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Abstract—A new deep-neural-network (DNN) based error
correction encoder architecture for channels with feedback, called
Deep Extended Feedback (DEF), is presented in this paper.
The encoder in the DEF architecture transmits an information
message followed by a sequence of parity symbols which are
generated based on the message as well as the observations of the
past forward channel outputs sent to the transmitter through a
feedback channel. DEF codes generalize Deepcode [1] in several
ways: parity symbols are generated based on forward-channel
output observations over longer time intervals in order to provide
better error correction capability; and high-order modulation
formats are deployed in the encoder so as to achieve increased
spectral efficiency. Performance evaluations show that DEF codes
have better performance compared to other DNN-based codes for
channels with feedback.

I. INTRODUCTION

The fifth generation (5G) wireless cellular networks’ New
Radio (NR) access technology has been recently specified by
the 3rd Generation Partnership Project (3GPP). NR already
fulfills demanding requirements of throughput, reliability and
latency. However, new use cases stemming from new applica-
tion domains (such as industrial automation, vehicular commu-
nications or medical applications) call for further significant
enhancements. For instance, some typical Industrial Internet
of Things (IIoT) applications would need considerably higher
reliability and shorter transmission delay compared to what
5G/NR can provide nowadays.

Error correction coding is a key physical layer functionality
for guaranteeing the required performance levels. In conven-
tional systems, error correction is accomplished by linear bi-
nary codes such as polar codes [2], Low Density Parity Check
(LDPC) codes [3] or turbo codes [4], possibly combined
with retransmission mechanisms such as Hybrid Automatic
Request (HARQ) [5]. HARQ performs an initial transmission
followed by a variable number of subsequent incremental
redundancy transmissions until the receiver notifies successful
decoding to the transmitter. Short acknowledgment (ACK) or
negative ACK (NACK) messages are sent through a feedback
channel in order to inform the transmitter about decoding
success. By usage of simple ACK/NACK feedback messages,
conventional HARQ practically limits the gains that could
potentially be obtained by an extensive and more efficient
use of the feedback channel. Codes that make full use of
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feedback potentially achieve improved performance compared
to conventional codes, as predicted in [6].

Finding good codes for channels with feedback is a notori-
ously difficult problem. Several coding methods for channels
with feedback have been proposed – see for example [7]–
[11]. However, all known solutions either do not approach the
performance predicted in [6] or exhibit unaffordable complex-
ity. Promising progress has been made recently by applying
Machine Learning (ML) methods [1], where both encoder
and decoder are implemented as two separate Deep Neural
Networks (DNNs). The DNNs’ coefficients are determined
through a joint encoder-decoder training procedure whereby
encoder and decoder influence each other. In that sense, the
chosen decoder structure has impact on the resulting code
– a previously unseen feature. Known DNN-based feedback
codes [1] use different recurrent neural network (NN) archi-
tectures – recurrent NNs (RNNs) and gated recurrent units
(GRUs) are used in [1]; long-short term memory (LSTM)
architectures have been mentioned in a preprint of [1] as a
potential alternative to RNNs for the encoder.

A new DNN-based code for channels with feedback called
Deep Extended Feedback (DEF) code is presented in this
paper. The encoder transmits an information message followed
by a sequence of parity symbols which are generated based on
the message and on observations of the past forward channel
outputs obtained through the feedback channel. Known DNN-
based codes for channels with feedback [1] compute their par-
ity symbols based on the information message and on the most
recent information received through the feedback channel. The
DEF code is based on feedback extension, which consists in
extending the encoder input so as to comprise delayed versions
of feedback signals. Thus, the DEF encoder input comprises
the most recent feedback signal and a set of past feedback
signals within a given time window. A similar approach could
be used in the decoder to extend its input so as to comprise
delayed versions of received signals in a given time window.
However, it can be shown that such a generalization of the
decoder does not bring any benefit and therefore it will not
be considered in the definition of DEF codes. The extended-
feedback encoder architecture is combined with different NN
architectures of recurrent type – RNN, GRU and LSTM. The
DEF code generalizes Deepcode [1] along several directions.
Its major benefits can be summarized as follows:
• Improved error correction capability obtained by

feedback extension. The DEF code generates parity
symbols based on feedbacks in a longer time window,
thereby introducing long-range dependencies between
parity symbols. As the above long-range dependencies
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Fig. 1: DEF encoder structure. Each “D” block represents a unit-time delay. Blue blocks and signals denote new functionalities
compared to prior solutions.

are a necessary ingredient of all good error correcting
codes, it is expected that feedback extension will bring
performance improvements;

• Higher spectral efficiency obtained by usage of
QAM/PAM modulations. The DEF code uses quadra-
ture amplitude modulation (QAM) with arbitrary order,
thereby potentially achieving higher spectral efficiency;

In this work, we initially focus on DEF codes’ performance
evaluation over channels with noiseless feedback, where the
forward-channel output observations are sent uncorrupted to
the encoder. We also provide preliminary performance evalu-
ations of the DEF code with noisy feedback.

Notation: Lowercase and uppercase letters denote scalar
(real or complex) values. For any pair of positive integers a
and b with a < b, [a : b] denotes the sequence of integers
[a, a+1, . . . , b], sorted in increasing order. Boldface lowercase
letters (e.g., b) denote vectors; unless otherwise specified, all
vectors are assumed to be column vectors. b(i) denotes the
ith element of b; b(j : k), j < k, denotes the sub-vector that
contains the elements of b with indices in [j : k]. Boldface
uppercase letters like A denote matrices; ai,j represents the
element of A in the ith row and jth column. Notation f(v),
where f is a function taking a scalar input, indicates the vector
obtained by applying f to each element of v. Hadamard (i.e.,
element-wise) product is denoted by ◦.

II. DEFINITION OF DEEP EXTENDED FEEDBACK CODE

The Deep Extended Feedback (DEF) code is the set of
codewords produced by the DEF encoder shown in Fig. 1. Blue
blocks and signals in Fig. 1 denote the new functionalities of
the DEF code compared to Deepcode [1] – extended feedback
is shown by the unit-time delay blocks labeled “D” and their
corresponding input/ouput signals; QAM/PAM symbols are
produced by the block labeled “Modulator”. DEF code and
Deepcode operate according to the same encoding procedure

as described afterwards. The novel DEF code features will be
treated in dedicated subsections.

The encoding procedure consists of two phases. In the first
phase, an L-bit information message m = (m(0), . . . ,m(L−
1)) is mapped to a sequence of real symbols x =
(x(0), . . . , x(K − 1)), hereafter called systematic symbols.

The modulation sequence x is transmitted on the forward
channel. The corresponding sequence x̄ observed by the
receiver is given by

x̄ = x + n0 (1)

where n0 represents additive white Gaussian noise (AWGN)
and other possible forward-channel impairments. In the perfor-
mance evaluations of Section IV, n0 is modeled as a sequence
of white Gaussian noise samples. The receiver stores the
observed signal x̄ locally and immediately echoes it back to
the transmitter through the feedback channel. A corresponding
sequence

x̃ = x̄ + g0 (2)

is obtained at the transmitter, where g0 represents additive
white Gaussian noise and other possible feedback-channel
impairments.

In the second phase, for each element x(k) of x, the encoder
computes a corresponding sequence of parity symbols

pk = (pk(0), . . . , pk(P − 1)), k = 0, . . . ,K − 1 (3)

and transmits it through the forward channel. P is the number
of parity symbols that the encoder generates per systematic
symbol. Thus, the total number of transmitted symbols is
K(1 + P ). The DEF code rate is defined as the ratio of the
message length L over K(1 + P ), that is:

RDEF ,
L

K(1 + P )
. (4)

The receiver observes a set of corresponding parity symbols
sequences p̄k, k = 0, . . . ,K−1. p̄k can be written as follows:

p̄k = pk + vk, (5)
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where vk = (vk(0), . . . , vk(P − 1)) represents additive white
Gaussian noise and other forward channel impairments. p̄k

is immediately echoed back to the transmitter through the
feedback channel so as to obtain

p̃k = p̄k + gk, (6)

where gk represents additive white Gaussian noise and other
feedback channel impairments.

The DEF codeword is defined as z =
(z(0), . . . , z((P + 1)K − 1)). The jth codeword symbol
is defined as follows:

z(j) =

{
w(0)a(j)x(j), 0 ≤ j ≤ K − 1
w(l + 1)a(k)pk(l), K≤j≤ (P + 1)K − 1

(7)

l = (j −K) mod P,

k = b(j −K)/P c ,

where w(0) and w(l + 1), l = 0, . . . , P − 1, are codeword
power levels, a(k), k = 0, . . . ,K − 1, are symbol power
levels, x(j) is the jth systematic symbol, and pk(l) is the lth

symbol of the kth parity sequence (3). Codeword power levels
reallocate the power among codeword symbols as follows: the
systematic symbols are scaled by w(0); the 1st parity symbol
of each parity sequence is scaled by w(1), the 2nd parity
symbol of each parity sequence is scaled by w(2), etc. Symbol
power levels reallocate the power among codeword symbols
as follows: a(0) scales the amplitude of the 1st systematic
symbol x(0) and of the symbols of the 1st parity symbol
sequence p0, a(1) scales the amplitude of the 2nd systematic
symbol x(1) and of the symbols of the 2nd parity symbol
sequence p1, . . . a(K − 1) scales the amplitude of the Kth

systematic symbol x(K − 1) and of the symbols of the Kth

parity symbol sequence pK−1. Power levels w(l) and a(k) are
obtained by NN training. The following constraints preserve
the codeword’s average power:

P∑
l=0

w2(l) = 1,

K−1∑
k=0

a2(k) = 1. (8)

A. QAM/PAM Modulator

The DEF code modulator maps the L-bit information mes-
sage m = (m(0), . . . ,m(L − 1)) to a sequence of real
symbols x = (x(0), . . . , x(K−1)), hereafter called systematic
symbols. Each pair of consecutive symbols (x(2i), x(2i +
1)), i = 0, . . . ,K/2 − 1, forms a complex QAM symbol
q(i) = x(2i) + x(2i + 1)

√
−1, where q(i) is obtained by

mapping Q consecutive bits of m to 2Q-QAM. The above
mapping produces K = 2L/Q real systematic symbols at the
modulator output.

Examples of QAM/PAM mapping of order Q = 2 and Q =
4 are shown in Tab. I and Tab. II.

B. Extended Feedback

We call Parity Symbol Generator (PSG) the encoder block
that computes the parity symbol sequences (see Figure 1). Ex-
tended feedback consists of sending to the PSG a sequence of

forward-channel output observations over longer time intervals
compared to Deepcode [1]. The PSG input column vector at
the kth iteration is defined as follows:

ik =


x(k)

n0(k − δ0 : k)
r0(k − δ1 : k − 1)

. . .
rP−1(k − δP : k − 1)

 , (9)

where x(k) is the kth systematic symbol, n0(k − δ0 : k)
is a column vector of length δ0 + 1 which contains noise
samples from the sequence n0 of (1), rl(k − δl : k − 1)
(l = 0, . . . , P − 1) is a column vector of length δl which
contains noise samples from the sequence rl of forward-
channel noise samples that corrupt the lth symbol of each
parity symbol sequence, that is:

rl , (v0(l), . . . , vK−1(l)), (10)

where vk(l) (k = 0, . . . ,K−1) is the lth sample of vk in (5)
and δ0, . . . , δP are arbitrary positive integers (δ0 can be 0),
hereafter called the encoder input extensions. We note that
the Deepcode [1] encoder can be recovered as a special case
by setting δ0 = 0 and δ1 = . . . = δP = 1, which means
that, in each iteration, only a single noise sample for each
systematic or parity check symbol is used. The buffers in the
DEF encoder contain the systematic symbol sequence x and
the corresponding forward-noise sequence n0 of (1). Those
sequences are generated during the first encoding phase and
used by the PSG in the second phase.

C. Parity Symbol Generator (PSG)

The core functionality of the DEF encoder is the computa-
tion of the parity check symbols, which is performed by the
block denoted (PSG) (see Fig. 1). PSG computes the kth parity
symbol sequence pk based on the kth modulation symbol xk
and a subset of the past forward-channel outputs.

Fig. 2 shows the structure of the PSG. In the kth encoding
iteration, the PSG generates a kth parity symbol sequence pk

which consists of P real parity symbols obtained as follows:

pk = Norm(e(hk)), (11)

where hk – a real vector of arbitrary length H0 – denotes the
PSG state at time instant k, while function e(·) consists of a
linear transformation applied to the PSG state hk obtained as
follows:

e(hk) = Ahk + c, (12)

where A has size P ×H0 and c has length P . The above
matrices W, Y, A and vectors b, c are obtained by NN
training. The Norm(·) function normalizes the PSG output

m(2i),m(2i+ 1) x(2i) x(2i+ 1)
0, 0 1 1
0, 1 1 -1
1, 0 -1 1
1, 1 -1 -1

TABLE I: Example of QAM/PAM mapping of order Q = 2.
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m(4i),m(4i+ 1),m(4i+ 2),m(4i+ 3) x(2i) x(2i+ 1)
0, 0, 0, 0 3 3
0, 0, 0, 1 3 1
0, 0, 1, 0 3 -3
0, 0, 1, 1 3 -1
0, 1, 0, 0 1 3
0, 1, 0, 1 1 1
0, 1, 1, 0 -1 -3
0, 1, 1, 1 -1 -1
1, 0, 0, 0 -3 3
1, 0, 0, 1 -3 1
1, 0, 1, 0 -3 -3
1, 0, 1, 1 -3 -1
1, 1, 0, 0 -1 3
1, 1, 0, 1 -1 1
1, 1, 1, 0 -1 -3
1, 1, 1, 1 -1 -1

TABLE II: Example of QAM/PAM mapping of order Q = 4.
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Fig. 2: Structure of the PSG.

so that each parity symbol has zero mean and unit variance.
The PSG state hk is recursively computed as

hk = f(ik,hk−1), (13)

where function f(·) will be discussed below, and ik is defined
in (9). As for the initialization, we set h0 as the all-zero vector.

Functions e and f will be parameterized using DNNs. The
structure of Fig. 2 corresponds to a recurrent architecture,
and therefore, we will consider the following three recurrent
architectures to model it: RNNs, GRUs and LSTMs.

1) RNN: When modelled with an RNN, the function f(·)
in (13) is defined as follows:

f(ik,hk−1) = tanh(Whk−1 + Yik + b), (14)

where W is a state-transition matrix of size H0 ×H0, Y is
an input-state matrix of size H0 × I (I is the length of vector
ik), and b is a bias vector of length H0. W, Y and b are
obtained by NN training.

2) GRU: With a GRU, the function f(·) of (13) is defined
as follows:

f(ik,hk−1) = f0(ik,hk−1) ◦ (1− z(ik,hk−1))

+ hk−1 ◦ z(ik,hk−1). (15)

The function f0(·) in (15) is defined as follows:

f0(ik,hk−1) = tanh((Wfhk−1 + bh) ◦ r(ik,hk−1)

+ Yf ik + bi). (16)

The functions z(·) in (15) and r(·) in (16) are defined as
follows:

z(ik,hk−1) = σ(Wzhk−1 + Yzik + bz) (17)
r(ik,hk−1) = σ(Wrhk−1 + Yrik + br) (18)

where σ(x) , (1 + e−x)−1 denotes the sigmoid function.
In eqns. (15)-(18), matrices Wf ,Wz,Wr,Yf ,Yz,Yr and
vectors bh,bi,bz,br are obtained by NN training.

3) LSTM: As for LSTM, the function f(·) of (13) is defined
as follows:

f(ik,hk−1) = f1(ik,hk−1) ◦ tanh(sk) (19)

where sk is the cell state at time instant k. The cell state
provides long-term memory capability to the LSTM NN,
whereas the state hk provides short-term memory capability.
The cell state is recursively computed as follows:

sk = f2(ik,hk−1) ◦ sk−1

+ f3(ik,hk−1) ◦ f4(ik,hk−1). (20)

The function f1 in (19) and functions f2, f3 and f4 in (20)
are defined as follows:

f1(ik,hk−1) = σ(W1hk−1 + Y1ik + b1) (21)
f2(ik,hk−1) = σ(W2hk−1 + Y2ik + b2) (22)
f3(ik,hk−1) = σ(W3hk−1 + Y3ik + b3) (23)
f4(ik,hk−1) = tanh(W4hk−1 + Y4ik + b4) (24)

In eqns. (21)-(24), matrices W1, W2, W3, W4, Y1, Y2, Y3,
Y4 and vectors b1, b2, b3, b4 are obtained by NN training.

D. Mitigation of Unequal Bit Error Distribution

It has been observed in [1] that the feedback codes based
on RNNs exhibit a non-uniform bit error distribution, i.e., the
final message bits typically have a significantly larger error
rate compared to other bits. In order to mitigate the detrimental
effect of non-uniform bit error distribution, [1] introduced two
countermeasures:
• Zero-padding. Zero-padding consists in appending at

least one information bit with pre-defined value (e.g.,
zero) at the end of the message. The appended infor-
mation bit(s) are discarded at the decoder, such that
the positions affected by higher error rates carry no
information.

• Power reallocation. Zero-padding alone is not enough to
mitigate unequal errors, and moreover it reduces the ef-
fective code rate. Instead, power reallocation redistributes
the power among the codeword symbols so as to provide
better error protection to the message bits whose positions
are more error-prone, i.e., the initial and final positions.

E. DEF Decoder

In DNN-based codes, encoder and decoder are implemented
as two separate DNNs whose coefficients are determined
through a joint encoder-decoder training procedure. Therefore,
the encoder structure has impact on the decoder coefficients
obtained through training, and vice-versa. In that sense, the
chosen decoder structure has impact on the resulting code.

The DEF decoder maps the received DEF codeword to a
decoded message m̂ as follows:

m̂ = g(x̄, p̄(1), . . . , p̄(K)). (25)
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The decoder consists of a bi-directional recurrent NN – GRU
or LSTM – followed by a linear transformation and a sigmoid
function. The bi-directional recurrent NN computes a sequence
of forward-states h′k and backward-states h′′k as follows:

h′k = f ′(ȳk,h
′
k−1) (26)

h′′k−1 = f ′′(ȳk,h
′′
k) (27)

where functions f ′, f ′′ are defined as in (15) for the GRU-
based decoder and as in (19) for the LSTM-based decoder,
and the input column vector ȳk is defined as follows:

ȳk =


x̄(k − γ0 : k)
q̄0(k − γ1 : k)

. . .
q̄P−1(k − γP : k)

 , (28)

where x̄(k − γ0 : k) is a column vector of length γ0 + 1
which contains symbols from the received systematic sequence
x̄ of (1), and q̄l(k − γl : k), l = 0, . . . , P − 1, is a column
vector of length γl + 1 containing symbols from the sequence
q̄l, which consists of the lth symbol of each received parity
sequence p̄k (5). q̄l is defined as follows:

q̄l , (p̄0(l), . . . , p̄K−1(l)), l = 0, . . . , P − 1. (29)

Finally, the values γ0, . . . , γP are arbitrary non-negative inte-
gers, hereafter called the decoder input extensions. The initial
forward NN state h′0 and the initial backward NN state h′′K
are set as all-zero vectors.

The kth decoder output is obtained as follows:

m̂k = h(h̃′k, h̃
′′
k−1) , σ

(
C

[
h̃′k
h̃′′k−1

]
+ d

)
, (30)

where σ(·) is the sigmoid function, C is a matrix of size
Q/2 × 2H0, and d is a vector of size Q/2. C and d are
obtained by NN training. Vectors h̃′k and h̃′′k are obtained by
normalizing vectors h′k and h′′k so that each element of h̃′k and
h̃′′k has zero mean and unit variance. Vector m̂k provides the
estimates of the message bits in a corresponding Q/2-tuple,
that is:

m̂k = (m̂(kQ/2), . . . , m̂((k + 1)Q/2− 1)). (31)

The Deepcode decoder from [1] is recovered by setting γl =
0, l = 0, 1, ..., P in (28).
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Fig. 3: DEF decoder.

III. TRANSCEIVER TRAINING

The coding and modulation schemes used in conventional
communication systems are optimized for a given SNR range.
We take the same approach for DNN-based codes – as
DNN code training produces different codes depending on the
training SNR, we divide the target range of forward SNRs into
(small) non-overlapping intervals and select a single training
SNR within each interval.

Encoder and decoder are implemented as two separate
DNNs whose coefficients are determined through a joint
training procedure. The training procedure consists in the
transmission of batches of randomly generated messages. The
number of batches is 2×104, where each batch contains 2×103

messages. DNN coefficients are updated by an ADAptive
Moment (ADAM) estimation optimizer based on the binary
cross-entropy (BCE) loss function. For each batch, a loss value
is obtained by computing the BCE between the messages in
that batch and the corresponding decoder outputs. The learning
rate is initially set to 0.02 and divided by 10 after the first
group of 103 batches. The gradient magnitude is clipped to 1.

By monitoring the BCE loss value throughout the entire
training session, we noticed that the loss trajectory has high
peaks which appear more frequently during the initial phases
of training. Those peaks indicate that the training process is
driving the encoder/decoder NNs away from their optimal
performances. In order to mitigate the detrimental effect of
the above events, the following countermeasures have been
taken:
• usage of a larger batch size – 10 times larger than [1].

Usage of large batches stabilizes training1 and accelerates
convergence of NN weights towards values that produce
good performance;

• implementation of a training roll-back mechanism that
discards the NN weight updates of the last epoch if the
loss value produced by the NNs with updated weights
is at least 10 times larger than the loss produced by the
NNs with previous weights.

As we observed that the outcome of training is sensitive
to the random number generators’ initialization, each training
is repeated three times with different initialization seeds. For
each repetition, we record the final NN weights and the NN
weights that produced the smallest loss during training. After
training, link-level simulations (LLS) are performed using all
the recorded weights. The set of weights that provides the
lowest block error rate (BLER) is kept and the others are
discarded.

As described in Subsection II-C and illustrated in Fig. 2, the
PSG output is normalized so that each coded symbol has zero
mean and unit variance. During NN training, normalization
subtracts the batch mean from the PSG output and divides
the result of subtraction by the batch standard deviation. After
training, encoder calibration is performed in order to compute
the mean and the variance of the RNN outputs over a given
number of codewords. Calibration is done over 106 codewords
in the simulations here reported. In LLS, normalization is

1By training stabilization we mean that the loss function produces smoother
trajectories during training.
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done using the mean and variance values computed during
calibration.

The training strategy for the encoder’s codeword and symbol
power levels has been optimized empirically. The levels are
initialized to unit value, and kept constant for a given number
of epochs as early start of training produces codes with poor
performance. On the other hand, if training of levels is started
too late, they remain close to their initial unit value, and
therefore produce no benefits. It has been found empirically
that starting to train codeword power levels at epoch 100 and
symbol power levels at epoch 200 provides the best results.

As suggested in [1], it may be beneficial to perform training
with longer messages compared to link level evaluation as
training with short messages does not produce good codes.
According to our observations, training with longer messages
– twice the length of LLS messages – is beneficial. However,
according to our observations, the benefit of using longer mes-
sages vanishes when training with larger batches. Therefore,
in our evaluations the length of training messages and LLS
messages is the same.

The above training method produces codes with better per-
formance compared to the method of [1], as the performance
evaluations of Section IV will show. Training parameters are
summarized in Table III.

Training parameter Values

Number of epochs 2000

Number of batches per epoch 10

Number of codewords per batch 2000

Training message length [bits] 50

Starting epoch for codeword-level weights training 100

Starting epoch for symbol-level weights training 200

TABLE III: Training parameters.
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Fig. 5: Performance comparison of Deepcode, pseudo-
Deepcode, and DEF-LSTM code with extended encoder input.
Spectral efficiency is 1.33 bits/s/Hz (Q = 4, P = 2).

IV. PERFORMANCE EVALUATIONS

In this section, we assess the BLER performance of DEF
codes and compare their performance with the performance of
the NR LDPC code reported in [12] and the performance of
Deepcode [1] for the same spectral efficiency (SE). The SE is
defined as the ratio of the number of information bits L over
the number of forward-channel time-frequency resources used
for transmission of the corresponding codeword. As each time-
frequency resource carries a complex symbol, and since each
complex symbol is produced by combining two consecutive
real symbols, we have

SE ,
Q

1 + P
[bits/s/Hz]. (32)

The forward-channel and feedback-channel impairments are
modeled as AWGN with variance σ2

n = 1/SNR and σ2
FB =

1/SNRFB , respectively. The training forward SNR and LLS
forward SNR are the same; the feedback channel is noiseless.

The set of parameters used in the performance evaluations
is shown in Table IV. For DEF code performance evaluations,
we show that even the shortest feedback extensions – corre-
sponding to the δ and γ parameters of Table IV – produces
significant gains. The investigation of performance with larger
feedback extensions is left for future work. Details of the
evaluated architectures are reported in Table V.

Fig. 4 shows the Block Error Rate (BLER) vs. forward
SNR of several codes with SE = 0.67 bits/s/Hz. The plot

DEF code parameter Selected values

K [symbols] 50

P 2

H0 50

# zero-padding bits 1

Encoder input extensions (δ0, δ1, δ2) = (1, 2, 2)

Decoder input extensions (γ0, γ1, γ2) = (1, 1, 1)

TABLE IV: Evaluation parameters.
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shows Deepcode [1] (pink curve), Deepcode obtained by the
training method of Sec. III (solid black curve), DEF code
with extended encoder input (orange curve), Deepcode with
LSTM-based encoder and decoder NNs (purple curve), DEF
code with extended encoder input (green curve) and DEF code
with extended encoder and decoder input (blue curve). All
DNN-based codes use second-order modulation (i.e., Q = 2)
and P = 2 parity symbols per systematic symbol. Thus, the
corresponding SE is 0.67 bits/s/Hz. The performance of the
NR LDPC code as reported in [12] with the same SE (QPSK
modulation, code rate 1/3) is shown by a dashed black curve.

Based on the data shown in Fig. 4, the following observa-
tions are made:
• The DEF code with extended encoder input (orange

curve) has better performance than Deepcode (solid black
curve);

• The DEF-LSTM codes (green and blue curves) have the
best performance among all the evaluated codes;

• DEF-LSTM code with extended encoder input and DEF-
LSTM code with extended encoder/decoder input have
similar performance except for high SNRs, where the
former performs slightly better;

• DEF-LSTM codes (green and blue curve) outperform NR
LDPC (dashed black curve) by at least three orders of
magnitude BLER for all SNRs.

• The training method of Section III (black curve) produces
codes with better performance than the training method
of [1] (pink curve).

Based on the first observation above, it can be concluded that
encoder input extension produces performance improvements.
Subsequent observations highlight that the encoder input ex-
tension provides performance improvements when combined
with LSTM. However, based on the observation in the third
bullet, we can conclude that decoder input extension brings
no benefits compared to encoder input extension. Moreover,
the above performance evaluations show that usage of LSTM
in the encoder and decoder provides significant performance
improvements compared to RNN/GRU based codes.

Figure 5 shows the BLER performance of DNN-based codes
with modulation order Q = 4 – the corresponding SE is
1.33 bits/s/Hz. As Deepcode [1] is not defined for SEs higher
than 0.67 bits/s/Hz, we implemented a pseudo-Deepcode by
replacing the Deepcode modulator with a modulator of order
Q = 4. Results show that the DEF-LSTM code has better
performance compared to the pseudo-Deepcode as its BLER
is significantly lower in the whole range of SNR that we
evaluated. The DEF-LSTM code BLER gain over pseudo-
Deepcode is larger than one order of magnitude for SNR=5

Code Encoder NN Decoder NN
(type, #layers) (type, #layers)

Deepcode RNN, 1 bidir. GRU, 2

DEF code RNN, 1 bidir. GRU, 2

Deep-LSTM code LSTM, 1 bidir. LSTM, 2

DEF-LSTM code LSTM, 1 bidir. LSTM, 2

TABLE V: Evaluated architectures.

dB and 6 dB. Moreover, the DEF-LSTM code outperforms
NR LDPC (dashed black curve) by at least three orders of
magnitude BLER for SNR ≥ 4 dB.

V. CONCLUSION AND FURTHER WORK

A new deep-neural-network based error correction encoder
architecture for channels with feedback has been presented.
It has been shown that the codes designed according to the
DEF architecture achieve lower error rates than any other
code designed for channels with feedback. Moreover, by a
suitable selection of the modulation order, these codes can
adapt to the forward channel quality, thereby providing the
maximum spectral efficiency that is attainable for the given
forward channel quality.

Study of these codes in more realistic scenarios such as
noisy feedback channels and fading is left for future work.
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