M,t

π, δtx
M,t

π, rπM,t) and aπt to denote the sequences of states and ac-
tions, respectively, induced by policy π, while ∆π

t ,
∑M

j=1 w jδ
rx
j,t
π denotes the instanta-

neous weighted cost.
The infinite horizon expected weighted average AoI for policy π starting from the

initial state s0 ∈ S is defined as

Jπ(s0) , lim sup
T→∞

1
T + 1

E
 T∑

t=0

∆π
t

∣∣∣∣s0

 , (1.18)

while the average number of transmissions is given by (1.3).
As before, we assume that the source and the users are synchronized at the beginning

of the problem, that is, s0 = (1, 0, 2, 0, . . . ,M, 0); and we omit s0 from the notation for
simplicity.

Problem 2 Minimize
π∈Π

Jπ(s0) over π ∈ Π such that Cπ(s0) ≤ Cmax.

Similarly to Section 1.3.1, we can rewrite the problem in its Lagrangian form under
policy π with Lagrange multiplier η ≥ 0, denoted by Lπη,

Lπη = lim
T→∞

1
T + 1

E  T∑
t=0

∆π
t

+ηE  T∑
t=0

1[aπt , i]

 (1.19)

and, for any η, the optimal achievable cost is defined as L∗η , infπ Lπη under policy π∗n.
This formulation is equivalent to an unconstrained finite-state average-cost MDP with
the instantaneous overall cost ∆π

t + η1[aπt , i].
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theorem 1.2 An optimal stationary policy π∗n which minimizes (1.19) exists with con-
stant L∗η for the unconstrained MDP with Lagrangian parameter η.

The proof of Theorem 1.2 can be found in (Ceran, Gündüz & György 2020). Also, as
in Section 1.3.2, an iterative algorithm to minimize average AoI in multi-user systems
can be designed by applying RVI algorithm (Puterman 1994).

1.4.1 AoI with Standard ARQ Protocol

In this section, we assume that the system adopts the standard ARQ protocol. The action
space reduces to A = {i, n1, . . . , nM} and the state space reduces to (δrx

1 , δ
rx
2 , . . . , δ

rx
M)

as r j,t = 0, ∀ j, t, and there is no need to store the AoI at the transmitter-side. The
probability of error of each status update is p j , g j(0) for user j. State transitions in
(1.17), the Bellman optimality equations, and the RVI algorithm can all be simplified
accordingly. Thanks to these simplifications, we are able to show the structure of the
optimal policy and to derive a low-complexity suboptimal policy.

Structure of the Optimal Policy
theorem 1.3 There exists an optimal stationary policy for Problem 2 under standard
ARQ that is optimal for the unconstrained problem considered in (1.6) for some η =

η∗, and randomizes in at most one state. This policy can be expressed as a mixture of
two deterministic policies π∗η∗,1 and π∗η∗,2 that differ in at most a single state ŝ, and are
both optimal for the Lagrangian problem (1.6) with η = η∗. More precisely, there exist
two deterministic policies π∗η∗,1, π∗η∗,2 as described above and µ ∈ [0, 1], such that the
mixture policy π∗η∗ , which selects, in state ŝ, π∗η∗,1(ŝ) with probability µ and π∗η∗,2(ŝ) with
probability 1 − µ, and otherwise follows these two policies (which agree in all other
states) is optimal for Problem 2, and the constraint in (1.3) is satisfied with equality.

Theorem 1.3 is proved by Ceran et al. (2020). Some other results of Altman (1999)
and Beutler & Ross (1985) are useful in determining π∗η∗ . For any η > 0, let Cη and Jη
denote the average number of transmissions and average AoI, respectively, for the opti-
mal policy π∗η. Note that, Cη and Jη can be computed directly by finding the stationary
distribution of the chain, or estimated empirically by running the MDP with policy π∗η.

A detailed discussion on finding both η∗ and the policies π∗η∗,1 and π∗η∗,2 are given by
Ceran, Gündüz & György (2019) and also in Section 1.3.

The Whittle Index Policy
Although the RVI algorithm (Puterman 1994) provides an optimal solution to Prob-
lem 2, its computational complexity is significant for large networks consisting of many
users. Instead, we can derive a low-complexity policy for the multi-user AoI minimiza-
tion problem with standard ARQ based on Whittle’s approach (Whittle 1988), by mod-
elling the problem as a restless multi-armed bandit problem (Gittins, Glazebrook &
Weber 2011). The Whittle index (WI) policy in Section 1.4.1 gives a possibly subopti-
mal yet computationally efficient policy, which often performs very well in practice.

Multi-armed bandit (MAB) problems (Gittins et al. 2011) constitute a class of RL
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problems with a single state. In the restless MAB (RMAB) problem (Whittle 1988),
each arm is associated with a state that evolves over time, and the reward distribution
of the arm depends on its state (in contrast, in stochastic MAB problems, rewards are
i.i.d.). The multi-user AoI minimization problem with ARQ can be formulated as a
RMAB with M + 1 arms: choosing arm j is associated with transmitting to user j, while
arm M + 1 represents the action of staying idle (a = i). RMAB problems are known to
be PSPACE-hard in general (Gittins et al. 2011); however, a low-complexity heuristic
policy can be found for certain problems by relaxing the constraint that in every round
only a single arm can be selected, and instead introducing a bound on the expected
number of arms chosen (Whittle 1988). The resulting policy, known as the WI policy,
is a sub-optimal policy, but it is known to perform close to optimal in many settings
(Whittle 1988).

Following Whittle’s approach, we decouple the problem into M sub-problems each
corresponding to a single user, and treat these problems independently. The cost of
transmitting to a user (called subsidy for passivity (Whittle 1988)) is denoted by C,
which will be later used to derive the index policy. Writing the Bellman equation (1.8)
for each subproblem, we obtain the optimality equations for the single user AoI mini-
mization problem with the standard ARQ protocol where the action space is {i, n j}

hC(δrx
j ) + L∗j = min

{
Q(δrx

j , n j),Q(δrx
j , i)}, (1.20)

and the optimal policy to each subproblem is given

π∗C(δrx
j ) ∈ arg min

a∈{i,n j}

{
Q(δrx

j , a)
}
, where (1.21)

Q(δrx
j , n j) , w jδ

rx
j + C + p jhC(δrx

j + 1) + (1 − p j)hC(1), Q(δrx
j , i) , w jδ

rx
j + hC(δrx

j + 1).

Given (1.20) and (1.21), let S n j

j (C) represent the set of states the optimal action is
equal to n j for a given C, that is, S n j

j (C) = {s : π∗C(δrx
j ) = n j}. Then, we define indexa-

bility as follows.

definition 1.4 An arm is indexable if the set S n j

j (C) as a function of C is monoton-
ically decreasing for C ∈ R, and lim

C→∞
S n j

j (C) = ∅ and lim
C→−∞

S n j

j (C) = S (Whittle 1988,

Gittins et al. 2011). The problem is indexable if every arm is indexable.

Note that if a problem is indexable as defined in Definition 1.4, S a
j (C1) ⊂ S a

j (C2)
for C1 ≥ C2, and there exist a C such that both actions are equally desirable, that is,
Q(δrx

j , i) = Q(δrx
j , n j) for all δrx

j . The WI is defined as follows.

definition 1.5 The WI for user j at state δrx
j , denoted by I j(δrx

j ), is defined as the cost
C that makes both actions n j and i equally desirable.

The next proposition, proved by Ceran et al. (2020), gives a closed for expression for
the WI in our setting:

Proposition 2 Problem 2 with standard ARQ is indexable and the WI for each user j
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and state δrx
j can be computed as

I j(δrx
j ) =

1
2

w jδ
rx
j (1 − p j)

(
δrx

j +
1 + p j

1 − p j

)
, ∀ j ∈ [M], (1.22)

where the WI for the idle action is IM+1 = η.

The WI policy, parametrized by the Lagrange multiplier η > 0, is defined as follows:
in state (δrx

1 , δ
rx
2 , . . . , δ

rx
M), compare the highest index with η, and if η is smaller, then the

source transmits to the user with the highest index, otherwise the source remains idle.
This policy tends to transmit to the user with a high weight (w j), low error probability
(p j) and high AoI (δrx

j ). Formally,

π(δ1, δ2, . . . , δM) =

narg max
j

(I j(δrx
j )) if max j I j(δrx

j ) ≥ η,

i otherwise.
(1.23)

The effectiveness of the WI policy is demonstrated numerically in Section 1.4.3.

Lower Bound on the Average AoI under a Resource Constraint
In this section, we derive a closed-form lower bound for the constrained MDP, for which
the proof is given in (Ceran et al. 2020):

theorem 1.6 For Problem 2 with the standard ARQ protocol, we have JLB ≤ Jπ,
∀π ∈ Π, where

JLB =
1

2Cmax

 M∑
j=1

√
w j

1 − p j


2

+
Cmaxw j∗ p j∗

2(1 − p j∗ )
+

1
2

M∑
j=1

w j, and j∗ , arg min
j

w j p j

2(1 − p j)
.

Previously, (Kadota, Uysal-Biyikoglu, Singh & Modiano 2018) proposed a lower
bound on the average AoI for a source node sending time-sensitive information to mul-
tiple users through unreliable channels, without any resource constraint (i.e. Cmax = 1).
The lower bound in Theorem 1.6 shows the effect of the constraint Cmax, and even for
Cmax = 1, it is tighter than the one provided by Kadota et al. (2018).

1.4.2 Practical RL Algorithms

In Section 1.3, we presented a simple average-cost SARSA algorithm to minimize the
average AoI for a single user. Due to the large state space of the multi-user network con-
sidered in this section, alternative lower-complexity learning algorithms are proposed.

UCRL2 with HARQ
The upper confidence RL (UCRL2) algorithm (Auer, Jaksch & Ortner 2009) is a well-
known RL algorithm for finite state and action MDP problems, with strong theoreti-
cal performance guarantees. However, the computational complexity of the algorithm
scales quadratically with the size of the state space, which makes it unsuitable for large
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state spaces. UCRL2 has been initially proposed for generic MDPs with unknown re-
wards and transition probabilities; which need to be learned for each state-action pair.
For the average AoI problem, the rewards are known (i.e., AoIs) while the transition
probabilities are unknown. Moreover, the number of parameters to be learned can be
reduced to the number of transmission error probabilities to each user; thus, the compu-
tational complexity can be reduced significantly.

For a generic tabular MDP, UCRL2 keeps track of the possible MDP models (transi-
tion probabilities and expected immediate rewards) in a high-probability sense and finds
a policy that has the best performance in the best possible MDP. In our problem, it is
enough to optimistically estimate the error probabilities g j(r), and find an optimal policy
for this optimistic MDP. This is possible since the performance corresponding to a fixed
sequence of transmission decisions improves if the error probabilities decrease. We will
guarantee the average transmission constraint by updating the Lagrange multiplier ac-
cording to the empirical resource consumption. The details are given in Algorithm 2.

UCRL2 exploits the optimistic MDP characterized by the optimistic estimation of
error probabilities within a certain confidence interval, where ĝ j(r) and g̃ j(r) represent
the empirical and the optimistic estimates of the error probability for user j after r re-
transmissions. In each episode, we keep track of a value η resulting in a transmission
cost close to Cmax, and then find and apply a policy that is optimal for the optimistic
MDP (i.e., the MDP with the smallest total cost from among all plausible ones given
the observations) with Lagrangian cost. In contrast to the original UCRL2 algorithm,
finding the optimistic MDP in this case is easy (choosing lower estimates of the error
probabilities), and we can use standard value iteration (VI) to compute the optimal pol-
icy (instead of the more complex extended VI used in UCRL2). Thus, the computational
complexity, which is the main drawback of UCRL2 algorithm, reduces significantly for
the average AoI problem. UCRL2 is employed for Problem 2 in this chapter since it is
an online algorithm (i.e., it does not need any previous training) and it enjoys strong
theoretical guarantees for Cmax = 1. The resulting algorithm will be called UCRL2-VI.

A Heuristic Version of the UCRL2 for Standard ARQ
Next, we consider the standard ARQ protocol with unknown error probabilities p j =

g j(0). The estimation procedure of UCRL2-VI can be immediately simplified, as it only
needs to estimate M parameters. In order to reduce the computational complexity, we
can replace the costly VI in the algorithm to find the π̃k with the suboptimal WI policy
given in Section 1.4.1. The resulting algorithm, called UCRL2-Whittle, selects policy π̃k

in step 16 following the WI policy in Section 1.4.1. The details are given in Algorithm
3, where p̂( j) and p̃( j) denote the empirical and the optimistic estimate of the error
probability for user j.

Average-Cost SARSA with LFA
In Section 1.3.3, the average-cost SARSA algorithm is employed with Boltzmann (soft-
max) exploration for the average AoI problem with a single user. When the state-space
S is small and a simulator is available for the system, updates similar to Section 1.3.3
can be computed for all state-action pairs. However, this is not possible for large state
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Algorithm 2 UCRL2-VI
Input: Confidence parameter ρ ∈ (0, 1), update parameter α, Cmax, confidence bound constant U, |S |, |A|
1: η = 0, t = 1
2: Observe initial state s1
3: for episodes k = 1, 2, . . . do set tk , t
4: for j ∈ [M], r ∈ [rmax] do
5: Nk( j, r) , |{τ < tk : aτ = x j, r j,τ = r}|, Nk( j, 0) , |{τ < tk : aτ = n j}|

6: Ek( j, r) , |{τ < tk : aτ = x j, r j,τ = r,NACK}|, Ek( j, 0) , |{τ < tk : aτ = n j,NACK}|
7: ĝ j(r) , Ek( j,r)

max{Nk( j,r),1}
8: end for
9: Ck , |{τ < tk : aτ , i}|

10: η← η + α(Ck/tk −Cmax)

11: Compute optimistic error probability estimates: g̃ j(r) , max
{
0, ĝ j(r) −

√
U log(|S ||A|tk/ρ)

max{1,Nk( j,r)}

}
12: Use g̃ j(r) and VI to find a policy π̃k
13: Set vk( j, r)← 0, ∀ j, r
14: while vk( j, r) < Nk( j, r) do /* run policy π̃k */

15: Choose action at = π̃k(st), and if at , i, set jt as target user, otherwise jt = 0
16: Obtain cost

∑M
j=1 w jδ

rx
j + η1[at , i] and observe st+1

17: Update vk( jt , r) = vk( jt , r) + 1 and set t ← t + 1
18: end while
19: end for

Algorithm 3 UCRL2 for Average AoI with ARQ
Input: Confidence parameter ρ ∈ (0, 1), update parameter α, Cmax, confidence bound constant U, |S |, |A|
1: η = 0, t = 1
2: Observe initial state s1
3: for episodes k = 1, 2, . . . do and set tk , t,
4: Nk( j) , |{τ < tk : aτ = n j}|, Ek( j) , |{τ < tk : aτ = n j,NACK}|
5: p̂( j) , Ek( j)

max{Nk( j),1} , Ck , |{τ < tk : aτ , i}|,
6: η← η + α(Ck/tk −Cmax)

7: Compute optimistic error probabilities: p̃( j) , max{0, p̂( j) −
√

U log(|S ||A|tk/ρ)
max{1,Nk( j)} }

8: Use p̃( j) to find a policy π̃k and execute policy π̃k
9: while vk( j) < Nk( j) do

10: Choose action at = π̃k(st),
11: Obtain cost

∑M
j=1 w jδ

rx
j + η ∗ 1[at , i] and observe st+1

12: Update vk( j) = vk( j) + 1 and set t ← t + 1;
13: end while
14: end for

spaces, or if the Q functions are learned online: that is, to collect data about some states,
the system needs to be driven to that state, which may be very costly, severely limiting
the set of states for which the updates can be computed. For the problem with multiple
users, the cardinality of the state-action space is large and it is difficult to even store
a matrix that has the size of the state-action space. Hence, average-cost SARSA with
LFA is employed, where a linear function of features can be used to approximate the
Q-function in SARSA (Puterman 1994). Average-cost SARSA with LFA is an online
algorithm similar to average-cost SARSA and UCRL2 algorithms. It improves the per-
formance of average-cost SARSA by improving the convergence rate significantly for
multi-user systems and its application is much simpler than the UCRL2 algorithm.

We approximate the Q function with a linear function Qθ defined as: Qθ(s, a) ,
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Algorithm 4 Average-cost SARSA with LFA
Input: Lagrange parameter η, update parameters α, β, γ, A
1: Set t ← 1 , θ ← 0, Jη ← 0
2: for t = 1, 2, . . . do
3: Find parameterized policies with Boltzmann exploration: π(a|st) =

exp(−θT φ(st ,a))∑
a′∈A exp(−θT φ(st ,a′))

4: Sample and execute action at from π(a|st)
5: Observe next state st+1 and cost

∑M
j=1 δ

rx
j + η ∗ 1[at , i].

6: π(a|st+1) =
exp(−θT φ(st+1 ,a))∑

a′t+1∈A
exp(−θT φ(st+1 ,a′))

7: Sample at+1 from π(a|st+1)
8: Compute Cη

9: Update linear coefficients: θ ← θ + αt[∆t + η · 1[at , i] − Jη + θTφ(st+1, at+1) − θTφ(st , at)]φ(st , at)
10: Update gain: Jη ← Jη + βt[∆t + η · 1[at , i] − Jη]
11: Update Lagrange multiplier: η← η + γt(Cη −Cmax)
12: end for

θTφ(s, a), where φ(s, a) , (φ1(s, a), . . . , φd(s, a))T is a given feature associated with
the pair (s, a). In our experiments, we set {φi(s, a)}Mi=1 as the weighted age of each user
(w jδ

rx
j ) and {φi(s, a)}2M

i=M+1 as the retransmission number of each user (r j) given an action
a ∈ A is chosen in state s ∈ S:

Qθ(s, a) = θ(0,a) + θ(1,a)w1δ1 + . . . + θ(M,a)wMδM + θ(M+1,a)r1 + . . . + θ(2M,a)rM , (1.24)

where θ(0,a) denotes the constant variable. The dimension of θ is d = (2M + 1)|A|. The
outline of the algorithm is given in Algorithm 4.

The performance of average-cost SARSA with LFA is demonstrated in Section 1.4.3.
We note that linear approximators are not always effective, and the performance can
be improved in general by using a non-linear approximator. However; the performance
also depends on the availability of data, i.e., the linear approximator may perform better
if the available data set is limited.)

Deep Q-Network (DQN)
A DQN uses a multi-layered neural network to estimate Q(s, a); that is, for a given state
s, DQN outputs a vector of state-action values, Qθ(s, a), where θ denotes the parameters
of the network. The neural network is a function from 2M inputs to |A| outputs which
are the estimates of the Q-function Qθ(s, a). We apply the DQN algorithm of Mnih
et al. (2015) to learn a scheduling policy. We create a fairly simple feed-forward neural
network of 3 layers, one of which is the hidden layer with 24 neurons. We also use
Huber loss (Huber 1964) and the Adam algorithm (Kingma & Ba 2015) to conduct
stochastic gradient descent to update the weights of the neural network.

We exploit two important features of DQNs as proposed by Mnih et al. (2015): ex-
perience replay and a fixed target network, both of which provide algorithm stability.
For experience replay, instead of training the neural network with a single observation
< s, a, s′, c(s, a) > at the end of each step, many experiences (i.e., (state, action, next
state, cost) quadruplets) can be stored in the replay memory for batch training, and a
minibatch of observations randomly sampled at each step can be used. The DQN uses
two neural networks: a target network and an online network. The target network, with
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Table 1.1 Hyperparameters of DQN algorithm used in the chapter

Parameter Value Parameter Value Parameter Value

discount factor γ 0.99 optimizer Adam activation function ReLU

minibatch size 32 loss function Huber loss hidden size 24

replay memory length 2000 exploration coefficient ε0 1 episode length T 1000

learning rate α 10−4 ε decay rate β 0.9 εmin 0.01

parameters θ−, is the same as the online network except that its parameters are updated
with the parameters θ of the online network after every T steps, and θ− is kept fixed
in other time slots. For a minibatch of of observations for training, temporal difference
estimation error e for a single observation can be calculated as

e = Qθ(s, a) − (−c(s, a) + γQθ− (s′, arg max Qθ(s′, a))). (1.25)

Huber loss is defined by the squared error term for small estimation errors, and a
linear error term for high estimation errors, allowing less dramatic changes in the value
functions and further improving the stability. For a given estimation error e and loss
parameter d, the Huber loss function, denoted by Ld(e), and the average loss over the
minibatch, denoted by B, are computed as

Ld(e) =

e2 if e ≤ d

d(|e| − 1
2 d)) if e > d,

and LB =
1
|B|

∑
<s,a,s′,c(s,a)>∈B

Ld(e).

We apply the ε-greedy policy to balance exploration and exploitation. We let ε decay
gradually from ε0 to εmin; in other words, the source explores more at the beginning of
training, and exploits more at the end. The hyperparameters of the DQN algorithm are
tuned experimentally, and are given in Table 1.1.

1.4.3 Simulation Results

In this section, we provide numerical results for the proposed learning algorithms, and
compare the achieved average performances. Figure 1.5 illustrates the mean and vari-
ance of the average AoI with standard ARQ with respect to the size of the network when
there is no constraint on the average number of transmissions (i.e. Cmax = 1) and the
performance of the UCRL2-Whittle is compared with the lower bound (UCRL2-VI is
omitted since its performance is very similar to UCLR2-Whittle and has a much higher
computational complexity, especially for large M). The performance of UCRL2-Whittle
is close to the lower bound and is very similar to that of the WI policy, which requires
a priori knowledge of the error probabilities. Moreover, UCRL2-Whittle outperforms
the greedy benchmark policy which always transmits to the user with the highest age
and the round robin policy, which transmits to each user in turns. We can also observe
that the variances of the average AoI achieved by benchmark policies are much larger,
which also limits their performance.

Figure 1.6 shows the performance of the learning algorithms for the HARQ protocol
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Figure 1.5 Average AoI for networks with
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Figure 1.6 Average AoI for a 2-user
HARQ network with error probabilities
g1(r1) = 0.5 · 2−r1 and g2(r2) = 0.2 · 2−r2 ,
where Cmax = 1 and w j = 1, ∀ j. The
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shown).

(the mean and the variance of the average AoI) for a 2-user scenario. DQN is trained for
500 episodes with configuration in Table 1.1. It is worth noting that although UCRL2-
VI converges to the optimal policy in fewer iterations than average-cost SARSA and
average-cost SARSA with LFA, iterations in UCRL2-VI are computationally more de-
manding since the algorithm uses VI in each epoch. Therefore, UCRL2-VI is not prac-
tical for problems with large state spaces, in a case for large M. On the other hand,
UCRL2-Whittle can handle a large number of users since it is based on a simple in-
dex policy instead of VI. As illustrated in Figure 1.6 that LFA significantly improves
the performance of average-cost SARSA and DQN with neural network estimator, and
UCRL2-Whittle improves the performance of RL even more.

We concluded that the choice of the learning algorithm to be adopted depends on the
scenario and system characteristics. It has been shown that average-cost SARSA is not
effective considering the large state space of the multi-user problem. Different state-
of-the-art RL methods are presented including SARSA with LFA, UCRL2, and DQN.
The performance of UCRL2-VI algorithm is close to optimal for small networks, i.e.
consisting of 1-5 users, and enjoys theoretical guaranties. However, UCRL2-VI is not
favorable for large networks due to its computational complexity, and UCRL2-Whittle
is preferable. On the other hand, UCRL2-Whittle cannot be employed for a general
HARQ multi-user system. Similarly, SARSA with LFA has decreased the average AoI
significantly for small-size networks with HARQ; however, is not effective for large
networks and SARSA with LFA lacks stability. A non-linear approximation with DQN
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performs for large networks; which is not fully online and requires a training time before
running the algorithm.

1.5 AoI in Energy Harvesting Status-Update Systems

Many status-update systems are powered by scavenging energy from renewable sources
(e.g., solar cells, wind turbines, or piezoelectric generators, etc.). Harvesting energy
from ambient sources provides environmentally-friendly and ubiquitous operation for
remote sensing systems. Therefore, there has been a growing interest in maximizing the
timeliness of information in energy harvesting (EH) communication systems (Bacinoglu,
Ceran & Uysal-Biyikoglu 2015, Yates 2015, Abd-Elmagid et al. 2020, Arafa, Yang,
Ulukus & Poor 2020, Stamatakis, Pappas & Traganitis 2019). In this section, we assume
that the source can sense the underlying time-varying process and generate a status up-
date at a certain energy cost.

At the end of each time slot t, a random amount of energy is harvested and stored
in a rechargeable battery at the transmitter, denoted by Et ∈ E , {0, 1, . . . , Emax}, fol-
lowing a first-order discrete-time Markov model, characterized by the stationary tran-
sition probabilities pE(e1|e2), defined as pE(e1|e2) , Pr(Et+1 = e2|Et = e1), ∀t and
∀e1, e2 ∈ E . It is also assumed that pE(0|e) > 0, ∀e ∈ E . Harvested energy is first stored
in a rechargeable battery with a limited capacity of Bmax energy units. The energy con-
sumption for status sensing is denoted by Es ∈ Z+, while the energy consumption for a
transmission attempt is denoted by Etx ∈ Z+.

The battery state at the beginning of time slot t, denoted by Bt, can be written as
follows:

Bt+1 = min(Bt + Et − (Es + Etx)1[At = n] − Etx
1[At = x], Bmax), (1.26)

and the energy causality constraints are given as:

(Es + Etx)1[At = n] + Etx
1[At = x] ≤ Bt, (1.27)

where the indicator function 1[C] is equal to 1 if event C holds, and zero otherwise.
(1.26) implies that the battery overflows if energy is harvested when the battery is full,
while (1.27) imposes that the energy consumed by sensing or transmission operations
in time slot t is limited by the energy Bt available in the battery at the beginning of that
time slot. We set B0 = 0 so that the battery is empty at time t = 0.

Let δtx
t denote the number of time slots elapsed since the generation of the most

recently sensed status update at the transmitter side, while δrx
t denote the AoI of the

most recently received status update at the receiver side. δtx
t resets to 1 if a new status

update is generated in time slot t − 1, and increases by one (up to δmax) otherwise, i.e.,

δtx
t+1 =

1 if At = n;

min(δtx
t + 1, δmax) otherwise.
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On the other hand, the AoI at the receiver side evolves as follows:

δrx
t+1 =


min(δrx

t + 1, δmax) if At = i or Kt = 0;

1 if At = n and Kt = 1;

min(δtx
t + 1, δmax) if At = x and Kt = 1.

Note that once the AoI at the receiver is at least as large as at the transmitter, this
relationship holds forever; thus it is enough to consider cases when δrx

t ≥ δ
tx
t .

To determine the success probability of a transmission, we need to keep track of the
number of current retransmissions. The number of retransmissions is zero for a newly
sensed and generated status update and increases up to rmax as we keep retransmitting
the same packet. It is easy to see that retransmitting when δtx

t+1 = δmax is suboptimal,
therefore we explicitly exclude this action by setting the retransmission count to 0 in
this case. Also, it is suboptimal to generate a new update and retransmit the old one,
thus whenever a new status update is generated, the previous update at the transmitter
is dropped and cannot be retransmitted. Thus, the evolution of the retransmission count
is given as follows:

Rt+1 =


0 if Kt = 1 or δtx

t+1 = δmax;

1 if At = n and Kt = 0;

rt if At = i and δtx
t+1 , δmax;

min(rt + 1, rmax) if At = x,Kt = 0 and δtx
t+1 , δmax.

The state of the system is formed by five components S t = (Et, Bt, δ
rx
t , δ

tx
t , rt). In each

time slot, the transmitter knows the state, and takes action from the set A = {i, n, x}. The
goal is to find a policy π which minimizes the expected average AoI at the receiver over
an infinite time horizon, which is given by:

Problem 3

J∗ , min
π

lim
T→∞

1
T + 1

E
 T∑

t=0

δrx
t

 subject to (1.26) and (1.27).

In Section 1.3.3, we have considered status updates with HARQ under an average
power constraint. In that case, it is possible to show that it is suboptimal to retransmit a
failed update after an idle period. Restricting the actions of the transmitter accordingly,
the AoI at the receiver after a successful transmission event is equal to the number
of retransmissions of the corresponding update. Therefore in addition to the AoI at
the receiver, we only need to track the retransmission count. However, in the current
scenario, retransmissions of a status update can be interrupted due to energy outages,
which means that we also need to keep track of the AoI at the transmitter side (hence
we need to have both δrx

t and δtx
t in the state of the system).

Problem 3 can be formulated as an average-cost finite-state MDP: The finite set of
states S is defined as S = {s = (e, b, δrx, δtx, r) : e ∈ E , b ∈ {0, . . . , Bmax}, δ

rx, δtx ∈

{1, . . . , δmax}, r ∈ {0, . . . , rmax}, δ
rx ≥ δtx}, while the finite set of actions A = {i, n, x} is

already defined. Note that action x cannot be taken in states with retransmission count
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r = 0. P is characterized by the EH statistics and channel error probabilities. The cost
function c : S × A → Z is the AoI at the receiver, and is defined as c(s, a) = δrx for
any s ∈ S, a ∈ A, independent of the action taken, where δrx is the component of s
describing the AoI at the receiver.

It is easy to see that MDP formulated for Problem 3 is a communicating MDP by
Proposition 8.3.1 of Puterman (1994)6, that is, for every pair of (s, s′) ∈ S, there exists a
deterministic policy under which s′ is accessible from s. By Theorem 8.3.2 of Puterman
(1994), an optimal stationary policy exists with constant gain. In particular, there exists a
function h : S → R, called the differential cost function for all s = (e, b, δrx, δtx, r) ∈ S,
satisfying the following Bellman optimality equations for the average-cost finite-state
finite-action MDP (Puterman 1994):

h(s) + J∗ = min
a∈{i,n,x}

(
δrx + E

[
h(s′)|a

] )
, (1.28)

where s′ , (e′, b′, δrx′, δtx′, r′) is the next state obtained from (e, b, δrx, δtx, r) after tak-
ing action a, and J∗ represents the optimal achievable average AoI under policy π∗.

We also introduce the state-action cost function:

Q((e, b, δrx, δtx, r), a) , δrx + E
[
h(e′, b′, δrx′, δtx′, r′)|a

]
. (1.29)

Then an optimal policy, for any (e, b, δrx, δtx, r) ∈ S, takes the action achieving the
minimum in (1.29):

π∗(e, b, δrx, δtx, r) ∈ arg min
a∈{i,n,x}

(
Q((e, b, δrx, δtx, r), a)

)
. (1.30)

An optimal policy solving (1.28), (1.29) and (1.30) defined above can be found by
RVI for finite-state finite-action average-cost MDPs from Sections 8.5.5 and 9.5.3 of
Puterman (1994): Starting with an arbitrary initialization of h0(s), ∀s ∈ S, and setting an
arbitrary but fixed reference state sre f , (ere f , bre f , δrxre f , δtxre f , rre f ), a single iteration
of the RVI algorithm ∀(s, a) ∈ S ×A is given as follows:

Qn+1(s, a)← δrx
n + E

[
hn(s′)

]
, (1.31)

Vn+1(s)← min
a

(Qn+1(s, a)), (1.32)

hn+1(s)← Vn+1(s) − Vn+1(sre f ), (1.33)

where Qn(s, a), Vn(s) and hn(s) denote the state-action value function, value function
and differential value function at iteration n, respectively. By Theorem 8.5.7 of Puter-
man (1994), hn converges to h, and π∗n(s) , arg mina Qn(s, a) converges to π∗(s).

1.5.1 Structure of the Optimal Policy

Next, we investigate the structure of the optimal policy and show that the solution to
Problem 3 is of threshold-type. The proof can be obtained by following the steps in
Section 6.11 of Puterman (1994).
6 By Proposition 8.3.1 of Puterman (1994), the MDP is communicating since there exists a stationary

policy which induces a recurrent Markov chain, e.g., a state (0, B0, δmax, δmax,R0) is reachable from all
other states considering a policy which never transmits and in a scenario where no energy is harvested.
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theorem 1.7 There exists an optimal stationary policy π∗(s) that is monotone with
respect to δrx

t , that is, π∗(s) is of threshold-type.

Following Theorem 1.7, the optimal policy can be formally expressed as

At =


i if δrx

t < Tn(e, b, δtx, r),

n if Tn(e, b, δtx, r) ≤ δrx
t < Tx(e, b, δtx, r),

x if δrx
t ≥ Tx(e, b, δtx, r),

(1.34)

for some threshold values denoted by Tn(e, b, δtx, r) and Tx(e, b, δtx, r), where Tn(e, b, δtx, r) ≤
Tx(e, b, δtx, r). We will refer to such a policy as a double-threshold policy in the rest of
the section.

We can simplify the problem by making an assumption on the policy space in order
to obtain a simpler single-threshold policy, which will result in a more efficient learning
algorithm: We assume that a packet is retransmitted until it is successfully decoded,
provided that there is enough energy in the battery, that is, the transmitter is not allowed
to preempt an undecoded packet and transmit a new one.

The solution to the simplified problem is also of threshold-type, that is,

At =


i if δrx

t < T (e, b, δtx, r),

n if δrx
t ≥ T (e, b, δtx, r), and r = 0

x if δrx
t ≥ T (e, b, δtx, r) and r , 0,

(1.35)

for some T (e, b, δtx, r).

1.5.2 Practical RL Algorithms

In some scenarios, it can be assumed that the channel and energy arrival statistics re-
main the same or change very slowly and the same environment is experienced for a
sufficiently long time before the time of deployment. Accordingly, we can assume that
the statistics regarding the error probabilities and energy arrivals are available before the
time of transmission. In such scenarios, RVI algorithm (Puterman 1994) can be used.
However, in most practical scenarios, channel error probabilities for retransmissions
and the EH characteristics are not known at the time of deployment, or may change
over time. In this section, we assume that the transmitter does not know the system
characteristics a-priori, and has to learn them. Ceran, Gündüz & György (2018) and
Ceran, Gündüz & György (2019) employed learning algorithms for constrained prob-
lems with countably infinite state spaces such as average-cost SARSA. While these
algorithms can be adopted to the current framework by considering an average trans-
mission constraint of 1, they do not have convergence guarantees. However, Problem 3
constitutes an unconstrained MDP with finite state and action spaces, and there exist
RL algorithms for unconstrained MDPs which enjoy convergence guarantees. More-
over, we have shown the optimality of a threshold type policy for Problem 3, and RL
algorithms which exploit this structure can be considered. Thus, we employ three dif-
ferent RL algorithms, and compare their performances in terms of the average AoI as
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well as the convergence speed. First, we employ a value-based RL algorithm, namely
GR-learning (Gosavi 2004), which converges to an optimal policy. Next, we consider a
structured policy search algorithm, namely FDPG, which does not necessarily find the
optimal policy but performs very well in practice, as demonstrated through simulations
in Section 1.5.3. We also note that GR-learning learns from a single trajectory generated
during learning steps while FDPG uses Monte-Carlo roll-outs for each policy update.
Thus, GR-learning is more amendable for applications in real-time systems. Finally, we
employ the DQN algorithm, which implements a non-linear neural network estimator
in order to learn the optimal status update policy.

GR-Learning with Softmax
For Problem 3, we employ a modified version of the GR-learning algorithm proposed by
Gosavi (2004) with Boltzmann (softmax) exploration. The resulting algorithm is called
GR-learning with softmax and can find the optimal policy π∗ using (1.30) without know-
ing P, characterized by g(r) and pE . Notice that, similar to average-cost SARSA with
softmax in Section 1.3.3, GR-learning with softmax starts with an initial estimate of
Q0(s, a) and finds the optimal policy by estimating state-action values in a recursive
manner. Update rules for Qn(S n, An) and Jn in Section 1.3.3 are modified as:

Qn+1(S n, An)← Qn(S n, An) + α(m(S n, An, n))[δrx
n − Jn + Qn(S n+1, An+1) − Qn(S n, An)],

(1.36)

where α(m(S n, An, n)) is the update parameter (learning rate) in the nth iteration, and
depends on the function m(S n, An, n), which is the number of times the state–action pair
(S n, An) has been visited till the nth iteration.

Jn+1 ← Jn + β(n)
[
nJn + δrx

n

n + 1
− Jn

]
(1.37)

where β(n) is the update parameter in the nth iteration.
The transmitter action selection method should balance the exploration of new ac-

tions with the exploitation of actions known to perform well. We use the Boltzmann
(softmax) action selection method, which chooses each action randomly relative to its
expected cost as defined in Section 1.3.3:

According to Theorem 2 of Gosavi (2004), if α, β satisfy
∑∞

m=1 α(m),
∑∞

m=1 β(m) →
∞,

∑∞
m=1 α

2(m),
∑∞

m=1 β
2(m) < ∞, limx→∞

β(m)
α(m) → 0, GR-Learning converges to an opti-

mal policy.

Finite-Difference Policy Gradient (FDPG)
GR-learning in Section 1.5.2 is a value-based RL method, which learns the state-action
value function for each state-action pair. In practice, δmax can be large, which might
slow down the convergence of GR-learning due to a prohibitively large state space.

In this section, we are going to propose a learning algorithm which exploits the struc-
ture of the optimal policy exposed in Theorem 1.7. A monotone policy is shown to
be average optimal in the previous section; however, it is not possible to compute the
threshold values directly for Problem 3.
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Note that, At = i if Bt < Etx (Bt < Etx + Es) for r ≥ 1 (r = 0); that is, T (e, b, δtx, r) =

δmax + 1 if b < Etx for r ≥ 1 and b < Etx + Es for r = 0. This ensures that energy causal-
ity constraints in (1.27) hold. Other thresholds will be determined using PG. In order to
employ the PG method, we approximate the policy by a parameterized smooth function
with parameters θ(e, b, δtx, r), and convert the discrete policy search problem into esti-
mating the optimal values of these continuous parameters, which can be numerically
solved by stochastic approximation algorithms (Spall 2003). Continuous stochastic ap-
proximation is much more efficient than discrete search algorithms in general.

In particular, with a slight abuse of notation, we let πθ(e, b, δrx, δtx, r) denote the prob-
ability of taking action At = n (At = x) if r = 0 (r , 0), and consider the parameterized
sigmoid function:

πθ(e, b, δrx, δtx, r) ,
1

1 + e−
δrx−θ(e,b,δtx ,r)

τ

. (1.38)

We note that πθ(e, b, δrx, δtx, r) → {0, 1} and θ(e, b, δtx, r) → T (e, b, δtx, r) as τ → 0.
Therefore, in order to converge to a deterministic policy π, τ > 0 can be taken as a
sufficiently small constant, or can be decreased gradually to zero. The total number
of parameters to be estimated is |E | × Bmax × δmax × rmax + 1 minus the parameters
corresponding to b < Etx (b < Etx + Es) for r > 0 (r = 0) due to energy causality
constraints as stated previously.

With a slight abuse of notation, we map the parameters θ(e, b, δtx, r) to a vector θ of
size d , |E | × Bmax × δmax × rmax + 1. Starting with some initial estimates of θ0, the
parameters can be updated in each iteration n using the gradients as follows:

θn+1 = θn − γ(n) ∂J/∂θn, (1.39)

where the step size parameter γ(n) is a positive decreasing sequence and satisfies the
first two convergence properties given at the end of Section 1.5.2 from the theory of
stochastic approximation (Kushner & Yin 1997).

Computing the gradient of the average AoI directly is not possible; however, sev-
eral methods exist in the literature to estimate the gradient (Spall 2003). In particular,
we employ the FDPG (Peters & Schaal 2006) method. In this method, the gradient is
estimated by estimating J at slightly perturbed parameter values. First, a random pertur-
bation vector Dn of size d is generated according to a predefined probability distribution,
e.g., each component of Dn is an independent Bernoulli random variable with parameter
q ∈ (0, 1). The thresholds are perturbed with a small amount σ > 0 in the directions
defined by Dn to obtain θ

±

n (e, b, δtx, r) , θn(e, b, δtx, r)±σDn. Then, empirical estimates
Ĵ± of the average AoI corresponding to the perturbed parameters θ

±

n , obtained from
Monte-Carlo rollouts, are used to estimate the gradient:

∂J/∂θn ≈ (Dᵀ
n Dn)−1Dᵀ

n
(Ĵ+ − Ĵ−)

2σ
, (1.40)

where Dᵀ
n denotes the transpose of vector Dn. The pseudo code of the finite difference

policy gradient algorithm is given in Algorithm 5.
Similar steps can be followed to find the thresholds for the double-threshold policy



30 Reinforcement Learning for Minimizing Age of Information over Wireless Links

Algorithm 5 FDPG
1: τ0 ← 0.3, /* temperature parameter */

2: ζ ← 0.99, /* decaying coefficient for τ */.
3: θ0 ← 0 /* initialization of θ */

4: for n = {1, 2, . . .} do
5: Generate random perturbation vector

Dn = binomial({0, 1}, q = 0.5, d)
6: Perturb parameters θn

θ
+

n = θn + βDn, θ
−

n = θn − βDn
7: Estimate Ĵ±n from Monte-Carlo rollouts using policies πθ±n :
8: for t ∈ {1, . . . ,T } do
9: observe current state S t and use policy πθ±n

10: end for
11: Estimate Ĵ±n from Monte-Carlo rollouts using policy πθ±n

Ĵ±n = 1
T+1

∑T
t=0 δ

rx
t

12: Compute estimate of the gradient ∂J/∂θn
13: Update

θn+1 = θn − γ(n) ∂J/∂θn
τn+1 ← ζτn /* decrease τ */

14: end for

where T (e, b, δtx, r) and θ(e, b, δtx, r) are replaced by Tn(e, b, δtx, r), Tx(e, b, δtx, r) and
θn(e, b, δtx, r), θx(e, b, δtx, r) respectively.

1.5.3 Simulation Results

In this section, we provide numerical results for all the proposed algorithms, and com-
pare the achieved average AoI. In the experiments, the maximum number of retransmis-
sions is set to rmax = 3, while λ and p0 are set to 0.5. Etx and E s are both assumed to be
constant and equal to 1 unit of energy unless otherwise stated. δmax is set to 40.

We choose the exact step sizes for the learning algorithms by fine-tuning in order to
balance the algorithm stability in the early time steps with nonnegligible step sizes in the
later time steps. In particular, we use step size parameters of α(m), β(m), γ(m) = y/(m +

1)z, where 0.5 < z ≤ 1 and y > 0 (which satisfy the convergence conditions), and choose
y and z such that the oscillations are low and the convergence rate is high. We have
observed that a particular choice of parameters gives similar performance results for
scenarios addressed in simulations results. DQN algorithm in this section is configured
as in Table 1.1 and trained for 500 episodes. The average AoI for DQN is obtained after
105 time steps and averaged over 100 runs.

As a baseline, we have also included the performance of a greedy policy, which senses
and transmits a new status update whenever there is sufficient energy. It retransmits
the last transmitted status update when the energy in the battery is sufficient only for
transmission, and it remains idle otherwise.

Next, we investigate the performance when the EH process has temporal correlations.
A symmetric two-state Markovian EH process is assumed, such that E = {0, 1} and
Pr(Et+1 = 1|Et = 0) = Pr(Et+1 = 0|Et = 1) = 0.3. That is, if the transmitter is in
harvesting state, it is more likely to continue harvesting energy, and vice versa.
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Figure 1.7 The performance of RL
algorithms when Bmax = 5, pE(1, 1),
pE(0, 0) = 0.7 and Es, Etx = 1. FDPG with
and without preemption represent the
double-threshold and the single-threshold
policies, respectively.

Figure 1.7 shows the evolution of the average AoI over time when the average-cost
RL algorithms are employed in this scenario. It can be observed again that the average
AoI achieved by the FDPG method in Section 1.5.2 performs very close to the one ob-
tained by the RVI algorithm, which has a priori knowledge of g(r) and pe. GR-learning,
on the other hand, outperforms the greedy policy but converges to the optimal policy
much more slowly, and the gap between the two RL algorithms is larger compared to
the i.i.d. case. Tabular methods in RL, like GR-learning, need to visit each state-action
pair infinitely often for RL to converge (Sutton & Barto 1998). GR-learning in the case
of temporally correlated EH does not perform as well as in the i.i.d. case since the
state space becomes larger with the addition of the EH state. We also observe that the
gap between the final performances of single- and double-threshold FDPG solutions is
larger compared to the memoryless EH scenario, while the single threshold solutions
till converges faster. DQN algorithm performs better than GR-learning but it requires a
training time before running the simulation and does not have convergence guarantees.
Moreover, it still falls short of the final performance of double-threshold FDPG.

Next, we investigate the impact of the burstiness of the EH process, measured by the
correlation coefficient between Et and Et+1. Figure 1.8 illustrates the performance of
the proposed RL algorithms for different correlation coefficients, which can be com-
puted easily for the 2-state symmetric Markov chain; that is, ρ , (2pE(1, 1) − 1). Note
that ρ = 0 corresponds to memoryless EH with pe = 1/2. We note that the average
AoI is minimized by transmitting new packets successfully at regular intervals, which
has been well investigated in previous works (Bacinoglu et al. 2015, Ceran, Gündüz &
György 2018, Yates 2015). Intuitively, for highly correlated EH, there are either suc-
cessive transmissions or successive idle time slots, which increases the average AoI.
Hence, the AoI is higher for higher values of ρ. Figure 1.8 also shows that both RL
algorithms result in much lower average AoI than the greedy policy and FDPG out-
performs GR-learning since it benefits from the structural characteristics of a threshold
policy. We can also conclude that the single threshold policy can be preferable in prac-
tice especially in highly dynamic environments, as its performance is very close to that
of the double threshold FDPG, but with faster convergence.
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Figure 1.8 The performance of RL
algorithms obtained after 2 · 104 time
steps and averaged over 1000 runs for
different temporal correlation coefficients.

1.6 Conclusions

This chapter investigated communication systems transmitting time-sensitive data over
imperfect channels with the average AoI as the performance measure, which quantifies
the timeliness of the data available at the receiver. Considering both the classical ARQ
and the HARQ protocols, preemptive scheduling policies have been proposed by taking
into account retransmissions under a resource constraint. Scenarios in which the sys-
tem characteristics are not known a priori, and must be learned in an online fashion are
also considered. RL algorithms are employed to balance exploitation and exploration
in an unknown environment, so that the source node can quickly learn the environment
based on the ACK/NACK feedback, and can adapt its scheduling policy accordingly,
exploiting its limited resources in an efficient manner. The proposed algorithms and the
established results in this chapter are also relevant to different systems concerning the
timeliness of information, in addition to systems under average resource constraint or
energy replenishment constraints. The proposed methodology and the results regard-
ing the structure of the optimal policies can be used in other wireless communication
problems.
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Ceran, E. T., Gündüz, D. & György, A. (2018), Average age of information with hybrid arq
under a resource constraint, in ‘IEEE Wireless Communications and Networking Conference
(WCNC)’, pp. 1–6.
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