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Abstract

A distributed binary hypothesis testing problem involving two parties, one referred to as the observer

and the other as the detector is studied. The observer observes a discrete memoryless source (DMS) and

communicates its observations to the detector over a discrete memoryless channel (DMC). The detector

observes another DMS correlated with that at the observer, and performs a binary hypothesis test on the

joint distribution of the two DMS’s using its own observed data and the information received from the

observer. The trade-off between the type 1 error probability and the type 2 error exponent (T2EE) of the

hypothesis test is explored. Single-letter lower bounds on the optimal T2EE are obtained by using three

different coding schemes, a separate hypothesis testing and channel coding scheme, a local decision

scheme, and a joint hypothesis testing and channel coding scheme. Exact single-letter characterizations

of the optimal T2EE are established for three special cases; (i) testing against conditional independence,

(ii) distributed HT when the DMC has zero capacity, and (iii) HT over a DMC. Moreover, it is shown

that a strong converse holds in cases (ii) and (iii). Single-letter lower bounds on the optimal T2EE are

also obtained for testing against conditional independence with multiple observers communicating over

orthogonal DMCs.

I. INTRODUCTION

Given data samples, statistical hypothesis testing (HT) deals with the problem of ascertaining

the true assumption, that is, the true hypothesis, about the data from among a set of hypotheses.

In modern communication networks (like in sensor networks, cloud computing and Internet of

things (IoT)), data is gathered at multiple remote nodes, referred to as observers, and transmitted

over noisy links to another node for further processing. Often, there is some prior statistical

knowledge available about the data, for example, that the joint probability distribution of the
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Fig. 1: Distributed HT over orthogonal DMCs.

data belongs to a certain prescribed set. In such scenarios, it is of interest to identify the true

underlying probability distribution, and this naturally leads to the problem of distributed HT

over noisy channels, which is depicted in Fig. 1. Each encoder l, l = 1, . . . , L, observes k

samples independent and identically distributed (i.i.d) according to PUl , and communicates its

observation to the detector by n uses of the DMC, characterized by the conditional distribution

PYl|Xl . In the simplest case in which there are two possibilities PU1...ULV and QU1...ULV for the

joint distribution of the data, the detector performs a binary hypothesis test to decide between

them based on the channel outputs Y n
1 , . . . , Y

n
L as well as its own observations V k with the null

and the alternate hypothesis given by

H0 : (Uk
1 , . . . , U

k
L, V

k) ∼
k∏
i=1

PU1...ULV , (1a)

and

H1 : (Uk
1 , . . . , U

k
L, V

k) ∼
k∏
i=1

QU1...ULV , (1b)

respectively. Our goal is to characterize the optimal T2EE for a prescribed constraint on the type

1 error probability for the above hypothesis test.

In the centralized scenario, in which the detector performs a binary hypothesis test on the

probability distribution of the data it observes directly, the optimal T2EE is characterized by

the well-known lemma of Stein [2] (see also [3]). The study of distributed statistical inference

under communication constraints was conceived by Berger in [4]. In [4], and in the follow up

literature summarized below, communication from the observers to the detector are assumed
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to be over rate-limited error-free channels. Some of the fundamental results in this setting for

the case of a single observer (L = 1) was established by Ahlswede and Csiszár in [5]. They

obtained a tight single-letter characterization of the optimal T2EE for a special case of HT

known as testing against independence (TAI), in which, QU1V = PU1 × PV . Furthermore, the

authors established a lower bound on the optimal T2EE for the general HT case, and proved

a strong converse result, which states that the optimal achievable T2EE is independent of the

constraint on the type 1 error probability. A tighter lower bound for the general HT problem with

a single observer is established by Han [6], which recovers the corresponding lower bound in

[5]. Han also considered complete data compression in a related setting where either U1, or V ,

or both (also referred to as two-sided compression setting) are compressed and communicated

to the detector using a message set of size two. It is shown that, asymptotically, the optimal

T2EE achieved in these three settings are equal. In contrast, a single-letter characterization of the

optimal T2EE for even the TAI with two-sided compression and general rate constraints remains

open till date. Shalaby et. al [7] extended the complete data compression result of Han to show

that the optimal T2EE is not improved even if the rate constraint is relaxed to that of zero-rate

compression (sub-exponential message set with respect to blocklength k). Shimokawa et. al [8]

obtained a tighter lower bound on the optimal T2EE for general HT by considering quantization

and binning at the encoder along with a minimum empirical-entropy decoder. Rahman and

Wagner [9] studied the setting with multiple observers, in which, they showed that for the case

of a single-observer, the quantize-bin-test scheme achieves the optimal T2EE for testing against

conditional independence (TACI), in which, V = (E,Z) and QU1EZ = PU1ZPE|Z . Extensions

of the distributed HT problem has also been considered in several other interesting scenarios

involving multiple detectors [10], multiple observers [11], interactive HT [12], [13], collaborative

HT [14], HT with lossy source reconstruction [15], HT over a multi-hop relay network [17],

etc., in which, the authors obtain a single-letter characterization of the optimal T2EE in some

special cases.

While the works mentioned above have studied the unsymmetric case of focusing on the

T2EE for a constraint on the type 1 error probability, other works have analyzed the trade-off

between the type 1 and type 2 error probabilities in the exponential sense. In this direction, the

optimal trade-off between the type 1 and type 2 error exponents in the centralized scenario is

obtained in [18]. The distributed version of this problem is first studied in [19], where inner

bounds on the above trade-off are established. This problem has also been explored from an
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information-geometric perspective for the zero-rate compression scenario in [20] and [21], which

provide further insights into the geometric properties of the optimal trade-off between the two

exponents. A Neyman-Pearson like test in the zero-rate compression scenario is proposed in [22],

which, in addition to achieving the optimal trade-off between the two exponents, also achieves

the optimal second order asymptotic performance among all symmetric (type-based) encoding

schemes. However, the optimal trade-off between the type 1 and type 2 error exponents for

the general distributed HT problem remains open. Recently, an inner bound for this trade-off is

obtained in [23], by using the reliability function of the optimal channel detection codes.

In contrast, HT in distributed settings that involve communication over noisy channels has

not been considered until now. In noiseless rate-limited settings, the encoder can reliably com-

municate its observation subject to a rate constraint. However, this is no longer the case in

noisy settings, which complicates the study of error exponents in HT. Since the capacity of the

channel PY |X , denoted by C(PY |X), quantifies the maximum rate of reliable communication

over the channel, it is reasonable to expect that it plays a role in the characterization of the

optimal T2EE similar to the rate-constraint R in the noiseless setting. Another measure of the

noisiness of the channel is the so-called reliability function E(R,PY |X) [24], which is defined

as the maximum achievable exponential decay rate of the probability of error (asymptotically)

with respect to the blocklength for message rate of R. It appears natural that the reliability

function plays a role in the characterization of the achievable T2EE for distributed HT over a

noisy channel. Indeed, in Theorem 2 given below, we provide a lower bound on the optimal

T2EE that depends on the expurgated exponent at rate R, Ex(R,PY |X), which is a lower bound

on E(R,PY |X) [25]. However, surprisingly, it will turn out that the reliability function does not

play a role in the characterization of the T2EE for TACI in the regime of vanishing type 1 error

probability constraint.

The goal of this paper is to study the best attainable T2EE for distributed HT over a DMC

and obtain a computable characterization of the same. Although a complete solution is not to

be expected for this problem (since even the corresponding noiseless case is still open), the aim

is to provide an achievable scheme for the general problem, and to identify special cases in

which a tight characterization can be obtained. We will focus mostly on the case of a single

observer in the system, but generalization to multiple observers will also be considered. Our

main contributions can be summarized as follows.

(i) We propose three different coding schemes and analyze the T2EE achieved by these
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schemes.

(ii) We obtain an exact single-letter characterization of the optimal T2EE for three special:

(a) TACI for the case of vanishing type 1 error probability constraint,

(b) when C(PY |X) = 0, i.e., the communication channel has zero capacity,

(c) HT over a DMC, i.e., when there is no side-information at the detector.

We show that for the cases (b) and (c), the optimal T2EE is in fact independent of the

constraint on the type 1 error probability, thus implying that a strong-converse holds.

(iii) We also obtain single-letter lower bounds on the T2EE for TACI when there are multiple

observers in the system communicating over orthogonal DMCs.

In the sequel, we first introduce a separation based scheme that performs independent hy-

pothesis testing and channel coding, which we refer to as the separate hypothesis testing and

channel coding (SHTCC) scheme. This scheme combines the Shimokawa-Han-Amari scheme

[8], which is the best known coding scheme till date for distributed HT over a rate-limited

noiseless channel, with the channel coding scheme that achieves the expurgated exponent of the

channel [25] [24]. A separation based scheme similar to SHTCC scheme has been proposed

recently in [26], where the authors study the T2EE for distributed HT over a point to point,

multiple-access and broadcast channels. Our second scheme is a zero-rate compression scheme

referred to as the local decision (LD) scheme, in which, the observer makes a tentative guess on

the true hypothesis based on its own observation, and communicates its one bit decision to the

detector. The third scheme is a joint hypothesis testing and channel coding (JHTCC) scheme, in

which, hybrid coding [27] is used to communicate from the observer to the detector. As we show

later, the SHTCC scheme achieves the optimal T2EE for TACI, while the LD scheme achieves

the optimal T2EE for general distributed HT when the channel has zero capacity, and, also for

HT over a noisy channel of arbitrary capacity (i.e., no side-information at the detector). We also

show that the JHTCC scheme recovers the optimal T2EE for TACI. Although the T2EE achieved

by the SHTCC and JHTCC schemes are incomparable in general, we establish conditions under

which the JHTCC scheme achieves a T2EE at least as good as the SHTCC scheme. Finally, we

establish single-letter lower and upper bounds on the achievable T2EE for TACI with multiple

observers, in which, QU1...ULEZ = PU1...ULZPE|Z . This is done by first mapping the problem to

an equivalent joint source-channel coding (JSCC) problem with helpers. The Berger-Tung (BT)

bounds [28] [29] and the source-channel separation theorem in [30] are then used to obtain the
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desired bounds.

The rest of the paper is organized as follows. In Section II, we introduce the notations, detailed

system model and definitions. Following this, we introduce the main results in Section III and

IV focusing on the case of a single observer. The achievable schemes are presented in Section III

and the optimality results for special cases are discussed in Section IV. In Section V, we obtain

lower bounds on the optimal T2EE for distributed HT with multiple observers communicating

to the detector over orthogonal DMCs. Finally, Section VI concludes the paper.

II. PRELIMINARIES

A. Notations

Random variables (r.v.’s) are denoted by capital letters (e.g., X), their realizations by the

corresponding lower case letters (e.g., x), and their support by calligraphic letters (e.g., X ).

The cardinality of X is denoted by |X |. The joint distribution of r.v.’s X and Y is denoted

by PXY and its marginals by PX and PY . X − Y − Z denotes that X, Y and Z form

a Markov chain. Equality by definition is represented by :=. For m, l ∈ Z+, Xm denotes

the sequence X1, . . . , Xm, while Xm
l denotes the sequence Xl,1, . . . , Xl,m. The group of m

r.v’s Xl,(j−1)m+1, . . . , Xl,jm is denoted by Xm
l (j), and the infinite sequence Xm

l (1), Xm
l (2), . . .

is denoted by {Xm
l (j)}j∈Z+ . Similarly, for any G = {l1, . . . , lg} ⊆ Z+,

{
Xm
l1
, . . . , Xm

lg

}
,{

Xm
l1

(j), . . . , Xm
lg

(j)
}

and
{{

Xm
l1

(j)
}
j∈Z+ , . . . ,

{
Xm
lg

(j)
}
j∈Z+

}
are denoted by Xm

G , Xm
G (j)

and
{
Xm
G (j)

}
j∈Z+ , respectively. D(PX ||QX), HPX (X), HPXY (X|Y ) and IPXY (X;Y ) represent

the standard quantities of Kullback-Leibler (KL) divergence between distributions PX and QX ,

the entropy of X with distribution PX , the conditional entropy of X given Y and the mutual

information between X and Y with joint distribution PXY , respectively. When the distribution

of the r.v.’s involved are clear from the context, the entropic and mutual information quantities

are denoted simply by I(X;Y ), H(X) and H(X|Y ), respectively. Following the notation in

[24], TP and Tm[PX ]δ
(or Tm[X]δ

or Tmδ when there is no ambiguity) denote the set of sequences of

type P and the set of PX-typical sequences of length m, respectively. The set of all types of

k-length sequences of r.v.’s Xk and Y k is denoted by T kXY and ∪k∈Z+T kXY is denoted by TXY .

Given realizations Xn = xn and Y n = yn, He(x
n|yn) denote the conditional empirical entropy

defined as

He(x
n|yn) := HPX̃Ỹ

(X̃|Ỹ ), (2)
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where PX̃Ỹ denote the joint type of (xn, yn). For a ∈ R+, [a] denotes the set of integers

{1, 2, . . . , dae}. All logarithms considered in this paper are with respect to the base e. For any

set G, Gc denotes the set complement. ak
(k)−→ b indicates that limk→∞ ak = b. For functions

f1 : A → B and f2 : B → C, f2 ◦ f1 denotes function composition. Finally, 1(·) denotes the

indicator function, and O(·) and o(·) denote the standard asymptotic notation.

B. Problem formulation

All the r.v.’s considered henceforth are discrete with finite support. Unless specified otherwise,

we will denote the probability distribution of a r.v. Z under the null and alternate hypothesis

by PZ and QZ , respectively. Let k, n ∈ Z+ be arbitrary. Let L = {1, . . . , L} denote the set

of observers which communicate to the detector over orthogonal noisy channels, as shown in

Fig. 1. For l ∈ L, encoder l observes Uk
l , and transmits codeword Xn

l = f
(k,n)
l (Uk

l ), where

f
(k,n)
l : Ukl → X n

l represents the encoding function (possibly stochastic) of observer l. Let

τ := n
k

denote the bandwidth ratio. The channel output Y n
L is given by the probability law

PY nL |Xn
L
(ynL|xnL) =

L∏
l=1

n∏
j=1

PYl|Xl(yl,j|xl,j), (3)

i.e., the channels between the observers and the detector are independent of each other and

memoryless. Depending on the received symbols Y n
L and its own observations V k, the detector

makes a decision between the two hypotheses H0 and H1 given in (1). Let H ∈ {0, 1} denote

the actual hypothesis and Ĥ ∈ {0, 1} denote the output of the HT, where 0 and 1 denote H0 and

H1, respectively, and A(k,n) ⊆ YnL×Vk denote the acceptance region for H0. Then, the decision

rule g(k,n) : YnL × Vk → {0, 1} is given by

g(k,n)
(
ynL, v

k
)

= 1− 1
((
ynL, v

k
)
∈ A(k,n)

)
.

Let

α
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , g(k,n)

)
:= 1− PY nL V k

(
A(k,n)

)
, (4)

and β
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , g(k,n)

)
:= QY nL V

k

(
A(k,n)

)
, (5)

denote the type 1 and type 2 error probabilities for the encoding functions f (k,n)
1 , . . . , f

(k,n)
L and

decision rule g(k,n), respectively.
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Definition 1. A T2EE κ is (τ, ε) achievable if there exists a sequence of integers k, corresponding

sequences of encoding functions f (k,nk)
1 , . . . , f

(k,nk)
L and decision rules g(k,nk) such that nk ≤ τk,

∀ k,

lim inf
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk)
1 , . . . , f

(k,nk)
L , g(k,nk)

))
≥ κ, (6a)

and lim sup
k→∞

α
(
k, nk, f

(k,nk)
1 , . . . , f

(k,nk)
L , g(k,nk)

)
≤ ε. (6b)

For (τ, ε) ∈ R+ × [0, 1], let

κ(τ, ε) := sup{κ′ : κ′ is (τ, ε) achievable}. (7)

We are interested in obtaining a computable characterization of κ(τ, ε).

It is well known that the Neyman-Pearson test [1] gives the optimal trade-off between the type

1 and type 2 error probabilities, and hence, also between the error exponents in a HT. From this, it

follows that the optimal T2EE for distributed HT over DMC’s is achieved when for each l ∈ L,

the channel-input Xn
l is generated correlated with Uk

l according to some optimal conditional

distribution PXn
l |U

k
l
, and the optimal Neyman-Pearson test is performed on the data available

(both received and observed) at the detector. The encoder and the detector for such a scheme

would be computationally complex to implement from a practical viewpoint. Moreover, analysis

of such a scheme is prohibitively complex as it involves optimization over large dimensional

probability simplexes, when k and n are large. In the next section, we establish three different

single-letter lower bounds on κ(τ, ε) by using the SHTCC, LD and JHTCC schemes, respectively.

We will limit the discussion to the case of a single observer, i.e., L = 1, until Section V, and

therefore, omit the subscript associated with the index of the observer, e.g., U1 will be denoted

as U .

III. ACHIEVABLE SCHEMES

In [8], Shimokawa et. al. obtained a lower bound on the optimal T2EE for distributed HT over

a rate-limited noiseless channel by using a coding scheme that involves quantization and binning

at the encoder. In this scheme, the type1 of the observed sequence Uk is sent by the encoder

to the detector, which aids in the HT. In fact, in order to achieve the T2EE proposed in [8], it

is sufficient to send a message indicating whether Uk is typical or not, rather than sending the

1Since the number of types is polynomial in the blocklength, these can be communicated error-free at asymptotically zero-rate.
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exact type of Uk. Although it is not possible to get perfect reliability for messages transmitted

over a noisy channel, intuitively, it is desirable to protect the typicality information about the

observed sequence as reliably as possible. Based on this intuition, we next propose the SHTCC

scheme that performs independent HT and channel coding and protects the message indicating

whether Uk is typical or not, as reliably as possible.

A. SHTCC Scheme:

In the SHTCC scheme, the encoding and decoding functions are restricted to be of the form

f (k,n) = f
(k,n)
c ◦f (k)

s and g(k,n) = g
(k)
s ◦g(k,n)

c , respectively. The source encoder f (k)
s : Uk →M =

{0, 1, · · · , dekRe} generates an index M = f
(k)
s (Uk) and the channel encoder f (k,n)

c :M→ C̃ =

{Xn(j), j ∈ [0 : dekRe]} generates the channel-input codeword Xn = f
(k,n)
c (M). Note that the

rate of this coding scheme is kR
n

= R
τ

bits per channel use. The channel decoder g(k,n)
c : Yn →M

maps the channel-output Y n into an index M̂ = g
(k,n)
c (Y n), and g(k)

s :M×Vk → {0, 1} outputs

the result of the HT as Ĥ = g
(k)
s (M̂, V k). Note that f (k,n)

c depends on Uk only through the output

of f (k)
s (Uk) and g

(k,n)
c depends on V k only through Y n. Hence, the scheme is modular in the

sense that (f
(k,n)
c , g

(k,n)
c ) can be designed independent of (f

(k)
s , g

(k)
s ). In other words, any good

channel coding scheme may be used in conjunction with a good compression scheme. If Uk is

not typical according to PU , f (k)
s outputs a special message, referred to as the error message,

denoted by M = 0, to inform the detector to declare Ĥ = 1. There is obviously a trade-off

between the reliability of the error message and the other messages in channel coding. The best

known reliability for protecting a single special message when the other messages M ∈ [enR]

of rate R, referred to as ordinary messages, are required to be communicated reliably is given

by the red-alert exponent in [31]. The red-alert exponent is defined as

Em(R,PY |X) := max
PSX : S=X ,
I(X;Y |S)=R,
S−X−Y

∑
s∈S

PS(s) D
(
PY |S=s||PY |X=s

)
. (8)

Borade’s scheme uses an appropriately generated codebook along with a two-stage decoding

procedure. The first stage is a joint-typicality decoder to decide whether Xn(0) is transmitted,

while the second stage is a maximum-likelihood decoder to decode the ordinary message if the

output of the first stage is not zero, i.e., M̂ 6= 0. On the other hand, it is well-known that if the

rate of the messages is R, a channel coding error exponent equal to Ex(R,PY |X) is achievable,
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where

Ex(R,PY |X)

:= max
PX

max
ρ≥1

−ρ R− ρ log

∑
x,x̃

PX(x)PX(x̃)

(∑
y

√
PY |X(y|x)PY |X(y|x̃)

) 1
ρ

 , (9)

is the expurgated exponent at rate R [25] [24]. Let

Em(PSX , PY |X) :=
∑
s∈S

PS(s) D
(
PY |S=s||PY |X=s

)
, (10)

where, S = X and S −X − Y , and

Ex(R,PSX , PY |X)

:= max
ρ≥1

−ρ R− ρ log

∑
s,x,x̃

PS(s)PX|S(x|s)PX|S(x̃|s)

(∑
y

√
PY |X(y|x)PY |X(y|x̃)

) 1
ρ

 .

Although Borade’s scheme is concerned only with the reliability of the special message, it is not

hard to see using the technique of random-coding that for a fixed distribution PSX , there exists

a codebook C̃, and encoder and decoder as in Borade’s scheme, such that the rate is I(X;Y |S)

and the special message achieves a reliability equal to Em(PSX , PY |X), while the ordinary

messages achieve a reliability equal to Ex(I(X;Y |S), PSX , PY |X). Note that Em(PSX , PY |X)

and Ex(I(X;Y |S), PSX , PY |X) denote Borade’s red-alert exponent and the expurgated exponent

with fixed distribution PSX , respectively, and that both are inter-dependent through PSX . Thus,

varying PSX provides a trade-off between the reliability for the ordinary messages and the

special message. We will use Borade’s scheme for channel coding in the SHTCC scheme, such

that the error message and the other messages correspond to the special and ordinary messages,

respectively. The SHTCC scheme will be described in detail in Appendix A. We next state

a lower bound on κ(τ, ε) that is achieved by the SHTCC scheme. For brevity, we will use

the shorter notations C, Em(PSX) and Ex(R,PSX) instead of C(PY |X), Em(PSX , PY |X) and

Ex(R,PSX , PY |X), respectively.
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Theorem 2. For τ ≥ 0, κ(τ, ε) ≥ κs(τ), ∀ ε ∈ (0, 1], where

κs(τ)

:= sup
(PW |U ,PSX)

∈ B(τ,C)

min
(
E1(PW |U), E2(PW |U , PSX , τ), E3(PW |U , PSX , τ), E4(PW |U , PSX , τ)

)
,

(11)

where

B (τ, C) :=

(PW |U , PSX) : S = X , PUVWSXY (PW |U , PSX) := PUV PW |UPSXPY |X ,

IP (U ;W |V ) < τIP (X;Y |S) ≤ τC

 .

E1(PW |U) := min
PŨṼ W̃∈T1(PUW ,PVW )

D(PŨ Ṽ W̃ ||QUVW ), (12)

E2(PW |U , PSX , τ) :=
min

PŨṼ W̃∈T2(PUW ,PV ) D(PŨ Ṽ W̃ ||QUVW ) + τIP (X;Y |S)

−IP (U ;W |V ), if IP (U ;W ) > τIP (X;Y |S),

∞, otherwise,

(13)

E3(PW |U , PSX , τ)

:=



min
PŨṼ W̃∈T3(PUW ,PV ) D(PŨ Ṽ W̃ ||QUVW ) + τIP (X;Y |S)− IP (U ;W |V )

+ τEx (IP (X;Y |S), PSX) , if IP (U ;W ) > τIP (X;Y |S),

min
PŨṼ W̃∈T3(PUW ,PV ) D(PŨ Ṽ W̃ ||QUVW ) + IP (V ;W )

+τEx (IP (X;Y |S), PSX) , otherwise,

(14)

E4(PW |U , PSX , τ)

:=


D(PV ||QV ) + τIP (X;Y |S)− IP (U ;W |V )

+τEm (PSX) , if IP (U ;W ) > τIP (X;Y |S),

D(PV ||QV ) + IP (V ;W ) + τEm (PSX) , otherwise,

(15)
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QUVW := QUV PW |U ,

T1(PUW , PVW ) := {PŨ Ṽ W̃ ∈ TUVW : PŨW̃ = PUW , PṼ W̃ = PVW},

T2(PUW , PV ) := {PŨ Ṽ W̃ ∈ TUVW : PŨW̃ = PUW , PṼ = PV , H(W̃ |Ṽ ) ≥ HP (W |V )},

T3(PUW , PV ) := {PŨ Ṽ W̃ ∈ TUVW : PŨW̃ = PUW , PṼ = PV }.

The proof of Theorem 2 is given in Appendix A. Although the expression κs(τ) in The-

orem 2 appears complicated, the terms E1(PW |U) to E4(PW |U , PSX , τ) can be understood to

correspond to distinct events that can possibly lead to a type 2 error. Note that E1(PW |U) and

E2(PW |U , PSX , τ) are the same terms appearing in the T2EE achieved by the Shimokawa-Han-

Amari scheme [8] for the noiseless channel setting, while E3(PW |U , PSX , τ) and E4(PW |U , PSX , τ)

are additional terms introduced due to the channel. E3(PW |U , PSX , τ) corresponds to the event

when M 6= 0, M̂ 6= M and g
(k)
s (M̂, V k) = 0, whereas E4(PW |U , PSX , τ) is due to the event

when M = 0, M̂ 6= M and g(k)
s (M̂, V k) = 0.

Remark 3. Note that, in general, Em(PSX) can take the value of ∞ and when this happens,

the term τEm (PSX) becomes undefined for τ = 0. In this case, we define τEm (PSX) := 0. A

similar rule applies for τEx (IP (X;Y |S), PSX) when τ = 0 and Ex (IP (X;Y |S), PSX) =∞.

Remark 4. In the SHTCC scheme, we used Borade’s scheme for channel coding, that is

concerned specifically with the protection of a special message. Another scheme can be obtained

by replacing Borade’s scheme by a scheme such that the ordinary messages achieve an error

exponent equal to the reliability function E(R,PY |X) [24] of the channel PY |X at rate R, while

the special message achieves the maximum reliability possible subject to this constraint. However,

a computable characterization of the best reliability achievable for a single message when the

ordinary messages achieve E(R,PY |X), or even a computable characterization of E(R,PY |X)

for all values of R is unknown in general. Due to this reason, a comparison between κs and

the T2EE achieved by the above mentioned scheme is not straighforward.

B. Local Decision (LD) Scheme (Zero-Rate Compression Scheme)

The SHTCC scheme described above is a two stage scheme in which the observer communi-

cates a compressed version W k of Uk using a channel code of rate R
τ

bits per channel use, where

R ≤ τC, while the detector makes the decision on the hypothesis using an estimate of W k and
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side-information V k. Now, suppose the observer makes the decision about the hypothesis locally

using Uk and transmits its 1 bit decision to the detector using a channel code for two messages,

while the detector makes the final decision based on its estimate of the 1 bit message and V k.

The encoder f (k,n) = f
(k,n)
c ◦ f (k)

s and decoder g(k,n) = g
(k)
s ◦ g(k,n)

c are thus specified by maps

f
(k)
s : Uk → {0, 1}, f (k,n)

c : {0, 1} → X n, g(k,n)
c : Yn → {0, 1} and g

(k)
s : {0, 1} × Vk → {0, 1}.

We refer to this scheme as the LD scheme. Observe that the rate of communication over the

channel for this scheme is R = 1
n

bits per channel use, which tends to zero asymptotically.

We will next obtain a lower bound on κ(τ, ε) using the LD scheme. Let

β0 := β0(PU , PV , QUV ) := min
PŨṼ :

PŨ=PU , PṼ =PV

D(PŨ Ṽ ||QUV ), (16)

and Ec := Ec(PY |X) := D(PY |X=a||PY |X=b), (17)

where a and b denote channel input symbols that satisfy

(a, b) = arg max
(x,x′)∈X×X

D(PY |X=x||PY |X=x′). (18)

Note that β0 denotes the optimal T2EE for distributed HT over a noiseless channel, when the

communication rate-constraint is zero [6] [7]. We define

κ0(τ) :=

 D(PV ||QV ) , if τ = 0,

min (β0, τEc +D(PV ||QV )) , otherwise,
(19)

We have the following result.

Theorem 5. For τ ≥ 0, κ(τ, ε) ≥ κ0(τ), ∀ ε ∈ (0, 1].

Proof: Let k ∈ Z+ and nk = bτkc. For τ = 0, Theorem 5 follows from Stein’s lemma [5]

applied to i.i.d. sequence V k available at the detector. Assume τ > 0. For a fixed δ > 0 (a small

number), we define the functions f (k)
s and f (k,nk)

c for the encoder f (k,nk) as follows:

f (k)
s (uk) =

0, if Puk ∈ T k[PU ]δ
,

1, otherwise,
(20)
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and

f (k,nk)
c

(
f (k)
s (uk)

)
=

a
n, if f (k)

s (uk) = 0,

bn, otherwise.
(21)

Here, ank and bnk denote the codewords formed by repeating the symbols a and b from the

channel input alphabet X , which are defined in (18). Let the functions g(k)
s and g

(k,nk)
c of the

decision rule g(k,nk) be defined by

g(k,nk)
c (ynk) =

0, if ynk ∈ T nk[PY |X=a]δ′
,

1, otherwise,

for some δ′ > 0 (a small number), and

g(k)
s

(
vk, g(k,nk)

c (ynk)
)

=

0, if Pvk ∈ T k[PV ]δ
and g(k,nk)

c (ynk) = 0,

1, otherwise.

By the law of large numbers, the type 1 error probability tends to zero asymptotically, since

lim
k→∞

P(Uk ∈ T k[PU ]δ
|H = 0) = 1,

lim
k→∞

P(V k ∈ T k[PV ]δ
|H = 0) = 1,

and lim
k→∞

P(Y nk ∈ T nk[PY |X=a]δ′
|H = 0) = 1.

A type 2 error occurs only under the following two events:

E1p := {Uk ∈ T k[PU ]δ
, V k ∈ T k[PV ]δ

and Y nk ∈ T nk[PY |X=a]δ′
},

E2p := {Uk /∈ T k[PU ]δ
, V k ∈ T k[PV ]δ

and Y nk ∈ T nk[PY |X=a]δ′
}.

More specifically, E1p occurs when both Uk and V k are typical and there is no error at the

channel decoder, while E2p occurs when Uk is not typical, V k is typical and the channel decoder

g
(k,nk)
c makes a decoding error. It follows from the zero-rate compression result in [6] that the

probability of the first event is upper bounded by e−k(β0−O(δ)−γ) for any γ > 0 and k sufficiently

large. The probability of the second event is upper bounded for any γ > 0 and k sufficiently
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large as

P(E2p|H = 1) ≤ P(V k ∈ T k[PV ]δ
|H = 1) P

(
Y nk ∈ T nk[PY |X=a]δ′

|Uk /∈ T k[PU ]δ

)
= P(V k ∈ T k[PV ]δ

|H = 1) P
(
Y nk ∈ T nk[PY |X=a]δ′

|Xnk = bnk
)

≤ e−k(D(PV ||QV )−O(δ)−γ) · e−nk(Ec−O(δ′)−γ). (22)

Here, (22) follows from [24, Lemma 2.6] and the fact that the number of types in Vk and Ynk is

upper bounded by a polynomial in k and nk, respectively [24]. By the union bound, it follows

that

β(k, nk, f
(k,nk), g(k,nk)) ≤ P(E1p|H = 1) + P(E2p|H = 1),

which in turn implies, in the limit δ and δ′ tending to zero (subject to delta-convention given in

[24]), that

κ(τ, ε) ≥ min (β0 − γ), τ(Ec − γ)) , ∀ ε ∈ (0, 1).

The proof is completed by noting that γ > 0 is arbitrary.

The LD scheme would be particularly useful when the communication channel is very noisy,

so that reliable communication is not possible at any positive rate. In Section IV, we will show

that the LD scheme achieves the optimal T2EE in two important scenarios: (i) for distributed

HT over a DMC when the channel capacity is zero, and (ii) for HT over a DMC, i.e., when the

detector has no side-information. In fact, we will show a stronger result that the optimal T2EE

is not improved if the type 1 error probability constraint is relaxed; and hence, that a strong

converse holds.

The SHTCC and LD schemes introduced above are schemes that perform independent HT

and channel coding, i.e., the channel encoder f (k,n)
c neglects Uk given the output M of source

encoder f (k)
s , and g(k)

s neglects Y n given the output of the channel decoder g(k,n)
c . The following

scheme ameliorates these restrictions and uses hybrid coding to perform joint HT and channel

coding.
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C. JHTCC Scheme

Hybrid coding is a form of JSCC introduced in [32] for the lossy transmission of sources over

noisy networks. As the name suggests, hybrid coding is a combination of the digital and analog

(uncoded) transmission schemes. For simplicity, assume that k = n (τ = 1). In hybrid coding,

the source Un is first mapped to one of the codewords W̄ n within a compression codebook.

Then, a symbol-by-symbol function (deterministic) of the W̄ n and Un is transmitted as the

channel codeword Xn. This procedure is reversed at the decoder, in which, the decoder first

attempts to obtain an estimate ˆ̄W n of W̄ n using the channel output Y n and its own correlated

side information V n. Then, the reconstruction Ûn of the source is obtained as a symbol-by-

symbol function of the reconstructed codeword, Y n and V n. In this subsection, we propose a

lower bound on the optimal T2EE that is achieved by a scheme that utilizes hybrid coding for

the communication between the observer and the detector, which we refer to as the JHTCC

scheme. Post estimation of ˆ̄W n, the detector performs the hypothesis test using ˆ̄W n, Y n and

V n, instead of estimating Ûn as is done in JSCC problems. We will in fact consider a slightly

generalized form of hybrid coding in that the encoder and detector is allowed to perform “time-

sharing” according to a sequence Sn that is known a priori to both parties. Also, the input Xn

is allowed to be generated according to an arbitrary memoryless stochastic function instead of

a deterministic function. The JHTCC scheme will be described in detail in Appendix B. Next,

we state a lower bound on κ(τ, ε) that is achieved by the JHTCC scheme.

Theorem 6. κ(1, ε) ≥ κh, ∀ ε ∈ (0, 1], where

κh := sup
b ∈ Bh

min
(
E ′1(PS, PW̄ |US, PX|USW̄ ), E ′2(PS, PW̄ |US, PX|USW̄ ),

E ′3(PS, PW̄ |US, PX′|S, PX|USW̄ )
)
, (23)

Bh :=

b =
(
PS, PW̄ |US, PX′|S, PX|USW̄

)
: IP̂ (U ; W̄ |S) < IP̂ (W̄ ;Y, V |S), X ′ = X ,

P̂UV SW̄X′XY

(
PS, PW̄ |US, PX′|S, PX|USW̄

)
:= PUV PSPW̄ |USPX′|SPX|USW̄PY |X

 ,

E ′1
(
PS, PW̄ |US, PX|USW̄

)
:= min

PŨṼ S̃W̃ Ỹ ∈T
′
1(P̂USW̄ ,P̂V SW̄Y )

D
(
PŨ Ṽ S̃W̃ Ỹ ||Q̂UV SW̄Y

)
, (24)
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E ′2
(
PS, PW̄ |US, PX|USW̄

)
:= min

PŨṼ S̃W̃ Ỹ ∈T
′
2(P̂USW̄ ,P̂V SW̄Y )

D
(
PŨ Ṽ S̃W̃ Ỹ ||Q̂UV SW̄Y

)
+ IP̂ (W̄ ;V, Y |S)− IP̂ (U ; W̄ |S), (25)

E ′3
(
PS, PW̄ |US, PX′|S, PX|USW̄

)
:= D(P̂V SY ||Q̌V SY ) + IP̂ (W̄ ;V, Y |S)− IP̂ (U ; W̄ |S), (26)

Q̂UV SW̄X′XY (PS, PW̄ |US, PX′|S, PX|USW̄ ) := QUV PSPW̄ |USPX′|SPX|USW̄PY |X , (27)

Q̌UV SX′XY (PS, PX′|S) := QUV PSPX′|S1(X = X ′)PY |X , (28)

T ′1 (P̂USW̄ , P̂V SW̄Y ) := {PŨ Ṽ S̃W̃ Ỹ ∈ TUVSWY : PŨ S̃W̃ = P̂USW̄ , PṼ S̃W̃ Ỹ = P̂V SW̄Y },

T ′2 (P̂USW̄ , P̂V SW̄Y ) := {PŨ Ṽ S̃W̃ Ỹ ∈ TUVSWY : PŨ S̃W̃ = P̂USW̄ , PṼ S̃Ỹ = P̂V SY ,

H(W̃ |Ṽ, S̃, Ỹ ) ≥ HP̂ (W̄ |V, S, Y )}.

The proof of Theorem 6 is given in Appendix B. The different factors inside the minimum

in (23) can be intuitively understood to be related to the various events that could possibly lead

to a type 2 error. More specifically, let the event that the encoder is unsuccessful in finding a

codeword W̄ n in the quantization codebook that is typical with Un be referred to as the encoding

error, and the event that a wrong codeword ˆ̄W n (unintended by the encoder) is reconstructed

at the detector be referred to as the decoding error. Then, E ′1(PS, PW̄ |US, PX|USW̄ ) is related to

the event that neither the encoding nor the decoding error occurs, while E ′2(PS, PW̄ |US, PX|USW̄ )

and E ′3(PS, PW̄ |US, PX′|S, PX|USW̄ ) are related to the events that only the decoding error and

both the encoding and decoding errors occur, respectively. From Theorem 2, 5 and 6, we have

the following corollary.

Corollary 7.

κ(1, ε) ≥ max (κh, κ0(1), κs(1)) , ∀ε ∈ (0, 1]. (29)

It is well-known that in the context of JSCC, hybrid coding recovers separate source-channel

coding as a special case. Since the SHTCC scheme performs independent channel coding and

HT, and the JHTCC scheme uses hybrid coding for communication over DMC, it is tempting

to think that this implies that κh ≥ κs(1). However, the schemes are not comparable in general,

due to fact that E ′2
(
PS, PW̄ |US, PX|USW̄

)
is not comparable to E3(PW |U , PSX , 1). One may ask

when does the JHTCC scheme perform better than the SHTCC scheme. Towards answering this

question, in Theorem 8 below, we obtain conditions under which κh ≥ κs(1). As a byproduct
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of the proof of Theorem 8, we also show that the JHTCC scheme achieves the optimal T2EE

for TACI over a DMC.

Let W̄ = (W,X), S = X , X ⊥ (X ′,W, U, V ), (W,U, V ) ⊥ S and (U, V,W, S,X ′)−X − Y

in Theorem 6, so that

P̂UV SWX′XY (PS, PW |U , PX′|S, PX|S) = PUV PSPW |UPX′|SPX|SPY |X , (30)

Q̂UV SWX′XY (PS, PW |U , PX′|S, PX|S) = QUV PSPW |UPX′|SPX|SPY |X , (31)

Q̌UV SX′XY (PS, PX′|S) = QUV PSPX′|S1(X = X ′)PY |X . (32)

T ′1 (P̂USWX , P̂V SWXY ) := {PŨ Ṽ S̃W̃ X̃Ỹ ∈ TUVSWXY : PŨ S̃W̃ X̃ = P̂USWX , PṼ S̃W̃ X̃Ỹ = P̂V SWXY },

T ′2 (P̂USWX , P̂V SWXY ) := {PŨ Ṽ S̃W̃ X̃Ỹ ∈ TUVSWXY : PŨ S̃W̃ X̃ = P̂USWX , PṼ S̃Ỹ = P̂V SY ,

H(W̃, X̃|Ṽ, S̃, Ỹ ) ≥ HP̂ (W,X|V, S, Y )}.

Let (P ∗W |U , P
∗
SX) ∈ B(1, C) achieve the supremum in (11). Define

P̂ ∗UV SWX′XY (P ∗S , P
∗
W |U , PX′|S, P

∗
X|S) := PUV P

∗
SP
∗
W |UPX′|SP

∗
X|SPY |X , (33)

Q̂∗UV SWX′XY (P ∗S , P
∗
W |U , PX′|S, P

∗
X|S) := QUV P

∗
SP
∗
W |UPX′|SP

∗
X|SPY |X , (34)

Q̌∗UV SX′XY (P ∗S , PX′|S) := QUV PSPX′|S1(X = X ′)PY |X , (35)

Eh
(
P ∗S , P

∗
W |U , PX′|S, P

∗
X|S
)

:= min
PŨṼ S̃W̃ X̃Ỹ ∈T

′
2(P̂ ∗USWX ,P̂

∗
V SWXY )

D(PŨ Ṽ S̃W̃ X̃Ỹ ||Q̂
∗
UV SWXY ),

Es
(
P ∗S , P

∗
W |U , PX′|S, P

∗
X|S
)

:= min
PŨṼ W̃∈T3(P̂ ∗UW ,P̂ ∗V )

D(PŨ Ṽ W̃ ||Q̂
∗
UVW )

+ Ex(IP̂ ∗(X;Y |S), P̂ ∗SX).

Then, we have the following result.

Theorem 8. If Eh
(
P ∗S , P

∗
W |U , PX′|S, P

∗
X|S

)
≥ Es

(
P ∗S , P

∗
W |U , PX′|S, P

∗
X|S

)
, then κh ≥ κs(1).

The proof of Theorem 8 is given in Appendix C.

Thus far, we obtained lower bounds on the optimal T2EE for distributed HT over a DMC.

However, obtaining tight computable outer bounds is a challenging open problem, and conse-

quently, an exact computable characterization of the optimal T2EE is unknown (even when the

communication channel is noiseless). However, as we show in the next section, the problem does

admit single-letter characterization in some special cases. These special cases are motivated from
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analogous results for distributed HT over rate-limited noiseless channels.

IV. OPTIMALITY RESULTS

A. TACI over a DMC

Recall that for TACI, V = (E,Z) and QUEZ = PUZPE|Z . Let

κ(τ) = lim
ε→0

κ(τ, ε). (36)

We will drop the subscript P from information theoretic quantities like mutual information,

entropy, etc., as there is no ambiguity on the joint distribution involved, e.g., IP (U ;W ) will be

denoted by I(U ;W ). The following result holds.

Proposition 9. For TACI over a DMC PY |X ,

κ(τ) = sup

I(E;W |Z) : ∃ W s.t. I(U ;W |Z) ≤ τC(PY |X),

(Z,E)− U −W, |W| ≤ |U|+ 1.

 , τ ≥ 0. (37)

Proof: For the proof of achievability, we will show that κs(τ) when specialized to TACI

recovers (37). Let

B′ (τ, C)

:=

(PW |U , PSX) : S = X , PUEZWSXY (PW |U , PSX) := PUEZPW |UPSXPY |X ,

I(U ;W |Z) ≤ τI(X;Y |S) < τC

 . (38)

Note that B′(τ, C) ⊆ B(τ, C) since I(U ;W |E,Z) ≤ I(U ;W |Z), which holds due to the Markov

chain (Z,E)− U −W . Now, consider (PW |U , PSX) ∈ B′(τ, C). Then, we have

E1(PW |U) = min
PŨẼZ̃W̃∈T1(PUW ,PEZW )

D(PŨẼZ̃W̃ ||PZPU |ZPE|ZPW |U)

≥ min
PŨẼZ̃W̃∈T1(PUW ,PEZW )

D(PẼZ̃W̃ ||PZPE|ZPW |Z) (39)

= I(E;W |Z),

where (39) follows from the log-sum inequality [24]. Also,

E2(PW |U , PSX , τ) ≥ τI(X;Y |S)− I(U ;W |E,Z) ≥ I(U ;W |Z)− I(U ;W |E,Z)

= I(E;W |Z),
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min
PŨẼZ̃W̃∈T3(PUW ,PEZ) D(PŨẼZ̃W̃ ||PZPU |ZPE|ZPW |U) + τI(X;Y |S)− I(U ;W |E,Z)

+ τEx (I(X;Y |S), PSX)

≥ I(U ;W |Z)− I(U ;W |E,Z) = I(E;W |Z), (40)

min
PŨẼZ̃W̃∈T3(PUW ,PEZ) D(PŨẼZ̃W̃ ||PZPU |ZPE|ZPW |U) + I(E,Z;W )

+ τEx (I(X;Y |S), PSX) ≥ I(E;W |Z), (41)

D(PEZ ||PEZ) + τI(X;Y |S)− I(U ;W |E,Z) + τEm (PSX)

≥ I(U ;W |Z)− I(U ;W |E,Z) = I(E;W |Z), (42)

D(PEZ ||PEZ) + I(E,Z;W ) + τEm (PSX) ≥ I(E;W |Z), (43)

where in (40)-(43), we used the non-negativity of KL-divergence, Ex(·, ·, ·) and Em(·, ·). Hence,

E2(PW |U , PSX , τ) ≥ I(E;W |Z) and E3(PW |U , PSX , τ) ≥ I(E;W |Z). Denoting B(τ, C) and

B′(τ, C) by B and B′, respectively, we obtain

κ(τ, ε)

≥ sup
(PW |U ,PSX)∈B

min
(
E1(PW |U), E2(PW |U , PSX , τ), E3(PW |U , PSX , τ), E4(PW |U , PSX , τ)

)
≥ sup

(PW |U ,PSX)∈B
I(E;W |Z)

≥ sup
(PW |U ,PSX)∈B′

I(E;W |Z) (44)

= sup
PW |U :I(W ;U |Z)≤τC

I(E;W |Z), (45)

where (44) follows from the fact that B′ ⊆ B; and (45) follows since I(E;W |Z) and I(U ;W |Z)

are continuous functions of PW |U .

Converse:

For any sequence of encoding functions f (k,nk), acceptance regions A(k,nk) for H0 such that

nk ≤ τk and

lim sup
k→∞

α
(
k, nk, f

(k,nk), g(k,nk)
)

= 0, (46)

we have similar to [5, Theorem 1 (b)], that
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lim sup
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk), g(k,nk)
))
≤ lim sup

k→∞

1

k
D (PY nkEkZk ||QY nkEkZk) (47)

= lim sup
n→∞

1

k
I(Y nk ;Ek|Zk) (48)

= H(E|Z)− lim inf
k→∞

1

k
H(Ek|Y nk , Zk), (49)

where (48) follows since QY nkEkZk = PY nkZkPEk|Zk . Now, let T be a r.v. uniformly distributed

over [k] and independent of all the other r.v.’s (Uk, Ek, Zk, Xnk , Y nk). Define an auxiliary r.v.

W := (WT , T ), where Wi := (Y nk , Ei−1, Zi−1, Zk
i+1), i ∈ [k]. Then, the last term can be

single-letterized as follows.

H(Ek|Y nk , Zk) =
∑k

i=1
H(Ei|Ei−1, Y nk , Zk)

=
∑k

i=1
H(Ei|Zi,Wi)

= kH(ET |ZT ,WT , T )

= kH(E|Z,W ). (50)

Substituting (50) in (49), we obtain

lim sup
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk)
1 , g(k,nk)

))
≤ I(E;W |Z). (51)

Next, note that the data processing inequality applied to the Markov chain (Zk, Ek) − Uk −

Xn − Y n yields I(Uk;Y nk) ≤ I(Xnk ;Y nk) which implies that

I(Uk;Y nk)− I(Uk;Zk) ≤ I(Xnk ;Y nk). (52)

The R.H.S. of (52) can be upper bounded due to the memoryless nature of the channel as

I(Xnk ;Y nk) ≤ nk max
PX

I(X;Y ) = nkC(PY |X), (53)

while the left hand side (L.H.S.) can be simplified as follows.

I(Uk;Y nk)− I(Uk;Zk) = I(Uk;Y nk |Zk) (54)

=
∑k

i=1
I(Y nk ;Ui|U i−1, Zk)
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=
∑k

i=1
I(Y nk , U i−1, Zi−1, Zk

i+1;Ui|Zi) (55)

=
∑k

i=1
I(Y nk , U i−1, Zi−1, Zk

i+1, E
i−1;Ui|Zi) (56)

≥
∑k

i=1
I(Y nk , Zi−1, Zk

i+1, E
i−1;Ui|Zi)

=
∑k

i=1
I(Wi;Ui|Zi) = kI(WT ;UT |ZT , T )

= kI(WT , T ;UT |ZT ) (57)

= kI(W ;U |Z).

Here, (54) follows due to Zk − Uk − Y nk ; (55) follows since the sequences (Uk, Zk) are

memoryless; (56) follows since Ei−1 − (Y nk , U i−1, Zi−1, Zk
i+1) − Ui ; (57) follows from the

fact that T is independent of all the other r.v.’s. Finally, note that (E,Z)−U−W holds and that

the cardinality bound on W follows by standard arguments based on Caratheodory’s theorem.

This completes the proof of the converse, and of the proposition.

As the above result shows, TACI is an instance of distributed HT over a DMC, in which, the

optimal T2EE is equal to that achieved over a noiseless channel of the same capacity. Hence, a

noisy channel does not always degrade the achievable T2EE. Also, notice that a simple separation

based coding scheme that performs independent HT and channel coding is sufficient to achieve

the optimal T2EE for TACI. From (40)-(43), we observe that this happens due to the fact that

E3(PW |U , PSX , τ) and E4(PW |U , PSX , τ) are both larger than I(E;W |Z). This can be explained

intuitively as follows. For the scheme discussed in Appendix A that achieves a T2EE of κs(τ),

a type 2 error occurs only when the detector decodes a codeword Ŵ k that is jointly typical with

the side information sequence V k. For the case of TACI, when H1 is the true hypothesis, then

with high probability, the codeword W k(J) chosen by the encoder is not jointly typical with

V k, i.e., (V k,W k(J)) /∈ T k[PVW ]δ
. Then, the above phenomenon corroborates the fact that given

an error occurs at the channel decoder, the probability that two independently chosen sequences

V k and Ŵ k are such that (V k, Ŵ k) ∈ T k[PVW ]δ
, decays as e−kI(V ;W ).

We can also show that the JHTCC scheme achieves the optimal T2EE for TACI. The proof

of this claim is given in Appendix D.

B. Distributed HT over a DMC with zero capacity

Next, we show that the LD scheme achieves the optimal T2EE when C(PY |X) = 0. Note

that when the channel has zero capacity, the reliability function of the channel is zero for any



23

positive rate of transmission, i.e., when there are exponential number of messages enδ, where

δ > 0 is bounded away from zero.

Theorem 10. If C(PY |X) = 0, then κ(τ, ε) = D(PV ||QV ), ∀ ε ∈ (0, 1), τ ≥ 0.

Proof: The achievability follows from Theorem 5 which states that for τ ≥ 0, κ(τ, ε) ≥

κ0(τ), ∀ ε ∈ (0, 1]. Now, it is well-known (see [24]) that C(PY |X) = 0 only if

P ∗Y := PY |X=x = PY |X=x′ , ∀ x, x′ ∈ X . (58)

From (58), it follows that Ec(PY |X) = 0. Also,

β0 ≥ D(PV ||QV ) + min
PŨṼ :

PŨ=PU , PṼ =PV

D(PŨ |Ṽ ||QU |V
∣∣PṼ )

≥ D(PV ||QV ),

which implies that κ0(τ) ≥ D(PV ||QV ).

Converse: We first show the weak converse, i.e., κ(τ) ≤ D(PV ||QV ), where κ(τ) is as defined

in (36). For any sequence of encoding functions f (k,nk) and acceptance regions A(k,nk) for H0

that satisfy nk ≤ τk and (46), it follows similarly to (47), that

lim sup
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk), g(k,nk)
))
≤ lim sup

k→∞

1

k
D (PY nkV k ||QY nkV k) (59)

The terms in the R.H.S. of (59) can be expanded as

1

k
D (PY nkV k ||QY nkV k)

= D(PV ||QV ) +
1

k

 ∑
(vk,ynk )∈Vk×Ynk

PV kY nk (vk, ynk) log

(
PY nk |V k(y

nk |vk)
QY nk |V k(ynk |vk)

) (60)

Now, note that

PY nk |V k(y
nk |vk) =

∑
(uk,xnk )∈ Uk×Xnk

PUk|V k(u
k|vk)PXnk |Uk(x

nk |uk)PY nk |Xnk (ynk |xnk)

=

(
nk∏
i=1

P ∗Y (yi)

) ∑
(uk,xnk )∈ Uk×Xnk

PUk|V k(u
k|vk)PXnk |Uk(x

nk |uk) (61)
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=

nk∏
i=1

P ∗Y (yi), (62)

where, (61) follows from (3) and (58). Similarly, it follows that

QY nk |V k(y
nk |vk) =

nk∏
i=1

P ∗Y (yi). (63)

From (59), (60), (62) and (63), we obtain that

lim sup
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk), g(k,nk)
))
≤ D(PV ||QV ). (64)

This completes the proof of the weak converse.

Next, we proceed to show that D(PV ||QV ) is the optimal T2EE for every ε ∈ (0, 1). For any

fixed ε ∈ (0, 1), let f (k,nk) and A(k,nk) denote any encoding function and acceptance region for

H0, respectively, such that nk ≤ τk and

lim sup
k→∞

α
(
k, nk, f

(k,nk), g(k,nk)
)
≤ ε. (65)

The joint distribution of (V k, Y nk) under the null and alternate hypothesis is given by

PV kY nk (vk, ynk) =

(
k∏
i=1

PV (vi)

)(
nk∏
j=1

P ∗Y (yj)

)
, (66)

and QV kY nk (vk, ynk) =

(
k∏
i=1

QV (vi)

)(
nk∏
j=1

P ∗Y (yj)

)
, (67)

respectively. By the weak law of large numbers, for any δ > 0, (66) implies that

lim
k→∞

PV kY nk
(
T k[PV ]δ

× T nk[P ∗Y ]δ

)
= 1. (68)

Also, from (65), we have

lim inf
k→∞

PV kY nk
(
A(k,nk)

)
≥ (1− ε). (69)

From (68) and (69), it follows that

PV kY nk
(
A(k,nk) ∩ T k[PV ]δ

× T nk[P ∗Y ]δ

)
≥ 1− ε′, (70)

for any ε′ > ε and k sufficiently large (k ≥ k0(δ, |V|, |Y|)). Let
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A(vk, δ) :=
{
ynk : (vk, ynk) ∈ A(k,nk) ∩ T k[PV ]δ

× T nk[P ∗Y ]δ

}
, (71)

and D(η, δ) :=
{
vk ∈ T k[PV ]δ

: PY nk (A(vk, δ)) ≥ η
}
. (72)

Fix 0 < η′ < 1− ε′. Then, we have from (70) that for any δ > 0 and sufficiently large k,

PV k (D(η′, δ)) ≥ 1− ε′ − η′

1− η′
. (73)

From [24, Lemma 2.14], (73) implies that D(η′, δ) should contain atleast 1−ε′−η′
1−η′ fraction (ap-

prox.) of sequences in T k[PV ]δ
and for each vk ∈ D(η′, δ), (72) implies that A(vk, δ) should contain

atleast η′ fraction (approx.) of sequences in T nk[P ∗Y ]δ
, asymptotically. Hence, for sufficiently large

k, we have

QV kY nk

(
A(k,nk)

)
≥

∑
vk∈D(η′,δ)

QV k(v
k)

∑
ynk∈A(vk,δ)

PY n(ynk) (74)

≥ e
−k

D(PV ||QV )−
log

(
1−ε′−η′

1−η′

)
k

− log(η′)
k
−O(δ)


. (75)

Here, (75) follows from [24, Lemma 2.6].

Let A(k,nk)
0 := T k[PV ]δ

× T nk[P ∗Y ]δ
. Then, for sufficiently large k,

PV kY nk
(
A(k,nk)

0

)
(k)−→ 1, and (76)

QV kY nk

(
A(k,nk)

0

)
≤ e−k(D(PV ||QV )−O(δ)), (77)

where, (76) and (77) follows from weak law of large numbers and [24, Lemma 2.6], respectively.

Together (75), (76) and (77) implies that

|κ(τ, ε)− κ(τ)| ≤ O(δ), (78)

and the theorem is proved since δ > 0 is arbitrary.

Remark 11. Theorem 10 shows that when the capacity of a DMC is zero, then no communication

from the observer to the detector helps in terms of the T2EE. To contrast this with the optimal
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Fig. 2: Hypothesis testing over a noisy channel.

T2EE β0 (see (16)) for the case when the channel is noiseless, note that

β0 ≥ D(PV ||QV ) + min
PŨṼ :

PŨ=PU , PṼ =PV

D(PŨ |Ṽ ||QU |V
∣∣PṼ ). (79)

Since PŨ Ṽ achieving the minimum in (79) has to satisfy∑
v∈V

PV (v)PŨ |Ṽ (u|v) = PU(u), ∀ u ∈ U , (80)

and D(P1||P2) > 0 for probability distributions P1 6= P2, it is clear that β0 > D(PV ||QV ) if for

some u ∈ U , ∑
v∈V

PV (v)QU |V (u|v) 6= PU(u). (81)

Hence, in general, communication (even a single bit of information) between the observer and the

detector helps to improve the T2EE compared to the scenario when there is no communication.

C. HT over a DMC

Consider now HT over a noisy channel as depicted in Fig. 2, in which, the side-information

V k is absent and the detector performs the following hypothesis test:

H0 : Uk ∼
k∏
i=1

PU , (82a)

H1 : Uk ∼
k∏
i=1

QU . (82b)

When the observations Uk are available directly at the detector, a single-letter characterization

of the optimal T2EE for a given constraint ε on the type 1 error probability is known, and given
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by

κ(ε) = D(PU ||QU), ∀ ε ∈ (0, 1). (83)

Notice that a strong converse holds in this case, in the sense that, κ(ε) is independent of ε.

If the detector and the observer are connected with a noise-free link of capacity R > 0, it

is easy to see that the T2EE in (83) can be achieved by performing the Neyman-Pearson test

locally at the observer and transmitting the decision to the detector over the noiseless link. When

the communication channel is noisy, however, it is unclear whether such a local decision scheme

would still remain optimal. More specifically, since the reliability of the transmitted messages

depends on the communication rate employed, there is a trade-off between transmitting less

information more reliably versus transmitting more information less reliably, to the detector. In

the sequel, we show that making a decision locally at the observer, and communicating it to the

detector is indeed optimal. The optimal scheme is in fact an adaptation of the LD scheme to the

case when the side information V k is absent.

The problem formulation and definitions in Section II-B carry over as such without V k (or by

assuming V k is a constant). We will denote the decision rule g(k,n) as g(n) since it is a function

of Y n only. Also, to differentiate between distributed HT and the current setting, we will denote

the maximum achievable T2EE by κ′(τ, ε). Let

κ′0(τ) :=

 0 , if τ = 0,

min (D(PU ||QU), τEc) , otherwise,
(84)

where Ec is as defined in (17). Note that Ec can take the value of ∞ in general. The following

result provides a single-letter characterization of the optimal T2EE, and also shows that a strong

converse holds.

Theorem 12. κ′(τ, ε) = κ′0(τ), ∀ε ∈ (0, 1), τ ≥ 0.

Proof: We prove the result in three steps as follows:

(i) κ′(τ, ε) ≥ κ′0(τ), ∀ ε ∈ (0, 1).

(ii) limε→0 κ
′(τ, ε) = κ′0(τ).

(iii) κ′(τ, ε) ≤ κ′0(τ), ∀ ε ∈ (0, 1).

The proof of (i) follows from Theorem 5 by setting V k equal to a constant under both hypotheses.
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To show part (ii), we will prove the weak converse

lim
ε→0

κ′(τ, ε) ≤ κ′0(τ), (85)

which combined with part (i) proves part (ii). Similarly to [5, Theorem 1(b)], it follows that

for any sequence of encoding functions f (k,nk) and decision rules g(nk) satisfying nk ≤ τk and

(46), we have

lim sup
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk), g(nk)
))
≤ 1

k
D(PY nk ||QY nk ). (86)

If τ = 0, then nk = 0, and hence, the R.H.S. of (86) is zero, thus proving (85). Now, assume

that τ > 0. Then, the R.H.S. of (86) can be upper bounded as follows.

D(PY nk ||QY nk ) =

nk∑
i=1

D(PYi|Y i−1||QYi|Y i−1|PY i−1) (87)

=

nk∑
i=1

∑
yi−1∈Yi−1

PY i−1(yi−1)

[∑
yi∈Y

PYi|Y i−1(yi|yi−1) log

(
PYi|Y i−1(yi|yi−1)

QYi|Y i−1(yi|yi−1)

)]

=

nk∑
i=1

∑
yi−1∈Yi−1

PY i−1(yi−1) D
(
PYi|Y i−1=yi−1||QYi|Y i−1=yi−1

)
.

Since

PYi|Y i−1(yi|yi−1) =
∑
xi∈X

PXi|Y i−1(xi|yi−1)PYi|Xi(yi|xi), (88)

and QYi|Y i−1(yi|yi−1) =
∑
xi∈X

QXi|Y i−1(xi|yi−1)PYi|Xi(yi|xi), (89)

we can write

D(PY nk ||QY nk )

≤
nk∑
i=1

∑
yi−1∈Yi−1

PY i−1(yi−1) sup(
PXi|Y i−1=yi−1 ,

QXi|Y i−1=yi−1

)D
(
PYi|Y i−1=yi−1||QYi|Y i−1=yi−1

)
. (90)

It follows from (88), (89), and the convexity of D(PX ||QX) in (PX , QX) that,

D
(
PYi|Y i−1=yi−1||QYi|Y i−1=yi−1

)
is a convex function of (PXi|Y i−1=yi−1 , QXi|Y i−1=yi−1) for any

yi−1 ∈ Y i−1. It is well-known that the maximum of a convex function over a convex feasible set

is achieved at the extreme points of the feasible set. Since the extreme points of the probability
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simplex PX are probability distributions of the form

PXi(x) = 1(x = x′), x ∈ X , (91)

for some x′ ∈ X , it follows that for some functions h1i : Y i−1 → X and h2i : Y i−1 → X ,

i ∈ [1 : n], we can write

sup(
PXi|Y i−1=yi−1 ,

QXi|Y i−1=yi−1

)D
(
PYi|Y i−1=yi−1||QYi|Y i−1=yi−1

)
= D

(
PYi|Xi=h1i(yi−1)||PYi|Xi=h2i(yi−1)

)

≤ max
(x,x′)∈X×X

D
(
PY |X=x||PY |X=x′

)
= Ec. (92)

Thus, it follows from (90) and (92) that

1

k
D(PY nk ||QY nk ) ≤ nk

k
Ec. (93)

Also, the data processing inequality for Kullback-Leibler divergence applied to Markov chain

Uk −Xnk − Y nk yields

1

k
D(PY nk ||QY nk ) ≤ 1

k
D(PUk ||QUk) = D(PU ||QU). (94)

Hence, it follows from from (86), (93), (94), and the fact that nk ≤ τk, that,

lim sup
k→∞

−1

k
log
(
β
(
k, nk, f

(k,nk), g(nk)
))
≤ min (D(PU ||QU), τEc) . (95)

Noting that the R.H.S. of (95) is independent of (f (k,nk), g(nk)), the proof of (85) is completed

by taking the supremum with respect to (f (k,nk), g(nk)).

Finally, we prove part (iii), i.e.,

κ′(τ, ε) ≤ κ′0(τ), ∀ ε ∈ (0, 1). (96)

If τ = 0, then nk = 0, and (96) holds. Now, assume τ > 0. For k ∈ Z+, let f (k,nk) and g(nk) be

any sequence of encoding functions and decision rules such that nk ≤ τk and (65) is satisfied.

Let A(nk) denote the acceptance region corresponding to g(nk). For fixed γ > 0 and δ > 0, let

B(k,nk)
γ,δ =

{
uk ∈ T k[PU ]δ

: P
(
Y nk ∈ A(nk)|Uk = uk, H = 0

)
≥ γ

}
.
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By the weak law of large numbers, for γ′ > 0 and sufficiently large k, we have that

P
(
Uk ∈ T k[PU ]δ

|H = 0
)
≥ 1− γ′. (97)

Then, it follows from (65) and (97) that

P
(
Uk ∈ B(k,nk)

γ,δ |H = 0
)
≥ 1− ε− γ

1− γ
− γ′. (98)

Taking γ = 1−ε
2

and γ′ ∈
(

0, 1−ε
2(1+ε)

)
, we have that

P
(
Uk ∈ B(k,nk)

γ,δ |H = 0
)
≥ 1− ε

2(1 + ε)
. (99)

For arbitrary uk ∈ B(k,nk)
γ,δ , let x̄nk be such that

PY nk |Xnk

(
A(nk)|x̄nk

)
≥ γ, (100)

and PXnk |Uk
(
x̄nk |uk

)
> 0. (101)

The existence of such a x̄nk follows by definition of B(k,nk)
γ,δ .

For any set D ⊂ X n, let Γl(D) denote the Hamming l−neighbourhood of D, i.e.,

Γl(D) := {x̃n ∈ X n : dH(xn, x̃n) ≤ l for some xn ∈ D}.

Due to (99), it follows by the application of the blowing-up lemma [24] that there exists sequences

of non-negative numbers, {λk}k∈Z+ and {lk}k∈Z+ such that, λk
(k)−→ 0, lk

k

(k)−→ 0 and

PY nk |Xnk

(
Γlk
(
A(nk)

)
|x̄nk

)
≥ 1− λk. (102)

Let Ā(nk) := Γlk
(
A(nk)

)
.

Suppose Ec <∞. Then, PY |X(y|x) > 0, ∀ (x, y) ∈ X × Y . Let

¯
v := min

(x,y)∈X×Y
PY |X(y|x) > 0. (103)

For each ȳnk ∈ Ā(nk), there exists a ynk ∈ A(nk) such that dH(ȳnk , ynk) ≤ lk. Hence, for each

such ȳnk and arbitrary xnk ∈ X nk , we have

PY nk |Xnk (ȳnk |xnk)
¯
vlk ≤ PY nk |Xnk (ynk |xnk). (104)
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Also, for each ynk ∈ A(nk), the number of ȳnk ∈ Ā(nk) is |Y|lk . Hence, from (104), we have

PY nk |Xnk

(
Ā(nk)|xnk

)
≤ |Y|lkPY nk |Xnk

(
A(nk)|xnk

)
¯
v−lk .

This implies that

PY nk |Uk
(
Ā(nk)|uk

)
≤ |Y|lkPY nk |Uk

(
A(nk)|uk

)
¯
v−lk . (105)

Let f̃ (k,nk) : Uk → X nk and g̃(nk) : Ynk → {0, 1} be defined as follows:

f̃ (k,nk)(uk) =

x̄
nk , ∀ uk ∈ T k[PU ]δ

f (k,nk)(uk), otherwise,
(106a)

and g̃(nk)(ynk) := 1− 1
(
ynk ∈ Ā(nk)

)
. (106b)

From (97), (102) and (106), it follows that

α
(
k, nk, f̃

(k,nk), g̃(nk)
)
≤ 1− (1− λk)(1− γ′)

(k)−→ γ′.

Also,

β
(
k, nk, f̃

(k,nk), g̃(nk)
)

≤
∑

uk∈Tk
[PU ]δ

QUk(u
k) +

∑
uk /∈Tk

[PU ]δ

QUk(u
k)PY nk |Uk

(
Ā(nk)|uk

)
≤

∑
uk∈Tk

[PU ]δ

QUk(u
k) +

¯
v−lk |Y|lk

∑
uk /∈Tk

[PU ]δ

QUk(u
k)PY nk |Uk

(
A(nk)|uk

)
(107)

≤
∑

uk∈Tk
[PU ]δ

QUk(u
k) +

¯
v−lk |Y|lk

∑
uk∈Uk

QUk(u
k)PY nk |Uk

(
A(nk)|uk

)
=

∑
uk∈Tk

[PU ]δ

QUk(u
k) +

¯
v−lk |Y|lkβ

(
k, nk, f

(k,nk), g(nk)
)

≤ e−k(D(PU ||QU )−O(δ)) +
¯
v−lk |Y|lkβ

(
k, nk, f

(k,nk), g(nk)
)
,

where (107) follows from (105). Thus, it follows from the facts lk
k

(k)−→ 0 and
¯
v > 0 that, for any

γ′′ > 0,



32

− 1

k
log
(
β
(
k, nk, f̃

(k,nk), g̃(nk)
))

≥ min

(
D(PU ||QU)−O(δ),−1

k
log
(
β
(
k, nk, f̃

(k,nk), g̃(nk)
))
− γ′′

)
,

provided k is sufficiently large. Since D(PU ||QU) is the maximum T2EE achievable for any

type 1 error probability constraint ε ∈ (0, 1), when Uk is directly observed at the detector, it

follows by taking δ, γ′′ → 0 that

lim inf
k→∞

−1

k
log
(
β
(
k, nk, f̃

(k,nk), g̃(nk)
))
≥ lim inf

k→∞
−1

k
log
(
β
(
k, nk, f

(k,nk), g(nk)
))
.

Since f (k,nk) and g(nk) is arbitrary, (96) follows.

Now, suppose Ec =∞. Then, κ′0(τ) = D(PU ||QU). Noting that D(PU ||QU) is the maximum

T2EE achievable for any type 1 error probability constraint ε ∈ (0, 1), when Uk is directly

observed at the detector, it follows that (96) holds. This completes the proof of the theorem.

V. DISTRIBUTED HT WITH MULTIPLE OBSERVERS

Thus far, we have focused on distributed HT with a single observer communicating to the

detector over a DMC. In this section, we will extend our results to the distributed hypothesis

test given in (1), where, there are multiple observers communicating their observations to the

detector over orthogonal DMCs that satisfy the probability law given in (3). We will focus on

TACI, and obtain a lower and upper bound on the optimal T2EE. To do this, we follow the

method in [5], and first show an equivalence between the above problem and a JSCC problem

in the presence of noisy helpers that will be introduced below. The desired bounds are then

obtained indirectly via the best known inner and outer bounds for the equivalent problem. As a

corollary, we provide yet another proof of the single-letter characterization of the optimal T2EE.

Let

θ(τ) := sup
k∈Z+

θ(k, τ), (108)

where θ(k, τ) := sup
f

(k,n)
1 ,...,f

(k,n)
L

n≤τk

D
(
PY nL V k ||QY nL V

k

)
k

. (109)

We have the following multi-letter characterization of the optimal T2EE in terms of θ(τ) whose

proof follows along similar lines to [5, Theorem 1].
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Lemma 13. For τ ∈ R+,

(i) κ(τ, ε) ≥ θ(τ), ∀ ε ∈ (0, 1].

(ii) limε→0 κ(τ, ε) ≤ θ(τ).

Proof: The proof can be found in Appendix E.

Part (i) and (ii) of Lemma 13 together imply that θ(τ) is the optimal T2EE as ε → 0, i.e.,

κ(τ) = θ(τ). Recall that for TACI with multiple observers, V = (E,Z) and QU1...ULEZ =

PU1...ULZPE|Z . In this case, the KL-divergence in (109) becomes mutual information, and we

have

θ(τ) = sup
f

(k,n)
1 ,...,f

(k,n)
L ,

k,n≤τk

I(Ek;Y n
L |Zk)

k
s.t.

(Zk,Ek)− Uk
l −Xn

l − Y n
l , l ∈ L.

By the memoryless property of Ek and Zk, we can write

θ(τ) = H(E|Z)− inf
f

(k,n)
1 ,...,f

(k,n)
L

k,n≤τk

H(Ek|Y n
L , Z

k)

k
(110)

s.t. (Zk, Ek)− Uk
l −Xn

l − Y n
l , l ∈ L.

The last term in the R.H.S. of (110) can be identified as the multi-letter characterization of the

source coding rate in an L−helper JSCC problem, as we show next.

A. L−helper JSCC problem

Consider the model shown in Fig. 3 where there are L + 2 correlated DMS’s (UL, E, Z)

with joint distribution PU1...ULEZ . For 1 ≤ l ≤ L, encoder f (k,n)
l : Ukl → X n

l of helper l

observes the sequence Uk
l and transmits Xn

l = f
(k,n)
l (Uk

l ) over the corresponding DMC PYl|Xl ,

while the main encoder fks : Ek → M observes Ek, and outputs an index M = fks (Ek).

Decoder g(k,n)
s : YnL ×M × Zk → Êk observes Y n

L , receives M error-free and has access to

side-information Zk, based on which, it outputs Êk. The goal of the decoder is to reconstruct

Ek losslessly. Before establishing the multi-letter characterization of the rate region of the L−

helper JSCC, we require a few definitions.
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Fig. 3: L−helper JSCC problem.

Definition 14. For a given bandwidth ratio τ , a rate R is said to be λ-achievable for the L-

helper JSCC problem if there exist encoders fks , f (k,nk)
l , 1 ≤ l ≤ L, and decoder g(k,nk)

s such

that nk ≤ τk and

lim sup
k→∞

P
(
g(k,nk)
s

(
Y nk
L ,M,Zk

)
6= Ek

)
≤ λ,

and lim sup
k→∞

log(|M|)
k

≤ R.

Let

R(τ) := inf{R : R is λ-achievable for every λ ∈ (0, 1].} (111)

Define

Rk := inf
f

(k,n)
1 ,...,f

(k,n)
L ,

n≤τk

H(Ek|Y n
L , Z

k)

k
(112)

s.t (Zk, Ek)− Uk
l −Xn

l − Y n
l , l ∈ L.

The equivalence between the multi-letter characterizations of θ(τ) and R(τ) follows from (110)

and the theorem stated below.
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Theorem 15. For the L−helper JSCC problem,

R(τ) = inf
k
Rk.

Proof: The proof is given in Appendix F.

To obtain computable single-letter lower and upper bounds on R(τ), we use the source-channel

separation theorem [30, Th. 2.4] for orthogonal multiple access channels. The theorem states

that all achievable average distortion-cost tuples in a multi-terminal JSCC (MT-JSCC) problem

over an orthogonal multiple-access channel (MAC) can be obtained by the intersection of the

rate-distortion region and the MAC rate-region. We need a slight generalization of this result

when there is side information Z at the decoder, which can be proved similarly to [30]. Note that

the L−helper JSCC problem is a special case of the MT-JSCC problem with L + 1 correlated

sources U1, . . . , UL, E and side information Z available at the decoder, where the objective is

to reconstruct source E losslessly. Although the source-channel separation theorem proves that

separation holds, a single-letter expression is not available in general for the multi-terminal rate

distortion problem [33]. However, single-letter inner and outer bounds are known. For simplicity,

we will use the well-known BT bounds [28] [29] for our purpose. However, as will be apparent,

these bounds may be replaced by any known inner and outer bound available in the literature.

In particular, it is well-known that in some cases, the BT inner and outer bounds are strictly

outperformed by the bounds in [34], [35] and [36], [37], respectively, and hence, tighter bounds

on the optimal T2EE can be obtained by replacing the BT bounds with these bounds. Next, we

present our result.

For G ⊆ L, let

CG := CG(PY1|X1 , . . . , PYL|XL) :=
∑
l∈G

Cl(PYl|Xl), (113)

where Cl := Cl(PYl|Xl) := maxPXl I(Xl;Yl), l ∈ L, denotes the capacity of the channel PYl|Xl .

For τ ∈ R+, let

Ri(τ) := inf
WL

max
G⊆L

FG, (114)

where

FG = H(E|WGc , Z) + I(UG;WG|WGc , E, Z)− τ
∑
l∈G

Cl
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for some auxiliary r.v.’s Wl, l ∈ L, such that |Wl| ≤ |Ul|+ 4,

(Z, E, Ulc , Wlc)− Ul −Wl, (115)

and I(UL;WG|E,WGc , Z) ≤ τCG, ∀ G ⊆ L. (116)

Similarly, let Ro(τ) denote the right hand side (R.H.S) of (114), when the auxiliary r.v.’s Wl, l ∈

L satisfy |Wl| ≤ |Ul|+ 4, (116) and

(E,Ulc , Z)− Ul −Wl. (117)

The following theorem combined with Lemma 13 provides a lower and upper bound on κ(τ, ε).

Theorem 16.

Ro(τ) ≤ R(τ) ≤ Ri(τ), (118)

and H(E|Z)−Ri(τ) ≤ θ(τ) ≤ H(E|Z)−Ro(τ). (119)

Proof: The proof is presented in Appendix G.

The BT inner bound is tight for the two terminal case, when one of the distortion measure is

the Hamming distortion measure and the corresponding average distortion requirement is zero

(lossless) [33, Ch.12]. Using this fact, an alternate proof of Proposition 9 can be given. The

details are given in Appendix H.

VI. CONCLUDING REMARKS

In this paper, we have studied the T2EE achievable for a distributed HT problem over

orthogonal DMCs with side information available at the detector. We obtained single-letter lower

bounds on the optimal T2EE for general HT, and exact single-letter characterizations in some

important special cases. It is interesting to note from our results that the reliability function of

the channel does not play a role in the characterization of the optimal T2EE for TACI, and

only the channel capacity matters. We also showed that the strong converse holds in two special

scenarios, namely, when the channel has zero capacity and for HT over a DMC. While the strong

converse holds for distributed HT over a rate-limited noiseless channel [5], it remains an open

question whether this result carries over to noisy channels in general. While we assume that
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nk ≤ τk for all k, the results remain the same for τ > 0, if this constraint is relaxed to

lim sup
k→∞

nk
k
≤ τ. (120)

For τ = 0, slight modifications are required for some of the results, which is due to the fact that

it is possible to transmit some information to the detector (at asymptotically zero-rate) under the

constraint in (120), while the same is not possible under the constraint nk ≤ τk. For instance,

the choice nk = ka for any fixed number a < 1 satisfies lim supk→∞
nk
k

= 0. It can be shown

that under constraint (120), Theorem 5 and Theorem 12 hold with

κ0(τ) :=

 β0 , if τ = 0 and Ec =∞,

min (β0, τEc +D(PV ||QV )) , otherwise,
(121)

and

κ′0(τ) :=

 D(PU ||QU), if τ = 0 and Ec =∞,

min (D(PU ||QU), τEc) , otherwise,
(122)

respectively. Also, Theorem 2 hold with τEm (PSX) and τEx (IP (X;Y |S), PSX) set to ∞

whenever τ = 0, Em (PSX) = ∞ and τ = 0, Ex (IP (X;Y |S), PSX) = ∞, respectively, as

opposed to Remark 3. While we did not discuss the complexity of the schemes considered in

this paper, it is an important factor that needs to be considered in any practical implementation of

these schemes. In this regard, it is evident that the JHTCC, SHTCC and local decision schemes

are in a decreasing order of complexity.

APPENDIX A

PROOF OF THEOREM 2

The proof outline is as follows. We first describe the encoding and decoding operations of

the SHTCC scheme. The random coding method is used to analyze the type 1 and type 2

error probabilities achieved by this scheme, averaged over the ensemble of randomly generated

codebooks. This guarantees the existence of at least one deterministic codebook that achieves

the same or lower type 1 and type 2 error probabilities. For brevity, in the proof below, we

denote the information theoretic quantities like IP (U ;W ), T k[PUW ]δ
, etc., that are computed with

respect to joint distribution PUVWSXY (PW |U , PSX) := PUV PW |UPSXPY |X by I(U ;W ), T k[UW ]δ
,

etc.
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Codebook Generation: Let k ∈ Z+ and n = bτkc. Fix distributions PW |U and PSX , positive

numbers µ, δ′, δ′′, δ′′′, δ, δ̃ (arbitrarily small subject to the delta-convention [24] and certain other

constraints that will be specified in the course of the proof), and R such that 0 ≤ R =

τI(X;Y |S)− µ ≤ τC. The source codebook C used by the source encoder f (k)
s is obtained by

generating ek(I(U ;W )+δ′) sequences wk(j), j ∈
[
ek(I(U ;W )+δ′)

]
, independently at random according

to the distribution
∏k

i=1 PW (wi), where

PW (w) =
∑
u∈U

PW |U(w|u)PU(u).

The channel codebook C̃ used by f (k,n)
c is obtained as follows. The codeword length n is divided

into |S| = |X | blocks, where the length of the first block is dPS(s1)ne, the second block is

dPS(s2)ne, so on so forth, and the length of the last block is chosen such that the total length

is n. The codeword xn(0) = sn corresponding to M = 0 is obtained by repeating the letter

si in block i. The remaining
⌈
ekR
⌉

ordinary codewords xn(m), m ∈
[
ekR
]
, are obtained by

blockwise i.i.d. random coding, i.e., the symbols in the ith block of each codeword are generated

i.i.d. according to PX|S=si(xi). The sequence sn is revealed to the detector.

Encoding: If I(U ;W ) + δ′ > R, i.e., the number of codewords in the source codebook is

larger than the number of codewords in the channel codebook, the encoder performs uniform

random binning on the sequences wk(i), i ∈
[
ek(I(U ;W )+δ′)

]
in C, i.e., for each codeword in

C, it selects an index uniformly at random from the set [ekR]. Denote the bin index selected

for wk(i) by fB(i). If the observed sequence Uk = uk is typical, i.e., uk ∈ T k[U ]δ′′
, the source

encoder f (k)
s first looks for a sequence wk(j) in C such that (uk, wk(j)) ∈ T k[UW ]δ

, δ > δ′′. If

there exist multiple such codewords, it chooses an index j among them uniformly at random,

and outputs the bin-index M = m = fB(j), m ∈ [ekR] or M = m = j depending on whether

I(U ;W )+δ′ > R, or otherwise. If uk /∈ T k[U ]δ′′
or such an index j does not exist, f (k)

s outputs the

error message M = 0. The channel encoder f (k,n)
c transmits the codeword xn(m) from codebook

C̃.

Decoding: At the decoder, g(k,n)
c outputs M̂ = 0 if for some 1 ≤ i ≤ |S|, the channel

outputs corresponding to the ith block does not belong to T n[PY |S=si
]δ′′′

. Otherwise, M̂ is set

as the index of the codeword corresponding to the maximum-likelihood candidate among the

ordinary codewords. If M̂ = 0, H1 is declared. Else, given the side information sequence V k = vk

and estimated bin-index M̂ = m̂, g(k,n)
s searches for a typical sequence ŵk = wk(ĵ) ∈ T k[W ]δ̂

,
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δ̂ = |U|δ, in codebook C such that

ĵ = arg min
l: fB(l)=m̂,

wk(l)∈Tk
[W ]

δ̂

He(w
k(l)|vk), if I(U ;W ) + δ′ > R,

ĵ = m̂, otherwise.

The decoder declares H0 if (ŵk, vk) ∈ T k[WV ]δ̃
, for δ̃ > δ, else, H1 is declared.

We next analyze the type 1 and type 2 error probabilities achieved by the above scheme (in

the limit δ, δ′, δ̃ → 0).

Analysis of Type 1 error: A type 1 error occurs only if one of the following events happen.

ETE =

{
(Uk, V k) /∈ T k[UV ]δ̄

, δ̄ =
δ′′

|V|

}
EEE =

{
@ j ∈

[
ek(I(U ;W )+δ′)

]
: (Uk,W k(j)) ∈ T k[UW ]δ

}
EME =

{
(V k,W k(J)) /∈ T k[VW ]δ̃

}
EDE =

{
∃ l ∈

[
ek(I(U ;W )+δ′)

]
, l 6= J : fB(l) = fB(J), W k(l) ∈ T k[W ]δ̂

,

He(W
k(l)|V k) ≤ He(W

k(J)|V k)

}
ECD =

{
g(k,n)
c (Y n) 6= M

}
P(ETE|H = 0) tends to 0 asymptotically by the weak law of large numbers. Conditioned on EcTE ,

Uk ∈ T[U ]δ′′
and by the covering lemma [24, Lemma 9.1], it is well known that P(EEE|EcTE)

tends to 0 doubly exponentially for δ > δ′′ and δ′ appropriately chosen. Given EcEE ∩ EcTE
holds, it follows from the Markov chain relation V − U −W and the Markov lemma [33], that

P(EME|EcTE ∩EcEE) tends to zero as k →∞ for δ̃ > δ (appropriately chosen). Next, we consider

P(EDE). Given that EcME ∩ EcEE ∩ EcTE holds, note that limk→∞He(W
k(J)|V k) → H(W |V ) as

δ̃ → 0. Thus, we have

P(EDE| V k = vk,W k(J) = wk, EcME ∩ EcEE ∩ EcTE)

≤
ek(I(U ;W )+δ′)∑

l=1,
l 6=J

∑
w̃k∈Tk

[W ]
δ̂
:

He(w̃k|vk)≤He(wk|vk)

P
(
fB(l) = fB(J), W k(l) = w̃k| V k = vk,W k(J) = wk,
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EcME ∩ EcEE ∩ EcTE
)

=
ek(I(U ;W )+δ′)∑

l=1,
l 6=J

∑
w̃k∈Tk

[W ]
δ̂
:

He(w̃k|vk)

≤He(wk|vk)

P(W k(l) = w̃k| V k = vk,W k(J) = wk, EcME ∩ EcEE ∩ EcTE)
1

ekR

≤
ek(I(U ;W )+δ′)∑

l=1,
l 6=J

∑
w̃k∈Tk

[W ]
δ̂
:

He(w̃k|vk)≤He(wk|vk)

2 · e−kRe−k(H(W )−δ1) (123)

≤
ek(I(U ;W )+δ′)∑

l=1,
l 6=J

(k + 1)|V||W| ek(H(W |V )+γ1(k)) · 2 · e−kRe−k(H(W )−δ1) (124)

≤ e−k(R−I(U ;W |V )−δ(k)
e ),

where δ1 = O(δ̂), γ1(k) = |He(w
k|vk)−H(W |V )|, and

δ(k)
e = δ1 +

1

k
|V||W| log(k + 1) +

log(2)

k
+ δ′ + γ1(k)

(k)−→ 0,

as δ̃, δ′, δ → 0. To obtain (123), we used the fact that

P(W k(l) = w̃k| EcME ∩ EcEE ∩ EcTE,W k(J) = wk, V k = vk) ≤ 2 · P(W k(l) = w̃k). (125)

This follows similarly to (147), which is discussed in the type 2 error analysis section below. In

order to obtain the expression in (124), we first summed over the types PW̃ of sequences within

the typical set T k[W ]δ
that have empirical entropy less than He(w

k|vk); and used the facts that

the number of sequences within such a type is upper bounded by ek(H(W |V )+γ1(k)), and the total

number of types is upper bounded by (k + 1)|V||W| [24]. Summing over all (wk, vk) ∈ T k[VW ]δ̃
,

we obtain

P(EDE|EcME ∩ EcEE ∩ EcTE)

≤
∑

(wk,vk)∈Tk
[WV ]

δ̃

P(W k(J) = wk, V k = vk|EcME ∩ EcEE ∩ EcTE) e−k(R−I(U ;W |V )−δ(k)
e )

≤ e−k(R−I(U ;W |V )−δ(k)
e ). (126)

Finally, we consider the event ECD. Denoting by ECT , the event that the channel outputs

corresponding to the ith block does not belong to T n[PY |S=si
]δ′′′

for some 1 ≤ i ≤ |S|, it follows
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from the weak law of large numbers and the union bound, that

P(ECT |EcEE)
(k)−→ 0. (127)

Also, it follows from [24, Exercise 10.18, 10.24] that

P (ECD|EcEE ∩ EcCT ) ≤ e−nEx(IP (X;Y |S)−µ,PSX ,PY |X) (128)

asymptotically. This implies that the probability that an error occurs at the channel decoder g(k,n)
c

tends to 0 as n→∞ since Ex(I(X;Y |S), PSX , PY |X) > 0 for I(X;Y |S) < C(PY |X). Thus, if

I(U ;W |V ) < R = τI(X;Y |S) − µ ≤ τC(PY |X), the probability of the events causing type 1

error tends to zero asymptotically.

Analysis of Type 2 error: First, note that a type 2 error occurs only if V k ∈ T k[V ]|W|δ̃
, and

hence we can restrict the type 2 error analysis to only such V k. Denote the event that a type 2

error happens by D0. Let

E0 =
{
Uk /∈ T k[U ]δ′′

}
. (129)

Type 2 error probability can be written as

β
(
k, n, f (k,n), g(k,n)

)
=

∑
(uk,vk)∈Uk×Vk

P(Uk = uk, V k = vk|H = 1) P(D0|Uk = uk, V k = vk). (130)

Let ENE := EcEE ∩ Ec0 . The last term in (130) can be upper bounded as follows.

P(D0|Uk = uk, V k = vk)

= P(ENE|Uk = uk, V k = vk) P(D0|Uk = uk, V k = vk, ENE)

+ P(EcNE|Uk = uk, V k = vk) P(D0|Uk = uk, V k = vk, EcNE)

≤ P(D0|Uk = uk, V k = vk, ENE) + P(D0|Uk = uk, V k = vk, EcNE).

Thus, we have

β
(
k, n, f (k,n), g(k,n)

)
≤

∑
(uk,vk)∈Uk×Vk

P(Uk = uk, V k = vk|H = 1)
[
P(D0|Uk = uk, V k = vk, ENE)
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+ P(D0|Uk = uk, V k = vk, EcNE)
]
. (131)

First, we assume that ENE holds. Then,

P(D0| Uk = uk, V k = vk, ENE) =
ek(I(U ;W )+δ′)∑

j=1

ekR∑
m=1

P(J = j, fB(J) = m| Uk = uk, V k = vk, ENE)

P(D0|Uk = uk, V k = vk, J = j, fB(J) = m, ENE). (132)

By the symmetry of the codebook generation, encoding and decoding procedure, the term

P(D0|Uk = uk, V k = vk, J = j, fB(J) = m, ENE) in (132) is independent of the value of J

and fB(J). Hence, w.l.o.g. assuming J = 1 and fB(J) = 1, we can write

P(D0| Uk = uk, V k = vk, ENE)

=
ek(I(U ;W )+δ′)∑

j=1

ekR∑
m=1

P(J = j, fB(J) = m| Uk = uk, V k = vk, ENE)

P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

= P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

=
∑

wk∈Wk

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE). (133)

Given ENE holds, D0 may occur in three possible ways: (i) when M̂ 6= 0, i.e., EcCT occurs, the

channel decoder makes an error and the codeword retrieved from the bin is jointly typical with

V k; (ii) when an unintended wrong codeword is retrieved from the correct bin that is jointly

typical with V k; and (iii) when there is no error at the channel decoder and the correct codeword

is retrieved from the bin, that is also jointly typical with V k. We refer to the event in case (i)

as the channel error event ECE , and the one in case (ii) as the binning error event EBE . More

specifically,

ECE = {EcCT and M̂ = g(k,n)
c (Y n) 6= M}, and (134)
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EBE =
{
∃ l ∈

[
ek(I(U ;W )+δ′)

]
, l 6= J, fB(l) = M̂, W k(l)) ∈ T k[W ]δ̂

,

(V k,W k(l)) ∈ T k[VW ]δ̃

}
. (135)

Define the following events

F = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE}, (136)

F1 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, ECE}, (137)

F2 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, EcCE}, (138)

F21 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, EcCE, EBE}, (139)

F22 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, EcCE, EcBE}. (140)

The last term in (133) can be expressed as follows.

P(D0|F) = P(ECE|F) P(D0|F1) + P(EcCE|F) P(D0|F2),

where

P(D0|F2) = P(EBE|F2) P(D0|F21) + P(EcBE|F2) P(D0|F22). (141)

It follows from (128) that

P(ECE|F) ≤ e−nEx(I(X;Y |S)−µ,PSX ,PY |X) = e−kτEx(I(X;Y |S)−µ,PSX ,PY |X). (142)

Next, consider the type 2 error event that happens when an error occurs at the channel decoder.

We need to consider two separate cases: I(U ;W ) > R and I(U ;W ) ≤ R. Note that in the former

case, binning is performed and type 2 error happens at the decoder only if a sequence W k(l)

exists in the wrong bin M̂ 6= M = fB(J) such that (V k,W k(l)) ∈ T k[VW ]δ̃
. As noted in [32],

the calculation of the probability of this event does not follow from the standard random coding

argument usually encountered in achievability proofs due to the fact that the chosen codeword

W k(J) depends on the entire codebook. Following steps similar to those in [32], we analyze

the probability of this event (averaged over codebooks C and random binning) as follows. We

first consider the case when I(U ;W ) > R.

P(D0|F1) ≤ P( ∃ W k(l) : fB(l) = M̂ 6= 1, (W k(l), vk) ∈ T k[WV ]δ̃
|F1)
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≤
ek(I(U :W )+δ′)∑

l=2

∑
m̂ 6=1

P(M̂ = m̂|F1) P((W k(l), vk) ∈ T k[WV ]δ̃
: fB(l) = m̂|F1)

=
ek(I(U :W )+δ′)∑

l=2

∑
m̂6=1

P(M̂ = m̂|F1)
∑
w̃k:

(w̃k,vk)∈Tk
[WV ]

δ̃

P(W k(l) = w̃k : fB(l) = m̂|F1)

=
ek(I(U :W )+δ′)∑

l=2

∑
m̂6=1

P(M̂ = m̂|F1)
∑
w̃k:

(w̃k,vk)∈Tk
[WV ]

δ̃

P(W k(l) = w̃k|F1)
1

ekR
(143)

=
ek(I(U :W )+δ′)∑

l=2

∑
w̃k:

(w̃k,vk)∈Tk
[WV ]

δ̃

P(W k(l) = w̃k|F1)
1

ekR
. (144)

Let C−1,l = C\{W k(1),W k(l)}. Then,

P(W k(l) = w̃k|F1) =
∑
C−1,l=c

P(C−1,l = c|F1)P(W k(l) = w̃k|F1, C−1,l = c). (145)

The term in (145) can be upper bounded as follows:

P(W k(l) = w̃k|F1, C−1,l = c)

= P(W k(l) = w̃k|Uk = uk, V k = vk, C−1,l = c)

P(W k(1) = wk|W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c)

P(W k(1) = wk|Uk = uk, V k = vk, C−1,l = c)

P(J = 1|W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c)

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, C−1,l = c)
(146)

P(fB(J) = 1|J = 1,W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c)

P(fB(J) = 1|J = 1,W k(1) = wk, Uk = uk, V k = vk, C−1,l = c)

P(ENE, ECE|fB(J) = 1, J = 1,W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c)

P(ENE, ECE|fB(J) = 1, J = 1,W k(1) = wk, Uk = uk, V k = vk, C−1,l = c)
.

Since the codewords are generated independently of each other and the binning operation is

independent of the codebook generation, we have

P(W k(1) = wk|W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c)

= P(W k(1) = wk|Uk = uk, V k = vk, C−1,l = c),
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and

P(fB(J) = 1|J = 1,W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c)

= P(fB(J) = 1|J = 1,W k(1) = wk, Uk = uk, V k = vk, C−1,l = c).

Also, note that

P(ENE, ECE|fB(J) = 1, J = 1,W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c)

= P(ENE, ECE|fB(J) = 1, J = 1,W k(1) = wk, Uk = uk, V k = vk, C−1,l = c).

Next, consider the term in (146). Let N(uk, C−1,l) = |{wk(l′) ∈ C−1,l : l′ 6= 1, l′ 6= l, (wk(l′), uk) ∈

T k[WU ]δ
}|. Recall that if there are multiple sequences in codebook C that are jointly typical with

the observed sequence Uk, then the encoder selects one of them uniformly at random. Also,

note that given F1, (wk, uk) ∈ T k[WU ]δ
. Thus, if (w̃k, uk) ∈ T k[WU ]δ

, then

P(J = 1|W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, ENE, ECE, C−1,l = c)

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, C−1,l = c)

=

[
1

N(uk, C−1,l) + 2

]
1

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, C−1,l = c)

≤
N(uk, C−1,l) + 1

N(uk, C−1,l) + 2
≤ 1.

If (w̃k, uk) /∈ T k[WU ]δ
, then

P(J = 1|W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, C−1,l = c)

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, C−1,l = c)

=

[
1

N(uk, C−1,l) + 1

]
1

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, C−1,l = c)

≤
N(uk, C−1,l) + 2

N(uk, C−1,l) + 1
≤ 2.

Hence, the term in (145) can be upper bounded as

P(W k(l) = w̃k|F1)

≤
∑
C−1,l=c

P(C−1,l = c|F1) 2 P(W k(l) = w̃k|Uk = uk, V k = vk, C−1,l = c)
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= 2 P(W k(l) = w̃k|Uk = uk, V k = vk) = 2 P(W k(l) = w̃k). (147)

Substituting (147) in (144), we obtain

P(D0|F1) ≤
ek(I(U :W )+δ′)∑

l=1

∑
w̃k:

(w̃k,vk)∈Tk
[WV ]

δ̃

2 P(W k(l) = w̃k)
1

ekR

=
ek(I(U :W )+δ′)∑

l=1

∑
w̃k:

(w̃k,vk)∈Tk
[WV ]

δ̃

2 · e−k(H(W )−δ1) 1

ekR

= 2 · ek(I(U :W )+δ′) ek(H(W |V )+δ3) e−k(H(W )−δ1) 1

ekR

≤ e−k(R−I(U ;W |V )−δ(k)
4 ), (148)

where δ(k)
4 := δ′ + δ1 + δ3 + log(2)

k

k−→ 0 as δ, δ′ → 0.

For the case I(U ;W ) ≤ R (when binning is not done), the terms can be bounded similarly

using (147) as follows.

P(D0|F1) =
∑
m̂6=1

P(M̂ = m̂|F1) P((W k(m̂), vk) ∈ T k[WV ]δ̃
|F1)

≤
∑
m̂ 6=1

P(M̂ = m̂|F1)
∑
w̃k:

(w̃k,vk)∈Tk
[WV ]

δ̃

2 P(W k(m̂) = w̃k)

≤
∑
m̂ 6=1

P(M̂ = m̂|F1) e−k(I(V ;W )−(δ1+δ3+ 1
k

)) ≤ e−k(I(V ;W )−δ(k)
4 ). (149)

Next, consider the event when there are no encoding or channel errors, i.e., ENE ∩ EcCE .

For the case I(U ;W ) > R, the binning error event denoted by EBE happens when a wrong

codeword W k(l), l 6= J , is retrieved from the bin with index M by the empirical entropy

decoder such that (W k(l), V k) ∈ T k[WV ]δ
. Let PŨ Ṽ W̃ denote the type of PUkV kWk(J). Note that

PŨW̃ ∈ T k[UW ]δ
when ENE holds. If H(W̃ |Ṽ ) < H(W |V ), then in the bin with index M ,

there exists a codeword with empirical entropy strictly less than H(W |V ). Hence, the decoded

codeword Ŵ k /∈ T k[WV ]δ̃
(asymptotically) since (Ŵ k, V k) ∈ T k[WV ]δ̃

necessarily implies that

He(Ŵ
k|V k) := H(PŴk |PV k) → H(W |V ) as δ → 0. Consequently, a type 2 error can happen

under the event EBE only when H(W̃ |Ṽ ) ≥ H(W |V ). The probability of the event EBE can be

upper bounded under this condition as follows:



47

P(EBE|F2)

≤ P
(
∃ l 6= 1, l ∈ [ek(I(U :W )+δ′)] : fB(l) = 1 and (W k(l), vk) ∈ T k[WV ]δ̃

|F2

)
≤

ek(I(U ;W )+δ′)∑
l=2

P
(

(W k(l), vk) ∈ T k[WV ]δ̃
|F2

)
P
(
fB(l) = 1|F2, (W

k(l), vk) ∈ T k[WV ]δ̃

)

=
ek(I(U ;W )+δ′)∑

l=2

P
(

(W k(l), vk) ∈ T k[WV ]δ̃
|F2

)
e−kR

≤
ek(I(U ;W )+δ′)∑

l=2

∑
w̃k:

(w̃k,vk)∈Tk
[WV ]

δ̃

2 P(W k(l) = w̃k) e−kR (150)

= e−k(R−I(U ;W |V )−δ(k)
4 ). (151)

In (150), we used the fact that

P
(
W k(l) = w̃k|F2

)
≤ 2 P(W k(l) = w̃k), (152)

which follows in a similar way as (147). Also, note that, by definition, P(D0|F21) = 1.

We proceed to analyze the R.H.S of (131) which upper bounds the type 2 error probability,

in the limit k → ∞ and δ, δ′, δ̃ → 0. Towards this end, we first focus on the the case when

ENE holds. From (133), it follows that

lim
k→∞

lim
δ,δ̃,δ′→0

∑
(uk,vk)∈Uk×Vk

P(Uk = uk, V k = vk|H = 1) P(D0|Uk = uk, V k = vk, ENE) (153)

= lim
k→∞

lim
δ,δ̃,δ′→0

∑
(uk,vk)∈Uk×Vk

P(Uk = uk, V k = vk|H = 1)

P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE). (154)

Rewriting the summation in (154) as the sum over the types and sequences within a type, we

obtain
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P(D0| ENE, H = 1)

=
∑
PŨṼ W̃
∈T kUVW

∑
(uk,vk,wk)
∈TP

ŨṼ W̃

[
P(Uk = uk, V k = vk|H = 1) P(D0|F)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]
. (155)

We also have

P(Uk = uk, V k = vk|H = 1) P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

=

[
k∏
i=1

QUV (ui, vi)

]
P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

≤

[
k∏
i=1

QUV (ui, vi)

]
1

|TPW̃ |Ũ |
≤ e−k(H(Ũ Ṽ )+D(PŨṼ ||QUV )+H(W̃ |Ũ)− 1

k
|U||W| log(k+1)), (156)

where PŨ Ṽ W̃ denotes the type of the sequence (uk, vk, wk).

With (142), (148), (149), (151) and (156), we have the necessary machinery to analyze (155).

First, consider that the event ENE ∩ EcCE ∩ EcBE holds. In this case,

P(D0|F22) = P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, EcCE, EcBE)

=


1, if Pukwk ∈ T k[UW ]δ

and Pvkwk ∈ T k[VW ]δ̃
,

0, otherwise.

(157)

Thus, the following terms in (155) can be simplified (in the limit δ, δ̃ → 0) as

lim
k→∞

lim
δ,δ̃,δ′→0

∑
PŨṼ W̃
∈T kUVW

∑
(uk,vk,wk)
∈TP

ŨṼ W̃

[
P(Uk = uk, V k = vk|H = 1) P(EcCE|F) P(EcBE|F2) P(D0|F22)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

≤ lim
k→∞

lim
δ,δ̃,δ′→0

∑
PŨṼ W̃
∈T kUVW

∑
(uk,vk,wk)
∈TP

ŨṼ W̃

[
P(Uk = uk, V k = vk|H = 1) P(D0|F22)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]
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≤ lim
k→∞

(k + 1)|U||V||W| max
PŨṼ W̃∈

T1(PUW ,PVW )

ekH(Ũ Ṽ W̃ )e−k(H(Ũ Ṽ )+D(PŨṼ ||QUV )+H(W̃ |Ũ)− 1
k
|U||W| log(k+1))

= lim
k→∞

e−kẼ1k . (158)

Here,

Ẽ1k := min
PŨṼ W̃ ∈

T1(PUW ,PVW )

H(Ũ Ṽ ) +D(PŨ Ṽ ||QUV ) +H(W̃ |Ũ)−H(Ũ Ṽ W̃ )

− 1

k
|U||V||W| log(k + 1)− 1

k
|U||W| log(k + 1)

= min
PŨṼ W̃ ∈

T1(PUW ,PVW )

∑
PŨ Ṽ W̃ log

(
PŨ Ṽ
QUV

1

PŨ Ṽ

PŨ
PŨW̃

PŨ Ṽ W̃

)
− o(1)

= min
PŨṼ W̃ ∈

T1(PUW ,PVW )

D(PŨ Ṽ W̃ ||QUVW )− o(1)
(k)−→ E1(PW |U), (159)

and QUVW := QUV PW |U . To obtain (158), we used (156) and (157). This results in the term

E1(PW |U) in (12).

Next, consider the terms corresponding to the event ENE∩EcCE∩EBE in (155). Note that given

the event F21 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, EcCE, EBE} occurs,

Pukwk ∈ T k[UW ]δ
. Also, D0 can happen only if He(w

k|vk) ≥ H(W |V )− γ2(δ̃) for some positive

function γ2(δ̃) ∈ O(δ̃) and Pvk ∈ T k[V ]δ′′′
. Using these facts to simplify the terms corresponding

to the event ENE ∩ EcCE ∩ EBE in (155), we obtain

lim
k→∞

lim
δ′,δ,δ̃→0

∑
PŨṼ W̃
∈T kUVW

∑
(uk,vk,wk)
∈TP

ŨṼ W̃

[
P(Uk = uk, V k = vk|H = 1) P(EcCE|F) P(EBE|F2) P(D0|F21)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

≤ lim
k→∞

lim
δ′,δ,δ̃→0

∑
PŨṼ W̃
∈T kUVW

∑
(uk,vk,wk)
∈TP

ŨṼ W̃

[
P(Uk = uk, V k = vk|H = 1) P(EBE|F2) P(D0|F21)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

≤ lim
k→∞

max
PŨṼ W̃∈

T2(PUW ,PV )

ekH(Ũ Ṽ W̃ )e−k(H(Ũ Ṽ )+D(PŨṼ ||QUV )+H(W̃ |Ũ)+R−I(U ;W |V ))

e(|U||V||W| log(k+1)+|U||W| log(k+1))
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= lim
k→∞

e−kẼ2k , (160)

where,

Ẽ2k := min
PŨṼ W̃∈

T2(PUW ,PV )

H(Ũ Ṽ ) +D(PŨ Ṽ ||QUV ) +H(W̃ |Ũ) +R− I(U ;W |V )

− 1

k
|U||V||W| log(k + 1)− 1

k
|U||W| log(k + 1)

(k)−→ E2(PW |U , PSX , τ). (161)

Note that EBE occurs only when I(U ;W ) > R.

Next, consider that the event ENE ∩ ECE holds. As in the case above, note that given F1 =

{Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, ECE}, Pukwk ∈ T k[UW ]δ
and D0

occurs only if Pvk ∈ T k[V ]δ′′′
. Using these facts and eqns. (148), (149) and (142), it can be shown

that the terms corresponding to this event in (155) result in the factor E3(PW |U , PSX , τ) given

in (14).

Finally, we analyze the case when the event EcNE occurs. Since the encoder declares H1 if

M̂ = 0, it is clear that D0 occurs only when the channel error event ECE happens. Thus, we

have

P(D0| Uk = uk, V k = vk, EcNE) =P(ECE| Uk = uk, V k = vk, EcNE)

P(D0| Uk = uk, V k = vk, EcNE ∩ ECE). (162)

It follows from Borade’s coding scheme [31] that

P(ECE| Uk = uk, V k = vk, EcNE) ≤ e−nEm(PSX ,PY |X) = e−kτEm(PSX ,PY |X). (163)

When binning is performed at the encoder, D0 occurs only if there exists a sequence Ŵ k

in the bin M̂ 6= 0 such that (Ŵ k, V k) ∈ T k[WV ]δ̃
. Also, recalling that the encoder sends the

error message M = 0 independent of the source codebook C, it can be shown using standard

arguments that for such vk ∈ T k[V ]δ′′′
,

P(D0| Uk = uk, V k = vk, EcNE ∩ ECE) ≤ e−k(R−I(U ;W |V )−δ5), (164)

where δ5 = δ1 + δ3 + δ′. Thus, from (162), (163) and (164), we obtain
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lim
δ,δ′,δ̃→0

∑
uk,vk

P(Uk = uk, V k = vk|H = 1) P(D0| Uk = uk, V k = vk, EcNE ∩ ECE)

≤ e−kD(PV ||QV ) e−nEm(PSX ,PY |X) e−k(R−I(U ;W |V ))). (165)

On the other hand, when binning is not performed, D0 occurs only if (W k(M̂), V k) ∈ T k[WV ]δ̃

and in this case, we obtain

lim
δ,δ′,δ̃→0

∑
uk,vk

P(Uk = uk, V k = vk|H = 1) P(D0| Uk = uk, V k = vk, EcNE ∩ ECE)

≤ e−kD(PV ||QV ) e−nEm(PSX ,PY |X) e−kI(V ;W ). (166)

This results in the factor E4(PW |U , PSX , τ) in (15). Since the T2EE is lower bounded by the

minimal value of the exponent due to the various type 2 error events, this completes the proof

of the theorem.

APPENDIX B

PROOF OF THEOREM 6

We only give a sketch of the proof as the intermediate steps follow similarly to those in

the proof of Theorem 2. For brevity, in the proof below, we denote the information theoretic

quantities like IP̂ (U, S; W̄ ), T n
[P̂USW̄ ]δ

, etc., that are computed with respect to joint distribution

P̂UV SW̄X′XY (PS, PW̄ |US, PX′|S, PX|USW̄ ) := PUV PSPW̄ |USPX′|SPX|USW̄PY |X by I(U, S; W̄ ),

T n
[USW̄ ]δ

, etc. As in the proof of Theorem 2, δ, δ′, δ′′ and δ̃ appearing in the proof below denote

arbitrarily small positive numbers subject to delta-convention [24] and certain other constraints

that will be specified in the course of the proof.

Codebook Generation:

Fix distributions (PS, PW̄ |US, PX′|S, PX|USW̄ ) ∈ Bh and let

P̂UV SW̄X′XY (PS, PW̄ |US, PX′|S, PX|USW̄ ) = PUV PSPW̄ |USPX′|S PX|USW̄ PY |X .

Generate a sequence Sn i.i.d. according to
∏n

i=1 PS(si). The realization Sn = sn is revealed to

both the encoder and detector. Generate the quantization codebook C = {w̄n(j), j ∈ [en(I(U,S;W̄ )+δ′)]},

where each codeword w̄n(j) is generated independently according to the distribution
∏n

i=1 P̂W̄ ,

where P̂W̄ =
∑

(u,s)∈U×S PU(u)PS(s)PW̄ |US(w̄|u, s).
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Encoding: If (un, sn) is typical, i.e., (un, sn) ∈ T n[US]δ′′
, the encoder first looks for a sequence

w̄n(j) such that (un, sn, w̄n(j)) ∈ T n[USW ]δ
, δ > δ′′. If there exists multiple such codewords, it

chooses one among them uniformly at random. The encoder transmits Xn = xn over the channel,

where Xn is generated according to the distribution
∏n

i=1 PX|USW̄ (xi|ui, si, w̄i). If (un, sn) /∈

T k[US]δ′′
or such an index j does not exist, the encoder generates the channel input X ′n = x′n

randomly according to
∏n

i=1 PX′|S(x′i|si).

Decoding: Given the side information sequence V n = vn, received sequence Y n = yn and

sn, the detector first checks if (vn, sn, yn) ∈ T n[V SY ]δ̃
, δ̃ > δ. If the check is unsuccessful, H1 is

declared. Else, searches for a typical sequence ˆ̄wn = w̄n(ĵ) ∈ T k
[W̄ ]δ̂

, δ̂ = |W̄|δ in the codebook

such that

ĵ = arg min
l:w̄n(l)∈Tn

[W̄ ]
δ̂

He(w̄
n(l)|vn, sn, yn).

If (vn, sn, yn, ˆ̄wn) ∈ T n
[V SY W̄ ]δ̃

, H0 is declared, else H1 is declared.

Analysis of Type 1 error:

A type 1 error occurs only if one of the following events happen.

ẼTE =

{
(Un, V n, Sn) /∈ T n[UV S]δ̄

, δ̄ =
δ′′

|V|

}
ẼEE =

{
@ j ∈

[
en(I(U,S;W̄ )+δ′)

]
: (Un, Sn, W̄ n(j)) ∈ T n[USW̄ ]δ

}
ẼME =

{
(V n, Sn, W̄ n(J)) /∈ T n[V SW̄ ]δ̃

}
ẼCE =

{
(V n, Sn, W̄ n(J), Y n) /∈ T n[V SW̄Y ]δ̃

}
ẼDE =

{
∃ l ∈

[
en(I(U,S;W̄ )+δ′)

]
, l 6= J, W̄ n(l)) ∈ T n[W̄ ]δ̂

,

He(W̄
n(l)|V n, Sn, Y n) ≤ He(W̄

n(J)|V n, Sn, Y n)

}

By the weak law of large numbers, ẼTE tends to 0 asymptotically with n for any δ̄ > 0. The

covering lemma guarantees that ẼEE ∩ ẼcTE tends to 0 doubly exponentially for δ̄ < δ and δ′

appropriately chosen. Given ẼcEE ∩ ẼcTE holds, it follows from the Markov lemma and the weak

law of large numbers, respectively, that P(ẼME) and P(ẼCE) tends to zero asymptotically for

δ̃ > δ (appropriately chosen). Next, we consider the probability of the event ẼDE . Given that

ẼcCE ∩ ẼcME ∩ ẼcEE ∩ ẼcTE holds, note that limn→∞He(W̄
n(J)|V n, Sn, Y n) → H(W̄ |V, S, Y ) as
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δ̃ → 0. Hence, similarly to that shown in Appendix A, it can be shown that

P(ẼDE|ẼcCE ∩ ẼcME ∩ ẼcEE ∩ ẼcTE) ≤ e−n(IP̂ (W̄ ;V,S,Y )−IP̂ (U,S;W̄ )−δ(n)
6 ).

where δ
(n)
6

(n)−→ 0 as δ̃, δ′ → 0. Hence, if I(U ; W̄ |S) < I(W̄ ;Y, V |S), the probability of the

events causing Type 1 error tends to zero asymptotically.

Analysis of Type 2 error: The analysis of the T2EE is very similar to that of the SHTCC

scheme given in Appendix A. Hence, only a sketch of the proof is provided, with the differences

from the proof of the SHTCC scheme highlighted.

Let

Ē0 := {(Un, Sn) /∈ T n[US]δ′′
}. (167)

Then, as in Appendix A, the type 2 error probability can be written as

β
(
n, n, f (n,n), g(n,n)

)
≤

∑
(un,vn)∈Un×Vn

P(Un = un, V n = vn|H = 1)
[
P(ẼEE ∩ Ēc0 |Un = un, V n = vn)

+ P(D0|Un = un, V n = vn, ẼNE) + P(D0|Un = un, V n = vn, Ē0)
]
, (168)

where, ẼNE := ẼcEE ∩ Ēc0 . As before, it is sufficient to restrict the analysis to the events ẼNE and

Ē0 that dominate the type 2 error. Define the events

ẼT2 =
{
∃ l ∈

[
en(I(U,S;W̄ )+δ′)

]
, l 6= J, W̄ n(l) ∈ T n[W̄ ]δ̂

,

(V n, W̄ n(l), Sn, Y n) ∈ T n[V SW̄Y ]δ̃

}
, (169)

F̃ = {Un = un, V n = vn, J = 1, W̄ n(1) = w̄n, Sn = sn, Y n = yn, ẼNE}, (170)

F̃1 = {Un = un, V n = vn, J = 1, W̄ n(1) = w̄n, Sn = sn, Y n = yn, ẼNE, ẼcT2}, (171)

F̃2 = {Un = un, V n = vn, J = 1, W̄ n(1) = w̄n, Sn = sn, Y n = yn, ẼNE, ẼT2}. (172)

By the symmetry of the codebook generation, encoding and decoding procedure, the term

P(D0|Un = un, V n = vn, J = j, ẼNE) is independent of the value of J . Hence, w.l.o.g.

assuming J = 1, we can write
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P(D0| Un = un, V n = vn, ẼNE)

=
en(I(U,S;W̄ )+δ′)∑

j=1

P(J = j| Un = un, V n = vn, ẼNE) P(D0|Un = un, V n = vn, J = 1, ẼNE)

= P(D0|Un = un, V n = vn, J = 1, ẼNE)

=
∑

(w̄n,sn,yn)
∈ W̄n×Sn×Yn

P(W̄ n(1) = w̄n, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE)

P(D0|Un = un, V n = vn, J = 1, W̄ n(1) = w̄n, Sn = sn, Y n = yn, ẼNE)

=
∑

(w̄n,sn,yn)
∈ W̄n×Sn×Yn

P(W̄ n(1) = w̄n, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE)

P(D0| F̃). (173)

The last term in (173) can be upper bounded using the events in (170)-(172) as follows.

P(D0| F̃) ≤ P(D0| F̃1) + P(ẼT2| F̃) P(D0| F̃2).

We next analyze the R.H.S of (168), which upper bounds the type 2 error probability, in the

limit n→∞ and δ, δ′, δ̃ → 0. We have,

P(D0|F̃1) =


1, if Punw̄n ∈ T n[UW̄ ]δ

and Pvnw̄nsnyn ∈ T k[V SW̄Y ]δ̃
,

0, otherwise.

(174)

Hence, the terms corresponding to the event F̃1 in (168) can be upper bounded (in the limit

δ, δ̃ → 0) as

lim
n→∞

lim
δ′,δ,δ̃→0

∑
(un,vn,w̄n,sn,yn)

∈ Un×Vn×W̄n×Sn×Yn

[
P(Un = un, V n = vn|H = 1) P(D0|F̃1)

P(W̄ n(1) = w̄n, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE)
]
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≤ lim
n→∞

lim
δ′,δ,δ̃→0

∑
PŨṼ S̃W̃ Ỹ
∈T nUVW̄SY

∑
(un,vn,w̄n,sn,yn)
∈TP

ŨṼ S̃W̃ Ỹ

[
P(Un = un, V n = vn|H = 1) P(D0|F̃1)

P(Sn = sn, W̄ n(1) = w̄n|Un = un, J = 1, ẼNE)

P(Y n = yn|Un = un, Sn = sn, J = 1, W̄ n(1) = w̄n, ẼNE)
]

≤ lim
n→∞

lim
δ′,δ,δ̃→0

∑
PŨṼ S̃W̃ Ỹ
∈T nUVW̄SY

∑
(un,vn,w̄n,sn,yn)
∈TP

ŨṼ S̃W̃ Ỹ

[
P(D0|F̃1) e−n(H(Ũ Ṽ )+D(PŨṼ ||QUV ))

e−n(H(S̃W̃ |Ũ)− 1
n
|U||W̄||S| log(n+1)) e−n(H(Ỹ |Ũ S̃W̃ )+D(PỸ |ŨS̃W̃ ||P̂Y |USW̄ |PŨS̃W̃ ))

]
≤ lim

n→∞
max

PŨṼ S̃W̃ Ỹ ∈
T ′1 (P̂USW̄ ,P̂V SW̄Y )

[
e−n(H(Ũ Ṽ )+D(PŨṼ ||QUV )) e−n(H(S̃W̃ |Ũ)− 1

n
|U||W̄||S| log(n+1))

e−n(H(Ỹ |Ũ S̃W̃ )+D(PỸ |ŨS̃W̃ ||P̂Y |USW̄ |PŨS̃W̃ ))en(H(Ũ Ṽ S̃W̃ Ỹ )− 1
n
||U||V||W̄||S||Y| log(n+1))

]
= lim

n→∞
e−nE

∗
1n , (175)

where,

E∗1n = min
PŨṼ S̃W̃ Ỹ ∈

T ′1 (P̂USW̄ ,P̂V SW̄Y )

[
H(Ũ Ṽ ) +D(PŨ Ṽ ||QUV ) +H(S̃W̃ |Ũ) +H(Ỹ |Ũ S̃W̃ )

+D(PỸ |Ũ S̃W̃ ||P̂Y |USW̄ |PŨ S̃W̃ )−H(Ũ Ṽ W̃ S̃Ỹ )− 1

n
(|U||W̄|+ |U||V||W̄||S||Y|) log(n+ 1)

]

= min
PŨṼ S̃W̃ Ỹ ∈

T ′1 (P̂USW̄ ,P̂V SW̄Y )

[ ∑
Ũ Ṽ S̃W̃ Ỹ

PŨ Ṽ S̃W̃ Ỹ log

(
1

PŨ Ṽ

PŨ Ṽ
QUV

PŨ
PŨ S̃W̃

1

PỸ |Ũ S̃W̃

PỸ |Ũ S̃W̃

P̂Y |USW̄
PŨ Ṽ S̃W̃ Ỹ

)
− o(1)

]

= min
PŨṼ S̃W̃ Ỹ ∈

T ′1 (P̂USW̄ ,P̂V SW̄Y )

[
D(PŨ Ṽ S̃W̃ Ỹ |QUV PS̃W̃ |Ũ P̂Y |USW̄ )− o(1)

]
(n)−→ E ′1(PS, PW̄ |US, PX|USW̄ ). (176)

Here, (176) follows from the fact that PS̃W̃ |Ũ → PSW̄ |U given ẼNE , as δ → 0.

Next, consider the terms corresponding to the event F̃2 in (168). Given F̃2, PŨW̃ ∈ T n[UW̄ ]δ
and

D0 occurs only if (V n, Sn, Y n) ∈ T n[V SY ]δ′′′
, δ′′′ = |W̄|δ̃, and H(W̃ |Ṽ, S̃, Ỹ ) ≥ H(W̄ |V, S, Y )−
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γ2(δ̃), for some γ2(δ̃) ∈ O(δ̃). Thus, we have,

lim
n→∞

lim
δ′,δ,δ̃→0

∑
(un,vn,w̄n,sn,yn)

∈ Un×Vn×W̄n×Sn×Yn

[
P(Un = un, V n = vn|H = 1) P(D0|F̃2) P(ẼT2|F̃)

P(W̄ n(1) = w̄n, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE)
]

≤ lim
n→∞

lim
δ′,δ,δ̃→0

∑
PŨṼ S̃W̃ Ỹ ∈

T n(U×V×W̄×S×Y)

∑
(un,vn,w̄n,sn,yn)
∈TP

ŨṼ S̃W̃ Ỹ

[
P(Un = un, V n = vn|H = 1)

P(D0|F̃2) P(ẼT2|F̃) P(Sn = sn, W̄ n(1) = w̄n|Un = un, J = 1, ẼNE)

P(Y n = yn|Un = un, Sn = sn, J = 1, W̄ n(1) = w̄n, ẼNE)
]

≤ lim
n→∞

lim
δ′,δ,δ̃→0

∑
PŨṼ S̃W̃ Ỹ ∈

T n(U×V×W̄×S×Y)

∑
(un,vn,w̄n,sn,yn)
∈TP

ŨṼ S̃W̃ Ỹ

[
e−n(H(Ũ Ṽ )+D(PŨṼ ||QUV ))P(D0|F̃2)

2 · e−n(I(W̄ ;V,S,Y )−I(U,S;W̄ )−δ7) e−n(H(S̃W̃ |Ũ)− 1
n
|U||W̄||S| log(n+1))

e−n(H(Ỹ |Ũ S̃W̃ )+D(PỸ |ŨS̃W̃ ||P̂Y |USW̄ |PŨS̃W̃ ))
]

(177)

≤ lim
n→∞

max
PŨṼ S̃W̃ Ỹ ∈

T ′2 (P̂UW ,P̂V SWY )

[
e−n(H(Ũ Ṽ )+D(PŨṼ ||QUV )) e−n(H(S̃W̃ |Ũ)− 1

n
|U||W̄||S| log(n+1))

e−n(I(W̄ ;V,S,Y )−I(U,S;W̄ )−δ7− 1
n)

e−n(H(Ỹ |Ũ S̃W̃ )+D(PỸ |ŨS̃W̃ ||P̂Y |USW̄ |PŨS̃W̃ )) en(H(Ũ Ṽ S̃W̃ Ỹ )− 1
n
||U||V||W̄||S||Y| log(n+1))

]
= lim

n→∞
e−nE

∗
2n , (178)

where,

E∗2n = min
PŨṼ S̃W̃ Ỹ ∈

T ′2 (P̂USW̄ ,P̂V SW̄Y )

[
D(PŨ Ṽ S̃W̃ Ỹ |QUV PS̃W̃ |Ũ P̂Y |USW̄ ) + I(W̄ ;V, Y |S)− I(U ; W̄ |S)− o(1)

]
(n)−→ E ′2(PS, PW̄ |US, PX|USW̄ ). (179)

In (177), we used the fact that

P(ẼT2|F̃) ≤ 2 · e−n(I(W̄ ;V,Y |S)−I(U ;W̄ |S)−δ7),
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which follows from

P
(
W̄ n(l) = w̃n|F̃

)
≤ 2 P(W̄ n(l) = w̃n). (180)

Eqn. (180) can be proved similarly to (147).

Finally, we consider the case when Ē0 holds.

lim
n→∞

lim
δ,δ′,δ̃→0

∑
un,vn

P(Un = un, V n = vn|H = 1) P(D0| Un = un, V n = vn, Ē0)

= lim
n→∞

lim
δ,δ′,δ̃→0

∑
un,vn

P(Un = un, V n = vn|H = 1)

∑
sn,yn

P(Sn = sn, Y n = yn,D0| Un = un, V n = vn, Ē0)

= lim
n→∞

lim
δ,δ′,δ̃→0

∑
un,vn

P(Un = un, V n = vn|H = 1)

[ ∑
sn,yn

P(Sn = sn, Y n = yn| Un = un, V n = vn, Ē0)

P(D0| Un = un, V n = vn, Sn = sn, Y n = yn, Ē0)
]

= lim
n→∞

lim
δ,δ′,δ̃→0

∑
un,vn

P(Un = un, V n = vn|H = 1)
[ ∑

sn,yn

P(Sn = sn, Y n = yn| Ē0)

P(D0| V n = vn, Sn = sn, Y n = yn, Ē0)
]

= lim
n→∞

lim
δ,δ′,δ̃→0

∑
vn,sn,yn

P(V n = vn|H = 1) P(Sn = sn, Y n = yn| Ē0)

P(D0| V n = vn, Sn = sn, Y n = yn, Ē0). (181)

The event D0 occurs only if there exists a sequence (W̄ n(l), V n, Sn, Y n) ∈ T n
[W̄V SY ]δ̃

for some

l ∈ [en(I(U,S;W̄ )+δ′)]. Noting that the quantization codebook is independent of the (V n, Sn, Y n)

given that Ē0 holds, it can be shown using standard arguments that

P(D0| V n = vn, Sn = sn, Y n = yn, Ē0) ≤ e−n(I(W̄ ;V,Y |S)−I(U ;W̄ |S)−δ7). (182)

Also,

P(Sn = sn, Y n = yn| Ē0) ≤ e−n(H(S̃Ỹ )+D(PS̃Ỹ ||Q̌SY )). (183)
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Hence, using (182) and (183) in (181), we obtain

lim
n→∞

lim
δ,δ′,δ̃→0

∑
vn,sn,yn

P(V n = vn|H = 1) P(Sn = sn, Y n = yn| Ē0)

P(D0| V n = vn, Sn = sn, Y n = yn, Ē0)

≤ lim
n→∞

lim
δ,δ′,δ̃→0

∑
vn,sn,yn

e−n(H(Ṽ )+D(PṼ ||QV )) e−n(H(S̃Ỹ )+D(PS̃Ỹ ||Q̌SY )) e−n(I(W̄ ;V,Y |S)−I(U ;W̄ |S)−δ7)

≤ lim
n→∞

(n+ 1)|V||S||Y| max
PṼ S̃Ỹ =P̂V SY

enH(Ṽ S̃Ỹ ) e−n(H(Ṽ )+D(PṼ ||QV )) e−n(H(S̃Ỹ )+D(PS̃Ỹ ||Q̌SY ))

e−n(I(W̄ ;V,Y |S)−I(U ;W̄ |S))

= lim
n→∞

e−nE
∗
3n ,

where,

E∗3n = min
PṼ S̃Ỹ =P̂V SY

D(PṼ S̃Ỹ ||Q̌V SY ) + I(W̄ ;V, Y |S)− I(U ; W̄ |S)− |V||S||Y| log(n+ 1)

(n)−→ E ′3
(
PS, PW̄ |US, PX′|S, PX|USW̄

)
.

Since the T2EE is lower bounded by the minimal value of the exponent due to the various type

2 error events, this completes the proof of the theorem.

APPENDIX C

PROOF OF THEOREM 8

We can write

IP̂ ∗(W̄ ;V, Y |S)− IP̂ ∗(U ; W̄ |S) = IP̂ ∗(W,X;V, Y |S)− IP̂ ∗(U ;W,X|S)

= IP̂ ∗(X;Y |S)− IP̂ ∗(U ;W ) + IP̂ ∗(V ;W )

= IP̂ ∗(X;Y |S)− IP̂ ∗(U ;W |V ) > 0. (184)

This implies that (P ∗S , P
∗
W |U , PX′|S, P

∗
X|S) ∈ Bh. Now,

E ′1(P ∗S , P
∗
W |U , P

∗
X|S)

= min
PŨṼ S̃W̃ X̃Ỹ ∈T

′
1 (P̂ ∗USWX ,P̂

∗
V SWXY )

D(PŨ Ṽ S̃W̃ X̃Ỹ ||Q̂UV SWXY )
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≥ min
PŨṼ W̃∈T1(P̂ ∗UW ,P̂ ∗VW )

D(PŨ Ṽ W̃ ||Q̂UVW )

+ min
PŨṼ S̃W̃ X̃Ỹ ∈T

′
1 (P̂ ∗USWX ,P̂

∗
V SWXY )

D(PS̃X̃Ỹ |Ũ Ṽ W̃ ||Q̂SXY |PŨ Ṽ W̃ )

= E1(P ∗W |U) + min
PŨṼ S̃W̃ X̃Ỹ ∈T

′
1 (P̂ ∗USWX ,P̂

∗
V SWXY )

D(PS̃X̃Ỹ |Ũ Ṽ W̃ ||Q̂SXY |PŨ Ṽ W̃ ). (185)

Also, by choosing X ′ = S, it follows from (184) that

E ′3
(
P ∗S , P

∗
W |U , PX′|S, P

∗
X|S
)
− E4(P ∗W |U , P

∗
SX , 1)

≥ D(P̂ ∗V SY ||Q̌∗V SY )− Em
(
P ∗SX , PY |X

)
−D(PV ||QV ) (186)

= D(P̂ ∗SY ||Q̌∗SY )− Em
(
P ∗SX , PY |X

)
= 0. (187)

Here, (187) follows from the fact that since S = X and X ′ = S, D(P̂ ∗SY ||Q̌∗SY ) is equal to

Em
(
P ∗SX , PY |X

)
.

Again, it follows from (184) that

E ′2
(
P ∗S , P

∗
W |U , P

∗
X|S
)
− E3(P ∗W |U , P

∗
SX , 1)

≥ min
PŨṼ S̃W̃ X̃Ỹ ∈T

′
2(P̂ ∗USWX ,P̂

∗
V SWXY )

D
(
PŨ Ṽ S̃W̃ X̃Ỹ ||Q̂

∗
UV SWXY

)
− min

PŨṼ W̃∈T3(PUW ,PV ) D(PŨ Ṽ W̃ ||Q̂
∗
UVW )− Ex

(
IP̂ ∗(X;Y |S), P ∗SX , PY |X

)
= Eh

(
P ∗S , P

∗
W |U , PX′|S, P

∗
X|S
)
− Es

(
P ∗S , P

∗
W |U , PX′|S, P

∗
X|S
)

≥ 0, (188)

where, (188) follows from the condition given in the theorem. This shows that for

b = (P ∗S , P
∗
W |U , PX′|S, P

∗
X|S) ∈ Bh, each of the argument inside the minimum in (23) is greater

than or equal to κs(1), thus implying that κh ≥ κs(1). This completes the proof.

APPENDIX D

JHTCC SCHEME ACHIEVES OPTIMAL T2EE FOR TACI

Let τ = 1 and recall that for TACI, V = (E,Z) and QUEZ = PUZPE|Z . To show the

above claim, note that (185) and (187) holds for any (PS, PW |U , PX′|S, PX|S) ∈ Bh such that

(PW |U , PSX) ∈ B (in place of (P ∗S , P
∗
W |U , PX′|S, P

∗
X|S) ∈ Bh such that (P ∗W |U , P

∗
SX) ∈ B). From

this and the achievability proof of Theorem 9 where it is shown that κs(1) ≥ I(E;W |Z), it
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follows that proving

E ′2
(
PS, PW |U , PX|S

)
≥ I(E;W |Z), (189)

for any (PW |U , PSX) ∈ B′ (1, C) suffices, where B′ (1, C) is defined in (38). This can be done

as follows.

E ′2
(
PS, PW |U , PX|S

)
= min

PŨṼ S̃W̃ Ỹ ∈T
′
2(P̂USW̄ ,P̂V SW̄Y )

D
(
PŨ Ṽ S̃W̃ Ỹ ||Q̂UV SW̄Y

)
+ IP̂ (W,X;E,Z, Y |S)− IP̂ (U ;W,X|S)

≥ IP̂ (X;Y |S) + IP̂ (W ;E,Z)− IP̂ (U ;W )

= IP̂ (X;Y |S)− IP̂ (U ;W |E,Z)

≥ IP̂ (U ;W |Z)− IP̂ (U ;W |E,Z) = IP̂ (E;W |Z) (190)

= I(E;W |Z),

where, (190) follows from the assumption that (PW |U , PSX) ∈ B′ (1, C). Thus, the JHTCC

scheme achieves the optimal T2EE for TACI over a DMC.

APPENDIX E

PROOF OF LEMMA 13

Note that for τ = 0, n = 0, which implies that the observer does not transmit anything. Then,

from Stein’s lemma [5] for ordinary hypothesis testing, (i) and (ii) follows, where θ(0) :=

D(PV ||QV ). When τ > 0, the proof is similar to that of Theorem 1 in [5]. Here, we prove (i),

which states that a T2EE of θ(τ) is achievable. The proof of (ii) follows in a straightforward

manner from the proof given in [5] and is omitted here.

For given encoding functions f (k,n)
1 , . . . , f

(k,n)
L , define

β′
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , ε

)
:= inf

g(k,n)
β
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , g(k,n)

)
, (191)

such that

α
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , g(k,n)

)
≤ ε,

and

(V k, Uk
lc)− Uk

l −Xn
l − Y n

l , l ∈ L,
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where, Xn
l = f

(k,n)
l (Uk

l ), lc := L\l and let

β̄(k, τ, ε) := inf
f

(k,n)
1 ,...,f

(k,n)
L

n≤τk

β′
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , ε

)
.

Now, let k ∈ Z+, δ̃ > 0 be arbitrary, and ñk, f̃ (k,ñk)
l , l ∈ L, and Ỹ ñk

L be the channel blocklength,

encoding functions and channel outputs respectively, such that kθ(k, τ)−D
(
P
Y
ñk
L V k
||Q

Y
ñk
L V k

)
<

kδ̃. For each l ∈ L,
{
Ỹ ñk
l (j)

}
j∈Z+

form an infinite sequence of i.i.d. r.v.’s indexed by j. Hence,

by the application of Stein’s Lemma [5] to the sequences
{
Ỹ ñk
L (j), V k(j)

}
j∈Z+

, we have

lim sup
j→∞

log
(
β̄(kj, τ, ε)

)
kj

≤
−D

(
P
Y
ñk
L V k
||Q

Y
ñk
L V k

)
k

,

≤ −(θ(k, τ)− δ̃). (193)

For m ≥ kj, β̄(m, τ, ε) ≤ β̄(kj, τ, ε). Hence,

lim sup
m→∞

log
(
β̄(m, τ, ε)

)
m

≤ lim sup
j→∞

log
(
β̄(kj, τ, ε)

)
kj

≤ −(θ(k, τ)− δ̃).

Note that the left hand side (L.H.S) of the above equation does not depend on k. Taking infimum

with respect to k on both sides of the equation and noting that δ̃ is arbitrary, proves (i).

APPENDIX F

PROOF OF THEOREM 15

For the achievability part, consider the following scheme.

Encoding: Fix k, n ∈ Z+ and PXn
l |U

k
l

at encoder l, l ∈ L. For j ∈ Z+, upon observing ukjl ,

encoder l transmits Xnj
l = f

(kj,nj)
l (Ukj

l ) generated i.i.d. according to
∏j

j′=1 PXn
l |U

k
l =ukl (j′). The

main encoder performs uniform random binning on Ek, i.e., fkjs (Ekj) = M , where M is selected

uniformly at random from the set M := {1, 2, · · · , ekjR}.

Decoding: Let M denote the received bin index, and δ > 0 be an arbitrary number. If there

exists a unique sequence Êkj such that fkjs (Êkj) = M and (Êkj, Y nj
L , Zkj) ∈ T j

[EkY nL Z
k]δ

, then

the decoder outputs g(kj,nj)(M,Y nj
L , Zkj) = Êkj . Else, an error is declared.

Analysis of the probability of error: The events that can possibly lead to an error under the

above encoding and decoding rules are given below:

E1 =
{

(Ekj, Y nj
L , Zkj) /∈ T j

[EkY nL ,Z
k]δ

}
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E2 =

∃ Ẽ
kj 6= Ekj, fkjs (Ẽkj) = fkjs (Ekj)

(Ẽkj, Y nj
L , Zkj) ∈ T j

[EkY nL Z
k]δ

 .

By the joint typicality lemma [33], P(E1)→ 0 as j →∞. Also,

P(E2) =
∑

ekj ,ynjL ,zkj

P(ekj, ynjL , z
kj)× P

(
fkjs (Ẽkj) = fkjs (ekj), (Ẽkj, ynjL , z

kj) ∈ T j
[EkY nL Z

k]δ

)
=

∑
ekj ,ynjL ,zkj

P(ekj, ynjL , z
kj)

∑
ekj∈T j

[EkY nL Z
k]δ

e−kjR

≤ ej(H(Ek|Y nL ,Z
k)+δ)e−kjR

= e
kj

(
H(Ek|Y nL ,Z

k)+δ

k
−R
)
.

Hence, P(E2) → 0 as j → ∞ if R > H(Ek|Y n
L , Z

k) + δ, (Zk, Ek) − Uk
l − Xn

l − Y n
l , l ∈ L.

Since δ > 0 is arbitrary, this proves that R >
H(Ek|Y nL ,Z

k)

k
is an achievable rate.

For the converse, we have by Fano’s inequality that H(Ek|fks (Ek), Y n
L , Z

k) ≤ γk, where

γk → 0 as k →∞. Hence, we obtain

kR = log(|M|) ≥ H(M |Y n
L , Z

k)

= H(M |Y n
L , Z

k)−H(Ek|M,Y n
L , , Z

k) +H(Ek|M,Y n
L , Z

k)

≥ H(Ek,M |Y n
L , Z

k)− γk

= H(Ek|Y n
L , Z

k) +H(M |Ek, Y n
L , Z

k)− γk

≥ H(Ek|Y n
L , Z

k)− γk.

This proves the converse by noting that (Zk, Ek) − Uk
l − Xn

l − Y n
l , l ∈ L holds for any

communication scheme.

APPENDIX G

PROOF OF THEOREM 16

From the source-channel separation theorem, an upper bound on R(τ) can be obtained by

the intersection of the BT inner bound [33, Th. 12.1] with the capacity region (C1, . . . , CL, Cs),

where Cs is the rate available over the noiseless link from the encoder of source E to the decoder.
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Writing the BT inner bound explicitly, we obtain that for all G ⊆ L (including the null-set),

I(UG;WG|E,WGc , Z) ≤
∑
l∈G

τCl,

I(UG;WG|E,WGc , Z) +H(E|WGc , Z) ≤
∑
l∈G

τCl + Cs,

where the auxiliary r.v.’s WL satisfy (115) and |Wl| ≤ |Ul|+4. Taking the infimum of Cs over all

such WL and denoting it by Ri(τ), we obtain the second inequality in (118). The other direction

in (118) is obtained similarly by using the BT outer bound [33, Th. 12.2]. Since R(τ) is equal

to the infimum in (110), substituting (118) in (110) proves (119).

APPENDIX H

ALTERNATE PROOF OF PROPOSITION 9

For L = 1, note that the Markov chain conditions in (115) and (117) are identical. Hence,

Ri(τ) = Ro(τ) = R(τ). (195)

Using the BT inner bound in [33, Ch.12], we obtain R(τ) as the infimum of R′ such that

H(E|Z,W ) ≤ R′, (196)

I(U ;W |E,Z) ≤ τC, (197)

H(E|Z,W ) + I(U ;W |Z) ≤ τC +R′, (198)

for some auxiliary r.v. satisfying (E,Z)− U −W . Hence,

R(τ) = inf
W

max
(
H(E|W,Z), H(E|W,Z)

+ I(U ;W |Z)− τC
)
, (199)

such that (E,Z)− U −W and (197) hold. We next prove that (199) can be simplified as

R(τ) = inf
W
H(E|Z,W ), (200)
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such that I(U ;W |Z) ≤ τC and (E,Z) − U −W are satisfied. This is done by showing that,

for every r.v. W for which I(U ;W |Z) > τC, there exists a r.v. W ′ such that (E,Z)−U −W ′,

I(U ;W ′|Z) = τC, (201)

H(E|W ′, Z) ≤ H(E|W,Z) + I(U ;W |Z)− τC, (202)

and (197) is satisfied with W replaced by W ′. Setting

W ′ =

W, with probability 1-p,

constant, with probability p,
(203)

suffices, where p is chosen such that I(U ;W ′|Z) = τC. To see this, first note that H(E|W ′, Z)

is an increasing function of p, while I(U ;W ′|Z) and I(U ;W ′|E,Z) are decreasing functions of

p. Hence, it is possible to choose p such that (201) and (197) are satisfied with W ′ in place of

W . It is clear that such a choice of W ′ also satisfies (E,Z)− U −W ′. To complete the proof

of (200), it remains to be shown that for such a W ′, (202) holds. We can write,

H(E|W ′, Z) = (1− p)H(E|W,Z) + pH(E|Z). (204)

Taking derivative with respect to p, we obtain

d

dp
H(E|W ′, Z) = I(E;W |Z). (205)

Similarly,

d

dp
H(U |W ′, Z) = I(U ;W |Z). (206)

By the data processing inequality [24] applied to (E,Z)− U −W , we have that I(E;W |Z) ≤

I(U ;W |Z). Hence,

d

dp
H(E|W ′, Z) ≤ d

dp
H(U |W ′, Z). (207)

From (207), it follows that

F (p) := H(E|W ′, Z) + I(U ;W ′|Z)− τC (208)
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is a decreasing function of p. Together with the fact that H(E|W ′, Z) is increasing with p, it

then follows that (202) is satisfied for W ′ chosen in (203). Having shown (200), the proof is

now complete from (119) and (195).
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