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Abstract

Intermittent connectivity of clients to the parameter server (PS) is a major bottleneck
in federated edge learning. It induces a large generalization gap, especially when
the local data distribution amongst clients exhibits heterogeneity. To overcome
communication blockages between clients and the central PS, we have introduced
the concept of collaborative relaying (ColRel), wherein the participating clients
relay their neighbors’ local updates to the PS in order to boost the participation
of clients with poor connectivity to the PS. For every communication round, each
client initially computes a local consensus of a subset of its neighboring clients’
updates and subsequently transmits to the PS, a weighted average of its own update
and those of its neighbors’. In this work, we view ColRel as a variance reduction
technique that helps in improving the convergence rate for different optimization
setups. Consequently, our ColRel approach can be readily integrated as a black
box with existing federated learning systems. We provide analytical upper bounds
on the resulting convergence rate, which we reduce by optimizing the weights
subject to an unbiasedness condition for the global update. Numerical evaluations
on the CIFAR-10 dataset demonstrate that our ColRel-based approach achieves a
higher test accuracy over Federated Averaging based benchmarks for learning over
intermittently-connected networks.

1 Introduction

Federated learning (FL) algorithms aim to learn a shared model over data samples that are localized
over distributed clients. FL approaches aim to reduce communication overhead and improve clients’
privacy by letting each client train a local model on its local dataset and forwarding them periodically
to a centralized parameter server (PS). In practical FL scenarios, some clients are stragglers and
cannot send their updates regularly. There can be two types of stragglers: (i) computation stragglers,
which cannot finish their computation within the deadline, or (ii) communication stragglers, which
cannot transmit their updates to the PS successfully due to communication limitations [7]. The latter
may happen when clients suffer from intermittent connectivity to the PS due to temporary blockage
of their communication channel [2, 9–11, 31, 47, 55]. In general, persistent stragglers deteriorate the
convergence of FL algorithms as the computed local updates become stale and useless, and can even
result in bias in the final model. However, communication stragglers that are limited due to loss of
direct communication opportunities to the PS are inherently different from computation stragglers,
since they can be mitigated by relaying their updates via neighboring clients.
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Communication quality at the edge is a key guiding design principle for FEderated Edge Learning
(FEEL) frameworks [13]. Existing works in the FEEL paradigm have primarily focused on direct
communication from the clients to the PS; aimed at improving the performance by resource allo-
cation across clients [3, 4, 8, 13, 14, 28, 33, 36, 38, 39, 46, 49, 57]. However, these works ignore
the possibility of cooperation among clients in the case of intermittent communication blockages.
Robustness to channel blockages is critical to the reliable operations of mmWave communication
systems and robotic systems, where mobile robots explore remote parts of areas of interest and thus
can be disconnected from the PS [11, 31, 47, 55].
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Figure 1: An intermittently connected FL net-
work. Blue and black dotted lines denote inter-
mittent client-PS and client-client connections.

This work studies the deterioration in performance
of existing FL algorithms in the presence of inter-
mittent connections to the PS (Fig. 1). We show
that communication stragglers, which suffer from
such random unreliable network connectivity, in-
troduce a topology induced variance (TIV) in
the local updates of clients. To mitigate this, we
propose a new FEEL paradigm, which we name
Collaborative Relaying (ColRel), where client co-
operation is utilized to improve connectivity to the
PS. In ColRel, clients share their local updates with
one another so that each client can send to the PS
a weighted average of its own update and those
of its neighbors. The PS receives updates from
clients with intermittently absent uplink connections, which would otherwise be discarded. ColRel
optimizes the averaging weights in order to ensure that the updates received at the PS (i) achieve
weak unbiasedness that avoids objective inconsistency, and (ii) minimizes the TIV and subsequently,
the convergence time of the learning algorithm under intermittent connectivity.1

1.1 Significance and Related Works

Fully Decentralized and Hierarchical FL: The conventional FL framework [30] is orchestrated
by a centralized entity called PS, which helps participating clients reach a consensus on the model
parameters by aggregating their locally trained models. Decentralized learning or peer-to-peer FL has
been introduced as an alternative, in which the PS is removed to mitigate a potential communication
bottleneck and a single point of failure. The aggregation strategy at each client is determined
according to the network topology, that is the connection pattern between the clients, and often a
fixed topology is considered [17, 18, 21, 26, 37, 44, 45, 51, 54, 56].

An alternative approach to both centralized and decentralized schemes is the hierarchical FL (HFL)
framework [1, 6, 27, 29], wherein clients are divided into clusters and a PS is assigned to each cluster
to perform local aggregation, while the aggregated models at the clusters are later aggregated at
the main PS in a subsequent step to obtain the global model. The idea of hierarchical collaborative
learning can be redesigned to combine hierarchical and decentralized learning concepts, which is
referred to as semi-decentralized FL. One of the major challenges in FL that is not considered in the
aforementioned works on semi-decentralized FL is the partial client connectivity [12, 48].

The connectivity of the clients is a particularly significant challenge in FEEL. Due to their different
physical environments and distances to the PS, clients may have different connectivity to each other
and the PS. Customized client selection mechanisms seek a balance between the participation of
the clients and the latency for the model aggregation in order to speed up the learning process
[4, 15, 28, 35, 36, 40, 46, 49, 50]. In this work, we adopt a different approach to the connectivity
problem, and instead of designing a client selection mechanism, or optimizing resource allocation
to balance client participation, we introduce a relaying mechanism that benefits from the local
connectivity between neighboring clients, and ensures that in case of poor connectivity, their local
information is conveyed to the PS with the help of their neighbors.

1A preliminary version of this work was presented in part at the 2022 IEEE International Symposium on
Information Theory (ISIT) [52], in which client collaboration was assumed to be over perfectly connected links.
An extended version is available in [53], which also considers intermittent client-client links along with local
iterations at the clients for smooth and strongly-convex functions.
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Coded Computation for Straggler Mitigation: Coded computing is a well studied solution for
stragglers in distributed learning [23, 24, 32, 34, 43], where data is allocated strategically to clients
to create redundant computations that can be exploited by the PS using additional information about
the stragglers’ identities. Nonetheless, the coded computing paradigm as it is cannot be incorporated
into FL systems, which champion the privacy of clients’ data as one of their major goals. Our ColRel
approach does not require redundancies in clients’ data since clients share their updates but not their
local data, and thus preserves privacy to the same extent as conventional FL algorithms. Another
notable difference between ColRel and coded computing includes relaying constraints. Coded
computation schemes spread the data among clients without constraints on the allowed combinations.
In contrast, in our problem setup, clients cannot choose their neighbors as they depend on the channel
characteristics, and thus coded computing techniques cannot be readily adopted.

1.2 Our Contributions

We start with the problem of distributed mean estimation (DME) in the presence of intermittent
connectivity. Our proposed algorithm, ColRel ensures that the mean squared error (MSE) of this
estimation is minimized by appropriately relaying the clients’ information to the PS. We then study
ColRel to mitigate intermittent connectivity for several federated optimization setups. In particular,
for an iteration horizon of T , we show that: (i) For general convex and non-smooth objectives, a
subgradient-based ColRel method converges at the rate of O

(
1
T

)
, with constants proportional to the

TIV (σ2
tv). (ii) For smooth functions that satisfy the Polyak-Lojasiewicz condition, gradient descent

based ColRel with a constant step-size converges linearly to a neighborhood of the optimal solution,
whose size is proportional to σ2

tv. (iii) For smooth and non-convex objectives, gradient descent based
ColRel converges at a rate of O

(
1
T

)
to the neighborhood of a stationary point (with size proportional

to σ2
tv). (iv) Numerical simulations on FL benchmarks validate our theoretical analyses.

2 DME over Intermittently Connected Networks

The DME problem is a fundamental primitive for FL algorithms, where at every iteration, the PS
estimates the mean of the local updates of a subset of clients [16, 19, 20, 41, 42]. To this end,
analyzing DME is a useful and insightful abstraction. We study DME over intermittently connected
networks so as to generalize the conclusion to federated optimization algorithms in subsequent
sections. We consider a DME model comprising of n clients, each with a vector xi ∈ Rd, for
i ∈ [n] that satisfy ∥xi∥ ≤ R for some known R > 0, and the goal of the PS is to estimate their
mean, i.e., x ≜ 1

n

∑n
i=1 xi. The performance of any estimate x̂ at the PS is measured by its MSE,

E ≜ E∥x̂− x∥22.

2.1 Communication Model

Communication between clients and the PS: We model the intermittent connectivity of any
client i ∈ [n] to the PS by a Bernoulli random variable, τi ∼ Ber(pi), where τi = 1 implies a
communication opportunity between client i and the PS, while τi = 0 means that the connection is
blocked/dropped [12]. We assume that the connectivity is independent across the clients, and the
downlink from the PS to the clients is permanently connected.2 We denote p ≡ (p1, . . . , pn).

Communication between clients: The intermittent connectivity of a transmission from client i
to client j is captured by another Bernoulli random variable, τij ∼ Ber(pij), where pii = 1 for
every i ∈ [n]. Additionally, if client j can never transmit information successfully to client i, we
set pij = 0. For simplicity of exposition, we assume that τij and τml are statistically independent
for every i, j, l,m ∈ [n] such that (i, j) ̸= (l,m) and (j, i) ̸= (l,m). Furthermore, τij , and τl
are statistically independent for every i, j, l ∈ [n]. We use the notation E{i,j} = E[τijτji] for
every i, j ∈ [n] to denote the correlation due to channel reciprocity. Finally, we assume that
E{i,j} ≥ pijpji, that is, P(τij = 1|τji = 1) ≥ P(τij = 1), for every i, j ∈ [n]. We use the notation
P ≡ (pij)i,j∈[n] ∈ [0, 1]n×n.

2For simplicity, we consider orthogonal communication links from the clients to the PS, where each link is
either unavailable or perfect; that is, when it is available it does not suffer from any channel impairments.
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Remark 1. We assume that the connectivity probabilities pi, i ∈ [n], are known. In practice, they
can be modeled [2] or estimated in a pre-training phase. On the other hand, we do not assume that the
instantaneous connectivity information {τi, τij} for i, j ∈ [n], is available to any of the clients. Our
prior work [52] considered communication links between pairs of clients (if present) to be perfect,
i.e., for any i ̸= j, pij = 0 or 1, with an extended version [53] that allows for both client-PS and
client-to-client communications to be intermittent. This workshop paper generalizes the collaborative
approach in these works for the fundamental problem of distributed mean estimation, consequently
demonstrating its potential efficacy as a black-box tool that can be integrated into existing FL systems.

2.2 ColRel for DME

Since communicating clients can intermittently send their vectors to one another, each client can
send the PS a weighted average of its own vector and those of its neighbors. Consequently, the
PS can receive the vectors of clients with failing uplink connections. Let {αij}i,j∈[n] denote the
collaboration weights. Each client i, transmits to the PS the weighted average x̃i =

∑
j∈[n] αijτjixj .

This transmission is received at the PS with a probability pi. The PS computes the following estimate
x̂ of the mean via ColRel:

x̂ ≜
1

n

∑
i∈[n]

τix̃i =
1

n

∑
i∈[n]

τi
∑
j∈[n]

αijτjixj . (1)

We denote by A ≡ (αij)i,j∈[n] the matrix of collaboration weights, where αij ≥ 0 for all i, j ∈ [n].

3 TIV: Error Analysis and Optimizing Collaboration

Due to the stochasticity of intermittent connections in the network, the estimate x̂ is a random variable,
and we consider the MSE of x̂ with respect to the true mean x. When R = 1, i.e., ∥xi∥2 ≤ 1 for all
i ∈ [n], we refer to the MSE as the TIV, σ2

tv. Our primary goal is to obtain an unbiased estimate
of x at the PS. Under this unbiasedness condition, we derive a worst-case upper bound for σ2

tv in
Theorem 3.2. In general, the TIV is a function of connection probabilities and collaboration weights,
i.e., σ2

tv ≡ σ2
tv(p,P,A). Consequently, we choose the weights A ≡ {αij}i,j∈[n] so as to minimize

σ2
tv. Moreover, we consider αij ≥ 0 for all i, j ∈ [n]. In §4 and §5, it is shown how the TIV (σ2

tv)
affects the convergence performance of federated optimization algorithms.

Unbiasedness: Recall that αji is the collaboration weight client j assigns to the vector it receives
from client i. Client i, and each client j that receives the transmission from client i successfully, i.e.
τij = 1, try to send to the PS αjixi on behalf of client i. Consequently, the accumulated contribution
of client i at the PS is given by,

∑
j∈[n] τijαjixi. The following lemma presents a sufficient condition

on the weights {αij}i,j∈[n] that ensures unbiasedness.

Lemma 3.1 (Sufficient condition for unbiasedness). Let {αij} be such that for every i ∈ [n],∑
j∈[n]

pjpijαji = 1. (2)

Then, E
[∑

j∈[n] τjτijαjixi

∣∣∣ xi

]
= xi, i.e., the contribution of client i at the PS is unbiased.

As we show next in Theorem 3.2, the effect of the network topology on the TIV is captured by the
expression S(p,P,A), which is defined as,

S(p,P,A) ≜
∑

i,j,l∈[n]

pj(1−pj)pijpljαjiαjl +
∑

i,j∈[n]

pijpj(1− pij)α
2
ji +

∑
i,l∈[n]

pipl(E{i,l}−pilpli)αilαli.

(3)

Theorem 3.2. For a given p,P and A such that (2) holds, the MSE with ColRel (EColRel) satisfies,

EColRel(p,P,A) ≤ R2

n2
· S(p,P,A) = R2σ2

tv(p,P,A), where σ2
tv(p,P,A) ≜

S(p,P,A)

n2
.

Remark 2. In the absence of any collaboration, we set pij = 0 for all i ̸= j, which yields suboptimal
σ2
tv compared to the weights obtained with optimized collaboration as shown next in §3.1.
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3.1 Optimizing Collaboration: Minimizing the TIV

As a consequence of Theorem 3.2, we optimize the weight matrix A so as to minimize σ2
tv(p,P,A)

subject to the unbiasedness condition (2). In other words, we solve the optimization problem,

min
A

S(p,P,A) s.t.:
∑
j∈[n]

pjpijαji = 1, αji ≥ 0 ∀i, j ∈ [n]. (4)

Interestingly, this is the same optimization problem as in [53, Eq. 7]. Due to the term∑
i,l∈[n] pipl(E{i,l} − pilpli)αilαli in (3), problem (4) is not necessarily convex. To this end, as in

[53], we minimize a convex relaxation S(p,P,A) of S(p,P,A) instead, where,

S(p,P,A) ≜
∑

i,j,l∈[n]

pj(1−pj)pijpljαjiαjl +
∑

i,j∈[n]

pijpj(1− pij)α
2
ji +

∑
i,l∈[n]

pipl(E{i,l}−pilpli)α2
li.

(5)

To find the optimal collaboration weights Aopt, we first minimize the convex upper bound S using
Gauss-Seidel method. Subsequently, we fine tune this solution by using it as a warm-start initialization
for converging to a stationary point of (4). For the sake of completeness, a detailed description of the
resulting iterative water-filling type weight optimization algorithm is provided in App. C.

4 Federated Optimization over Intermittently Connected Networks

Here, we use the insights from the analysis of DME in §2 and §3 to derive convergence guarantees for
federated optimization problems. Our goal is to solve, x∗ ≡ arg minx∈Rd

[
f(x) = 1

n

∑
i∈[n] fi(x)

]
,

where x ∈ Rd are the parameters of the model, n is the number of clients, fi(x) is the local loss of
model x on the data stored on client i. We consider various standard assumptions of the objective
functions fi and study the convergence guarantees when the gradients computed at the clients are
shared with the PS over unreliable networks. We conclude that as a consequence of intermittent
connections, the convergence rates are affected by an additional error which is proportional to the
TIV σ2

tv. The algorithms and their analyses are deferred to the appendices.

4.1 Subgradient Method for Non-Smooth and General Convex Objectives

When fi, i ∈ [n] are convex but not necessarily smooth, the iterates of a subgradient method with
ColRel in the presence of intermittent connectivity is given by,

xt+1 ← xt − γtg(x
t), where g(xt) =

1

n

∑
i∈[n]

τ ti
∑
j∈[n]

αijτ
t
jigj(x

t). (6)

Here, gj(·) ∈ ∂fj(·) denotes a subgradient of fj , and {τ ti , τ tij} are Bernoulli random variables that
model the intermittent connectivity at iteration t. The convergence of iterations in (6) is stated below.

Theorem 4.1. Suppose that for every i ∈ [n], the local loss function fi is Gi - Lipschitz continuous
with Gmax ≜ maxi∈[n] Gi. Additionally, suppose f∗ ≜ infx∈Rd f(x) > −∞ with f(x∗) = f∗, and
there exists R > 0 such that ∥x0 − x∗∥22 ≤ R2. Then, given p, P, and weights A satisfying (2), for
a learning-rate sequence {γt}, we have,3

min
t=0,...,T−1

E[f(xt)]− f∗ ≤
R2 +G2

max

(
σ2
tv + 1

)∑T−1
t=0 γ2

t

2
∑T−1

t=0 γt
. (7)

Theorem 4.1 states that for a constant learning rate choice of γt = γ for all t = 0, 1, . . ., the algorithm
(6) converges to a neighborhood of the solution at a rate of O( 1

T ); with the size of the neighborhood
being proportional to the TIV, σ2

tv.

3The assumptions of fi here are stricter than necessary. We consider them for brevity and they can be relaxed
with a more rigorous analysis with minimal variation to the contribution of TIV.
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Figure 2: Image classification on the CIFAR-10 dataset using ResNet-20.

4.2 Gradient Descent for Smooth and Polyak-Lojasiewicz (PL) Objectives

A function f is said to be µ-PL if f(x)− f(x∗) ≤ 1
2µ∥∇f(x)∥

2
2 holds true for all x ∈ Rd, where

x∗ ≜ arg minx∈Rd f(x). Gradient descent with ColRel follows the same iteration as (6) with the
gradient∇fj(xt) instead of a subgradient gj(x

t). Theorem 4.2 below states that the gradient descent
iterates converge linearly to a neighborhood (with size proportional to σ2

tv) of the solution.

Theorem 4.2. Suppose f is µ-PL and L-smooth, and for every i ∈ [n], fi is Gi-Lipschitz continuous
with Gmax = maxi∈[n] Gi. For a given p,P, weights A satisfying (2), and a constant γ ∈

(
0, 1

L

]
,

let xt+1 ← xt − γ
n

∑
i∈[n] τ

t
i

∑
j∈[n] αijτ

t
ij∇fj(xt). Then, we have,

E[f(xT )]− f(x∗) ≤ (1− γµ)T
(
E[f(x0)]− f(x∗)

)
+

G2
maxσ

2
tv

2µ
. (8)

4.3 Gradient Descent for Smooth and Non-Convex Objectives

When fi’s are smooth and non-convex, gradient descent with ColRel once again converges to a
neighborhood of a stationary point at a rate of O( 1

T ). This is formalized below.

Theorem 4.3. Suppose f∗ ≜ infx∈Rd f(x) > −∞, fi, i ∈ [n] is Li-smooth and Gi-Lipschitz
continuous with Gmax = maxi∈[n] Gi, and there exists D0 > 0 such that Ef(x0)− f∗ ≤ D0. Then,
given p,P, and weights A satisfying (2), for γ ∈

(
0, 1

L

]
, we have,

min
i=0,...,T−1

E
[∥∥∇f(xt)

∥∥2
2

]
≤ 2D0

γT
+G2

maxσ
2
tv. (9)

Remark 3. To specifically focus on the stochasticity due to random connections, Thms. 4.1, 4.2 and
4.3 state the guarantees with deterministic (sub) gradients at clients. The results can be extended for
stochastic (sub) gradients as we show in App. G. We can further improve the convergence rates in
these settings by using ColRel together with schemes such as global momentum, periodic averaging,
variance reduction, etc. The key takeaway here is that intermittent connectivity over unreliable
networks introduces a TIV that can be treated similarly to sources of stochasticity such as stochastic
gradient oracle. Furthermore, the TIV can be minimized with optimized ColRel between clients.

5 Numerical Simulations

We now provide numerical simulations by training a ResNet-20 model for image classification on the
CIFAR-10 dataset [22]. Detailed results and discussions are provided in App. H.

Optimizing collaboration with heterogeneous client connectivity: In Fig. 2a, we consider a
decentralized ring-topology amongst the clients where pij = 1 if j = (i− 1, i or, i+ 1)mod n, and
pij = 0 otherwise. The local datasets of clients are independently and identically distributed (i.i.d.),
but they have different connectivity to the PS with p = [0.1, 0.2, 0.3, 0.1, 0.1, 0.5, 0.8, 0.1, 0.2, 0.9].
We observe that with {αij} optimized according to §3.1, ColRel achieves the same performance as
with perfect connectivity. We also compare the results with Federated Averaging (FedAvg), where
Blind refers to when the PS is unaware of the identity of transmitting clients such as in over-the-air
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aggregation schemes [3, 4, 33]. Non-Blind refers to when the PS knows exactly how many clients
successfully transmitted at each iteration.

Intermittent client-client connectivity: In Fig. 2b, a single client has p1 = pgc = 0.9 and pi = 0.1
otherwise. The clients can collaborate intermittently by relaying their update to the good client over
an Erdős-Rényi topology with pij = pc for i ̸= j. This resembles a setup where clients are clustered
together and only one of them has good connectivity to the PS (for e.g., physical proximity or power
constraint). Even with pc = 0.5, the performance is comparable to FedAvg with perfect connectivity.

Non-IID local data distribution and global momentum: In Fig. 2c, the CIFAR-10 dataset is sorted
and partitioned before distributing it across the clients. Each client has samples from at most 3 classes,
in order to emulate a more realistic FL scenario with non-i.i.d. data. There is still just a single client
with good PS connectivity as in Fig. 2b. Global momentum is employed at the PS to update the global
model. FedAvg (non-blind) fails to converge in this setting, because in the absence of collaboration,
clients with important training samples that are critical for training a good model with high accuracy,
have a low probability of successful transmission and thus are rarely able to convey their updates to
the PS. Consequently, the resulting test accuracy of the global model is ∼ 10%, as good as a random
classifier for 10 classes. On the other hand, ColRel ensures that the information from these critical
datapoints are conveyed to the PS even when the data owner does not have connectivity to the PS.

6 Conclusions

FL has been proposed as a distributed learning strategy to train a common model with localized data.
However, resource-constrained edge devices often suffer from intermittent connectivity to the PS,
and are communication stragglers. On the other hand, thanks to their wireless connectivity, they can
communicate locally with their neighbors even when the channel to the PS is blocked. Hence, to
mitigate communication stragglers in FL, we proposed a collaborative relaying strategy (ColRel),
which exploits the connections between clients to relay potentially missing model updates to the
PS. Through the abstraction of DME, we showed that intermittent connectivity introduces a TIV,
which we minimized by optimizing the collaboration weights. We then used these optimized weights
to improve the convergence rate of FL algorithms. ColRel can be implemented even when the PS
is blind to the identities of clients that successfully communicate with it at each round. Numerical
results showed the improvement in the training accuracy and the convergence rate that our approach
provides in various settings.

Acknowledgments and Disclosure of Funding

R. Saha, M. Yemini, and A. J. Goldsmith are partially supported by the AFOSR award #002484665
and a Huawei Intelligent Spectrum grant. E. Ozfatura and D. Gündüz received funding from the
European Research Council (ERC) through Starting Grant BEACON (no. 677854) and the UK
EPSRC (grant no. EP/T023600/1) under the CHIST-ERA program.

References
[1] M. S. H. Abad, E. Ozfatura, D. Gündüz, and O. Ercetin. Hierarchical federated learning across

heterogeneous cellular networks. In Proc. - ICASSP IEEE Int. Conf. Acoust. Speech Signal
Process. (ICASSP), pages 8866–8870, 2020. (Cited on page 2)

[2] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip.
Millimeter wave channel modeling and cellular capacity evaluation. IEEE J. Sel. Areas Commun.,
32(6):1164–1179, June 2014. (Cited on pages 1, 4, 27, and 28)

[3] M. M. Amiri and D. Gündüz. Federated learning over wireless fading channels. IEEE Trans.
Wireless Comms., 19(5):3546–3557, 2020. (Cited on pages 2 and 7)

[4] M. M. Amiri, D. Gündüz, S. R. Kulkarni, and H. V. Poor. Convergence of update aware device
scheduling for federated learning at the wireless edge. IEEE Trans. Wireless Comm., 20(6):
3643–3658, 2021. doi: 10.1109/TWC.2021.3052681. (Cited on pages 2 and 7)

[5] D. Bertsekas. Nonlinear Programming. Athena Scientific, 1999. (Cited on page 16)

7



[6] T. Castiglia, A. Das, and S. Patterson. Multi-level local SGD: Distributed SGD for heterogeneous
hierarchical networks. In International Conference on Learning Representations, 2021. (Cited
on page 2)

[7] M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and H. V. Poor. Distributed
learning in wireless networks: Recent progress and future challenges. arxiv:2104.02151, 2021.
(Cited on page 1)

[8] K. Cohen, T. Gafni, and Y. C. Eldar. CoBAAF: Controlled Bayesian Air Aggregation Federated
Learning from heterogeneous data. In 58th Annual Allerton Conference on Communication,
Control, and Computing, Sep. 2022. (Cited on page 2)

[9] M. Gapeyenko, A. Samuylov, M. Gerasimenko, D. Moltchanov, S. Singh, E. Aryafar, S. Yeh,
N. Himayat, S. Andreev, and Y. Koucheryavy. Analysis of human-body blockage in urban
millimeter-wave cellular communications. In IEEE Int. Conf. Commun. (ICC), pages 1–7, May
2016. (Cited on page 1)

[10] M. Gapeyenko, A. Samuylov, M. Gerasimenko, D. Moltchanov, S. Singh, M. R. Akdeniz,
E. Aryafar, N. Himayat, S. Andreev, and Y. Koucheryavy. On the temporal effects of mobile
blockers in urban millimeter-wave cellular scenarios. IEEE Trans. Veh. Technol., 66(11):
10124–10138, Nov 2017. (Not cited.)

[11] S. Gil, S. Kumar, D. Katabi, and D. Rus. Adaptive communication in multi-robot systems using
directionality of signal strength. Int. J. Rob. Res., 34(7):946–968, 2015. (Cited on pages 1 and 2)

[12] X. Gu, K. Huang, J. Zhang, and L. Huang. Fast federated learning in the presence of arbitrary
device unavailability. arxiv:2106.04159, 2021. (Cited on pages 2 and 3)

[13] D. Gündüz, D. B. Kurka, M. Jankowski, M. M. Amiri, E. Ozfatura, and S. Sreekumar. Commu-
nicate to learn at the edge. IEEE Comm. Magazine, 58(12):14–19, 2020. (Cited on page 2)

[14] B. Hasircioglu and D. Gunduz. Private wireless federated learning with anonymous over-the-air
computation. arxiv:2011.08579, 2021. (Cited on page 2)

[15] Y. Jee Cho, J. Wang, and G. Joshi. Towards understanding biased client selection in federated
learning. In Proceedings of The 25th International Conference on Artificial Intelligence and
Statistics, volume 151 of Proceedings of Machine Learning Research, pages 10351–10375.
PMLR, 28–30 Mar 2022. URL https://proceedings.mlr.press/v151/jee-cho22a.
html. (Cited on page 2)

[16] D. Jhunjhunwala, A. Mallick, A. Gadhikar, S. Kadhe, and G. Joshi. Leverag-
ing spatial and temporal correlations in sparsified mean estimation. In Advances in
Neural Information Processing Systems, volume 34, pages 14280–14292. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
77b88288ebae7b17b7c8610a48c40dd1-Paper.pdf. (Cited on page 3)

[17] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar. Collaborative deep learning in fixed topology
networks. In NIPS. Dec. 2017. (Cited on page 2)

[18] M. Kamp, L. Adilova, J. Sicking, F. Hüger, P. Schlicht, T. Wirtz, and S. Wrobel. Efficient
decentralized deep learning by dynamic model averaging. In Conf. Mach. Learn. Knowl.
Discovery in Databases, pages 393–409, 2019. (Cited on page 2)

[19] S. Kar and J. M. F. Moura. Distributed consensus algorithms in sensor networks with imperfect
communication: Link failures and channel noise. IEEE Transactions on Signal Processing, 57
(1):355–369, 2009. doi: 10.1109/TSP.2008.2007111. (Cited on page 3)

[20] S. Kar and J. M. F. Moura. Distributed consensus algorithms in sensor networks: Quantized
data and random link failures. IEEE Transactions on Signal Processing, 58(3):1383–1400,
2010. doi: 10.1109/TSP.2009.2036046. (Cited on page 3)

[21] L. Kong, T. Lin, A. Koloskova, M. Jaggi, and S. U. Stich. Consensus control for decentralized
deep learning. arXiv:2102.04828, 2021. (Cited on page 2)

8

https://proceedings.mlr.press/v151/jee-cho22a.html
https://proceedings.mlr.press/v151/jee-cho22a.html
https://proceedings.neurips.cc/paper/2021/file/77b88288ebae7b17b7c8610a48c40dd1-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/77b88288ebae7b17b7c8610a48c40dd1-Paper.pdf


[22] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian institute for advanced research).
URL http://www.cs.toronto.edu/~kriz/cifar.html. (Cited on pages 6 and 24)

[23] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran. Speeding up distributed
machine learning using codes. IEEE Trans. Inf. Theory, 64(3):1514–1529, 2018. (Cited on
page 3)

[24] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr. Fundamental tradeoff between computation
and communication in distributed computing. In IEEE Int. Symp. Inf. Theory (ISIT), pages
1814–1818, 2016. (Cited on page 3)

[25] Z. Li, H. Bao, X. Zhang, and P. Richtarik. Page: A simple and optimal probabilistic gradient es-
timator for nonconvex optimization. In Proceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine Learning Research, pages 6286–6295.
PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/li21a.html.
(Cited on page 21)

[26] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for decentralized parallel stochastic gradient
descent. In NIPS. Dec. 2017. (Cited on page 2)

[27] W. Y. B. Lim, J. S. Ng, Z. Xiong, J. Jin, Y. Zhang, D. Niyato, C. Leung, and C. Miao.
Decentralized edge intelligence: A dynamic resource allocation framework for hierarchical
federated learning. IEEE Trans. Parallel Distrib. Syst., 33(3):536–550, 2022. doi: 10.1109/
TPDS.2021.3096076. (Cited on page 2)

[28] D. Liu, G. Zhu, J. Zhang, and K. Huang. Data-importance aware user scheduling for
communication-efficient edge machine learning. IEEE Trans. Cogn. Commun. Netw., 7(1):
265–278, 2021. (Cited on page 2)

[29] L. Liu, J. Zhang, S. Song, and K. B. Letaief. Client-edge-cloud hierarchical federated learning.
In IEEE Int. Conf. Commun. (ICC), pages 1–6, 2020. (Cited on page 2)

[30] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-Efficient
Learning of Deep Networks from Decentralized Data. In Int. Conf. Artif. Intell. Stat. (AISTATS),
volume 54, pages 1273–1282, Apr 2017. (Cited on page 2)

[31] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas. Maintaining connectivity in mobile
robot networks. In Experimental Robotics, 2009. (Cited on pages 1 and 2)

[32] M. Mohammadi Amiri and D. Gündüz. Computation scheduling for distributed machine
learning with straggling workers. IEEE Trans. Signal Process., 67(24):6270–6284, 2019. (Cited
on page 3)

[33] E. Ozfatura, S. Rini, and D. Gündüz. Decentralized SGD with over-the-air computation. In
IEEE Glob. Commun. Conf, 2020. (Cited on pages 2 and 7)

[34] E. Ozfatura, S. Ulukus, and D. Gündüz. Straggler-aware distributed learning: Communica-
tion–computation latency trade-off. Entropy, 22(5), 2020. (Cited on page 3)

[35] E. Ozfatura, D. Gunduz, and H. V. Poor. Collaborative learning over wireless networks: An
introductory overview. arxiv:2112.05559, 2021. (Cited on page 2)

[36] M. E. Ozfatura, J. Zhao, and D. Gündüz. Fast federated edge learning with overlapped
communication and computation and channel-aware fair client scheduling. In IEEE Workshop
Signal Process. Adv. Wirel. Commun, pages 311–315, 2021. (Cited on page 2)

[37] R. Saha, S. Rini, M. Rao, and A. J. Goldsmith. Decentralized optimization over noisy, rate-
constrained networks: Achieving consensus by communicating differences. IEEE J. Sel. Areas
Commun., 40(2):449–467, 2022. doi: 10.1109/JSAC.2021.3118428. (Cited on page 2)

[38] M. Seif, W.-T. Chang, and R. Tandon. Privacy amplification for federated learning via user
sampling and wireless aggregation. arxiv:2103.01953, 2021. (Cited on page 2)

9

http://www.cs.toronto.edu/~kriz/cifar.html
https://proceedings.mlr.press/v139/li21a.html


[39] T. Sery, N. Shlezinger, K. Cohen, and Y. C. Eldar. Over-the-air federated learning from
heterogeneous data. IEEE Transactions on Signal Processing, 69:3796–3811, July 2021. (Cited
on page 2)

[40] W. Shi, S. Zhou, and Z. Niu. Device scheduling with fast convergence for wireless federated
learning. In IEEE Int. Conf. Commun. (ICC), pages 1–6, 2020. (Cited on page 2)

[41] A. T. Suresh, F. X. Yu, S. Kumar, and H. B. McMahan. Distributed mean estimation with
limited communication. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of
Machine Learning Research, pages 3329–3337. PMLR, 2017. URL http://proceedings.
mlr.press/v70/suresh17a.html. (Cited on page 3)

[42] A. T. Suresh, Z. Sun, J. H. Ro, and F. X. Yu. Correlated quantization for distributed mean
estimation and optimization. CoRR, abs/2203.04925, 2022. doi: 10.48550/arXiv.2203.04925.
URL https://doi.org/10.48550/arXiv.2203.04925. (Cited on page 3)

[43] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis. Gradient coding: Avoiding stragglers
in distributed learning. In 34th Int. Conf. Mach. Learn., volume 70 of Proceedings of Machine
Learning Research, pages 3368–3376. PMLR, Aug 2017. (Cited on page 3)

[44] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu. d2: Decentralized training over decentralized
data. In 35th Int. Conf. Mach. Learn., volume 80, pages 4848–4856. PMLR, Jul 2018. (Cited on
page 2)

[45] T. Vogels, L. He, A. Koloskova, S. P. Karimireddy, T. Lin, S. U. Stich, and M. Jaggi. Relaysum
for decentralized deep learning on heterogeneous data. In Thirty-Fifth Conference on Neural
Information Processing Systems, 2021. (Cited on page 2)

[46] W. Xia, T. Q. S. Quek, K. Guo, W. Wen, H. H. Yang, and H. Zhu. Multi-armed bandit based
client scheduling for federated learning. IEEE Trans. Wireless Commun., pages 1–1, 2020.
(Cited on page 2)

[47] Y. Yan and Y. Mostofi. Co-optimization of communication and motion planning of a robotic op-
eration under resource constraints and in fading environments. IEEE Trans. Wireless Commun.,
12(4):1562–1572, April 2013. (Cited on pages 1 and 2)

[48] H. Yang, M. Fang, and J. Liu. Achieving linear speedup with partial worker participation in
non-IID federated learning. In International Conference on Learning Representations, 2021.
(Cited on page 2)

[49] H. H. Yang, A. Arafa, T. Q. S. Quek, and H. Vincent Poor. Age-based scheduling policy for
federated learning in mobile edge networks. In Proc. - ICASSP IEEE Int. Conf. Acoust. Speech
Signal Process. (ICASSP), pages 8743–8747, 2020. (Cited on page 2)

[50] H. H. Yang, Z. Liu, T. Q. S. Quek, and H. V. Poor. Scheduling policies for federated learning in
wireless networks. IEEE Trans. Commun., 68(1):317–333, 2020. (Cited on page 2)
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A Proof of Lemma 3.1: Sufficient Condition for Unbiasedness

Since τj and τij are statistically independent of xi and each other, for all i, j ∈ [n], we have that,

E

∑
j∈[n]

τjτijαjixi

∣∣∣xi

 = E

∑
j∈[n]

τjτijαji

xi.

Substituting (2) concludes the proof.

Note that the standard model of FL with random client sampling and no connectivity among clients is
captured by substituting pij = 0, pi = p, αii = 1, and αij = 0 for all i, j ∈ [n] such that j ̸= i.

B Proof of Theorem 3.2: MSE for DME with Client Collaboration under
Intermittent Connectivity

The proof of Thm. 3.2 is similar to that of [53, Lemma 6] and utilizes the fact that ∥xi∥2 ≤ R.
Nonetheless, we reproduce it here for the sake of completeness. The MSE for DME with ColRel
using a weight matrix A is given by,

EColRel(p,P,A) = E∥x̂− x∥22

= E

∥∥∥∥∥∥ 1n
∑
i∈[n]

τi
∑
j∈[n]

αijτjixj −
1

n

∑
i∈[n]

xi

∥∥∥∥∥∥
2

2

=
1

n2
· E

∥∥∥∥∥∥
∑
i∈[n]

∑
j∈[n]

τjτijαjixi −
∑
i∈[n]

xi

∥∥∥∥∥∥
2

2

=
1

n2
· E

∥∥∥∥∥∥
∑
i∈[n]

∑
j∈[n]

τjτijαji − 1

xi

∥∥∥∥∥∥
2

2

=
1

n2

∑
i∈[n]

E


∑

j∈[n]

τjτijαji − 1

2
 ∥xi∥22

+
1

n2

∑
i,l∈[n]:

i ̸=l

E

∑
j∈[n]

τjτijαji − 1

 ∑
m∈[n]

τmτlmαml − 1

x⊤
i xl.

(10)

The last equality follows since the random variables τi ∈ [n] and τij , i, j ∈ [n] are assumed to be
statistically independent of the vectors xi. Simplifying the first term above gives us,

E


∑

j∈[n]

τjτijαji − 1

2


=
∑
j∈[n]

E
[
τ2j τ

2
ijα

2
ji

]
+

∑
j1,j2∈[n]:j1 ̸=j2

E [τj1τj2τij1τij2αj1iαj2i]− 2
∑
j∈[n]

E [τjτijαji] + 1

(i)
=
∑
j∈[n]

pjpijα
2
ji +

∑
j1,j2∈[n]:j1 ̸=j2

pj1pj2pij1pij2αj1iαj2i − 2
∑
j∈[n]

pjpijαji + 1

(ii)
=
∑
j∈[n]

pjpijα
2
ji +

∑
j∈[n]

pjpijαji

2

−
∑
j∈[n]

p2jp
2
ijα

2
ji − 1
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(iii)
=
∑
j∈[n]

pjpij (1− pjpij)α
2
ji (11)

Here, (i) follows from the statistical independence of τi, i ∈ [n] and τij , i, j ∈ [n], while (ii) and (iii)
follow from the sufficient requirement for unbiasedness (2).

To evaluate the second term, note that for every l ̸= i,

E

∑
j∈[n]

τjτijαji − 1

 ∑
m∈[n]

τmτlmαml − 1


= E

∑
j∈[n]

∑
m∈[n]

τjτmτijτlmαjiαml

− E

∑
j∈[n]

τjτijαji

− E

 ∑
m∈[n]

τmτlmαml

+ 1

= E

∑
j∈[n]

τ2j τijτljαjiαjl

+ E [τlτiτilτliαliαil] + E
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m∈[n]:m ̸=l,i

τlτmτilτlmαliαml


+ E
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j∈[n]:j ̸=l

∑
m∈[n]:m ̸=j

τjτmτijτlmαjiαml

− 1

(i)
=
∑
j∈[n]

pjpijpljαjiαjl + piplE{i,l}αliαil +
∑

m∈[n]:m̸=l,i

plpmpilplmαliαml

+
∑

j∈[n]:j ̸=l

∑
m∈[n]:m̸=j

pjpmpijplmαjiαml − 1

(ii)
=
∑
j∈[n]

pj(1− pj)pijpljαjiαjl + pipl(E{i,l} − pilpli)αilαli. (12)

Here, (i) follows from the statistical independence of τ ’s as before. The equality (ii) follows from
the sufficient conditions for unbiasedness which lead to the following chain of equalities:∑

m∈[n]:m̸=l,i

plpmpilplmαliαml +
∑

j∈[n]:j ̸=l

∑
m∈[n]:m ̸=j

pjpmpijplmαjiαml

= plpilαli

∑
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pmplmαml +
∑
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p2jpijpljαjiαjl
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∑
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p2jpijpljαjiαjl

= −plpilαli(pipliαil + plpllαll) + 1−
∑
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p2jpijpljαjiαjl
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∑
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∑
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From (11) and (12), the MSE with ColRel in (10) simplifies to,

EColRel(p,P,A) =
1

n2

∑
i,j∈[n]
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2
ji · ∥xi∥22
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where the last inequality follows from E{i,i} − piipii = 1− 1 · 1 = 0.

Note that we initially assumed E{i,l} ≥ pilpli, and constrained our weights αil, αli to be non-negative.
Furthermore, since ∥xi∥2 ≤ R, ∀ i ∈ [n], an application of Cauchy-Schwarz inequality to upper
bound the inner products yields, x⊤

i xl ≤ ∥xi∥2∥xl∥2 ≤ R2. This yields,

EColRel(p,P,A) ≤ R2

n2
S(p,P,A), (15)

where, S(p,P,A) is defined as in (3). This completes the proof.

C Optimizing the Collaboration Weights: Minimizing σ2
tv(p,P,A)

In this section, we show how to choose the optimal weights for collaboration. The results of this
section follow from [53]. We omit the proofs and refer the reader to [53, Lemma 2] and [53, Lemma
7]. As discussed already in §3 and §4, in order to reduce the TIV, we want to solve the following
optimization problem (4) (reproduced below):

min
A

S(p,P,A) s.t.:
∑
j∈[n]

pjpijαji = 1, αji ≥ 0 ∀i, j ∈ [n]. (16)

Here, S(p,P,A) is given by,

S(p,P,A) ≜
∑

i,j,l∈[n]

pj(1− pj)pijpljαjiαjl +
∑

i,j∈[n]

pijpj(1− pij)α
2
ji +

∑
i,l∈[n]

pipl(E{i,l} − pilpli)αilαli.

(17)

C.1 Deriving the Convex Relaxation for Minimizing S(p,P,A)

Due to the last term
∑

i,l∈[n] pipl(E{i,l} − pilpli)αilαli, the function S(p,P,A) is not necessarily
convex with respect to A. To this end, we consider the convex upper bound S(p,P,A) where,

S(p,P,A) ≜
∑

i,j,l∈[n]

pj(1− pj)pijpljαjiαjl +
∑

i,j∈[n]

pijpj(1− pij)α
2
ji +

∑
i,l∈[n]

pipl(E{i,l} − pilpli)α
2
li.

(18)

The following lemma formally proves the validity of this convex relaxation.
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Lemma C.1. [53, Lemma 2] For every A such that αij ≥ 0, ∀ i, j ∈ [n], S(p,P,A) ≤ S(p,P,A).
Furthermore, S(p,P,A) is convex with respect A for p ∈ [0, 1]n.

The proof of Lemma C.1 utilizes the result from the following auxiliary lemma.

Lemma C.2. [53, Lemma 7] Let y, c ∈ Rd̃ where d̃ ∈ N+. Denote hc(y) =
(∑d̃

i=1 ciyi

)2
, then

hc(y) is convex.

Lemmas C.1 implies that the following optimization problem is a convex relaxation of (4):

min
A

S(p,P,A) s.t.:
∑
j∈[n]

pjpijαji = 1, αji ≥ 0 ∀i, j ∈ [n]. (19)

C.2 Algorithm to optimize the collaboration weights

Let Ai denote the ith column of A, that is, Ai ≜ (A1i, . . . ,Ani)
⊤. Since the domain of the

problems (4) and (19) is separable with respect to Ai, we can use the Gauss-Seidel method to
iteratively solve (19) and converge to an optimal solution [5, Proposition 2.7.1] for the upper bound
(19). We can then converge to a stationary point of (4) in the vicinity of this solution by employing
the Gauss-Seidel method once again.

Remark 1. We note that when pij ∈ {0, 1}, ∀i, j ∈ [n], i.e., the client-client connections are always
present or always absent, the problem (4) is convex. Additionally, in this case the problems (4) and
(19) coincide since E{i,l} − pilpli = 0 for every i, j ∈ [n].

Optimizing the convex relaxation (19): Let A(ℓ)
i denote the approximated value for Ai in the ℓth

iteration of the Gauss-Seidel method of (19). We choose the initial solution to be

A
(0)
ji =

1(∑
k∈[n] 1{pk>0,pik>0}

)pjpij · 1{pj>0,pij>0}.

We can improve our solution iteratively by the Gauss-Seidel method until convergence to an optimal
point of (19). That is, at every iteration ℓ we compute A(ℓ) as follows,

A
(ℓ)
i =

{
Â

(ℓ)
i if ℓ mod n+ n · 1{ℓ mod n=0} = i

A
(ℓ−1)
i otherwise

(20)

where,

Â
(ℓ)
i = argmin

∑
j∈[n]

pjpij (1− pjpij)α
2
ji + 2

∑
l∈[n]:l ̸=i

∑
j∈[n]

pj(1− pj)pijpljαjiα
(ℓ−1)
jl

+
∑
j∈[n]

pipj(E{i,j} − pijpji)α
2
ji

 ,

s.t.:
∑
j∈[n]

pjpijαji = 1, αji ≥ 0, ∀j ∈ [n]. (21)

Using Lagrange multipliers, we show in App. C.3 that the optimal value for A(ℓ)
i is:

α̂
(ℓ)
ji (λi) =


(

−2(1−pj)
∑

l∈[n]:l ̸=i pljα
(ℓ−1)
jl +λi

2[(1−pjpij)+pi(E{i,j}/pij−pji)]

)+

if pjpij ·maxk∈[n] pkpik ∈ (0, 1),

1∑
k∈[n] 1{pkpik=1}

if pjpij = 1,

0 otherwise

, (22)

where (a)+ ≜ max{a, 0} and λi is set such that
∑

j∈[n] pjpijα̂
(ℓ)
ji (λi) = 1. We can find λi using

the bisection method over the interval:0, max
j:pjpij∈(0,1)

2[(1− pjpij) + pi(E{i,j}/pij − pji)]

pjpij
+ 2(1− pj)

∑
l∈[n]:l ̸=i

pljα
(ℓ−1)
jl
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Fine tuning (4): Let A(ℓ)
i denote the approximated value for Ai in the ℓth iteration of the Gauss-

Seidel method of (4), and assume a given initialization A
(0)
i . We can improve our solution iteratively

by the Gauss-Seidel method until convergence to a stationary point of (4).

At every iteration ℓ we compute A
(ℓ)
i as follows,

A
(ℓ)
i =

{
Â

(ℓ)
i if ℓ mod n+ n · 1{ℓ mod n=0} = i,

A
(ℓ−1)
i otherwise,

(23)

where 1{·} denotes the indicator function, and

Â
(ℓ)
i = argmin

∑
j∈[n]

pjpij (1− pjpij)α
2
ji + 2

∑
l∈[n]:l ̸=i

∑
j∈[n]

pj(1− pj)pijpljαjiα
(ℓ−1)
jl

+2
∑
j∈[n]

pipj(E{i,j} − pijpji)αijαji

 ,

s.t.:
∑
j∈[n]

pjpijαji = 1, αji ≥ 0, ∀j ∈ [n]. (24)

Using Lagrange multipliers, we show in Appendix C.3 that the optimal value for Â(ℓ)
i is as follows:

α̂
(ℓ)
ji (λi) =



−2(1−pj)
∑

l∈[n]:l̸=i

pljα
(ℓ−1)
jl −2pi

(
E{i,j}

pij
−pji

)
α

(ℓ−1)
ij +λi

2(1−pjpij)

+

if pjpij max
k∈[n]

pkpik ∈ (0, 1),

1∑
k∈[n] 1{pkpik=1}

if pjpij = 1,

0 otherwise

,

(25)

where λi is set such that
∑

j∈[n] pjpijα̂
(ℓ)
ji (λi) = 1. We can find λi using the bisection method over

the interval:0, max
j:pjpij∈(0,1)

2 (1− pjpij)

pjpij
+ 2(1− pj)

∑
l∈[n]:l ̸=i

pljα
(ℓ−1)
jl + 2pi

(
E{i,j}

pij
− pji

)
α
(ℓ−1)
ij


 .

We summarize the centralized optimization procedure for A in Algorithm 1.

When the connectivity between two communicating clients is reliable, i.e., two clients are either
connected with high probability or disconnected, Algorithm 1 can be implemented in a distributed
fashion by the clients. In this case each client does not need to fully know p,P and A, but only the
weights and transmission probabilities of all its direct neighbors and its second degree neighbors (i.e.,
neighbors of its neighbors). Such a distributed algorithm can be used to optimize the weights when
the PS is blind to the identities of the transmitting clients at all times and cannot use a training period
for learning the transmission probabilities. Finally, we note the weights resulting from Algorithm
1 can be used as long as the probabilities p and P are fixed, and are not needed to be calculated in
every communication round.

Computation complexity The overall computational complexity of Algorithm 1 is O(I · (n2 +K)),
where K is the number of iterations used in the bisection method for optimizing λi.

C.3 Iterative Gauss-Seidel update using Lagrange multipliers

First, observe that we can set αji = 0 for every j such that pijpj = 0. Additionally, if
maxk∈[n]{pkpik} = 1, then we can set αji = 1{pijpj=1} · (

∑
k∈[n] 1{pkpik=1})

−1. Therefore,
hereafter we assume that i is such that maxk∈[n]{pkpik} < 1 and that j is such that pijpj ∈ (0, 1).
We proceed to solve each of the problems (21) and (24), respectively.

Solving the Convex Optimization Problem (21): The Lagrangian of (21) is,
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Algorithm 1: COPT-A Centralized optimization of the weight matrix A

Input: A set of clients [n], the functions S(p,P,A) and S(p,P,A), vector of connectivity
probabilities p, matrix of inter-client connectivity probabilities P, maximal number of
iteration I .

Output: A matrix A(L) that approximately minimizes (4)
1 Initialize (convex relaxation): A(0)

ji = 1(∑
j∈[n] 1{pj>0,pij>0}

)
pjpij

· 1{pj>0,pij>0}, and ℓ = 0.

2 while ℓ ≤ I − 1 do
3 ℓ← ℓ+ 1
4 i← ℓ mod n+ n · 1{ℓ mod n=0}

5 Compute Â
(ℓ)
i according to (22)

6 Set A(ℓ)
k according to (20) for every k ∈ [n]

7 end
8 Warm-initialize (fine tuning): A(0) = A(L) and ℓ = 0.
9 while ℓ ≤ I − 1 do

10 ℓ← ℓ+ 1
11 i← ℓ mod n+ n · 1{ℓ mod n=0}

12 Compute Â
(ℓ)
i according to (25)

13 Set A(ℓ) according to (23) for every k ∈ [n]
14 end

L(A(ℓ)
i , λi) =

∑
j∈[n]

pjpij (1− pjpij)α
2
ji + 2

∑
l∈[n]:l ̸=i

∑
j∈[n]

pj(1− pj)pijpljαjiα
(ℓ−1)
jl

+
∑
j∈[n]

pipj(E{i,j} − pijpji)α
2
ji − λi

∑
j∈[n]

pjpijαji − 1

− µji(αji).

Additionally,

∂L(A(ℓ)
i , λi)

∂αji
= 2pj [pij (1− pjpij) + pi(E{i,j} − pijpji)]αji

+ 2pj(1− pj)pij
∑

l∈[n]:l ̸=i

pljα
(ℓ−1)
jl − λipijpj + µji,

∂L(A(ℓ)
i , λi)

∂λi
= 1−

∑
j∈[n]

pjpijαji,
∂L(A(ℓ)

i , λi)

∂µji
= −αji.

It follows from the Karush–Kuhn–Tucker conditions that

αji(λi) =

(
−2(1− pj)

∑
l∈[n]:l ̸=i pljα

(ℓ−1)
jl + λi

2[(1− pjpij) + pi(E{i,j}/pij − pji)]

)+

,

and λi ≥ 0 is set such that
∑

j∈[n] pjpijαji(λi) = 1.

Solving the Convex Optimization Problem (24): The Lagrangian of (24) is

L(A(ℓ)
i , λi) =

∑
j∈[n]

pjpij (1− pjpij)α
2
ji + 2

∑
l∈[n]:l ̸=i

∑
j∈[n]

pj(1− pj)pijpljαjiα
(ℓ−1)
jl

+ 2
∑
j∈[n]

pipj(E{i,j} − pijpji)αjiα
(ℓ−1)
ij − λi

∑
j∈[n]

pjpijαji − 1

− µji(αji).

18



Additionally,

∂L(A(ℓ)
i , λi)

∂αji
= 2pjpij (1− pjpij) + 2pj(1− pj)pij

∑
l∈[n]:l ̸=i

pljα
(ℓ−1)
jl

+ 2pipj(E{i,j} − pijpji)α
(ℓ−1)
ij − λipijpj + µji,

∂L(A(ℓ)
i , λi)

∂λi
= 1−

∑
j∈[n]

pjpijαji,
∂L(A(ℓ)

i , λi)

∂µji
= −αji.

It follows from the Karush–Kuhn–Tucker conditions that

αji(λi) =

(
−2(1− pj)

∑
l∈[n]:l ̸=i pljα

(ℓ−1)
jl − 2pi(E{i,j}/pij − pji)α

(ℓ−1)
ij + λi

2 (1− pjpij)

)+

,

and λi ≥ 0 is set such that
∑

j∈[n] pjpijαji(λi) = 1.

D Proof of Theorem 4.1: Non-Smooth and General Convex Objectives

In this section, we discuss and analyze in detail, a subgradient method with collaborative relaying
for federated optimization over intermittently connected networks. The convergence rate of this
analysis is derived following the analysis of DME and we use the optimized collaboration weights,
i.e., A = Aopt in order to minimize the TIV, σ2

tv(p,P,A). The algorithm pseudocode is presented
in Alg. 2.

Algorithm 2: ColRel-Subgradient: Subgradient method with ColRel

Input: A set of clients [n] with local losses fi, a client connectivity graph G, optimized weight
matrix A = Aopt, maximal number of iteration T , initial point x0, learning-rate
sequence {γt}t=0,...,T−1.

Output: An approximate minimizer x∗ of f(x) = 1
n

∑
i∈[n] fi(x).

1 Initialize: Iteration index t = 0.
2 while t < T do
3 PS: Broadcasts xt to all clients i ∈ [n].
4 for i ∈ [n] do
5 (All clients execute in parallel)
6 Client-i computes a subgradient gi(x

t) ∈ ∂fi(x
t).

7 Local collaboration: Client-i broadcasts gi(x
t) to all (neighboring) nodes, while also

receiving gj(x
t), j ∈ [n], j ̸= i from them over intermittently

connected links.
8 Local consensus: Client-i computes a weighted average of updates received

g̃i(x
t) =

∑
j∈[n] αijτ

t
ijgj(x

t).
9 Client-i sends g̃i(x

t) to the PS over an intermittently connected link.
10 end
11 PS: Receives τ ti g̃i(x

t) from all clients i ∈ [n].
12 PS: Computes global subgradient by (blindly) aggregating all received updates,

gi(x
t) = 1

n

∑
i∈[n] τ

t
i g̃i(x

t).
13 PS: Takes a subgradient step: xt+1 ← xt − γtg(x

t).
14 (Increment iteration counter) t← t+ 1.
15 end

To derive the convergence rate of Alg. 2 for non-smooth and general convex objective functions, we
make the following assumptions (as stated in statement of Theorem 4.3).

Assumption D.1. For i ∈ [n], the local loss function fi is Gi-Lipschitz continuous. That is, for any
x,y ∈ Rd, |fi(x)− fi(y)| ≤ Gi∥x− y∥2.
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Gi-Lipschitz continuity implies for any x ∈ Rd, the subgradient gi(x) ∈ ∂fi(x) satisfies ∥gi(x)∥2 ≤
Gi. Here, ∂fi(x) denotes the subdifferential of fi at x.

Assumption D.2. The objective function is lower bounded and the infimum is attainable, i.e.,
f∗ = inf

x∈Rd
f(x) > −∞, with f(x∗) = f∗. (26)

Assumption D.3. The initial distance to optimality can be upper bounded by some known R > 0,
i.e.,

∥x0 − x∗∥22 ≤ R2. (27)

In general, these assumptions can be relaxed. Here, they are merely made here to simplify the proofs.
Denote, Gmax ≜ maxi∈[n] Gi and g(xt) ≜ 1

n

∑
i∈[n] gi(x

t). We have that,

E
[
∥xt+1 − x∗∥22

∣∣xt
]
= E

[
∥xt − γtg(x

t)− x∗∥22
∣∣∣∣xt

]
= ∥xt − x∗∥22 + γ2

t E
[
∥g(xt)∥22

∣∣∣∣xt

]
− 2γtE

[
g(xt)⊤(xt − x∗)

∣∣∣∣xt

]
= ∥xt − x∗∥22 + γ2

t E
[
∥g(xt)∥22

∣∣∣∣xt

]
− 2γtE

[
g(xt)

∣∣∣∣xt

]⊤ (
xt − x∗)

(i)

≤ ∥xt − x∗∥22 + γ2
t E
[
∥g(xt)∥22

∣∣∣∣xt

]
− 2γt

(
f(xt)− f∗)

(ii)
= ∥xt − x∗∥22 − 2γt

(
f(xt)− f∗)

+ γ2
t

(
E
[
∥g(xt)− g(xt)∥22

∣∣∣∣xt

]
+ ∥g(xt)∥22

)
(iii)

≤ ∥xt − x∗∥22 − 2γt
(
f(xt)− f∗)+ γ2

tG
2
max

(
S(p,P,A)

n2
+ 1

)
(28)

In this chain of inequalities, the expectation is over the stochasticity of the intermittent links at iteration
t. Here, (i) follows since we ensure that the stochastic subgradient computed at the parameter server
despite the intermittent connectivity is unbiased, (ii) holds true for the same reason, and (iii) follows
from Lipschitz continuity of fi for all i ∈ [n] and the result on MSE for DME with collaborative
relaying in the presence of intermittent connectivity. Now taking expectations over all sources of
stochasticity, we have,

E
[
∥xt+1 − x∗∥22

]
≤ E

[
∥xt − x∗∥22

]
− 2γt

(
E[f(xt)]− f∗)+ γ2

tG
2
max

(
S(p,P,A)

n2
+ 1

)
.

(29)

Summing all these inequalities for t = 0, . . . , T − 1, we get,

E
[
∥xT − x∗∥22

]
≤ ∥x0 − x∗∥22 − 2

T−1∑
t=0

γt
(
E[f(xt)]− f∗)+G2

max

(
S(p,P,A)

n2
+ 1

) T−1∑
t=0

γ2
t .

(30)

Since E
[
∥xT − x∗∥22

]
≥ 0, this gives us,

min
t=0,...,T−1

E[f(xt)]− f∗ ≤
R2 +G2

max

(
S(p,P,A)

n2 + 1
)∑T−1

t=0 γ2
t

2
∑T−1

t=0 γt
. (31)

So, the algorithm converges to the optimal solution as long as the learning rate sequence {γt}t≥0 is
square-summable and not summable, i.e.

γt ≥ 0,

∞∑
t=0

γ2
t <∞, and

∞∑
t=0

γt =∞. (32)

For a constant step-size sequence γt = γ for all t, we have,

min
t=0,...,T−1

E[f(xt)]− f∗ ≤ R2

γT
+

γG2
max

2

(
S(p,P,A)

n2
+ 1

)
(33)
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So the algorithm converges to a neighborhood of the optimal solution at a convergence rate of O
(
1
T

)
and the size of the neighborhood depends on S(p,P,A).

The results of this section can also be extended to setting with a stochastic subgradient oracle as
shown in App. G.

E Proof of Theorem 4.2: Smooth and Polyak-Lojasiewicz (PL) Objectives

In this section, we derive the linear convergence rate of gradient descent with collaborative relaying
(ColRel-GD) for smooth and PL objective functions. The algorithm is the same as Alg. 2 with
each client evaluating the gradient ∇fi(xt) at iteration t. We formally state the assumptions on the
objective functions below.

Assumption E.1. (Smoothness and Lower boundedness). For every i ∈ [n], the function fi is Li-
smooth, i.e., ∥∇fi(x)−∇fi(y)∥ ≤ Li∥x− y∥2, for all x,y ∈ Rd and f∗ ≜ infx∈Rd fi(x) > −∞.
As a consequence, f = 1

n

∑
i∈[n] fi is L-smooth with L ≜ 1

n

∑
i∈[n] Li.

Assumption E.2. (Lipschitz continuity). For i ∈ [n], the local loss function fi is Gi-Lipschitz
continuous, i.e., for any x,y ∈ Rd, |fi(x)− fi(y)| ≤ Gi∥x− y∥2.

Assumption E.3. (Polyak-Lojasiewicz (PL) condition). For some µ > 0, the global objective f
µ-PL, i.e., for all x ∈ Rd, where x∗ = arg minx∈Rd f(x), we have, f(x)− f(x∗) ≤ 1

2µ∥∇f(x)∥
2
2.

We now state a descent lemma (without proof) from [25] that we use for our analysis.

Lemma E.4 (Lemma 2, [25]). Suppose that function f is L-smooth and let xt+1 ← xt − γgt. Then
for any gt ∈ Rd and γ > 0, we have,

f(xt+1) ≤ f(xt)− γ

2
∥∇f(xt)∥22 −

(
1

2γ
− L

2

)
∥xt+1 − xt∥22 +

γ

2
∥gt −∇f(xt)∥22 (34)

Conditioned on xt, the descent lemma as seen before, states that for a constant learning-rate γ > 0,

E[f(xt+1)
∣∣xt]− f(x∗) ≤ E[f(xt)

∣∣xt]− f(x∗)− γ

2
∥∇f(xt)∥22

−
(

1

2γ
− L

2

)
E[∥xt+1 − xt∥22

∣∣xt]

+
γ

2
E


∥∥∥∥∥∥ 1n

∑
i∈[n]

τ ti
∑
j∈[n]

αijτ
t
ji∇fi(xt)− 1

n

∑
i∈[n]

∇fi(xt)

∥∥∥∥∥∥
2

2

∣∣∣∣xt


(i)

≤ E[f(xt)
∣∣xt]− f(x∗)− γ

2
∥∇f(xt)∥22 +

γG2
max

2n2
S(p,P,A). (35)

Here, the inequality (i) uses the fact that we choose our learning rate γ ∈
(
0, 1

L

]
so that the term(

1
2γ −

L
2

)
is non-negative, and the MSE result of DME (Theorem 3.2), as the last term can be upper

bounded as,

E

∥∥∥∥∥∥gt − 1

n

∑
i∈[n]

∇fi(xt)

∥∥∥∥∥∥
2

 (ii)
= E

E
∥∥∥∥∥∥gt − 1

n

∑
i∈[n]

∇fi(xt)

∥∥∥∥∥∥
2

∣∣∣∣xt

 (iii)

≤ G2
max

n2
· S(p,P,A).

(36)
Here, (ii) follows from the tower rule of conditional expectation, and the inner expectation is over
the stochasticity of the intermittent connectivities, i.e., {τi}i∈[n] and {τij}i,j∈[n]. The inequality (iii)

follows from the result on DME (Theorem 3.2), and Gmax ≜ maxi∈[n] Gi. Using the PL-inequality
and taking expectation over all sources of stochasticity, we have,

E[f(xt+1)]− f(x∗) ≤ (1− γµ)
(
E[f(xt)]− f(x∗)

)
+

γG2
max

2n2
S(p,P,A). (37)
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Recursively applying this for t = 0, . . . , T − 1, we get,

E[f(xT )]− f(x∗) ≤ (1− γµ)T
(
E[f(x0)]− f(x∗)

)
+

γG2
max

2n2
S(p,P,A)

T−1∑
t=0

(1− γµ)t

≤ (1− γµ)T
(
E[f(x0)]− f(x∗)

)
+

G2
max

2n2µ
S(p,P,A) (38)

This shows that for smooth objective functions that satisfy the PL condition, ColRel converges to a
neighborhood of the optimal solution and the size of the neighborhood is once again determined by
S(p,P,A). Note that the size of the convergence neighborhood goes to 0 as the number of clients
n→∞. Furthermore, it is possible to get rid of the neighborhood and achieve exact convergence to
the optimal solution using a diminishing learning-rate schedule. However, the convergence rate fails
to be linear in that case, and deteriorates to a rate of O

(
1
T

)
. Once again, results of Theorem 4.2 can

be extended to the case with stochastic gradient oracle as discussed in App. G.

F Proof of Theorem 4.3: Smooth and Non-Convex Objectives

In this section, we derive the rate of convergence of gradient descent with collaborative relaying
(ColRel-GD) to a stationary point for general non-convex objective functions. We still assume that
the function is smooth and continuous as in Assumptions E.1 and E.2. The algorithm is the same as
Alg. 2 with gradients ∇fi(xt) evaluated at each client i ∈ [n] instead of a subgradient. Using the
general descent Lemma E.4,

Ef(xt+1)− f∗ ≤ Ef(xt)− f∗ − γ

2
E
[
∥∇f(xt)∥22

]
−
(

1

2γ
− L

2

)
E
[
∥xt+1 − xt∥22

]
+

γ

2

G2
max

n2
· S(p,P,A). (39)

Choosing the learning rate γ ∈
(
0, 1

L

]
, we get,

Ef(xt+1)− f∗ ≤ Ef(xt)− f∗ − γ

2
E
[
∥∇f(xt)∥22

]
+

γG2
max

2n2
· S(p,P,A). (40)

Summing these inequalities for t = 0, . . . , T − 1, we have,

Ef(xT )− f∗︸ ︷︷ ︸
DT

≤ Ef(xt)− f∗︸ ︷︷ ︸
D0

−γ

2

T−1∑
t=0

E
[
∥∇f(xt)∥22

]
+

γG2
max

2n2
· S(p,P,A) · T (41)

Since the expected suboptimality gap DT ≥ 0 and D0 is the initial suboptimality gap. This yields,

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥22

]
≤ 2D0

γT
+

G2
max

n2
· S(p,P,A) (42)

Note that the LHS of (42) can be interpreted as E
[
∥∇f(x̂)∥22

]
where x̂ is chosen uniformly at

random from {x0, . . . ,x
T−1}. Furthermore, (42) also implies that the best approximate stationary

point amongst the iterates satisfies,

min
t=0,...,T−1

E
[∥∥∇f(xt)

∥∥2
2

]
≤ 2D0

γT
+

G2
max

n2
· S(p,P,A). (43)

The convergence rate if O
(
1
T

)
, and the iterates convergence to a neighborhood whose size is

determined by S(p,P,A). This is typical since in stochastic gradient descent, the iterates convergence
to a neighborhood of a stationary point and the size of that neighborhood is determined by the variance
of the stochastic gradients. In our setting, the stochasticity inherently arises from the intermittent
links in the network, i.e., the TIV σ2

tv(p,P,A). Note that the size of the convergence neighborhood
goes to 0 as the number of clients n→∞. This completes the proof.

Once again, the results of this section can be extended to the setting with stochastic gradient oracle,
as discussed in App. G.
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G Extensions to Stochastic (Sub) Gradient Oracle

In §3, we saw that intermittently connected links introduce an additional source of variance to the
information received from each client at the PS. In principle, the TIV σ2

tv is similar to the variance
due to other sources of stochasticity such as that arising from a stochastic (sub) gradient oracle. Since
these sources of stochasticity are independent, the resulting variance at the PS is the sum of all the
variances.

Stochastic subgradient method with ColRel. In the presence of a stochastic subgradient oracle,
at any iteration t, each client i ∈ [n] now returns ĝi(x

t). We consider the following standard
assumptions on the subgradient oracle.4

1. Unbiasedness: For any i ∈ [n] an xt, the stochastic subgradients satisfy, E[ĝi(x
t)
∣∣xt] ∈

∂fi(x
t).

2. Bounded second moment: There exists a constant G̃ > 0 such that for any t, the stochastic
subgradients returned by the oracle satisfy, E[∥ĝi(x

t)∥22] ≤ G̃2
i .

A straightforward modification of the analysis in §D yields the same convergence rate as in Theorem
4.1 with G̃max instead of Gmax, where G̃max ≜ maxi∈[n] G̃i.

Stochastic gradient descent with ColRel. Suppose at every iteration t, the stochastic gradient oracle
at each client returns a stochastic gradient ĝi(x

t) that satisfies the following:

1. Unbiasedness: For all i ∈ [n] and any iteration t, we have, E [ĝi(x
t)] = ∇fi(xt).

2. Bounded second moment: For all i ∈ [n] and any iteration t, we have, E
[
∥ĝi(x

t)∥22
]
≤

β∥∇fi(xt)∥22 + σ2, where β and σ2 are non-negative constants and depend inversely with
the batch size used for computing the stochastic gradient.

With minimal modification in the analysis that we derive in App. E, one can show that the following
holds for smooth and PL objectives,

E[f(xT )]− f(x∗) ≤ (1− γµ)T
(
E[f(x0)]− f(x∗)

)
+

(βG2
max + σ2)σ2

tv

2µ
. (44)

Whereas, for smooth non-convex objectives, we have,

min
i=0,...,T−1

E
[∥∥∇f(xt)

∥∥2
2

]
≤ 2D0

γT
+ (βG2

max + σ2)σ2
tv. (45)

H Numerical Simulations: Extended

In this section, we first present numerical simulation results on DME in §H.1, and then we discuss
the federated optimization simulations of §5 in more detail.

H.1 Distributed Mean Estimation (DME)

For the simulations in this section, we have considered a cluster of clients that communicate with
the PS to estimate the mean of their vectors. Amongst the clients, a few “good" clients have a high
probability of successfully transmitting their data to the PS, while the remaining “bad" clients can
only convey their data to the PS by relaying through one of the good clients. The number of good
clients is varied along the X-axis while the MSE for estimating the mean is plotted on the Y -axis.

In Fig. 3, we plot and visually compare naïve and ColRel strategies. The naïve strategy uses no
collaborations, i.e., we set pij = 0 for all i ̸= j, with A = diag(p−1

1 , . . . , p−1
n ). Although without

collaboration, this choice of A for the naïve strategy ensures an unbiased estimate at the PS (i.e. (2) is
satisfied), albeit with a higher MSE. We consider n = 10 clients and the dimension d = 100, with the
probability of a good client successfully transmitting to the PS is pgood = 0.5, 0.7, 0.9 (varied across
the different plots), whereas the bad clients have a probability pbad = 0.2. The clients can collaborate

4These assumptions can be relaxed with a more rigorous analysis. However, for simplicity, we do not do so
here as that is not the major focus of our work.
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Figure 3: Erdős-Rényi topology for collaboration with pc = 0.8, dimension d = 100.
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Figure 4: Erdős-Rényi topology for collaboration with pc = 0.8, dimension d = 1000.
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Figure 5: Ring topology with each client having 6 neighbors with pc = 0.8, dimension d = 1000.

with each other over a fully connected topology with intermittent client-client connections that are
successful with probability pc = 0.8. That is, the collaboration is done over an Erdős-Rényi graph,
G(n = 10, p = 0.8). The data at each client is generated from a Gaussian distribution N (0, 1), and
then each coordinate is raised to the power of 3. Raising the coordinates of a Gaussian vector to the
third power generates a heavy-tailed distribution. Consequently, if a client that has vector with a
few large coordinate values is unable to convey its data to the PS due to a failed transmission (as is
the case in naïve DME), this can incur a significant MSE. On the contrary, ColRel ensures that the
poor connectivity clients can still relay their updates to neighboring nodes, resulting in comparatively
smaller MSE. The plot are averaged over 50 realizations. The data and the intermittent connectivity is
generated independently at each realization. While generating the intermittent connectivity between
clients, we ensure that if client-i does not collaborate with client-j, then even client-j does not
collaborate with client-i. For instance, this is motivated by the setting where a physical obstacle
blocks communication between two clients over a wireless network.

In Fig. 4, we increase the dimension to d = 1000 and obtain the same plots. In Fig. 5, we consider a
different topology for client-client collaboration, wherein clients are constrained to communicate with
other clients over a ring topology, i.e., pii = 1 for all i ∈ [n], pij = pc = 0.8 iff j = i±1, i±2, i±3
mod n, and pij = 0 otherwise. In the next subsections §H.2, we discuss our federated learning
simulation setup in more details.

H.2 Federated Learning Simulations

Simulation setup: We train a ResNet-20 model for image classification on the CIFAR-10 [22]
dataset. We distributed the training set of 50, 000 images across n = 10 clients in both independent
and identically distributed (IID) and non-IID fashions. Non-IIDness of the data distribution amongst
clients is prevalent in FL setups and to emulate it, we consider the sort-and-partition approach
wherein the training data is initially sorted based on the labels, and then they are divided into blocks
and distributed among the clients randomly based on a parameter s, that measures the skewness of
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Figure 6: Ring topology with 2 neighbors per client

the data distribution. More precisely, s defines the maximum number of different labels present in the
local dataset of each user, and therefore, smaller s implies more skew in the data distribution. We use
s = 3, i.e. each client has images from at most 3 classes.

The plotted results of all simulations are averaged over 5 independent realizations. In between every
communication round to the parameter server (PS), the clients execute 8 local training steps of
local-SGD. We utilize the SGD optimizer at the clients with a global momentum (β = 0.9) at the PS,
a learning rate of 0.05 for SGD, a coefficient of 10−4 for ℓ2-regularization to prevent overfitting, and
a batch-size of 64. All simulations were carried out on NVIDIA GeForce GTX 1080 Ti with a CUDA
Version 11.4. We also note that we have ensured all the simulations to have the same step-size, i.e.,
the learning rate for different simulations has not been tuned individually.

We consider the following benchmarks with which we compare our proposed ColRel scheme:

1. FedAvg – perfect connectivity. We consider FedAvg when all clients are able to successfully
transmit their local updates to the PS at every communication round. This serves as a natural
upper bound to the performance of any algorithm proposed in the presence of intermittent
connectivity.

2. FedAvg – Blind. As a natural performance lower bound in the presence of intermittent
client connectivity, we consider a naïve FedAvg strategy wherein the PS is unaware of the
identity of clients. In this strategy, for the clients that are unable to send their updates to
the PS due to a communication failure, the PS simply assumes that their update is zero.
Essentially, the PS adds all the local updates it receives at any communication round, and
divides it by the total number of clients irrespective of the knowledge of the number of
actual successful transmissions. Such blind averaging strategies are often the norm for FEEL
employing OAC.

3. FedAvg – Non-Blind. As another benchmark, we also consider a non-blind strategy, where
the PS is aware of the identity of the clients, and knows exactly, how many and which
clients have successfully been able to send their local update to the PS. This is common in
point-to-point learning settings. In this case, the PS simply ignores the clients that have been
unable to send their updates, and averages the successful updates by dividing the global
aggregate at the PS by the number of successful transmissions.

In our simulations in Figs. 2a, 2b, and 2c (reproduced here as Figs. 6, 7, and 8 for better resolution),
we compare the above-mentioned benchmarks with our proposed ColRel strategy in the presence of
intermittent connectivity of clients to the PS, as well as amongst themselves. In order to demonstrate
the improved performance of our proposed strategy with respect to the above-mentioned benchmarks,
we consider the following setups:
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Figure 7: Single good connectivity client with an Erdős-Rényi graph

0 200 400 600 800 1000
Communication rounds

10

20

30

40

50

60

70

80

Te
st

 a
cc

ur
ac

y 
(%

)

Non-IID local data distribution

FedAvg - Perfect Connectivity
FedAvg - Blind
FedAvg - Non-Blind
ColRel - Erdos-Renyi (pc = 0.5)
ColRel - Erdos-Renyi (pc = 0.9)

Figure 8: SGD with global momentum with an Erdős-Rényi graph

1. Effect of topology: The decentralized topology according to which the clients collaborate
in sharing their updates plays an important role in the performance of ColRel. In Fig. 2a,
we consider a ring topology in which each client is constrained to communicate with only
2 of their neighboring clients. In this setting, when a connection is present between any
two clients (so that it presents an opportunity for collaboration), the communication link is
not intermittent. More specifically, the matrix P is given by, pij = 1 iff j = −1, 0, or,+1
mod n. On the other hand, in Fig. 2b, we consider client-client collaboration over an
Erdős-Rényi topology In other words, each client can collaborate with any other client but
over intermittently connected links, i.e., 0 < pij < 1 for i ̸= j. Although over intermittent
links, this provides an increased opportunity for collaborations, and consequently, the final
test accuracy (after 1000 communication rounds) is higher in Fig. 2b compared to Fig. 2a.

Furthermore, later in this section, we also present a brief discussion for FL over networks
with mmWave links, where the connectivity probabilities are determined by the clients’
and PS’s geographical locations. In particular, we investigate a setting where intermittent
connectivity between clients might be preferred over perfect connectivity because it leads to
more increased collaboration on average.
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Figure 9: Network topologies for perfect vs. intermittent client-client connectivities.

2. Non-IID data distribution: We evaluate the performance of COLREL in the presence of
non-IID local data distribution. COLREL outperforms other strategies when some clients
with important local data have persistently poor connectivity.
In Figs. 2a an 2b, we consider an iid data distribution amongst clients. In this case, FedAvg –
Non-Blind performs quite comparably to ColRel. This is because in the absence of any non-
iidness in the local data distribution amongst clients, a naïve strategy like simply ignoring
the clients with failed transmissions, and averaging only the received updates still performs
reasonably well, because the aggregated gradient at the PS is still an unbiased estimate of the
true global gradient at the PS, albeit with a slightly higher variance due to a fewer number
of clients that successfully transmit.
However, such a naïve strategy fails in Fig. 2c where we consider a non-iid local data
distribution across clients. This is because an important subset of the training data is being
possessed by clients that have poor connectivity to the PS and cannot relay their updates to
the PS. ColRel ensures that even the clients with bad connectivity to the PS can relay their
updates, ensures a convergence rate comparable to FedAvg - perfect connectivity.

3. Heterogeneity in client connectivity: Different clients may have different connectivity to
the PS, and we show that as long as there is one client with reasonably good connection
to the PS, its neighbors can relay their updates to it – yielding improved performance for
COLREL. We consider this in all the simulation plots we have simulated.

Network topology with mmWave links: We now consider a network topology with mmWave links in
which the probability of successful transmissions between clients and between clients and the PS are
determined according to [2] as a function of distance (δ) between them as, p = min

(
1, e−δ/30+5.2

)
.

Here, we consider a comparison between non-intermittent (perfectly available) client-client collab-
oration, vs. intermittent client-client collaboration. This is similar to the difference in topologies
of Fig. 2a (where the client-client collaboration is deterministic), versus Fig. 2b (which considers
intermittency that we have allowed for in the analytical formulation as well).

In Fig. 9a, we consider that two clients can collaborate perfectly if pij ≥ 0.99 and determine the
network topology accordingly. In other words, pij and pji are high enough to consider the links to be
consistently present. The PS is at the origin and the clients are distributed in a way such that only
three of them can communicate with the PS. Similarly, in Fig. 9b, the connectivities between clients
are intermittent. To avoid links that are too unreliable, if pij < 0.5, we consider those clients do
not collaborate. The geographical locations of the clients is the same in both the scenarios. Note
that Fig. 9b has a few additional links compared to Fig. 9a. In Fig. 10, we note that allowing for
intermittent collaboration amongst clients results in improved convergence rate of training. Moreover,
both perfect as well as intermittent connectivity outperform FedAvg without collaboration.

Network topology with mmWave links for n = 20 clients: We increase the number of clients in
our mmWave system from 10 to 20. In this setup, we also reduced the non-iid skewness parameter
of local data distribution to s = 2. We consider two topologies (hereafter referred to as Setup 1
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Figure 10: Improved convergence due to increased collaboration with intermittent client-client
connectivity

and Setup 2) for geographic locations of the clients. Setups 1 and 2 are visualized in Figs. 11
and 13 respectively; clients in Fig. 11 enjoy better connectivity to the PS and to one another. In
these figures red lines depict client-client connections, and black lines denote client-PS connections.
Additionally, solid lines denote stable connections where the connectivity probability is 1, and dashed
and dotted lines denote intermittently connected links. As before, the connectivity probabilities
are determined as characterized by mmWave links [2], according to p = min

(
1, e−δ/30+5.2

)
,

where δ is the distance between two nodes. In Setup 1, we have the following probabilities of
intermittently connected client-client links: pij = 0.8 where the unordered pairs {i, j} can take
the values {1, 4}, {2, 3}, {6, 9}, {7, 8}, {12, 13}, {14, 17}, {16, 19}, {17, 18}. In Setup 2, we have
the following probabilities of intermittently connected client-client links: pij = 0.93 where the
unordered pairs {i, j} can take the values {2, 3}, {7, 8}, {12, 13}, {17, 18}. Furthermore, the client-
PS connectivity probabilities for Setups 1 and 2 are

p =[0.8, 0.03, 0.03, 0, 0.01, 0.8, 0.03, 0.03, 0, 0.01,

0.8, 0.03, 0.03, 0, 0.01, 0.8, 0.03, 0.03, 0, 0.01],

and
p =[0.92, 0.05, 0.04, 0.01, 0.11, 0.92, 0.05, 0.04, 0.01, 0.11,

0.92, 0.05, 0.04, 0.01, 0.11, 0.92, 0.05, 0.04, 0.01, 0.11],

respectively.

We plot the resulting test accuracy as a function of the number of rounds for Setups 1 and 2 in Figs. 12
and 14, respectively. The numerical results for each of these figures were averaged over 5 realizations.
Additionally, we compare our proposed ColRel algorithm with the FedAvg - perfect connectivity,
FedAvg - Blind and FedAvg - Non-Blind. The performance improvement of our proposed ColRel
algorithm is consistent as seen in Figs. 12 and 14; in Setup 1, ColRel has approximately 40% higher
accuracy with respect to FedAvg - Blind and 68% with respect to FedAvg - Non-Blind. Furthermore,
a comparison between Figs. 12 and 14 shows that increasing the connectivity of client-client links
and client-PS lead to a better final accuracy. We note that while the accuracy of all the setups with
intermittently connected links increased as the connectivity improves, our proposed ColRel algorithm
still outperforms the FedAvg - Blind and FedAvg - Non-Blind algorithms by a large margin. In fact
for Setup 2, the ColRel algorithm leads to a training loss that is comparable to the FedAvg without
any intermittent connectivity, i.e., FedAvg - Perfect Connectivity.
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Figure 11: Client and PS locations
in a mmWave system for Setup 1.
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Figure 12: Comparison of algorithms for Setup 1
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Figure 13: Client and PS locations
in a mmWave system for Setup 2.
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Figure 14: Comparison of algorithms for Setup 2
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