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Abstract

A distributed binary hypothesis testing problem involving two parties, one referred to as the observer
and the other as the detector is studied. The observer observes a discrete memoryless source (DMS) and
communicates its observations to the detector over a discrete memoryless channel (DMC). The detector
observes another DMS correlated with that at the observer, and performs a binary hypothesis test on the
joint distribution of the two DMS’s using its own observed data and the information received from the
observer. The trade-off between the type 1 error probability and the type 2 error exponent (T2EE) of the
hypothesis test is explored. Single-letter lower bounds on the optimal T2EE are obtained by using three
different coding schemes, a separate hypothesis testing and channel coding scheme, a local decision
scheme, and a joint hypothesis testing and channel coding scheme. Exact single-letter characterizations
of the optimal T2EE are established for three special cases; (i) testing against conditional independence,
(ii) distributed HT when the DMC has zero capacity, and (iii)) HT over a DMC. Moreover, it is shown
that a strong converse holds in cases (i¢) and (4i7). Single-letter lower bounds on the optimal T2EE are
also obtained for testing against conditional independence with multiple observers communicating over

orthogonal DMCs.

I. INTRODUCTION

Given data samples, statistical hypothesis testing (HT) deals with the problem of ascertaining
the true assumption, that is, the true hypothesis, about the data from among a set of hypotheses.
In modern communication networks (like in sensor networks, cloud computing and Internet of
things (IoT)), data is gathered at multiple remote nodes, referred to as observers, and transmitted
over noisy links to another node for further processing. Often, there is some prior statistical

knowledge available about the data, for example, that the joint probability distribution of the
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Fig. 1: Distributed HT over orthogonal DMCs.
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data belongs to a certain prescribed set. In such scenarios, it is of interest to identify the true
underlying probability distribution, and this naturally leads to the problem of distributed HT
over noisy channels, which is depicted in Fig. 1. Each encoder [, [ = 1,..., L, observes k
samples independent and identically distributed (i.i.d) according to F;,, and communicates its
observation to the detector by n uses of the DMC, characterized by the conditional distribution
Py, x,. In the simplest case in which there are two possibilities Py, ¢, v and Qp,. v, v for the
joint distribution of the data, the detector performs a binary hypothesis test to decide between
them based on the channel outputs Y,*, ..., Y/ as well as its own observations V* with the null

and the alternate hypothesis given by

k
Ho: (Uf,.... UL V) ~ ] Pu vy (1a)
i=1
and
k
Hy: (Uf, . UEVE) ~ T Quiors (1b)
=1

respectively. Our goal is to characterize the optimal T2EE for a prescribed constraint on the type
1 error probability for the above hypothesis test.

In the centralized scenario, in which the detector performs a binary hypothesis test on the
probability distribution of the data it observes directly, the optimal T2EE is characterized by
the well-known lemma of Stein [2] (see also [3]). The study of distributed statistical inference
under communication constraints was conceived by Berger in [4]. In [4], and in the follow up

literature summarized below, communication from the observers to the detector are assumed



to be over rate-limited error-free channels. Some of the fundamental results in this setting for
the case of a single observer (L = 1) was established by Ahlswede and Csiszéar in [5]. They
obtained a tight single-letter characterization of the optimal T2EE for a special case of HT
known as testing against independence (TAI), in which, Qu,v = Py, x Py. Furthermore, the
authors established a lower bound on the optimal T2EE for the general HT case, and proved
a strong converse result, which states that the optimal achievable T2EE is independent of the
constraint on the type 1 error probability. A tighter lower bound for the general HT problem with
a single observer is established by Han [6], which recovers the corresponding lower bound in
[5]. Han also considered complete data compression in a related setting where either Uy, or V/,
or both (also referred to as two-sided compression setting) are compressed and communicated
to the detector using a message set of size two. It is shown that, asymptotically, the optimal
T2EE achieved in these three settings are equal. In contrast, a single-letter characterization of the
optimal T2EE for even the TAI with two-sided compression and general rate constraints remains
open till date. Shalaby et. al [7] extended the complete data compression result of Han to show
that the optimal T2EE is not improved even if the rate constraint is relaxed to that of zero-rate
compression (sub-exponential message set with respect to blocklength £). Shimokawa et. al [8]
obtained a tighter lower bound on the optimal T2EE for general HT by considering quantization
and binning at the encoder along with a minimum empirical-entropy decoder. Rahman and
Wagner [9] studied the setting with multiple observers, in which, they showed that for the case
of a single-observer, the quantize-bin-test scheme achieves the optimal T2EE for testing against
conditional independence (TACI), in which, V' = (E, Z) and Qu,pz = Pu,zPgz. Extensions
of the distributed HT problem has also been considered in several other interesting scenarios
involving multiple detectors [10], multiple observers [11], interactive HT [12], [13], collaborative
HT [14], HT with lossy source reconstruction [15], HT over a multi-hop relay network [17],
etc., in which, the authors obtain a single-letter characterization of the optimal T2EE in some
special cases.

While the works mentioned above have studied the unsymmetric case of focusing on the
T2EE for a constraint on the type 1 error probability, other works have analyzed the trade-off
between the type 1 and type 2 error probabilities in the exponential sense. In this direction, the
optimal trade-off between the type 1 and type 2 error exponents in the centralized scenario is
obtained in [18]. The distributed version of this problem is first studied in [19], where inner

bounds on the above trade-off are established. This problem has also been explored from an



information-geometric perspective for the zero-rate compression scenario in [20] and [21], which
provide further insights into the geometric properties of the optimal trade-off between the two
exponents. A Neyman-Pearson like test in the zero-rate compression scenario is proposed in [22],
which, in addition to achieving the optimal trade-off between the two exponents, also achieves
the optimal second order asymptotic performance among all symmetric (type-based) encoding
schemes. However, the optimal trade-off between the type 1 and type 2 error exponents for
the general distributed HT problem remains open. Recently, an inner bound for this trade-off is
obtained in [23], by using the reliability function of the optimal channel detection codes.

In contrast, HT in distributed settings that involve communication over noisy channels has
not been considered until now. In noiseless rate-limited settings, the encoder can reliably com-
municate its observation subject to a rate constraint. However, this is no longer the case in
noisy settings, which complicates the study of error exponents in HT. Since the capacity of the
channel Py |x, denoted by C(Py| x), quantifies the maximum rate of reliable communication
over the channel, it is reasonable to expect that it plays a role in the characterization of the
optimal T2EE similar to the rate-constraint R in the noiseless setting. Another measure of the
noisiness of the channel is the so-called reliability function E(R, Py x) [24], which is defined
as the maximum achievable exponential decay rate of the probability of error (asymptotically)
with respect to the blocklength for message rate of R. It appears natural that the reliability
function plays a role in the characterization of the achievable T2EE for distributed HT over a
noisy channel. Indeed, in Theorem 2 given below, we provide a lower bound on the optimal
T2EE that depends on the expurgated exponent at rate R, I,(R, Py|x), which is a lower bound
on E(R, Py|x) [25]. However, surprisingly, it will turn out that the reliability function does not
play a role in the characterization of the T2EE for TACI in the regime of vanishing type 1 error
probability constraint.

The goal of this paper is to study the best attainable T2EE for distributed HT over a DMC
and obtain a computable characterization of the same. Although a complete solution is not to
be expected for this problem (since even the corresponding noiseless case is still open), the aim
is to provide an achievable scheme for the general problem, and to identify special cases in
which a tight characterization can be obtained. We will focus mostly on the case of a single
observer in the system, but generalization to multiple observers will also be considered. Our
main contributions can be summarized as follows.

(1) We propose three different coding schemes and analyze the T2EE achieved by these



schemes.

(ii)) We obtain an exact single-letter characterization of the optimal T2EE for three special:

(a) TACI for the case of vanishing type 1 error probability constraint,
(b) when C(Py|x) =0, i.e., the communication channel has zero capacity,

(c) HT over a DMC, i.e., when there is no side-information at the detector.

We show that for the cases (b) and (c¢), the optimal T2EE is in fact independent of the
constraint on the type 1 error probability, thus implying that a strong-converse holds.
(ii1)) We also obtain single-letter lower bounds on the T2EE for TACI when there are multiple

observers in the system communicating over orthogonal DMCs.

In the sequel, we first introduce a separation based scheme that performs independent hy-
pothesis testing and channel coding, which we refer to as the separate hypothesis testing and
channel coding (SHTCC) scheme. This scheme combines the Shimokawa-Han-Amari scheme
[8], which is the best known coding scheme till date for distributed HT over a rate-limited
noiseless channel, with the channel coding scheme that achieves the expurgated exponent of the
channel [25] [24]. A separation based scheme similar to SHTCC scheme has been proposed
recently in [26], where the authors study the T2EE for distributed HT over a point to point,
multiple-access and broadcast channels. Our second scheme is a zero-rate compression scheme
referred to as the local decision (LD) scheme, in which, the observer makes a tentative guess on
the true hypothesis based on its own observation, and communicates its one bit decision to the
detector. The third scheme is a joint hypothesis testing and channel coding (JHTCC) scheme, in
which, hybrid coding [27] is used to communicate from the observer to the detector. As we show
later, the SHTCC scheme achieves the optimal T2EE for TACI, while the LD scheme achieves
the optimal T2EE for general distributed HT when the channel has zero capacity, and, also for
HT over a noisy channel of arbitrary capacity (i.e., no side-information at the detector). We also
show that the JHTCC scheme recovers the optimal T2EE for TACI. Although the T2EE achieved
by the SHTCC and JHTCC schemes are incomparable in general, we establish conditions under
which the JHTCC scheme achieves a T2EE at least as good as the SHTCC scheme. Finally, we
establish single-letter lower and upper bounds on the achievable T2EE for TACI with multiple
observers, in which, Qu,. v, 5z = Pu,..u, zPEg|z. This is done by first mapping the problem to
an equivalent joint source-channel coding (JSCC) problem with helpers. The Berger-Tung (BT)

bounds [28] [29] and the source-channel separation theorem in [30] are then used to obtain the



desired bounds.

The rest of the paper is organized as follows. In Section II, we introduce the notations, detailed
system model and definitions. Following this, we introduce the main results in Section III and
IV focusing on the case of a single observer. The achievable schemes are presented in Section III
and the optimality results for special cases are discussed in Section IV. In Section V, we obtain
lower bounds on the optimal T2EE for distributed HT with multiple observers communicating

to the detector over orthogonal DMCs. Finally, Section VI concludes the paper.

II. PRELIMINARIES
A. Notations

Random variables (r.v.’s) are denoted by capital letters (e.g., X), their realizations by the
corresponding lower case letters (e.g., x), and their support by calligraphic letters (e.g., X).
The cardinality of X" is denoted by |X|. The joint distribution of r.v.s X and Y is denoted
by Pxy and its marginals by Px and Py. X — Y — Z denotes that X, Y and Z form
a Markov chain. Equality by definition is represented by :=. For m,l € Z*, X™ denotes
the sequence X,...,X,,, while X;" denotes the sequence X;i,...,X;,,. The group of m
V'S Xi (j—1)m+1s - - - » X1jm 1S denoted by X;"(j), and the infinite sequence X;"(1), X]"(2),...
is denoted by {X;"(j)}jez+. Similarly, for any G = {ly,...,l,} C ZT, {X{f,...,X{:},

{Xﬁ“(j),...,X[g”(j)} and {{X;?(j)}jew7...,{X[:(j)}jez+} are denoted by X[, X(5)
and {Xg’(j)}jez+, respectively. D(Px||Qx), Hpy (X), Hp,, (X|Y) and Ip,, (X;Y') represent
the standard quantities of Kullback-Leibler (KL) divergence between distributions Px and Q) x,
the entropy of X with distribution Py, the conditional entropy of X given Y and the mutual
information between X and Y with joint distribution Pxy, respectively. When the distribution
of the r.v.’s involved are clear from the context, the entropic and mutual information quantities
are denoted simply by /(X;Y), H(X) and H(X|Y), respectively. Following the notation in
[24], Tp and T[’gx]é (or T[’)’}]E or 73" when there is no ambiguity) denote the set of sequences of
type P and the set of Px-typical sequences of length m, respectively. The set of all types of
k-length sequences of r.v.’s X* and Y* is denoted by T)’jy and Ukez+7-;]§y is denoted by Txyy.
Given realizations X" = 2™ and Y" = y", H.(2"|y") denote the conditional empirical entropy

defined as

H€<$n|yn) = HP)}{/(XD})? 2)



where Pgy denote the joint type of (2",y™). For a € R™, [a] denotes the set of integers
{1,2,...,[a]}. All logarithms considered in this paper are with respect to the base e. For any
set G, G¢ denotes the set complement. ay ﬂ) b indicates that limj_,., a; = b. For functions
fi: A— Band f, : B— C, fyo f; denotes function composition. Finally, 1(-) denotes the

indicator function, and O(-) and o(-) denote the standard asymptotic notation.

B. Problem formulation

All the r.v.’s considered henceforth are discrete with finite support. Unless specified otherwise,
we will denote the probability distribution of a r.v. Z under the null and alternate hypothesis
by P, and )z, respectively. Let k,n € Z* be arbitrary. Let £ = {1,..., L} denote the set
of observers which communicate to the detector over orthogonal noisy channels, as shown in
Fig. 1. For | € L, encoder [ observes Uf, and transmits codeword X' = fl(k’")(Ulk), where
fl(k’") : UF — X represents the encoding function (possibly stochastic) of observer [. Let

7 := 7 denote the bandwidth ratio. The channel output Y is given by the probability law

L n
Pyaixa(wilep) = TTTT Prae (esl2s), 3)

1=1 j=1
i.e., the channels between the observers and the detector are independent of each other and
memoryless. Depending on the received symbols Y2 and its own observations V¥, the detector
makes a decision between the two hypotheses Hy and H; given in (1). Let H € {0,1} denote
the actual hypothesis and He {0,1} denote the output of the HT, where 0 and 1 denote H, and
H,y, respectively, and Alkn) C Vi X V¥ denote the acceptance region for Hj. Then, the decision

rule g - Y7 x Y& — {0, 1} is given by

gtk (yz,vk) =1-1 ((yz, vk) € A(k’”)) )

Let
(e} (k, n, fl(k’n), ey [(/kﬁb), g(k’n)) = 1 — PYZLVk (A(km)) s (4)
and 5§ (k,n, 57, T, g0 ) = Qun (A®) 5)
denote the type 1 and type 2 error probabilities for the encoding functions f; (F, "), ceey fék’") and

decision rule g*™), respectively.



Definition 1. A T2EE « is (7, €) achievable if there exists a sequence of integers k, corresponding

sequences of encoding functions fl(k’"k), ceey fék’"’“) and decision rules g™ such that ny, < Tk,
Yk,
-1
liminf = log (3 (I, my, [, ., (0, g50) ) > (62)
k—oo k
and lim sup « (k, Nk, l(k’n’“), cee fék’n"’), g(k’”’“)> <e. (6b)
k—o00

For (1,¢) € RT x [0, 1], let
k(T,€) :=sup{x’ : k' is (7,€) achievable}. (7)

We are interested in obtaining a computable characterization of (7, €).

It is well known that the Neyman-Pearson test [1] gives the optimal trade-off between the type
1 and type 2 error probabilities, and hence, also between the error exponents in a HT. From this, it
follows that the optimal T2EE for distributed HT over DMC'’s is achieved when for each [ € L,
the channel-input X" is generated correlated with U} according to some optimal conditional
distribution PXZH‘UZ;@, and the optimal Neyman-Pearson test is performed on the data available
(both received and observed) at the detector. The encoder and the detector for such a scheme
would be computationally complex to implement from a practical viewpoint. Moreover, analysis
of such a scheme is prohibitively complex as it involves optimization over large dimensional
probability simplexes, when £ and n are large. In the next section, we establish three different
single-letter lower bounds on (7, €) by using the SHTCC, LD and JHTCC schemes, respectively.
We will limit the discussion to the case of a single observer, 1.e., L = 1, until Section V, and
therefore, omit the subscript associated with the index of the observer, e.g., U; will be denoted

as U.

III. ACHIEVABLE SCHEMES

In [8], Shimokawa et. al. obtained a lower bound on the optimal T2EE for distributed HT over
a rate-limited noiseless channel by using a coding scheme that involves quantization and binning
at the encoder. In this scheme, the type' of the observed sequence U* is sent by the encoder
to the detector, which aids in the HT. In fact, in order to achieve the T2EE proposed in [8], it

is sufficient to send a message indicating whether U* is typical or not, rather than sending the

!Since the number of types is polynomial in the blocklength, these can be communicated error-free at asymptotically zero-rate.



exact type of U*. Although it is not possible to get perfect reliability for messages transmitted
over a noisy channel, intuitively, it is desirable to protect the typicality information about the
observed sequence as reliably as possible. Based on this intuition, we next propose the SHTCC
scheme that performs independent HT and channel coding and protects the message indicating

whether U* is typical or not, as reliably as possible.

A. SHTCC Scheme:

In the SHTCC scheme, the encoding and decoding functions are restricted to be of the form
Flm) = ) o ¢ and gkn) = g 6 g™ respectively. The source encoder £ : 1% — M =
{0,1,- -, [e*®]} generates an index M = f{¥)(U*) and the channel encoder f*™ : M — C =

{X"(j), j €[0: [¢"F]]} generates the channel-input codeword X™ = f{*™ (). Note that the
kR

rate of this coding scheme is == = § bits per channel use. The channel decoder gék’”) Yt =M
maps the channel-output Y™ into an index M = gék’")(Y”), and ggk) : M x V¥ — {0,1} outputs
the result of the HT as H = ggk) (M ,V¥). Note that fc(k’”) depends on U* only through the output
of fﬁk)(U *) and gﬁ’“”’ depends on V* only through Y™. Hence, the scheme is modular in the
sense that ( fc(k’n), gék’")) can be designed independent of ( fs(k), ggk)). In other words, any good
channel coding scheme may be used in conjunction with a good compression scheme. If U* is
not typical according to Fy, fﬁk) outputs a special message, referred to as the error message,
denoted by M = 0, to inform the detector to declare H = 1. There is obviously a trade-off
between the reliability of the error message and the other messages in channel coding. The best
known reliability for protecting a single special message when the other messages M € [e"f]
of rate R, referred to as ordinary messages, are required to be communicated reliably is given
by the red-alert exponent in [31]. The red-alert exponent is defined as

En(R, Pyix) = |, max 3 Ps(s) D (Pris=s||Prix=s) - (8)

I(X;Y|S)=R, 5€S
SCXZy

Borade’s scheme uses an appropriately generated codebook along with a two-stage decoding
procedure. The first stage is a joint-typicality decoder to decide whether X" (0) is transmitted,
while the second stage is a maximum-likelihood decoder to decode the ordinary message if the
output of the first stage is not zero, i.e., M # (. On the other hand, it is well-known that if the

rate of the messages is R, a channel coding error exponent equal to E,(R, Py|x) is achievable,



where

Ey(R, Py|x)

1

'=maxmax{ —p R —p log ZPX )Px () (Z\/an(y\x)Pyx(yli’)) ;9
y

Px  p>1

is the expurgated exponent at rate R [25] [24]. Let

Em(Psx, Pyix) =Y Ps(s) D (Pyis=s||Prix=s) , (10)

seS

where, S=AX and S — X — Y, and

Ex(Ra PSX7PY|X)

= max —p R—p log ZPS s)Pxs(z|s) Px|s(Z|s) (Z\/Pyx ylz) PY|X(Z/|$)>

Although Borade’s scheme is concerned only with the reliability of the special message, it is not
hard to see using the technique of random-coding that for a fixed distribution Psyx, there exists
a codebook C, and encoder and decoder as in Borade’s scheme, such that the rate is I(X;Y|S)
and the special message achieves a reliability equal to FE,,(Psx, Py|x), while the ordinary
messages achieve a reliability equal to E,(I(X;Y|S), Psx, Py|x). Note that E,,(Psx, Py|x)
and E,(I(X;Y1S), Psx, Py|x) denote Borade’s red-alert exponent and the expurgated exponent
with fixed distribution Psx, respectively, and that both are inter-dependent through Psx. Thus,
varying Psx provides a trade-off between the reliability for the ordinary messages and the
special message. We will use Borade’s scheme for channel coding in the SHTCC scheme, such
that the error message and the other messages correspond to the special and ordinary messages,
respectively. The SHTCC scheme will be described in detail in Appendix A. We next state
a lower bound on k(7,¢€) that is achieved by the SHTCC scheme. For brevity, we will use
the shorter notations C, E,,(Psx) and E,(R, Psx) instead of C(Py|x), En(Psx, Pyx) and
E,(R, Psx, Py|x), respectively.



Theorem 2. For 7 > 0, k(T,€) > ks(T), ¥ € € (0, 1], where

Ks(T)
= sup min (E\(Pww), E2(Pwu, Psx,7), Es(Pwiu, Psx, ), Es(Pw, Psx,T)),
(Pwu,Psx)
e B(r,0)
(11)
where
B(r.C) (Pww, Psx): S =&, Povwsxy(Pwy, Psx) = Puv PwiuPsx Py x,
7,0) =
In(U: W|V) < 7Ip(X:Y]|S) < 7C
EL (P = min D(Provi , 12
1 (Pwiv) P T o Prw) (PoiwllQuvw) (12)
EQ(PW|Ua PSX7T) =
Pgowegi(l}’uwypv) D(PUVWHQUVW) + T[P<X; Y‘S)
—Ip(U;W|V), if Ip(U; W) >1Ip(X;Y]S), (13)
0, otherwise,
E3(PW|U7 PSXaT)
(
PyoweTsPow.Pv) D(Poiil|Quvw) + 7Ip(X;Y]S) — Ip(U; W|V)
+ 7B, (Ip(X;Y|S), Psx), if Ip(U; W) > 11p(X;Y]S), (14)
=<
PooweTs(Pow.Pv) D(Egpw||Quvw) + Ip(Vi W)
\ +7E, (Ip(X;Y]S), Psx), otherwise,
E4(PW|Ua PSX7T)
D(Py||Qv) + mIp(X;Y|S) — Ip(U; W|V)
= +7E, (Psx), if Ip(U; W) > 71Ip(X;Y|9), (15)

D(Py||Qv) + Ip(V; W) + T7E,, (Psx) , otherwise,



Quvw = QuvPw,
Ti(Pow, Pyw) = {PUVW € Tuvw : Pgyw = Pow, Py = Pyw},
To(Pow, Pv) := {Pavir € Tuvw : Py = Pow, Py = Py, HW|V) > Hp(W|V)},

Ts(Pow, Pv) == { Pypw € Tuvw : Py = Pow, Py = Pv}.

The proof of Theorem 2 is given in Appendix A. Although the expression r4(7) in The-
orem 2 appears complicated, the terms £ (Py ) to E4(Pw, Psx,T) can be understood to
correspond to distinct events that can possibly lead to a type 2 error. Note that F;(Pyy) and
Ey(Pwv, Psx, ) are the same terms appearing in the T2EE achieved by the Shimokawa-Han-
Amari scheme [8] for the noiseless channel setting, while E5( Py, Psx, T) and E4( Py, Psx, T)
are additional terms introduced due to the channel. Eg(Pw‘U, Pgx,T) corresponds to the event
when M # 0, M # M and ggk)(M, V¥) = 0, whereas E4(Pyu, Psx,7) is due to the event
when M =0, M # M and ggk)(M, VE) = 0.

Remark 3. Note that, in general, E,,(Psx) can take the value of oo and when this happens,
the term TE,, (Psx) becomes undefined for T = 0. In this case, we define TE,, (Psx) := 0. A
similar rule applies for TE, (Ip(X;Y|S), Psx) when 7 =0 and E, (Ip(X;Y]S), Psx) = oc.

Remark 4. In the SHTCC scheme, we used Borade’s scheme for channel coding, that is
concerned specifically with the protection of a special message. Another scheme can be obtained
by replacing Borade’s scheme by a scheme such that the ordinary messages achieve an error
exponent equal to the reliability function E(R, Py|x) [24] of the channel Py x at rate R, while
the special message achieves the maximum reliability possible subject to this constraint. However,
a computable characterization of the best reliability achievable for a single message when the
ordinary messages achieve E(R, Py|x), or even a computable characterization of E(R, Py|x)
for all values of R is unknown in general. Due to this reason, a comparison between ks and

the T2EE achieved by the above mentioned scheme is not straighforward.

B. Local Decision (LD) Scheme (Zero-Rate Compression Scheme)

The SHTCC scheme described above is a two stage scheme in which the observer communi-
cates a compressed version W* of U* using a channel code of rate § bits per channel use, where

R < 7O, while the detector makes the decision on the hypothesis using an estimate of WW* and



side-information V'*. Now, suppose the observer makes the decision about the hypothesis locally
using U* and transmits its 1 bit decision to the detector using a channel code for two messages,
while the detector makes the final decision based on its estimate of the 1 bit message and V'*.
The encoder f*m) = %™ o f") and decoder g™ = ¢ o g*™ are thus specified by maps
By {013, 150,13 = am, g™ ym 5 {0,1) and ¢ : {0,1} x VF — {0, 1}
We refer to this scheme as the LD scheme. Observe that the rate of communication over the
channel for this scheme is R = % bits per channel use, which tends to zero asymptotically.

We will next obtain a lower bound on (7, €) using the LD scheme. Let

Bo == Bo(Pu, Py, Quv) = min - D(Pgy||Quv), (16)

uv:
Py=Py, Py=Py
and E, := E.(Pyx) := D(Py|x—al| Pyix=b), (17)
where a and b denote channel input symbols that satisfy
(a,b) = argmax D(PY\X:x||PY\X:z’)~ (18)
(z,0")eXxX

Note that 3, denotes the optimal T2EE for distributed HT over a noiseless channel, when the
communication rate-constraint is zero [6] [7]. We define
D(PVHQV) ) ifT:0>

Ko(T) := (19)
min (5o, 7E. + D(Py||Qv)), otherwise,

We have the following result.
Theorem 5. For 7 > 0, x(7,€) > ko(T), V € € (0,1].

Proof: Let k € Z* and ny, = |7k]. For 7 = 0, Theorem 5 follows from Stein’s lemma [5]

applied to i.i.d. sequence V'* available at the detector. Assume 7 > 0. For a fixed § > 0 (a small

number), we define the functions fs(k) and fék’"’“) for the encoder f(*™+) as follows:

0, if Py € T | |
[PU]5 (20)

1, otherwise,



and

a, i f (k) =0,

S (fP () = " 02}

b™, otherwise.
Here, a™ and 0"* denote the codewords formed by repeating the symbols a and b from the
channel input alphabet X', which are defined in (18). Let the functions ggk) and ggk’"’“) of the
decision rule ¢g*™) be defined by

0, if y™ € T/ *

ng n Py x=qls’
gg% k)(y k) = [Py|x=als

1, otherwise,

for some ¢’ > 0 (a small number), and

0, if Py € Tf, . and g™ (y™) = 0,
g (v*, g™ (y™)) = ks
1, otherwise.

By the law of large numbers, the type 1 error probability tends to zero asymptotically, since

lim P(U" € Tjp, 1, |H = 0) = 1,

k—o0

lim P(V* € Tip, | H = 0) =1,

and lim P(Y™ € T} % |H =0) = 1.

k—o00 [PY\X:a]S/

A type 2 error occurs only under the following two events:

i1k k k k ny, n

5119 = {U € T[PU},s’ Vhe T[PVLS and Y™ € T[P{cnxzab'}’
fq7k k k k n n,

82p = {U ¢ T[PUL;’ Vhe T[Pv}é and Y™ € T[PkY|X:a]6’}.

More specifically, £, occurs when both U ¥ and V* are typical and there is no error at the
channel decoder, while &, occurs when U* is not typical, V* is typical and the channel decoder
ggk’"’“) makes a decoding error. It follows from the zero-rate compression result in [6] that the
probability of the first event is upper bounded by e *(%=9()=7) for any v > 0 and k sufficiently

large. The probability of the second event is upper bounded for any v > 0 and k sufficiently



large as

P(€2p|H - 1) < P(Vk € ﬂl;V}5|H = 1) P <Ynk S T[?:{{leza](sJUk g Tﬁ’Ub)

=P(V* € Th |H=1) P (Y™ eTj | X" =t")
< e~ RD(PV]|Qv)=0(8)—) | o—nk(Ec—O(8")=7) (22)

Here, (22) follows from [24, Lemma 2.6] and the fact that the number of types in VE and Y™ is
upper bounded by a polynomial in £ and ny, respectively [24]. By the union bound, it follows

that
Bk, ny, fEm) ghm)y <P(&,|H = 1) + P(E,|H = 1),

which in turn implies, in the limit § and ¢’ tending to zero (subject to delta-convention given in

[24]), that
k(7,€) > min (By — ), 7(E. — 7)), Ve (0,1).

The proof is completed by noting that v > 0 is arbitrary.
]
The LD scheme would be particularly useful when the communication channel is very noisy,
so that reliable communication is not possible at any positive rate. In Section IV, we will show
that the LD scheme achieves the optimal T2EE in two important scenarios: (¢) for distributed
HT over a DMC when the channel capacity is zero, and (ii) for HT over a DMC, i.e., when the
detector has no side-information. In fact, we will show a stronger result that the optimal T2EE
is not improved if the type 1 error probability constraint is relaxed; and hence, that a strong
converse holds.
The SHTCC and LD schemes introduced above are schemes that perform independent HT

and channel coding, i.e., the channel encoder () neglects U* given the output M of source

encoder fs(k), and ggk) neglects Y™ given the output of the channel decoder gﬁk’"). The following
scheme ameliorates these restrictions and uses hybrid coding to perform joint HT and channel

coding.



C. JHTCC Scheme

Hybrid coding is a form of JSCC introduced in [32] for the lossy transmission of sources over
noisy networks. As the name suggests, hybrid coding is a combination of the digital and analog
(uncoded) transmission schemes. For simplicity, assume that £ = n (7 = 1). In hybrid coding,
the source U™ is first mapped to one of the codewords W™ within a compression codebook.
Then, a symbol-by-symbol function (deterministic) of the W" and U™ is transmitted as the
channel codeword X". This procedure is reversed at the decoder, in which, the decoder first
attempts to obtain an estimate W™ of Wn using the channel output Y and its own correlated
side information V™. Then, the reconstruction U” of the source is obtained as a symbol-by-
symbol function of the reconstructed codeword, Y™ and V". In this subsection, we propose a
lower bound on the optimal T2EE that is achieved by a scheme that utilizes hybrid coding for
the communication between the observer and the detector, which we refer to as the JHTCC
scheme. Post estimation of ﬁ/”, the detector performs the hypothesis test using ﬁ/”, Y™ and
V™, instead of estimating U™ as is done in JSCC problems. We will in fact consider a slightly
generalized form of hybrid coding in that the encoder and detector is allowed to perform “time-
sharing” according to a sequence S™ that is known a priori to both parties. Also, the input X"
is allowed to be generated according to an arbitrary memoryless stochastic function instead of
a deterministic function. The JHTCC scheme will be described in detail in Appendix B. Next,

we state a lower bound on (7, €) that is achieved by the JHTCC scheme.

Theorem 6. x(1,¢) > kp,, Ve € (0,1], where

Kp = bsu% min (EQ(PSa PW|USa PX\USW): Ey(Ps, PW\US: PXlUSW)?
€ by

E3(Ps, Pyus, Px|s, PX|USVV)>7 (23)

B b = (PS7PW|US7PX’|S7PX|USW) IP(U7W|S> < II3<W7KV’S)7 X' = X?
h = )

Pyvswxixy (Ps, P s, Px1s, Pxjusi) == PovPsPiusPxsPxjusw Prix

E{ (Ps, Pwus, Pxusw) = min )D (Pz}vmf/!@wsm) , (29

Pyyswy €T (Pusw-Pvswy



Eé (PS; PVVlUSa PXlUSW) = min D (P[7V§WY||QUVSWY>

Pyyawy €T (Pusw Prswy
—i—]p(W;V,Y|S)—[15(U;W|S), (25)
E% (Ps, Piws: Pxis, Pxjusw) = D(Pysy||Qvsy) + Ip(W;V,Y|S) — Io(U; W|S),  (26)
Quvswxxy (Ps, Pwus, Pxis, Pxjusw) = Quv PsPw s PxisPxsw Prix, 27)
Quvsxixy(Ps, Pxis) = QuvPsPx1s1(X = X') Py x, (28)
T (Pusivs Prowy) = {Povgwy € Tuvswy : Pogw = Pusw, Poswy = Prowy ),

H(WI|V,8,Y) > Hp(W|V,S,Y)}.

The proof of Theorem 6 is given in Appendix B. The different factors inside the minimum
in (23) can be intuitively understood to be related to the various events that could possibly lead
to a type 2 error. More specifically, let the event that the encoder is unsuccessful in finding a
codeword W™ in the quantization codebook that is typical with U™ be referred to as the encoding
error, and the event that a wrong codeword W (unintended by the encoder) is reconstructed
at the detector be referred to as the decoding error. Then, E}(Ps, Py ys, Pxjpsw) is related to
the event that neither the encoding nor the decoding error occurs, while £ (Ps, Py s, Pxjusw)
and E3(Ps, Py, Pxis, Pxjysw) are related to the events that only the decoding error and
both the encoding and decoding errors occur, respectively. From Theorem 2, 5 and 6, we have

the following corollary.

Corollary 7.
k(1,€) > max (kp, ko(1), ks(1)), Ve € (0,1]. (29)

It is well-known that in the context of JSCC, hybrid coding recovers separate source-channel
coding as a special case. Since the SHTCC scheme performs independent channel coding and
HT, and the JHTCC scheme uses hybrid coding for communication over DMC, it is tempting
to think that this implies that x;, > k,(1). However, the schemes are not comparable in general,
due to fact that E} (Ps, Pyys, Pxjsw) is not comparable to Es(Pyy, Psx,1). One may ask
when does the JHTCC scheme perform better than the SHTCC scheme. Towards answering this

question, in Theorem 8 below, we obtain conditions under which x;, > k4(1). As a byproduct



of the proof of Theorem 8, we also show that the JHTCC scheme achieves the optimal T2EE
for TACI over a DMC.
Let W= (W,X),S=X, X L (X' W,U,V), W,U,V) LS and (UV,W,8,X')—X~-Y

in Theorem 6, so that

Puvswxixy(Ps, Pwir, Pxis, Pxis) = Pov Ps P Pxs Pxjs Py x, (30)
Quvswxxy (Ps, Pwiv, Pxis: Px|s) = Quv Ps P Px1sPx1s Py, (31)
Quvsxxy(Ps, Pxys) = Quv PsPxis1(X = X') Py x. (32)

H(W,X|V,5,Y) > Hp(W,X|V,S,Y)}.

Let (P Psx) € B(1,C) achieve the supremum in (11). Define

Phvswxoxy (PS, Py Pxs, Pxjs) = Puv PSPy Pxris Pys Prix, (33)
Qirvswx xy (Pé, Pis Pxnis, Pxis) = Quv PSPy Pxrjs P s Prx, (34)
Qivsxxy (Ps, Pxys) == QuvPsPxs1(X = X') Py, (35)
Ej, (PSa PW|U7 Pxs, PX\S) = min D(PUWWX?HQUVSWXY)
Py s iy €T3 (Poswx Prswxy)
Es (P;, Pﬁ/m Px1s, P)*(\S) = min D<P0\”/VT/HQ*UVW)

PUVWGTS( ow Py

+ Ex(Ip.(X;Y]S), Péx)-
Then, we have the following result.
Theorem 8. If Ey, (P, Py Pxis: Pys) = Bs (P Py Prois: Py ) then iy > (1),

The proof of Theorem 8 is given in Appendix C.

Thus far, we obtained lower bounds on the optimal T2EE for distributed HT over a DMC.
However, obtaining tight computable outer bounds is a challenging open problem, and conse-
quently, an exact computable characterization of the optimal T2EE is unknown (even when the
communication channel is noiseless). However, as we show in the next section, the problem does

admit single-letter characterization in some special cases. These special cases are motivated from



analogous results for distributed HT over rate-limited noiseless channels.

IV. OPTIMALITY RESULTS
A. TACI over a DMC

Recall that for TACI, V = (E, Z) and QUEZ = PUZPE|Z- Let

k(T) = lim k(7 €). (36)

e—0

We will drop the subscript P from information theoretic quantities like mutual information,
entropy, etc., as there is no ambiguity on the joint distribution involved, e.g., Ip(U; W) will be

denoted by I(U;W). The following result holds.
Proposition 9. For TACI over a DMC Py x,

I(E;W|Z): AW s.t. I(U;W|Z) < 7C(Pyx),
K(T) = sup , T>0. 37)
(Z,E)—U—W, W| < U] +1.
Proof: For the proof of achievability, we will show that x4(7) when specialized to TACI

recovers (37). Let

B (r,C)

(Pwy, Psx): S =X, Prpzwsxy(Pwiv, Psx) = PupzPwiuPsx Pyix, 38)
IU;W|Z) <7I(X;Y|5) <71C
Note that B'(7, C') C B(r,C) since [(U; W|E, Z) < I(U; W|Z), which holds due to the Markov
chain (Z, E) — U — W. Now, consider (Py v, Psx) € B'(7,C). Then, we have

Er\(Pww) = min D(Pg 2Pz Pujz Pez P

1(Pwio) Po s €T P Pow) (Pogzw|PzPo)z Pz Pwior)
> min D(Pzzi:|| Py Pr7 P, 39
" PygzwETi(Puw,Pezw) (Pazw 1Pz E|z W‘Z) (39)
= I(E;W|Z),

where (39) follows from the log-sum inequality [24]. Also,

Ey(Pwy, Psx,7) > 7I(X;Y|S) = I(U:W|E, Z) > I(U; W|Z) — I(U; W|E, Z)

=1(E;W|Z),
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Py

o elsPow Prs) D(Pa iz ||PePojz Pajz Paw) + TI(X; Y |S) — I({U; WE, 2)
+ 7B, (I(X;Y|S), Psx)
> [(U;W|Z) - I(U;WI|E, Z) = I(E;W|2), (40)
Py sy Tsbuw Poz) D(Po gzl | PzPoizPeizPwiw) + I(E, Z; W)
+7E, (I(X;Y]S), Psx) = 1(E;W|2Z), (4D
D(Pgz||Pgz) + T1(X;Y|S) — [(U;W|E, Z) + TE,, (Psx)
> 1(U;W|Z) - I(U;WI|E, Z) = I(E;W|2), (42)

D(Pgz||Pgz) + I(E, Z;W) + TE,, (Psx) > I(E;W|Z), (43)

where in (40)-(43), we used the non-negativity of KL-divergence, F,(-,-,-) and E,,(-, ). Hence,
Ey(Pwv, Psx,m) > I(E;W|Z) and Es(Pwy, Psx,7) > I(E;W|Z). Denoting B(7,C) and
B'(r,C) by B and B', respectively, we obtain

K(T,€)

> sup min (El(PW|U)aE2<PW|U7PSX7T)aEB(PWWaPSX77—)7E4(PW\U>PSX77-))
(Pw|v,Psx)eB

> sup [(E;W|Z)

(Pw‘U,PSX)EB

> sup  I(E;W[Z) (44)

(Pw|u,Psx)eB’

= sup I(E;W|2), (45)
Pyl (W3U|2)<rC

where (44) follows from the fact that 5’ C B; and (45) follows since I(E; W |Z) and I(U; W|Z)
are continuous functions of Py y.

Converse:

For any sequence of encoding functions f") acceptance regions A®*™) for H, such that
ng < 7k and

lim sup « (k,nk, f(k’”’“),g(k’"’“)) =0, (46)

k—o0

we have similar to [5, Theorem 1 (b)], that
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. —1 . 1
lim sup T log (8 (k. g, f5m), %)) < lim sup ED (Pyni e 20| |Qy i pr v ) 47)

k—o0 k—o0

1
= lim sup E[(Y”k; E*|ZF) (48)

n—o0

1
= H(E|Z) — lim inf EH(E’“]Y”’C, 7", (49)
—»00

where (48) follows since Qyny gk zx = Pyny g1 Pprjzn. Now, let T' be a r.v. uniformly distributed
over [k] and independent of all the other r.v.s (U*, E¥ Z* X™ Y™), Define an auxiliary r.v.
W = (Wp,T), where W; := (Y™, B! Z71 ZF 1), i € [k]. Then, the last term can be
single-letterized as follows.

k .
H(E*y™, Z%) =>" VH(E(|E™ Y™, Z%)

=kH(E|Z,W). (50)
Substituting (50) in (49), we obtain
—1
timsup —log (8 (k. ma. £, g*m)) ) < 1(8:W|2). (51)
k—o00

Next, note that the data processing inequality applied to the Markov chain (Z*, E*) — U* —
X" — Y™ yields I(U"; Y™) < [(X™;Y™) which implies that

I(U* Y™ — [(U*; ZF) < I(X™; Y™), (52)
The R.H.S. of (52) can be upper bounded due to the memoryless nature of the channel as
I(X™: Y™ < ny I%iXI(X;Y) = n,C(Pyx), (53)
while the left hand side (L.H.S.) can be simplified as follows.

I(U*Y™) = I(U*; Z%) = I(U*; Y™ ZF) (54)

k .
— 24_1 I(Y™, U U™, Z%)
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k ng i—1 i—1 k
= 1™ U 27 2 Uil Z) (55)

k ng i—1 i—1 k i—1,
= Y™ Uz Z BT UL Z) (56)

k . .
>3 1Yz 2 BT U Z)

k

= kI(Wy, T; Ur| Zr) (57)

= kI(W;U|Z).

Here, (54) follows due to Z¥ — U* — Y™; (55) follows since the sequences (U k,Zk) are
memoryless; (56) follows since E*~! — (Y™ U=t Zi=1 Zk ) — U; ; (57) follows from the
fact that 7" is independent of all the other r.v.’s. Finally, note that (E, Z) —U — W holds and that
the cardinality bound on W follows by standard arguments based on Caratheodory’s theorem.
This completes the proof of the converse, and of the proposition. [ ]

As the above result shows, TACI is an instance of distributed HT over a DMC, in which, the
optimal T2EE is equal to that achieved over a noiseless channel of the same capacity. Hence, a
noisy channel does not always degrade the achievable T2EE. Also, notice that a simple separation
based coding scheme that performs independent HT and channel coding is sufficient to achieve
the optimal T2EE for TACI. From (40)-(43), we observe that this happens due to the fact that
Es(Pwu, Psx, ) and Ey(Pw v, Psx,T) are both larger than I(E; W |Z). This can be explained
intuitively as follows. For the scheme discussed in Appendix A that achieves a T2EE of r,(7),
a type 2 error occurs only when the detector decodes a codeword W* that is jointly typical with
the side information sequence V'*. For the case of TACI, when H; is the true hypothesis, then
with high probability, the codeword W*(J) chosen by the encoder is not jointly typical with
Ve, (VE,WH(J)) ¢ Tl .;,- Then, the above phenomenon corroborates the fact that given
an error occurs at the channel decoder, the probability that two independently chosen sequences
V* and W* are such that (V¥ W*) e T[I;’vw}(s’ decays as e #I(ViW),

We can also show that the JHTCC scheme achieves the optimal T2EE for TACI. The proof

of this claim is given in Appendix D.

B. Distributed HT over a DMC with zero capacity

Next, we show that the LD scheme achieves the optimal T2EE when C(Py|x) = 0. Note

that when the channel has zero capacity, the reliability function of the channel is zero for any
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positive rate of transmission, i.e., when there are exponential number of messages €™, where

0 > 0 is bounded away from zero.
Theorem 10. If C(Py|x) = 0, then x(7,€) = D(Py||Qv), Y e € (0,1), 7 > 0.

Proof: The achievability follows from Theorem 5 which states that for 7 > 0, k(7,€) >
rko(T), V € € (0,1]. Now, it is well-known (see [24]) that C(Py|x) = 0 only if

P{t = Py|X:z:Py|X:m/, Vl’,xle.)(. (58)
From (58), it follows that £.(Py|x) = 0. Also,

Bo= D(Py[|Qv)+  min  D(Pypl|lQuyv|Py)

uv:
Py=Py, Py=Py

> D<PVHQV)7

which implies that xo(7) > D(Py||Qv ).
Converse: We first show the weak converse, i.e., k(1) < D(Py||Qv), where x(7) is as defined
in (36). For any sequence of encoding functions f*™*) and acceptance regions .A%*"*) for H,
that satisfy ny < 7k and (46), it follows similarly to (47), that
: —1 (onk) () , 1
lim sup ——log (8 (k, e, [, g*™))) <limsup oD (Pymeys||Qymve) — (59)
k—o0 k k—00 k

The terms in the R.H.S. of (5§9) can be expanded as

1
2D (Prosyi | Qy )

Py (Y™ |vF) ) (60)

1
— D(P - Py (08, 4™)]1
(Bellev)+ 2| 2 Pram(hy >°g(@ynk|w<ynk|vk>

(vk,yk)eVEX YTk
Now, note that

Pyny e (y™[v*) = > Py (u[0) P e (27 [u) Pyme pxens (37 | 2™)

(ukz™k)e UkXX ™k

=1

(uk,z"k)e UF XXk
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Nk
=TI 7w, (62)
where, (61) follows from (3) and (58). Similarly, it follows that

Qymi s ("™ 0%) HP* vi)- (63)
From (59), (60), (62) and (63), we obtain that

tinsup —log (8 (k. me, £, %)) < D(RIQu). (64)

k—o00

This completes the proof of the weak converse.

Next, we proceed to show that D(Py||Qy ) is the optimal T2EE for every ¢ € (0, 1). For any
fixed € € (0,1), let f*™) and A*") denote any encoding function and acceptance region for
Hy, respectively, such that n, < 7k and

lim sup « (k, ng, fEm), g(k’"k)) <e. (65)
k—o0

The joint distribution of (V* Y™ ) under the null and alternate hypothesis is given by

PVkY"k 7y (H PV V; > (H P{;(Zb)) ) (66)
j=1

and Qykyn, (v 7y (H Qv (v ) (H P?(?Jg)) ) (67)
j=1

respectively. By the weak law of large numbers, for any § > 0, (66) implies that

Tim Pyeyne (T, < Ty, ) = 1 (68)
Also, from (65), we have
liminf Pyryn, (A®™)) > (1 —¢). (69)
k—oo

From (68) and (69), it follows that

Pyiyn <A(’“ AT . X T[’}%Q >1—¢, (70)

for any € > e and k sufficiently large (k > ko(9, |V|, |V|)). Let
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A(Uk,(S) — {ynk . (vk’ynk) c _A(kv”k) mT[];Dv]a X T[P*] } (71)

and D(n, 6) := {v* € Tl 1, : Pyni (A(W",6)) > 1} (72)

Fix 0 <7’ <1 — €. Then, we have from (70) that for any 6 > 0 and sufficiently large £,

, 1_ ! o
Py (D(n',6)) = %77/77 (73)

From [24, Lemma 2.14], (73) implies that D(7,§) should contain atleast =< 77 fraction (ap-
prox.) of sequences in T[ Py, and for each v* € D(1', ), (72) implies that .A(v , 5) should contain
atleast 7’ fraction (approx.) of sequences in Tﬁ%b, asymptotically. Hence, for sufficiently large

k, we have

Quiymc (AP > 3" Que(v®) > Pra(y™) (74)

vkeD(1',0) y"keA(vk,0)

08(55) g
k| D(Pv||Qv)— -2 1) _0(5)

>e (75)
Here, (75) follows from [24, Lemma 2.6].
Let A (ki) T['jD ;X Tﬁ,;;] Then, for sufficiently large k,
Pyiym <A (ki ) W1, and (76)
Opiyns < AGom) ) e~ HDP[IQV)-0() 17

where, (76) and (77) follows from weak law of large numbers and [24, Lemma 2.6], respectively.

Together (75), (76) and (77) implies that
|k(7,€) = K(T)] < O(9), (78)
and the theorem is proved since § > 0 is arbitrary. [ |

Remark 11. Theorem 10 shows that when the capacity of a DMC is zero, then no communication

from the observer to the detector helps in terms of the T2EE. To contrast this with the optimal
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Observer Detector

Uk —» f(k,n) XL g(n) -~ Hy/H,

Fig. 2: Hypothesis testing over a noisy channel.

T2EE (3, (see (16)) for the case when the channel is noiseless, note that
o= D(PllQv)+  min  D(PyyllQuyv|Pp). (79)
Since Py achieving the minimum in (79) has to satisfy

> Py(v)Pyp(ufv) = Py(u), YV ueld, (80)

veEV
and D(P,||Py) > 0 for probability distributions P, # P, it is clear that 5y > D(Py||Qv) if for
some u € U,
> Pr(v)Quiv(ulv) # Py(u). (81)
veVY

Hence, in general, communication (even a single bit of information) between the observer and the

detector helps to improve the T2EE compared to the scenario when there is no communication.

C. HT over a DMC

Consider now HT over a noisy channel as depicted in Fig. 2, in which, the side-information

V¥ is absent and the detector performs the following hypothesis test:

k
Hy: U* ~ H Py, (82a)
=1
k
H U~ []Qu. (82b)
=1

When the observations U* are available directly at the detector, a single-letter characterization

of the optimal T2EE for a given constraint € on the type 1 error probability is known, and given
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k(€) = D(Py||Qu), Ve (0,1). (83)

Notice that a strong converse holds in this case, in the sense that, x(¢) is independent of e.

If the detector and the observer are connected with a noise-free link of capacity R > 0, it
is easy to see that the T2EE in (83) can be achieved by performing the Neyman-Pearson test
locally at the observer and transmitting the decision to the detector over the noiseless link. When
the communication channel is noisy, however, it is unclear whether such a local decision scheme
would still remain optimal. More specifically, since the reliability of the transmitted messages
depends on the communication rate employed, there is a trade-off between transmitting less
information more reliably versus transmitting more information less reliably, to the detector. In
the sequel, we show that making a decision locally at the observer, and communicating it to the
detector is indeed optimal. The optimal scheme is in fact an adaptation of the LD scheme to the
case when the side information V* is absent.

The problem formulation and definitions in Section II-B carry over as such without V* (or by

(kn) as ¢(™) since it is a function

assuming V'* is a constant). We will denote the decision rule g
of Y" only. Also, to differentiate between distributed HT and the current setting, we will denote
the maximum achievable T2EE by «/(7, €). Let
. 0 , if 7 =0,
Ko(T) == (84)
min (D(Py||Qu), TE.), otherwise,
where F. is as defined in (17). Note that £, can take the value of co in general. The following

result provides a single-letter characterization of the optimal T2EE, and also shows that a strong

converse holds.
Theorem 12. «/(7,¢) = x4(7), Ve € (0,1), 7 > 0.

Proof: We prove the result in three steps as follows:
() K'(1,€) > Ky(T), YV ee (0,1).
(ii) limeo &' (7,€) = k(7).
(iil) K'(1,€) < Ky(T), ¥V e € (0,1).

The proof of (i) follows from Theorem 5 by setting V* equal to a constant under both hypotheses.
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To show part (ii), we will prove the weak converse

lim £'(7, €) < Ky(T), (85)

e—0

which combined with part (i) proves part (7i). Similarly to [5, Theorem 1(b)], it follows that
for any sequence of encoding functions f*") and decision rules ¢("*) satisfying n;, < 7k and

(46), we have

D(Pyni[|Qyn)- (86)

| =

lim sup %1 log (8 (k, g, f), ")) <

k—o00

If 7 =0, then n; = 0, and hence, the R.H.S. of (86) is zero, thus proving (85). Now, assume
that 7 > 0. Then, the R.H.S. of (86) can be upper bounded as follows.

ng
D(Pyni||Qyni) = > D(Pyjyi1||Qy;pyio1| Pricr) (87)
i=1
ng i—1
i i Pyyiei (ily'™)
=3 T P X Al o (2
i=1 yi-leyi-1 €Y Yily'=
= Z Z Pyz 1 l_ _D (Pn|Yi71:yi*1|’Q}Q‘Y'j71:yi*1) .
= 7, ley'z 1
Since
Py (uily'™) = Y Py (wily' ™) Py, (wil2:), (88)
r,€X
and Qy,yi1 (gily™) = D Quvir (wly’™") Py, (wils), (89)
r,€EX

we can write

< Z Z By 1 Z 1 sup D (Pyi‘yi—lzyi—l||Q}/i|yi—1:yi—1) . (90)
i=1 yi-leyi-t ( Pxvi-1—yi—1;
QX”yi—l:yi—l
It follows from (88), (89), and the convexity of D(Px||Qx) in (Px,Qx) that,
D (Py”yi—l:yi—l||Q§/i|yi—1:yi—l) is a convex function of (Py,yi-1—yi-1,Qx,|yi-1=y4i-1) for any
y*~! € Y71 It is well-known that the maximum of a convex function over a convex feasible set

is achieved at the extreme points of the feasible set. Since the extreme points of the probability
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simplex Py are probability distributions of the form
Px,(z) =1(z =2'), z € X, 1)

for some 2’ € X, it follows that for some functions hy; : V™' — X and hy; : V7! — A,

i € [1:n], we can write

sup D (Pyypyirmy [Qviyirmyr) = D (Prix=nn ) [ Pripxi=hatu-)
(Pxi|yi—1:yi—17

QXi‘yi—lzyi—l

< max D (Pyx—||Pyix=) = Ec. (92)

(z,0')eXxX
Thus, it follows from (90) and (92) that
1 N
ED(PynkHQynk) < EEC' 93)

Also, the data processing inequality for Kullback-Leibler divergence applied to Markov chain
Uk — X™ — Y™ yields

D(Py+||Qur) = D(Fyl|Qu). (94)

| =

1
7 DByl |Qyni) <
Hence, it follows from from (86), (93), (94), and the fact that n;, < 7k, that,

. —1 n) (n .
limsup —log (5 (b, ms, fE), ) < win (D(Pu|Qu), 7E,). ©5)

k—o0

Noting that the R.H.S. of (95) is independent of (f (k) g(”k)), the proof of (85) is completed
by taking the supremum with respect to ( f*m) g(m)),

Finally, we prove part (iii), i.e.,
k' (1,€) < ky(T), Ve (0,1). (96)

If 7 =0, then n, = 0, and (96) holds. Now, assume 7 > 0. For k € Z*, let f(’“’”k) and g(”k) be
any sequence of encoding functions and decision rules such that n, < 7k and (65) is satisfied.

Let A denote the acceptance region corresponding to ¢™*). For fixed v > 0 and § > 0, let

B(k,nk) _ {uk e T[];?U](s P (Ynk c A(nk)’Uk — uk,H — 0) > fy} .

V7,6



By the weak law of large numbers, for ' > 0 and sufficiently large k, we have that
k k
P (U" € Tip,;,|H =0) > 1 -1+
Then, it follows from (65) and (97) that

1 —e—
P (Ut e Bl =0) > T .

Taking v = 55 and v/ € (0, ﬁ) we have that

1—e¢
2(1+¢€)

P (Ut e B H =0) >
For arbitrary u* € B(k’"’“), let ™ be such that
Yy ¥,0

PY”k‘Xnk (A(nk)|jfnk) > Y,
The existence of such a z"* follows by definition of Bgf(’;"k).

For any set D C X", let I''(D) denote the Hamming /—neighbourhood of D, i.e.,

(D) := {#" € X" : dy(a",i") < [ for some 2" € D}.
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7

(98)

(99)

(100)

(101)

Due to (99), it follows by the application of the blowing-up lemma [24] that there exists sequences

of non-negative numbers, {\; }rcz+ and {l; }rez+ such that, A ®, 0, % W), 0 and

Prnapn (% (AP9) [77%) 2 1= A,

Let Am) 1= Tl (A),
Suppose E, < oo. Then, Pyx(y|z) >0,V (z,y) € X x ). Let

= 1 P > 0.
= mig vix (y])

(102)

(103)

For each 3™ € A™), there exists a y™ € A™) such that dg (g™, y™) < l;. Hence, for each

such ™ and arbitrary 2"+ € X, we have

PynkIXnk (gnk’xnk) ylk < Py”k\X"k (ynklxnk)

(104)
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Also, for each 3™ € A", the number of 7™ € A"™) is |Y|**. Hence, from (104), we have
Pynijxenc (A |2m) < P[5 Pyng e (AT 275) 71,
This implies that
Pynge (A" [uF) < (V) Py (A ]0F) v70, (105)
Let fm) - g% — x™ and §™) : Y™ — {0,1} be defined as follows:

- Tk, vV ukeTk
Flom) (k) = [Puls (106a)

fUme) (4F) otherwise,
and g (y™) ;=1 — 1 (y™ € A)). (106b)
From (97), (102) and (106), it follows that
« (k,nk, f(k’”k),g(”k)> <1—(1-=X)(1—%) W, 7.
Also,
8 (b, Jm0), gm))
< Z Qur(u”) + Z Qur(u Pynk\Uk (A( k)|u )

U GT[PU](S ukgTk [PU
< D> Que(uF )+ oY YT Qui(uF) Py (A [u”) (107)
U ET[PUJJ uk(;éT uls
S Z QUk + U_lk |y|lk Z QUk PynklUk (A(nk) ’U/k)
ukeTf, | ukeyk
= Z QU’V + v lk’y|lk (k,nk’ f(k’”k)’g(nk))
u ET[P s

< e~ k(D(FullQu)—0(9)) + y_lk‘yvkﬂ (k, n, f(kvnk)’ g(nk)) ’

where (107) follows from (105). Thus, it follows from the facts % ﬂ 0 and v > 0 that, for any

,)/// >0,
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o (9 (kom0 50 )
> win ( D(PyQu) — 0(0), 1 Yo (5 (o, F42,5) ) =),

provided k is sufficiently large. Since D(Py||Qy) is the maximum T2EE achievable for any
type 1 error probability constraint ¢ € (0,1), when U* is directly observed at the detector, it
follows by taking d,~” — 0 that

1 < 1

k—o00 k—o0

Since f*) and ¢g(™) is arbitrary, (96) follows.
Now, suppose E. = oo. Then, k{(7) = D(Py||Qu). Noting that D(Py||Qy) is the maximum
T2EE achievable for any type 1 error probability constraint ¢ € (0,1), when U* is directly

observed at the detector, it follows that (96) holds. This completes the proof of the theorem. W

V. DISTRIBUTED HT WITH MULTIPLE OBSERVERS

Thus far, we have focused on distributed HT with a single observer communicating to the
detector over a DMC. In this section, we will extend our results to the distributed hypothesis
test given in (1), where, there are multiple observers communicating their observations to the
detector over orthogonal DMCs that satisfy the probability law given in (3). We will focus on
TACI, and obtain a lower and upper bound on the optimal T2EE. To do this, we follow the
method in [5], and first show an equivalence between the above problem and a JSCC problem
in the presence of noisy helpers that will be introduced below. The desired bounds are then
obtained indirectly via the best known inner and outer bounds for the equivalent problem. As a

corollary, we provide yet another proof of the single-letter characterization of the optimal T2EE.

Let

0(r) := sup 0(k,7), (108)
kez+
D(Pyn n
where 8(k,7) ==  sup (Prpvel|Qvv). (109)
ffkn) 7777 f(k,n) k
nSTkL

We have the following multi-letter characterization of the optimal T2EE in terms of #(7) whose

proof follows along similar lines to [5, Theorem 1].
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Lemma 13. For 7 € R,
(i) k(1,€) > 0(7), Ve (0,1].
(ii) lime o k(T,€) < 6(T).

Proof: The proof can be found in Appendix E. [ ]
Part (i) and (77) of Lemma 13 together imply that 6(7) is the optimal T2EE as € — 0, i.e.,
k(1) = 6(7). Recall that for TACI with multiple observers, V = (F,Z) and Qu, v, 5z =
Py, . .v,7zPgz. In this case, the KL-divergence in (109) becomes mutual information, and we
have
R

(ZFE*Y —UF - X" —Y", 1€ L.

By the memoryless property of E¥ and Z*, we can write

H(E*|YE, Z")

0(r) = H(E|Z)—  inf (110)

kn<tk

st. (ZF BN —UF - X —Y", le L.

The last term in the R.H.S. of (110) can be identified as the multi-letter characterization of the

source coding rate in an L—helper JSCC problem, as we show next.

A. L—helper JSCC problem

Consider the model shown in Fig. 3 where there are L + 2 correlated DMS’s (U., E, Z)
with joint distribution Py, y, pz. For 1 < [ < L, encoder fl(k’") : Lllk — A" of helper [
observes the sequence UF and transmits X" = l(k’")(Ul’“) over the corresponding DMC Py, x,,
while the main encoder f* : €8 — M observes E*, and outputs an index M = frK(E¥).
Decoder gék’") D VE XM x Zk 5 £k observes Y/, receives M error-free and has access to
side-information Z*, based on which, it outputs E*. The goal of the decoder is to reconstruct
EF losslessly. Before establishing the multi-letter characterization of the rate region of the L—

helper JSCC, we require a few definitions.
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Main Encoder

Ek—» fs(k)

Helper
Encoders

n n
Uk —  fk IR

| m

Decoder

k,
g —E

(k.n)
L

!

Zk

Fig. 3: L—helper JSCC problem.

Definition 14. For a given bandwidth ratio T, a rate R is said to be \-achievable for the L-
helper JSCC problem if there exist encoders f, fl(k’”’“), 1 <1 < L, and decoder ggk’”’“) such

that n;, < 7k and

limsup P (g{F™) (Y%, M, Z%) # E*) <\,

k—o00
1
and lim sup M < R.
k—o0 k
Let
R(7) :=inf{R : R is A-achievable for every X\ € (0, 1].} (111)
Define
H(E*YR, ZF
Ry :=  inf (BT, 27) (112)
fl(k,n) ..... fékz,n)’ k
n<tk

st (ZF, EMY —UF — X —Y", le L.

The equivalence between the multi-letter characterizations of #(7) and R(7) follows from (110)

and the theorem stated below.
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Theorem 15. For the L—helper JSCC problem,
R(1) = ir]if Ry..

Proof: The proof is given in Appendix F. [ ]
To obtain computable single-letter lower and upper bounds on R(7), we use the source-channel
separation theorem [30, Th. 2.4] for orthogonal multiple access channels. The theorem states
that all achievable average distortion-cost tuples in a multi-terminal JSCC (MT-JSCC) problem
over an orthogonal multiple-access channel (MAC) can be obtained by the intersection of the
rate-distortion region and the MAC rate-region. We need a slight generalization of this result
when there is side information Z at the decoder, which can be proved similarly to [30]. Note that
the L—helper JSCC problem is a special case of the MT-JSCC problem with L + 1 correlated
sources Uy, ...,Ur, F and side information Z available at the decoder, where the objective is
to reconstruct source £ losslessly. Although the source-channel separation theorem proves that
separation holds, a single-letter expression is not available in general for the multi-terminal rate
distortion problem [33]. However, single-letter inner and outer bounds are known. For simplicity,
we will use the well-known BT bounds [28] [29] for our purpose. However, as will be apparent,
these bounds may be replaced by any known inner and outer bound available in the literature.
In particular, it is well-known that in some cases, the BT inner and outer bounds are strictly
outperformed by the bounds in [34], [35] and [36], [37], respectively, and hence, tighter bounds
on the optimal T2EE can be obtained by replacing the BT bounds with these bounds. Next, we
present our result.

For G C L, let

Cg = OQ(PY1|X17 ey PYL|XL) = ZOI(PY;\XZ)a (113)
leg

where C; := Ci(Py,x,) = maxpy, I(X3;Y;), | € L, denotes the capacity of the channel Py, x,.
For 7 € RT, let

R(7) = wfrgggF’g, (114)

where

Fg = H(E|Wge, Z) + I(Ug; Wg|[Wee, E, Z) = 7> C
leg
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for some auxiliary r.v.’s W, [ € £, such that |W,| < U + 4,

(Z, B, Upe, Wie) = U =W, (115)

and I(UL;WQ‘E, Wgc,Z) < TCg, VG - L. (116)

Similarly, let R°(7) denote the right hand side (R.H.S) of (114), when the auxiliary r.v.s W;, | €
L satisfy |W)| < |U;| + 4, (116) and

(E,Upe, Z) — U — W,. (117)
The following theorem combined with Lemma 13 provides a lower and upper bound on k(7 €).

Theorem 16.

R°(1) < R(1) < R'(7), (118)
and H(E|Z) — R(1) < (1) < H(E|Z) — R°(7). (119)
Proof: The proof is presented in Appendix G. [ |

The BT inner bound is tight for the two terminal case, when one of the distortion measure is
the Hamming distortion measure and the corresponding average distortion requirement is zero
(lossless) [33, Ch.12]. Using this fact, an alternate proof of Proposition 9 can be given. The

details are given in Appendix H.

VI. CONCLUDING REMARKS

In this paper, we have studied the T2EE achievable for a distributed HT problem over
orthogonal DMCs with side information available at the detector. We obtained single-letter lower
bounds on the optimal T2EE for general HT, and exact single-letter characterizations in some
important special cases. It is interesting to note from our results that the reliability function of
the channel does not play a role in the characterization of the optimal T2EE for TACI, and
only the channel capacity matters. We also showed that the strong converse holds in two special
scenarios, namely, when the channel has zero capacity and for HT over a DMC. While the strong
converse holds for distributed HT over a rate-limited noiseless channel [5], it remains an open

question whether this result carries over to noisy channels in general. While we assume that
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ng < 7k for all k, the results remain the same for 7 > 0, if this constraint is relaxed to

lim sup % < (120)

k—o0

For 7 = 0, slight modifications are required for some of the results, which is due to the fact that
it is possible to transmit some information to the detector (at asymptotically zero-rate) under the
constraint in (120), while the same is not possible under the constraint n; < 7k. For instance,
the choice n, = k* for any fixed number a < 1 satisfies limsup;_,, ¢ = 0. It can be shown

that under constraint (120), Theorem 5 and Theorem 12 hold with

5o , if =0 and FE,. = oo,
Ko(T) :== (121)
min (8o, 7E. + D(Py||Qv)) , otherwise,
and
D(Py||Qu), if =0 and E, = oo,
Ko(T) = (122)

min (D(Py||Qu), TE.), otherwise,

respectively. Also, Theorem 2 hold with 7E,, (Psx) and 7FE, (Ip(X;Y]5), Psx) set to oo
whenever 7 = 0, E,, (Psx) = oo and 7 = 0, E, (Ip(X;Y|5), Psx) = oo, respectively, as
opposed to Remark 3. While we did not discuss the complexity of the schemes considered in
this paper, it is an important factor that needs to be considered in any practical implementation of
these schemes. In this regard, it is evident that the JHTCC, SHTCC and local decision schemes

are in a decreasing order of complexity.

APPENDIX A

PROOF OF THEOREM 2

The proof outline is as follows. We first describe the encoding and decoding operations of
the SHTCC scheme. The random coding method is used to analyze the type 1 and type 2
error probabilities achieved by this scheme, averaged over the ensemble of randomly generated
codebooks. This guarantees the existence of at least one deterministic codebook that achieves
the same or lower type 1 and type 2 error probabilities. For brevity, in the proof below, we
denote the information theoretic quantities like Ip(U; W), T[’jg ;> €tc., that are computed with

UW1s
respect to joint distribution Pyvwsxy (Pwu, Psx) := PovPwuPsx Pyx by 1(U; W), ﬂ@w]a,

etc.
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Codebook Generation: Let k € Z* and n = |7k]. Fix distributions Py and Psx, positive
numbers i, 8, 8", 8", 8, (arbitrarily small subject to the delta-convention [24] and certain other
constraints that will be specified in the course of the proof), and R such that 0 < R =
TI(X;Y|S) — u < 7C. The source codebook C used by the source encoder 1% is obtained by

k(1(U;W)

generating e IUW)+61]

+9") sequences wh(5), j € [ek( , independently at random according

to the distribution [[Y_, Py (w;), where

Py (w) = Pwu(wlu) Py (u).
ueld
The channel codebook C used by fc(k’”) is obtained as follows. The codeword length n is divided
into |S| = |X| blocks, where the length of the first block is [Ps(s1)n], the second block is
[ Ps(s2)n], so on so forth, and the length of the last block is chosen such that the total length
is n. The codeword z"(0) = s™ corresponding to M = 0 is obtained by repeating the letter

s; in block i. The remaining [e*] ordinary codewords z"(m), m € [e*]

, are obtained by
blockwise i.i.d. random coding, i.e., the symbols in the i** block of each codeword are generated
i.i.d. according to Px|s—s,(2;). The sequence s™ is revealed to the detector.

Encoding: If I(U; W) + ¢ > R, i.e., the number of codewords in the source codebook is
larger than the number of codewords in the channel codebook, the encoder performs uniform
random binning on the sequences w*(i), i € [e’“([ (U;W)”')] in C, i.e., for each codeword in
C, it selects an index uniformly at random from the set [¢*#]. Denote the bin index selected
for w*(i) by fp(i). If the observed sequence U* = u" is typical, i.e., u* € Ty, . the source
encoder f*) first looks for a sequence w”(j) in C such that (u*, w*(j)) € T[’(“]W]é, § > " If
there exist multiple such codewords, it chooses an index j among them uniformly at random,
and outputs the bin-index M = m = fg(j), m € [e*!] or M = m = j depending on whether
I(U;W)+4d" > R, or otherwise. If u* ¢ T[’(“]](w or such an index j does not exist, fs(k) outputs the

error message M = 0. The channel encoder fc(k’”) transmits the codeword z"(m) from codebook

C.
Decoding: At the decoder, ggk’") outputs M = 0 if for some 1 <i< IS

, the channel

outputs corresponding to the i** block does not belong to 77 . Otherwise, M is set

[Py |s=s;ls
as the index of the codeword corresponding to the maximum-likelihood candidate among the

ordinary codewords. If M =0, Hy is declared. Else, given the side information sequence V* = v*

and estimated bin-index M = m, ggk’") searches for a typical sequence Wk = wk (5) € T[’{;V}g,
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5 = |U|6, in codebook C such that

j = argmin H.(w*(1)[v"), if [(U; W)+ 6 > R,
I fe(l)=m,
wk(l)eT[’;V]s

~

m, otherwise.

j

The decoder declares Hy if (wF, v*) € T["“,VV]S, for & > 6, else, H, is declared.
We next analyze the type 1 and type 2 error probabilities achieved by the above scheme (in
the limit 8,8, 6 — 0).

Analysis of Type 1 error: A type 1 error occurs only if one of the following events happen.

6//
k k
U V ¢ T[UVL; 0= M}

HIGIWID) - (% W) € Ty, )

3

{

p=ihicle
{V"”’W’C ) & T, }
o fe

31 € [+ ] L# 0 fo() = fa(]), WH1) € Ty,
H (WHDIVF) < He(Wk<J>!Vk>}

Ecp = {gék’n) (Y™ # M}

P(Erg|H = 0) tends to 0 asymptotically by the weak law of large numbers. Conditioned on &5z,
U* € Ty
tends to 0 doubly exponentially for > ¢” and ¢’ appropriately chosen. Given &, N E5p

,» and by the covering lemma [24, Lemma 9.1], it is well known that P(Egg|E5 )

holds, it follows from the Markov chain relation V' — U — W and the Markov lemma [33], that
P(Eyp|E55 NES) tends to zero as k — oo for § > & (appropriately chosen). Next, we consider
P(Epg). Given that £5,, N ESL N ES L holds, note that limy,_,o Ho(WE(J)|VF) — H(W|V) as

5 — 0. Thus, we have

ek (I(U;W)+8")

< 2 > B =), WO =t VE= W) =,
=1, wkeTk . -
1£J Wl;

He (0P |v*) < He (w*|vF)
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Eip N €5 N Evp)

kR (I(U;W)+8")

1
= > S PRI = | VE = oF WH(T) = wh €5 N Efp N ESR) =
e
=1, wkeTk .
7 He(w’[“v\z]’f)
SHe(wkh’k)

ek (I(U;W)+6")

S Z Z 9. e*kRefk(H(W)fél) (123)
llj:]a 'LTJI"ET[I;V](;:

He (@*|oR)<He (w"|ok)
ek (I(U;W)+8")

< Z (k 4+ 1)V RHWIV)4m (k) o . =k —k(HW)=d1) (124)

=1,
I£J

< e—k(R—I(U;W\V)—éé“)

where §; = 0(3), Y1(k) = |He(w¥|v*) — H(W|V)|, and

1 log(2
o) =5, + VI log(k + 1) + %() +0 4+ k) o,

as 5, d’,6 — 0. To obtain (123), we used the fact that
PWH(l) = | E5pp N Epp N Exp, WH(J) = 0", VF =0¥) <2.PWH(I) = a").  (125)

This follows similarly to (147), which is discussed in the type 2 error analysis section below. In
order to obtain the expression in (124), we first summed over the types P of sequences within
the typical set 7}%6 that have empirical entropy less than H,(w"*|v*); and used the facts that

the number of sequences within such a type is upper bounded by e*(ZWIV)+71(k) "and the total

number of types is upper bounded by (k + 1)M"! [24]. Summing over all (w*,v*) € Ty,
we obtain
P(EDE|5X4E NEgp N 5&:)
<Y PR = b, VE = oM 0 € N ) e IO
(wk,vk)eT[’;Vv]s
< e RE=IUWV)=5) (126)

Finally, we consider the event £-p. Denoting by Ecr, the event that the channel outputs

corresponding to the i*" block does not belong to T[’}DYlS: T

for some 1 <i < |S

, 1t follows
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from the weak law of large numbers and the union bound, that
c y (k)
P(Ecr|Eqp) — 0. (127)
Also, it follows from [24, Exercise 10.18, 10.24] that

P (Ecp|Esp NEST) < e~ B (Ip(X;Y|S)—p,Psx Py |x) (128)

asymptotically. This implies that the probability that an error occurs at the channel decoder gﬁk’n)

tends to 0 as n — oo since I, (/(X;Y|S), Psx, Pyx) > 0 for I(X;Y|S) < C(Py|x). Thus, if
IU;W|V) < R=7I(X;Y|S) — p < 7C(Py|x), the probability of the events causing type 1
error tends to zero asymptotically.

Analysis of Type 2 error: First, note that a type 2 error occurs only if V* € T[I‘c/hvv\é’ and

hence we can restrict the type 2 error analysis to only such V*. Denote the event that a type 2

error happens by Dy. Let

& = {U’“ ¢ T[’{%,,} . (129)

Type 2 error probability can be written as

B (k,m, f, gm)

= Y PU"=uF V= 0bH = 1) P(Do|U* = uf, VF =0b). (130)

(uk wk)eUtk xVk
Let Enp = €L N ES. The last term in (130) can be upper bounded as follows.
P(Dy|U* = uF, VF = o)
= P(Enp|U" = uF, VP =0%) P(Do|U* = ¥, VF =%, Eng)
+P(ES U = b, VFE = 0F) P(Dy|U* = ¥, VF =0k 5 1)

< P(Do|U* = u, VF = 0F Exp) +P(Do|U* =, VF = oF £5 ).
Thus, we have

B (k,n, fE, gt*m)

< Y PUF=uF VE =M H = 1) [P(Do|UF = uF, VF = oF Ep)

(uk wR)euk x vk
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+P(Do|U* = uF, VFE = oF 51| (131)

First, we assume that £y holds. Then,

ek(I(U;W)+8") kR

P(Do| UF =k, VE=v* Enp) = > D P(J =, fo(]) =m| UF =u*,V* = o, Enp)
j=1 m=1
P(Dy|U* = u*, VF =% J =3, fs(J) =m, Eng). (132)

By the symmetry of the codebook generation, encoding and decoding procedure, the term
P(Do|U* = uk, VF =% J = j, fg(J) = m, Exg) in (132) is independent of the value of .J

and fp(J). Hence, w.l.o.g. assuming J = 1 and fg(J) = 1, we can write

k k k k
]P)(Dol U =U ,V = ,gNE)
eR(I(U;W)+8") kR

= > D P = fa(J) =m| U =uF VF = o* Enp)
j=1 m=1

]P)(,DO’Uk = uk7vk = Uka J = 17fB(J> = 17 ENE)
= ]P(D0|Uk = ukvvk = Uk7 J = 1afB(J) = 17 gNE)
= > PWH1) =whUF = b, VE =0k T =1, f5(]) =1, Eng)
wrkewk

P(Do|U* = uF, VF =% J =1, f5(J) = 1, W*(1) = w*, Enp). (133)

Given &y holds, Dy may occur in three possible ways: (i) when M # 0, i.e., E&p occurs, the
channel decoder makes an error and the codeword retrieved from the bin is jointly typical with
Vk; (ii) when an unintended wrong codeword is retrieved from the correct bin that is jointly
typical with V*; and (iii) when there is no error at the channel decoder and the correct codeword
is retrieved from the bin, that is also jointly typical with VV*. We refer to the event in case (i)
as the channel error event Ec, and the one in case (ii) as the binning error event Egp. More

specifically,

Eop = {E&p and M = gF™(Y™) # M}, and (134)

c
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£ = {31 [HOOD] UL fall) = AL WHQD) € Ty,

(VE WD) € Ty, | (135)

Define the following events

F={UF=ub VF=ob J=1,fs(J) = ,WH1) = w", Exg}, (136)
Fi={U"=u"VF =" J =1 fp(J) = L,W*Q1) =", Evp, Eci), (137)
Fo={Ur =uF VE =" J=1,fp(]) = 1,WF(1) = w", Eng, E&R), (138)

For = {UF =u* VF =2F T =1, fg(J) = L,WF1) = w¥, Eng, Epy EaE), (139)

Foo ={UF =uF VP =0k J =1, f(J) = 1,WF1) = w*, Eng, E&py Ebp). (140)
The last term in (133) can be expressed as follows.
P(Do|F) = P(EculF) P(DolF1) + P(EER|F) (Dol F2),
where
P(Do|F2) = P(Epp|F2) P(Do|Fa1) + P(EplF2) P(Do| F22). (141)
It follows from (128) that

P(Ecp|F) < e B (I(X5YS) =, Psx Py x) — o=kTEa(I(X;Y]S)—=p,Psx ,Py|x) (142)

Next, consider the type 2 error event that happens when an error occurs at the channel decoder.
We need to consider two separate cases: [(U; W) > R and I(U; W) < R. Note that in the former
case, binning is performed and type 2 error happens at the decoder only if a sequence W*(1)
exists in the wrong bin M # M = fg(.J) such that (V¥ W*(1)) € T["“/W]g. As noted in [32],
the calculation of the probability of this event does not follow from the standard random coding
argument usually encountered in achievability proofs due to the fact that the chosen codeword
W*(.J) depends on the entire codebook. Following steps similar to those in [32], we analyze
the probability of this event (averaged over codebooks C and random binning) as follows. We

first consider the case when I(U; W) > R.

P(Do|Fy) <P(IWF1) : fp(l) = M £1, (WF(1),0") e Ty, | F1)
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kR (I(U:W)+8")

> D P(M =m|F) B(WHD), ) € Ty« fa(l) = m|Fy)

1=2 £l

IN

kR(I(U:W)+8)

= Y D PO =m|F) > PWR) =t fp(l) =il F)
=2 m#l wk:
(wk,vk)eT[’;W]g

R(I(U:W)+5)

N R N 1
= > D PWM=mR) Y BW)=aMNF) o5 (143)

=2 m#l wk: ‘

(ﬂjk,vk)eTﬁvv]g
R(I(U:W)+5") 1
= Z Z P(W*(1) = | Fy) P (144)
=2 Wk
(@kvv’“)GT[kWV]S
Let Ci, = C\{W*(1), W*(1)}. Then,

PWH(I) = | F) = Y P(Cry = | F)PWH(I) = | Fy, Cpy = o). (145)

Cl,l:c

The term in (145) can be upper bounded as follows:

P(WH(1) = w*| 7y, Cry=c)

=P(W*(l) = a"|U" = u*, VF =o*, C[ =)

P(W*(1) = w*|Wk(l) = w*, U* = uF, V¥ = 0¥ Cr = ¢)
P(Wk(1) = wk|UF = uk, VE = vk, Cl) = ¢)

P(J = 1{Wk(1) = wk, Wk(l) = o, Uk = u*, V¥ =%, Cf = o)
P(J = 1[Wk(1) = wk, Uk = uk, VF = vk C1) = ¢)

P(fs(J) = 1|J = 1, Wk(1) = w*, Wk(l) = @F, Uk = u*, VF = ok, = c)
P(fp(J) = 1|J = 1,Wk(1) = wk,UF = uk, V*F = C[ = 0)

P(Eng, Eculfa(J)=1,0 =1,WH(1) = wh, Wk(I) = @F, U* = uF, V¥ =¥, C[ = ¢)
P(Ene, Eoplfs(J)=1,0 =1, Wk1) = wk, Uk = uk, VF =k C/ = ¢) ‘

(146)

Since the codewords are generated independently of each other and the binning operation is

independent of the codebook generation, we have

P(W*(1) = w®|Wk(l) = ", U* = u*, VF = vk,Cil =¢)

= P(W*(1) = w*|U* = uF, VF = vk,Cl_J =c),
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and

P(fp(J) =1|J = 1,W*(1) = w* W*(1) = @", U* = u*, V¥ = vk,c;l =)

=P(fp(J) = 1]J = L,WFQ1) =u*, U* =" VF =", C, = ¢).
Also, note that

IED(SNEH gCE|fB(J> = 17 J = 17 Wk<1> = wka Wk(l) = wka Uk = uku Vk = Uk? Cil = C)

=P(Eve, Eculfp(J)=1,7 =1, W"1) =u*,U" =u* V* =2 C[, = o).

Next, consider the term in (146). Let N(u*,Cr) = [{w*(I') € Ci, - I # 1, I # 1, (w*(l'),u") €
T[’f,VU](SH. Recall that if there are multiple sequences in codebook C that are jointly typical with
the observed sequence U*, then the encoder selects one of them uniformly at random. Also,
note that given Fi, (w”,u*) € Ty, . Thus, if (0%, u*) € T}, then

P(J = 1|Wk(1) = wh W) = @F, U* = u*, VF = v* Eng, Eck, =0
(T = LWA(T) = k. U% = b, VE = oF.Cry =

1
P(J = 1{Wk(1) = wh, Ur = uk, VF =k C = )

1
B [N(uk,Cil)+2
- N(uk,Cil)+1
T N(ukCr)+2 T

If (%, u*) ¢ Ty, then

B(J = 1WH(1) = wk, WH(D) = @, UF = ub, VE = %, C, = o)
B(J = 1[WH(1) = wk, UF = oF, VF = o Cr = o)

1
P(J = 1|{Wk(1) = wh, UF = uk, VF =0k C1 = )

1
B [N(u’“,Cil) +1
_ N(uF,Cp)) +2
T Nk Cr)+1 7

Hence, the term in (145) can be upper bounded as

P(W*(1) = w"|F1)

< Y PCry = F) 2PWEI) = ¥ |UF = uF VE =0k, =0)

11*‘3
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=2 P(WH(l) = oF|U* = u* VF = %) = 2 P(W*(1) = a"). (147)

Substituting (147) in (144), we obtain

ek (I(U:W)+8")

P(Do|lF1) < ) > 2]P’(W’“(l):ﬁ)’“)ek—R
=1 wk:
(wk,uk)eT[’;mg

kR (I(U:W)+8")

- ¥ 3 g.e—k(mW)—él)ekLR

=1 k.

(w* Uk’L)UeTk
’ WV]s

o KUUW)) RHWIV)+83) —k(HW)=5) L
< ¢ HE-IUWIV)=6) (148)
where 5flk) ::5’+(51+53+% 500 as 0, & — 0.

For the case /(U; W) < R (when binning is not done), the terms can be bounded similarly

using (147) as follows.

P(Do|F1) = ) P(M = i Fr) B(W*(),0*) € Thiyy, | F2)

m£1
<Y P(M =m|F) > 2PWHm) = i¥)
m#l wh:
(WW’“)GT[@W]S
< Z ]p(M = 10| Fy) o kI(VsW)—(81+85+7)) < efk(I(V;W)*sz;k))_ (149)
m#1

Next, consider the event when there are no encoding or channel errors, i.e., Eyg N E&p.
For the case I(U;W) > R, the binning error event denoted by £zr happens when a wrong
codeword W¥(l), | # J, is retrieved from the bin with index M by the empirical entropy
decoder such that (W*(1),V*) e ﬂ’;vv]é. Let Py denote the type of Ppuyryn ). Note that
Py € Ty, when Exg holds. If H(W|V) < H(W[V), then in the bin with index M,
there exists a codeword with empirical entropy strictly less than H (W |V'). Hence, the decoded
codeword W* ¢ T[’%V]S(asymptotically) since (WF, VF) e T['I},V}S necessarily implies that
H (Wk|V¥) .= H(Pju|Pyr) — H(W|V) as 6 — 0. Consequently, a type 2 error can happen
under the event Egp only when H(W|V') > H(W|V). The probability of the event sy can be

upper bounded under this condition as follows:
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P(EpE|F2)

<P (3 [ #1, [ € [FAUWIH] . o) =1 and (WH(1),0%) € T[’f,w]s\]-})
k(I (U;W)+6")

< X (V00 € ThalR) B (fa(0) = 115, V1)) € Th, )

ek I(UsW)+6")

= Z P ((Wk(l),vk) = ﬂ%v}g‘f2> e kR
=2

ek(I(U;W)+8")

< > 2P(WH(1) = k) e (150)
=2 wh:
(wk u’“)eT[’;VV]S
— o kR=IUsW|V)=5{") (151)
In (150), we used the fact that
P (W) = a*|F) <2 PWH() = a*), (152)

which follows in a similar way as (147). Also, note that, by definition, P(Dy|F2;) = 1.
We proceed to analyze the R.H.S of (131) which upper bounds the type 2 error probability,
in the limit £ — oo and 9§, ¢’ ,5 — 0. Towards this end, we first focus on the the case when

Eng holds. From (133), it follows that
lim  lim Y PUF=uh VE=0MH = 1) P(Do|U* = v, VF =¥ Exp) (153)
k—oo 5560
(uk wk)eUk xVk

= lim lim Z P(U* = u*, VF = |H = 1)

k—oo 55,50
0= (uk wk)elk x vk

P(Do|U* = u*, VF =% J =1, f5(J) = 1,EnE). (154)

Rewriting the summation in (154) as the sum over the types and sequences within a type, we

obtain
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P(Dy| Eng, H = 1)

=Y X [P0t =t VE=diH =) PO
UVW (u vk wh)

€Tivw TPy o4

PWH(1) = wk|U* = uf, VE = ok, J =1, fg(J) = 1,5NE)]. (155)
We also have

P(U* = uf VF = o |H = 1) P(W*(1) = w*|U* = u* VF =% T =1, f5(J) = 1,EnE)

i ]
= [[] Quv (s, vi) | BOVE(1) = wh|U* = u¥, VF =%, ] =1, f5(J) = 1,Eni)
Li=1 |

1
< HQUV(UiaUz'> Tty K(H (074D (P || Quv)+HOW |0~ 1] Wlo(k+1)) (156)

wiol

where Py, denotes the type of the sequence (u*, v¥, wk).

With (142), (148), (149), (151) and (156), we have the necessary machinery to analyze (155).

First, consider that the event Exp N EGE N Efp holds. In this case,
]P)(DO‘-F22) = ]P)(IDO‘Uk = uka Vk = vku J = 17 fB(J) = 17 Wk(l) = wk7gNE7 SE'E7£]CS’E')

L, if Pyyr € Ty,

= and Pi,r € Tk

s (157)

0, otherwise.

Thus, the following terms in (155) can be simplified (in the limit 6,5 — 0) as

lim  lim Y § : P(U* =, VF = oHH = 1) P(EG I F) P(E5plF2) P(Do|Fza)
k—o0 5,6,6'=0 (o)
UVW u

ETHow ETP UV

P(WH(L) = whUF = b, VE = oF T = 1, fi(J]) = 1, )|

< lim  lim []PUk:uk,V’“:v’“Hzl P(Dy| F.
S 3OS - P
UVW u

€Tivw ETP U

P(WH(1) = whU" = b, VE = 0¥, J =1, fip(J) = 1, Ex)]
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< lim (k4 DMV gy HFHOVW) —k(HOV)DPygliQuy)+HVIO) = W 1os(k+1))

k—o0 P["]‘;-We
Ti(Puw ,Pyw)
— lim e %P, (158)
k—o0
Here,
Byi=  min_ H(OV)+ D(Pyyl|Quv) + HW|D) ~ HOVIV)

1 1
= UIVIIWllog(k +1) — [U|W]log(k + 1)

Pyy 1 P;
= E Pro lo oV v_p; ) —o(1
Puvw c ovw 108 <QUV Poo Povy ovw (1)
T1(Puyw ,Pvw)
) k
= min_ D(PpyllQuvw) —o(1) % Ey(Pup), (159)
Povw €
Ti(Puyw ,Pvw)

and Quvw = QuvPwy. To obtain (158), we used (156) and (157). This results in the term
Ei(Pwv) in (12).

Next, consider the terms corresponding to the event EypNEELNERE in (155). Note that given
the event Fp; = {U* = u*, VE =oF J =1, fp(J) = 1,Wk1) = w*, Enp, E&p, Epp} occurs,
Py € Tifpy,- Also, Do can happen only if H(w"[v*) > H(W|V) - ~5(6) for some positive
function v,5(6) € O(6) and P, € T[’;]w. Using these facts to simplify the terms corresponding

to the event Eyp N EE N Epp in (155), we obtain

. k_ k k_ k _ c
lim i Z Z ) [PU* = ", V5 = vH|H = 1) P(EELIF) P(EpplF2) P(DolFan)

UVW (u® " w

Tivw ETP T

POV (1) = whU* = uf, VE = 0¥, T = 1, f5(J) = 1, Ex)]

< 1 k_ ok vk k|
< fim - lim 3 kzk:k [IP(U WP VE = oF|H = 1) P(Epp|Fa) P(Do|Far)

UVW(uvw)

ETMVW ETP oV

P(WH(L) = whUF =, VE = oF,J = 1, fi(J) = 1, )|

< lim  max FHOVIW) —k(HOV)+D(PyplIQuv)+HWID)+R-1UW|V))
k—00 Pl']"/We
T2(Puw,Pyv)

e ([UIVIW]log(k+1)+[U[|[W|log(k+1))
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— lim e kP, (160)

k—o0

where,

By = min  H(UV)+ D(Ps¢||Quv) + HWI|U) + R — I({U;W|V)

Povwe
T2(Puw .Pv)

1 1
— VIV gl + 1) — Ul W] Tog(k + 1)

k
@, Ey(Pwy, Psx, 7). el

Note that Egg occurs only when I(U; W) > R.

Next, consider that the event Exg N Ecr holds. As in the case above, note that given F; =
{UF = uk VFE =% J =1, fg(J) = 1, WE(1) = w*, Eng, Ecr}y Pupwr € T[UW} and Dy
occurs only if P € T[?/st' Using these facts and eqns. (148), (149) and (142), it can be shown
that the terms corresponding to this event in (155) result in the factor Es(Py v, Psx,T) given
in (14).

Finally, we analyze the case when the event £f, occurs. Since the encoder declares H; if
M = 0, it is clear that D, occurs only when the channel error event £-g happens. Thus, we

have

P(Dy| U* = u*, VF =oF &%) =P(Ecp| UF =", VF =oF) £5,)

P(Do| U* =", VF =, 5N Eop). (162)
It follows from Borade’s coding scheme [31] that
P(Eop| UF = uf, VF = vF| €5p) < e "Pn(PocPrix) — oohrBn(Pox Prix) - (163)

When binning is performed at the encoder, D, occurs only if there exists a sequence Wk
in the bin M # 0 such that (W* V*) ﬂ’;vv]g. Also, recalling that the encoder sends the
error message M = 0 independent of the source codebook C, it can be shown using standard

arguments that for such v* € T[V] "
P(Dy| U* =, VF =%, E5pn Eop) < e MATHTWIVI=o), (164)

where 05 = d; + 03 + ¢’. Thus, from (162), (163) and (164), we obtain
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lim Y P(U* =" V* = o*|H = 1) P(Do| U* = u*, V¥ =0, E5,N Eci)

5,6',6—0
Ehinl uk,vk

< ¢ *D(PVIIQv) e—nEm(PSX,PY\X) e FR=I(U;W[V))) (165)

On the other hand, when binning is not performed, Dy occurs only if (W (M), V*) e T[’{;VV]S

and in this case, we obtain

lim > PU* =uf, VF = o"|H = 1) P(Dy| U* = u¥, V¥ =¥, &55N Eci)

5,6',6—0
" Uk,’l)k

< ¢ D(PVIIQV) o=nBm(Psx,Py|x) o—kI(ViW), (166)

This results in the factor Ey(Pw |y, Psx, ) in (15). Since the T2EE is lower bounded by the
minimal value of the exponent due to the various type 2 error events, this completes the proof

of the theorem.

APPENDIX B

PROOF OF THEOREM 6

We only give a sketch of the proof as the intermediate steps follow similarly to those in
the proof of Theorem 2. For brevity, in the proof below, we denote the information theoretic

quantities like (U, S; W), T[;g

R etc., that are computed with respect to joint distribution
Usw

Pyyswxxy(Ps, Prws, Pxs, Pxjusw) = Pov PsPiwsPxjs Pxjusw Pyix by I(U, S; W),
Tif;y0,» ete. As in the proof of Theorem 2, 4, &', 8" and & appearing in the proof below denote

arbitrarily small positive numbers subject to delta-convention [24] and certain other constraints
that will be specified in the course of the proof.
Codebook Generation:

Fix distributions (Ps, Py 75, Px|s, Pxjrsw) € By and let

Pyyvswxixy(Ps, Pws, Pxs, Pxjusw) = PovPsPiwwsPxns Pxjusw Prix-

Generate a sequence S™ i.i.d. according to [['_, Ps(s;). The realization S™ = s" is revealed to
both the encoder and detector. Generate the quantization codebook C = {@"(j), j € [e"!WSW)+,

where each codeword @w"(j) is generated independently according to the distribution [}, ISW,

where Py = Z(u,s)euxg Py (u)Ps(s) Pivjys(wlu, ).
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Encoding: If (u™, s") is typical, i.e., (u™, s") € T[?]S]M, the encoder first looks for a sequence
w"(j) such that (u",s",w"(j)) € Tjgyy,» 6 > 6" If there exists multiple such codewords, it
chooses one among them uniformly at random. The encoder transmits X" = 2™ over the channel,
where X" is generated according to the distribution [, Py e (2w, si,w;). If (u”,s") ¢
T[’BS]JH or such an index j does not exist, the encoder generates the channel input X = z/”
randomly according to []?" | Px/s(z}]s;).

Decoding: Given the side information sequence V" = v", received sequence Y = y" and
s™, the detector first checks if (v",s",y") € T[VSY 0 > 4. If the check is unsuccessful, H; is

declared. Else, searches for a typical sequence w" = w"(j) € TF. ., § = [W|é in the codebook

Wls?
such that

j = rgmin He(U_)na)’UnaSnuyn)'
(l)eTW]

If (v™, sy, w") € T"

VYWl , Hy is declared, else H; is declared.

Analysis of Type 1 error:

A type 1 error occurs only if one of the following events happen.

Ere = { (0" V".8") ¢ Thvgy 5= 11}
{#) € [ert@SN] L Om, 57 W) € T, |
b= {(V"S" W) T, |

Eop = {(V". 8" WM Y") ¢ T, }
{

Jie [e n(I(US:W)+5) } L# 0, W) € Ty
H.(W"(0)|V", 87, y™) < He(W"(J)W”,S”,Y")}

By the weak law of large numbers, Erp tends to 0 asymptotically with n for any 6 > 0. The
covering lemma guarantees that Epp N S%E tends to 0 doubly exponentially for 6 < § and ¢’
appropriately chosen. Given €5, N &%y, holds, it follows from the Markov lemma and the weak
law of large numbers, respectively, that P(£,,5) and P(Ecp) tends to zero asymptotically for
6> 6 (appropriately chosen). Next, we consider the probability of the event Epr. Given that
E&y N ES N ESE N ESy holds, note that lim,, o H,(W™(J)|[V"™, S, Y™) — H(W|V,S,Y) as
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6 — 0. Hence, similarly to that shown in Appendix A, it can be shown that

~ ~ ~ ~ ~ < Ry (n)
P(Epplécr NEypNErp N Erp) < e Ip(WiV.SY)=Tp(US:W) =067

where 6" 0 as 6,8 — 0. Hence, if I(U;W|S) < I(W;Y,V|S), the probability of the

events causing Type 1 error tends to zero asymptotically.

Analysis of Type 2 error: The analysis of the T2EE is very similar to that of the SHTCC
scheme given in Appendix A. Hence, only a sketch of the proof is provided, with the differences
from the proof of the SHTCC scheme highlighted.

Let

Eo ={(U",S") ¢ T[?]S]é”}. (167)
Then, as in Appendix A, the type 2 error probability can be written as

/6 (n7 n, f(nm)v g(n,n))

< Z P(U" = u", V" = v"|H = 1) [P<SEE N gg‘Un =", V" = ")

(un 7vn)eb{n xPn

+ P(Do|U™ = u™, V" = 0", Eng) + P(Do|U™ = u™, V" = 0™, &) |, (168)

where, g NE ‘= é’g 5N é‘g. As before, it is sufficient to restrict the analysis to the events & ~E and

&, that dominate the type 2 error. Define the events

s = {3 le [e”U(U’S;WW’)] LA T, WD) € Ty

(V2 WD), 8%, Y") € Ty, | (169)
F={Ur=u"V"=0",J=1,W"(1) =a",S" = s",Y" = y", Enp}, (170)
Fi={Ur=u", V" =v",J=1,W"(1)=a", 5" = s",Y" =", Eng, 5y ), (171)
Fo={U"=u", V" =", J=1,W"(1) =a", 8" = s",Y" = y", Enp, Era}. (172)

By the symmetry of the codebook generation, encoding and decoding procedure, the term
P(Do|U™ = u™, V" = v",J = j, Eng) is independent of the value of J. Hence, w.lo.g.

assuming J = 1, we can write
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]P)<D0| U'r=u", V" = UnagNE)
en(1(U,8;W)+4")

= Y P =jU"=u" V" =0"Enp) P(DU" =" V" = 0", J =1, Enp)

j=1
=P(Do|U" =u™, V" =v",J =1, Eng)

= ) PW)=a",S"=s"Y" =y U =u", V" =", ] =1, Exp)

P(Do|U" = u™, V" =", J =1, W"(1) =", 5" =", Y" = y", Enp)

= Y POV =w" S =Y =y U =t V=0 T = 1, Exg)
(wn’sn7yn)

€ WnxSnxyn

P(Do| F). (173)
The last term in (173) can be upper bounded using the events in (170)-(172) as follows.
P(Dy| F) < P(Dy| F1) + P(Erz| F) P(Do| Fo).

We next analyze the R.H.S of (168), which upper bounds the type 2 error probability, in the
limit n — oo and 4,0, — 0. We have,

P(D0|f1) = and Pyugngnyn € TV

[VSWY]s? (174)

0, otherwise.

Hence, the terms corresponding to the event F; in (168) can be upper bounded (in the limit

5,6 = 0) as

lim  lim [PU”:u”,V”:U”H:1 P(Dy| F
mow, Y [m 1 205

€ UNXV X WP xSP XY™

PW"(1) =a", S" =" Y" = y"|U" =u", V" =v",J = 1, 5NE)]
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<lm lm Y > [P =w v = H = 1) P(D|F)
n—oo /
§,6,6—0 Poosws (W@ s ")
Tavwsy  TPopawy

P(S" =", W"(1) = @"|U" = u",J =1, Eng)
]P)(Yn = ynlUn = Uﬂ, S = Sn) J = 17Wn(1) = wna ENNE)]

< lim  lim Z Z []}D(DO‘ F) e (HOV+D(FyyliQuv))

ovswy (U a"smy")
noo_ Tp. - . . -
Sluvwsy ' Pgyswy

o~ (HEWI0) = LUl WS log(n-+1) ) 6—n(Ho?|USv”v>+D<PylggW||PY‘USV—V|Pgs~v~v>)]

[e—n(HmVHD(PWHQw)) o~ (HEWIO)= L[ W|S| log(n+1))

n

o~ (HY[USW)+D(Py 50 || Py s | Py svir)) gn(H(OVSWY) 1||u||V||VvHS||y|log(nﬂ))}

= lim e "Fin, (175)
n—oo
where,
Er = min [H(fﬂ?) + D(Ps¢||Quv) + H(SW|U) + H(Y|USW)
Povawy€

T (Pysw Py swy)

A o~ 1 — —
+ D(Pygswl| Privsw|Posw) — HUVWSY) — = (U[W] + [U[[V][WI]IS||IV]) log(n + 1)

_ [ 1 P P; 1 Pypsw
= min > Poigiy log <P~~ QUV pfﬂ [ Pyygwy | —o(1)
Fovswy  oame ov Qov Fosw Eyjosw Pyusw
T (Pysw Pvswy)
= min D(Pyy gy | Quv Py Priusw) — o(1)
FPovswy €
T Pysw Pvswy) —
(n)
— B{(Ps, Pwus, Pxusw)- (176)

Here, (176) follows from the fact that PgWIU — PSV*V‘U given gNE, as 0 — 0.

Next, consider the terms corresponding to the event fg in (168). Given ]:"2, Py €T and

[UW]s
Dy occurs only if (V™ S™ Y™) e T sy) e 8" = |WIb, and HW|V,S,Y) > HW|V,S5,Y) —
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72(0), for some 2(d) € O(J). Thus, we have,

lim  lim - PU" =", V" = v"[H = 1) P(Do|.F2) P(Eral.F)

n—=00 56,50
0 (un7vn7wnysn7yn)

€ U XV X WP XS XY™

POVI(1) = 0", 8" = 5" V" = " [U" = ", V" =", ] = 1, Ex)]

< lim  lim E E [P(U" =u", V" =0v"|H =1)
n—00  § 550 o=
Poyswy € (u™ W™ @™, s"y")

TrUXVXWXSEXY) ETP[}VSW{/

P(Do|F) P(Era| F) P(S™ = ™, W™(1) = @"|U" =u™, J =1, Eng)
P(Y" = y"|U" =u™, 8" =", J =1, W"(1) = a", SNE)]

< lim  lim > 3 [efn(H@mD(PwHQUV>)P(DO| 7)

n=o0  §.5,6—0

Povswy € (u™ 0™ @™, s" y™)
TrUXVXWXSXY)  €TPzo oo
9. e—n(I(W;V,S,Y)—](U,S;W)—67) e—n(H(SW\~)—%|M||W\\S|log(n+1))
e_n(H({quW)'i'D(P{/“}S'W||]SY\USV_VIPUS‘VV))] (177)
< lim max [efn(H(UVHD(PgVHqu)) efn(H(S’W\U)f%IMIIWHSIlog(n+1))
n—00 Poyswy €

T3 (Puw Py swy)

efn(I(W;V,S,Y)fI(U,S;W)f&f%)

o~ (HVOSW)+D(Py g5 1Py jusw| Pogw)) on(HOVSWY)—LU[VIIWI|S|[Y|log(n+1))

= lim e ", (178)
n—oo
where,
Ey,= ,min D(Pyygwy|Quv Pewo Privsw) + I(W; V,Y|S) — I(U; W|S) — 0(1)]
UVSWY
T3 (Pysw Py swy)
ﬂ Ey(Ps, Py s, PX|USI/T/)- (179)

In (177), we used the fact that

P(Eps|F) < 2. ¢ (IVVYIS)-1UWIS)-57)

)
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which follows from
P <W"(l) - mf) <2 P(W"(l) = o). (180)

Eqn. (180) can be proved similarly to (147).

Finally, we consider the case when &y holds.

lim lim Y PU"=u"V"=v"[H =1) P(Do| U" =u", V" =", &)

n=00 §.6',6—0 “

n yn
sV

= lim lim Z PU" =u", V" =0v"|H =1)

n— 00 5
8,0’,6—0 un o

Y P(S=s"Y" =y", Do| U" =", V" =", &)
Sn7yn

=lim lim Y PU"=u"V"=0"|H=1)

n— 00 5
6,0’,0—0 un on

[ Z P(S" =s"Y"=y"| U" =u", V" =", &)
s™ymn
P(Dy| U" =u™, V" =", 8" =s"Y" =y, 5_0)]
= lim lim Y PU"=u" V" ="|H = 1)[ SRS =Y =y &)

n—oo
6,6',(5—}0 un o Sn’yn

P(Do| V" = o™, S" = s Y™ = ¢, EO)}

= lim lim P(V*=o"|H =1) P(S" = s",Y" = y"| &)

nro0 §,60,60 n

P(Do| V™ = v", 8" = s", Y™ = y", &). (181)

The event D, occurs only if there exists a sequence (W"(I),V", 8", Y") € T for some

WVSY];
| € [enUUSW)+9)] Noting that the quantization codebook is independent of the (V™ S, Y")

given that &, holds, it can be shown using standard arguments that
]P(D(]’ Vn = Un’ qn — Sn’ yn — yn7 50) < efn(I(W;V,Y|S)7I(U;W|S)757). (182)
Also,

P(S™ = 5", Y" = 4| &) < e MHEV+DPsy|Qsv)), (183)
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Hence, using (182) and (183) in (181), we obtain

lim lim Z P(V"=v"|H =1) P(S" =s",Y" = y"| &)
0 55550

P(Do| V" =™, 8™ =", Y" =y", &)

< lim lim Z e*n(H(V)JrD(PVHQV)) e*n(H(SY)JFD(Pg?HQSY)) eI (W3VY|S)—1(U;W|S)—d7)

IO I e
v,8TY

< lim (n + 1>\V||5H37| max e”H(f/g?) e*”(H(f/)+D(P\7||QV)) e*n(H(§?)+D(ng||QVSY))

n—oo Ppgy=Pvsy

e~ I(WSV.Y|S)—1(U;W19))

= lim e ¥
n—o0

3n
)
where,

B, = min  D(Pyayl|Qusy) + I(W; V. Y[S) — I(U;W|S) — [V]|S]|¥|log(n + 1)

Pygy=Pvsy
(n)
~— E§ (Ps, Pius: Pxs: Pxjusw) -

Since the T2EE is lower bounded by the minimal value of the exponent due to the various type

2 error events, this completes the proof of the theorem.

APPENDIX C

PROOF OF THEOREM 8

We can write

Ip. (Wi V,Y|S) = 1. (U; W|S) = 1. (W, X;V,Y|S) — I5.(U; W, X|S)
=1p.(X5Y|S) = Ip. (U; W) + 1p.(V; W)

=15 (X5 Y[S) = Ip (U; W|V) > 0. (184)
This implies that (P, Py Pxrjs) P)*qs) € Bj,. Now,

V(P Py Pxys)

= min D(Pyy sy ||Quvswxy)

~~~~~~ ! * *
Py aw v €T (Phswx Py swxy
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> min D(Pyyy || Quvw)

Poyw €T (Pow Pow

+ min D(Ps 10w @sxv | Py
Poyswxv €T (Phswx- Py swxy)

= Ei(Pyy) + min D(Pgxyopwll@sxy| Poow). (185)

~~~~~~ 1 ( D* *
Py swxv €T (Phswx-Poswxy

Also, by choosing X' = S, it follows from (184) that

E4 (P5, Py, Pxis; Pxis) = Ea(Piyj: Pox, 1)

> D(Pysy||Qisy) — Em (Pix, Prix) — D(Py[|Qv) (186)
= D(Piy||Q%y) — Em (Pix, Pyix) = 0. (187)

Here, (187) follows from the fact that since S = X and X’ = S, D(P%y,||Q%y,) is equal to
Enm (Pix, Pyix).
Again, it follows from (184) that

E; (ng, I;/|U’ P)*(\S) - E3<PI;/|U7P§X7 1)

. A
> e D (PUVS'VVXY ’QUVSWXY>
Poyawxv €Tz (PUSWX’PVSWXY

o Pﬁvwe%ili(l}’z/wfv) D(Pyyw||Quvw) — Ex (Ip* (X;Y[S), Psy, PY\X)
= Eh (P§7 $V\U7PX'|57P;(|S) - Es (Pé‘ka I;/|U7PX'\5"P;(‘S)

>0, (188)

where, (188) follows from the condition given in the theorem. This shows that for
b = (P¢, Py Pxriss Py s) € By, each of the argument inside the minimum in (23) is greater

than or equal to x4(1), thus implying that kj, > k4(1). This completes the proof.

APPENDIX D

JHTCC SCHEME ACHIEVES OPTIMAL T2EE FOR TACI

Let 7 = 1 and recall that for TACL, V = (E,Z) and Qugz = PyzPgz. To show the
above claim, note that (185) and (187) holds for any (Ps, Pwu, Px/s, Px|s) € Bj such that
(Pwu, Psx) € B (in place of (P;,PV"‘WU,PX/‘S,P)"‘QS) € By, such that (PV"‘WU,PS*X) € B). From
this and the achievability proof of Theorem 9 where it is shown that x,(1) > I(E;W|Z), it
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follows that proving
By (Ps, Pwy, Pxis) > 1(E;W1Z), (189)

for any (Pwu, Psx) € B'(1,C) suffices, where B’ (1, () is defined in (38). This can be done

as follows.
Ej (Ps, Py, Px|s) = min D (PUVS'WY/HQUVSWY)
Pyo sy €T3 (Pusw Prswy)
+ 1,(W. X5 E, Z,)Y|S) — Ip(U; W, X|S)

> Io(X5Y|S)+ 1p(WSE Z) — 1p(U; W)
= I[p(X;Y[5) = [p(U; WIE, Z)
> Ip(U;WZ) = 1p(UsWIE, Z) = 1p(E; W|2) (190)
= I(E;W|Z),

where, (190) follows from the assumption that (P, Psx) € B'(1,C). Thus, the JHTCC
scheme achieves the optimal T2EE for TACI over a DMC.

APPENDIX E

PROOF OF LEMMA 13

Note that for 7 = 0, n = 0, which implies that the observer does not transmit anything. Then,
from Stein’s lemma [5] for ordinary hypothesis testing, (i) and (i¢) follows, where 6(0) :=
D(Py||Qv). When 7 > 0, the proof is similar to that of Theorem 1 in [5]. Here, we prove (i),
which states that a T2EE of 6(7) is achievable. The proof of (ii) follows in a straightforward

manner from the proof given in [5] and is omitted here.

For given encoding functions f*™, ..., ék’”), define
B (ko 15 fE ) = it (o, £ g®) a9
glkn
such that

« <k7n7 fl(k’n)v R f[(,kJL)a g(k7n)> < €,

and

(VF, UK -UF - X —Y", 1 eL,
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where, X" = £ (UF), 1°:= £\l and let

Blkre)=  inf (k;,n,ff’“"),...,fg’“"),e).

777777

Now, let k € Z™, 5> 0be arbitrary, and ny, fl(k’ﬁ"') ,le L, and ffg”“ be the channel blocklength,
encoding functions and channel outputs respectively, such that k0(k, ) — D (Pyﬁk - | |Qyﬁk Vk) <
L L

ko. For each | € L, {ffln’“ (j)} N form an infinite sequence of i.i.d. r.v.’s indexed by ;. Hence,
jJET

by the application of Stein’s Lemma [5] to the sequences {}75” *(5), V¥ (j)} o we have
ez

. log (B(kj, 7€) _ ~D(PymyallQymya)
lim sup ‘ < :
j—+o00 kj k

< —(0(k,7) - ). (193)

For m > kj, B(m,7,¢) < B(kj, ,¢). Hence,

| 3 1 2 .
imsup BT A) o log (BkiiT )

m—00 m Jj—o0 kj

< —(0(k,7) —0).

Note that the left hand side (L.H.S) of the above equation does not depend on k. Taking infimum

with respect to &£ on both sides of the equation and noting that o is arbitrary, proves (7).

APPENDIX F

PROOF OF THEOREM 15

For the achievability part, consider the following scheme.

Encoding: Fix k,n € Z" and Pxpiyr at encoder [, [ € L. For j € Z, upon observing u,?,
encoder [ transmits X" I = fl(kj’"j )(Ulkj ) generated i.i.d. according to H§/:1 Pkt () The
main encoder performs uniform random binning on EF ie., ffj (Ekj ) = M, where M is selected
uniformly at random from the set M := {1,2,--- , "}

Decoding: Let M denote the received bin index, and § > 0 be an arbitrary number. If there
exists a unique sequence E* such that f%(E*) = M and (E¥, Y, Z4) e T[J}f’“YE 2+, then
the decoder outputs g*/")(M, Y, Z*) = E¥i_ Else, an error is declared.

Analysis of the probability of error: The events that can possibly lead to an error under the
above encoding and decoding rules are given below:

& = {89y, 29) ¢ T }

[EkYZ:LaZk](S
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3 EN £ BN, fE(EN) = (BN
& = | ,
(EM,yp 74 e T[JEkyﬁn 245

By the joint typicality lemma [33], P(&;) — 0 as j — oo. Also,

P(&) = > (M, 2) x P (fH(EM) = fH(e), (B9, 5, 2) € Thpyp )
ekjyyzjyzkj

S R RO S

kj o L kj kj eI
e z e
Y € [ERYR ZK]s

< I(H(EX|Y,Z%)+6) ,—kjR

kj(H(Ek|Y§,Zk)+6 7R>
=€

Hence, P(&) — 0 as j — oo if R > H(E*|YR, Z%) + 46, (ZF E*) —UF = X =Y, 1 € L.

k n k
Since § > 0 is arbitrary, this proves that R > AETYEZT) |:‘ Z7)

For the converse, we have by Fano’s inequality that H(E*|f*(E*), Y2, Z%) < ~, where

1s an achievable rate.

v — 0 as k — oo. Hence, we obtain

kR = log(|M]) > H(M|Yg,Z’f)
= H(M|Y! Z%) — H(E*|M, Y}, , Z*) + H(E*|M, Y}, Z%)

H(
H(

E*YE ZF) — 4.

This proves the converse by noting that (Z* E*) — Uf — X" — Y*, | € L holds for any

communication scheme.

APPENDIX G

PROOF OF THEOREM 16

From the source-channel separation theorem, an upper bound on R(7) can be obtained by
the intersection of the BT inner bound [33, Th. 12.1] with the capacity region (C,...,Cr, Cy),

where C is the rate available over the noiseless link from the encoder of source £ to the decoder.
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Writing the BT inner bound explicitly, we obtain that for all G C £ (including the null-set),

I(Ugv WQ|E7 Wgc, Z) < ZTCla
leg

I(Ug; Wg|E, We, Z) + H(E[Wge, Z) <Y 7Ci + C,
leg

where the auxiliary r.v.s W} satisfy (115) and |W,| < |U;|+4. Taking the infimum of C; over all
such W, and denoting it by R‘(7), we obtain the second inequality in (118). The other direction
in (118) is obtained similarly by using the BT outer bound [33, Th. 12.2]. Since R(7) is equal
to the infimum in (110), substituting (118) in (110) proves (119).

APPENDIX H

ALTERNATE PROOF OF PROPOSITION 9

For L =1, note that the Markov chain conditions in (115) and (117) are identical. Hence,
R'(1) = R°(1) = R(1). (195)

Using the BT inner bound in [33, Ch.12], we obtain R(7) as the infimum of R’ such that

H(E|Z,W) < R, (196)
I(U;WI|E, Z) < 7C, (197)
H(E|Z,W)+I(U;W|Z)<1C + R, (198)

for some auxiliary r.v. satisfying (F,7) — U — W. Hence,
R(7) = iyvfmax (H(E]VV, Z), H(E|W, Z)
+I(U;W|Z)—TC’), (199)
such that (E, Z) — U — W and (197) hold. We next prove that (199) can be simplified as

R(r) = inf H(E|Z.W), (200)
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such that I[(U;W|Z) < 7C and (E,Z) — U — W are satisfied. This is done by showing that,
for every r.v. W for which I(U;W|Z) > 7C, there exists a r.v. W’ such that (£, Z) —U — W,

I(U;W'|Z) = ~C, (201)

HEW',Z) < HE\W,Z)+ I(U;W|Z) — 7C, (202)
and (197) is satisfied with W replaced by W'. Setting

W, with probability 1-p,
W' = (203)

constant, with probability p,
suffices, where p is chosen such that [(U; W'|Z) = 7C. To see this, first note that H(E|W’, Z)
is an increasing function of p, while I(U; W’'|Z) and I(U; W'|E, Z) are decreasing functions of
p. Hence, it is possible to choose p such that (201) and (197) are satisfied with 1 in place of
W. Tt is clear that such a choice of W’ also satisfies (F,Z) — U — W'. To complete the proof

of (200), it remains to be shown that for such a W, (202) holds. We can write,
H(E|W', Z) = (1 — p)H(E|W, Z) + pH(E| 2). (204)

Taking derivative with respect to p, we obtain

dipH(E\W',Z) =I1(E;W|Z). (205)
Similarly,

d

d—pH(U\W’,Z) =1(U;W|Z). (206)

By the data processing inequality [24] applied to (E, Z) — U — W, we have that I(F; W|Z) <
I(U;W|Z). Hence,

d d
—HE\W',Z) < —H(UW', 2). 207
SHEW.2) < CHUW!, 2) 07)

From (207), it follows that

F(p) := H(E|W',Z)+ I(U;W'|Z) — 7C (208)
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is a decreasing function of p. Together with the fact that H(E|W’, Z) is increasing with p, it
then follows that (202) is satisfied for W’ chosen in (203). Having shown (200), the proof is

now complete from (119) and (195).
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