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Abstract—Federated learning (FL) has become de facto frame-
work for collaborative learning among edge devices with privacy
concern. The core of the FL strategy is the use of stochastic
gradient descent (SGD) in a distributed manner. Large scale
implementation of FL brings new challenges, such as the in-
corporation of acceleration techniques designed for SGD into
the distributed setting, and mitigation of the drift problem
due to non-homogeneous distribution of local datasets. These
two problems have been separately studied in the literature;
whereas, in this paper, we show that it is possible to address both
problems using a single strategy without any major alteration to
the FL framework, or introducing additional computation and
communication load. To achieve this goal, we propose FedADC,
which is an accelerated FL algorithm with drift control. We
empirically illustrate the advantages of FedADC.

I. INTRODUCTION

Federated learning (FL) framework has been introduced in
[1] to enable large-scale collaborative learning in a distributed
manner and without sharing local datasets, addressing, to
some extend, the privacy concerns of end-users. In FL, each
participating user carries out model training using their local
datasets, and exchange only their updated model parameters
for consensus, with the help of a parameter server (PS).
Recently, FL framework has received significant attention
from both academia and industry, and has been implemented
in several practical applications, such as learning keyboard
prediction mechanisms on edge devices [2], [3], digital health-
care /remote diagnosis [4]–[6], or for communication-efficient
learning at the wireless edge [7], [8].

Large scale implementations of the FL framework introduce
new challenges. One of the main obstacles in front of practical
implementation of FL is that, in general, the distribution
of data among end users is not homogeneous. As a result,
it is possible to observe a noticeable generalization gap in
practical scenarios compared to the analysis conducted under
independently and identically distributed (iid) data assumption
[9]–[12]. The overcome the detrimental affects of such non-iid
data distribution, various modifications to the FL framework
have been introduced in the recent literature [12]–[14]. In [12],
it is shown that by globally sharing only a small portion of
the local datasets, it is possible to tolerate the detrimental
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affects of non-iid distribution. However, data sharing, even
of a small portion, is contradictory with the fundamental
privacy-sensitive learning objective of FL, and may not be
possible in certain applications. Alternatively, in [13], the
authors suggest utilizing stochastic variance reduction [15] in
the federated setting to control the local drifts due to non-iid
data distribution. Another recent approach to control the local
drift, studied in [14], is to penalize the deviation of the local
model from the global one.

Another line of research explores how to employ accelera-
tion methods in the FL framework. Acceleration methods such
as momentum [16], [17], are known to be highly effective for
training deep neural network (DNN) architectures, increasing
both the convergence speed and the final test accuracy [18].
Recently, in [19] and [20], it has been shown that it is possible
to employ different acceleration techniques at the server side
to achieve better generalization error and to speed up training
also in the distributed setting.

In this paper, inspired from the previous studies in [13]
and [19], we introduce accelerated FL with drift control
(FedADC), which uses momentum stochastic gradient descent
(SGD) optimizer at the server for acceleration as in [19];
however, the momentum is updated through local iterations
to prevent local drifts, similarly to [13]. In the SCAFFOLD
strategy in [13], a globally computed gradient estimate is used
to reduce the variance of the local gradient estimates.

We want to highlight that the proposed FedADC strategy
does not require extra computations or additional hyper-
parameters. On the other hand, it requires a momentum vector
used by all the participating users. Hence, either all the partic-
ipating users will track the momentum vector, even if they do
not participate in a round, or the momentum needs to be sent to
the participating users in each round together with the updated
model, increasing the communication overhead. However, as
we later discuss, this overhead can be overlapped with the
computation time to prevent an increase in the communication
latency. Next, we briefly provide some background on the
distributed SGD strategy and how it is employed in the FL
framework.



Algorithm 1 Federated Averaging (FedAvg)

1: for t = 1, 2, . . . do
2: Choose a subset of users randomly St ⊆ [N ]: |St| =
cN

3: for i ∈ St do
4: Pull θt from PS: θ0

i,t = θt
5: for τ = 1, . . . ,H do
6: Compute SGD: gτi,t = ∇θfi(θτ−1i,t , ζi,τ )

7: Update model: θτi,t = θτ−1i,t − ηtgτi,t
8: Push θHi,t

9: Federated Averaging: θt+1 = 1
|St|

∑
i∈St θ

H
i,t

A. Preliminaries

Consider the following collaborative learning problem
across N users, each with its own local dataset denoted by
Di, for i = 1, . . . , N :

min
θ∈Rd

f(θ) =
1

N

N∑
i=1

Eζ∼Di
F (θ, ζ)︸ ︷︷ ︸

:=fi(θ)

, (1)

where F (·) is a parameterized loss function, θ is the d-
dimensional parameter model, ζ denotes a random sample,
and finally fi(·) is the local loss function of the i-th users.

The parallel stochastic gradient descent (PSGD) framework
is designed to solve the optimization problem in (1) with
the help of a PS. At the beginning of each iteration t, each
user pulls the current parameter model θt from the PS, and
computes the local gradient estimate

∇θt
fi(θτ , ζi,t), (2)

where ζi,t is the data sampled by the i-th worker from its
local dataset at iteration t. Then, each worker pushes its local
gradient estimate to the PS, where those values are aggregated
to update the parameter model, i.e.,

θt+1 = θt − ηt
1

N

N∑
i=1

∇θtfi(θt, ζi,t), (3)

where ηt is the learning rate.
In a broad sense, FL works similarly to PSGD with the

following two modifications to address the communication
bottleneck. In FL, instead of communicating each local gradi-
ent estimate to the PS, users carry out H local SGD iterations
before sending their updated local models to the PS to obtain a
consensus model. Moreover, particularly when a large number
of users collaborate in FL, at each iteration, cN users are
chosen randomly for the model update, where 0 ≤ c ≤ 1
represent the participation ratio. The resultant FL algorithm,
also known as Federated Averaging (FedAvg) is provided in
Algorithm 1, where St denotes the set of chosen users at
communication round t.

Algorithm 2 SLOWMO

1: for t = 1, . . . , T do
2: Local iteration:
3: for i ∈ St do in parallel
4: θ0

i,t = θt
5: for τ = 1, . . . ,H do local update:
6: Compute SGD: gτi,t = ∇θfi(θτ−1i,t , ζτi,t)

7: Update model: θτi,t = θτ−1i,t − ηtgτi,t
8: Communication phase:
9: for i ∈ St do

10: Send ∆i,t = θt − θHi,t to PS

11: Compute pseudo gradient:
12: ḡt = 1

|St|
1
ηt

∑
n∈St ∆n,t

13: Compute pseudo momentum:
14: mt+1 = βmt + ḡt
15: Model update:
16: θt+1 = θt − αηtmt+1

B. Background and Motivation

Recently, novel accelerated FL methods have been intro-
duced in [19]–[21] building upon the inner/outer loop archi-
tecture [22], where the inner loop involves the local updates
while the outer loop is responsible for the global update.
These methods achieve better generalization error compared
to the conventional FedAvg strategy. However, robustness of
these solutions against the heterogeneity of data in practical
FL scenarios is not discussed in the literature; although it
has been demonstrated that employing an additional server-
side optimizer can help to alleviate the impact of non-iid data
distribution [9].

The impact of non-iid data distribution on FL has been
highlighted recently by several studies [9]–[12]. The main
challenge due to non-iid data distribution in FL is local
drift, which refers to the deviations in the local models
from the previous global model due to iterations based on
the local dataset. These local drifts become more prominent
over iterations, and lead to a higher generalization gap [9].
Although accelerated FL methods are not particularly designed
to mitigate the local drift problem, we show in this paper that,
with a slight alteration, server side acceleration methods can be
enhanced to be robust against non-iid data distribution without
an additional mechanism for drift control. Next, we explain our
proposed strategy in detail.

II. ACCELERATED FEDERATED LEARNING WITH DRIFT
CONTROL (FEDADC)

The core idea behind the proposed FedADC scheme is
to embed the global momentum update procedure in [19]
into local iterations. In a broad sense, the local updates can
be considered as a two-player game between the users and
the PS, where each decides on the direction of the update
alternatively. This way, one can enjoy the acceleration offered
by the SLOWMO strategy in [19], while the local drifts are
also controlled.



In the SLOWMO strategy [19], presented in Algorithm 2 for
completeness, the inner loop, which corresponds to the local
updates at the users, is identical to FedAvg in Algorithm 1.
The key variation lies in the outer loop: unlike in FedAvg,
where the local models are averaged to obtain the global
model, the PS treats the changes in the local models as pseudo
gradients, and utilizes them to compute a global momentum,
denoted by mt, which is then used to update the global model.
We would like to remark that the SLOWMO framework is
introduced in [19] for the distributed SGD setup; and hence,
the model updates are performed locally by using all-reduce
communication. Here we present its adaptation to the FL
setting.

Formally speaking, at the beginning of each communication
round t, the PS sends the latest global model θt to all the users
selected to participate in the current round. Then, each selected
user performs H local updates on this global model, and sends
the accumulated model update ∆n,t to the PS (as illustrated
in line 10 of Algorithm 2). The PS utilizes the average of the
model updates as the global pseudo gradient, and updates the
momentum of the outer loop accordingly (illustrated in line
14 of Algorithm 2). Finally, the PS updates the global model
using the momentum just obtained (line 16 of Algorithm 2).

Remark 1. We want to remark that, in the SLOWMO frame-
work, a second momentum can also be used for the local
updates; however, in the federated setting, as the skewness
of the data distribution increases, this local momentum makes
the impact of the non-iid distribution even more severe.

Next, we introduce FedADC, which benefits from the
SLOWMO framework with the additional robustness against
non-iid data distribution. The key design trick we use here is
to embed the momentum update part (illustrated in line 14 of
Algorithm 3) into the local iteration; that is, instead of adding
the momentum term mt to the pseudo gradient at the end of
the communication round, it is first normalized with respect
to the number of local iterations, m̄t = mt/H , then added to
the pseudo gradient gradually through local iterations. As we
have mentioned above, in Algorithm 3, local model updates
are treated as a two-player game between the user and the
PS, whose actions correspond to choosing the direction of the
model update. The user decides on its action based on the local
gradient estimate (lines 8 and 10 of Algorithm 3),while the PS
decides based on the previous global pseudo momentum mt,
specifically the normalized pseudo momentum m̄t. By virtue
of this mechanism, each worker searches for the minima based
on its local loss function, while at the same time the PS pulls
the local model towards the previous consensus direction to
confine the local drift.

We consider two variations for the local updates in Algo-
rithm 3 based on whether the actions are taken simultaneously
or consecutively, illustrated with blue and red lines in Algo-
rithm 3, respectively. One can observe that the variation illus-
trated with red resembles the Nesterov momentum strategy,
whereas the one with blue resembles heavy ball momentum
[18].

Algorithm 3 Accelerated FL with drift control (FedADC)

1: for t = 1, . . . , T do
2: Local iteration:
3: for i ∈ St do in parallel
4: θ0

i,t = θt
5: m̄t = mt/H
6: for τ = 1, . . . ,H do local update:
7: θ

τ−1/2
i,t = θτ−1i,t − ηtm̄t

8: gτi,t = ∇θfi(θτ−1/2i,t , ζτi,t)

9: θτi,t = θ
τ−1/2
i,t − ηtgτi,t

10: gτi,t = ∇θfi(θτ−1i,t , ζτi,t)

11: θτi,t = θτ−1i,t − ηt(gτi,t + m̄t)

12: Communication phase:
13: for i ∈ St do
14: Send ∆i,t = θt − θHi,t to PS

15: Compute Pseudo momentum:
16: ∆̄t = 1

|St|
1
ηt

∑
i∈St ∆i,t

17: mt+1 = ∆̄t − (1− β)mt

18: Model update:
19: θt+1 = θt − αηtmt+1

We would like to stress that the overall update direction over
H iterations, ∆i,t = θt−θHi,t, can be written in the following
form:

∆i,t = ηt

(
H−1∑
τ=0

gτi,t + mt

)
, (4)

and the average of all the local updates is given by

1

|St|
∑
i∈St

∆i,t = ηt

(
1

|St|
∑
i∈St

H−1∑
τ=0

gτi,t + mt

)
. (5)

If both sides of Equation (5) are divided by ηt, the right
hand side of the equation is in the form mt + ḡt. Finally, one
can observe that with a small correction; that is, by subtracting
(1−β)mt, the definition in (5) becomes identical to the pseudo
momentum of the SLOWMO framework. Therefore, although
the mechanism for the local updates is modified, the structure
of the outer loop still closely resembles that of the SLOWMO
strategy.

We note that, in Algorithm 3, a discounting mechanism for
the momentum term is applied after the local iterations (line
16). Alternatively, discounting of the momentum can be done
before the local iterations by simply setting m̄t = βmt/H in
line 5 of Algorithm 3. In the most generic form, the embedding
of the global momentum to local updates can be controlled by
a parameter γ, such that m̄t = γβmt/H , and mt is updated
accordingly, i.e., mt+1 = ∆̄t + (1 − γ)βmt. One can easily
observe that Algorithm 3 corresponds to taking γ = 1/β
and aforementioned alternative approach corresponds to taking
γ = 1. Although different strategies can be obtained by
playing with the γ parameter, we do not pursue this direction
in the scope of this paper since it increases the number of
hyper-parameters to be tuned.



(a) s = 2. (b) s = 3. (c) s = 4.

Fig. 1: Comparison of the convergence of test accuracy among FedADC, FedAvg and SLOWMO for the image classification
task on CIFAR-10 dataset using a four-Layer CNN. We consider a different level of non-iid data distribution in each figure,
parameterized by s.

Overall, the proposed FedADC strategy uses mt for drift
control in the inner loop and for acceleration in the outer loop.
We further argue that, although the use of mt in the inner
loop is not similar to the momentum optimizer framework,
it may still serve the common purpose of helping to escape
from saddle points. In [23], it has been argued, backed by
some theoretical analysis under certain assumptions (which
can be validated through experiments) that the efficiency of
the momentum approach is due to perturbation of the model
parameters towards the escape direction from a saddle point.
Hence, we argue that the fixed perturbation m̄t, which does
not depend on the local gradient estimate, may also help to
escape from a saddle point. Around a saddle point, the local
gradient estimates start to vanish; however, since the term m̄t

does not depend on the local gradient estimates, vanishing
behavior will not be observed for the m̄t term; and thus, the
perturbation due to m̄t will prevent the local model from being
stuck at a saddle point.

A. Communication load

One of the main design goals behind the FedADC strategy
is to keep the number of hyper-parameters and the number
of exchanged model parameters as low as possible while
accelerating the training and achieving a certain robustness
against non-iid data distribution and acceleration. From the
uplink perspective, proposed strategy does not impose any
additional communication load compared to conventional Fe-
dAvg strategy; however, on the downlink, the model difference
∆̄t should be broadcast to all the users in the system, not only
to those participating in the current iteration, to ensure that
each user can track the global momentum mt.

Alternatively, at each global update phase, selected users in
St can pull both the global momentum mt+1 and the global
model θt form the PS, which doubles the communication load
in the downlink direction. However, in certain settings the
additional communication load can be hidden by overlapping
it with the computation time, which would prevent an increase
in the overall communication latency. To clarify, at time slot t,

in parallel to the computation process of users in St, the PS can
decide the next set of users, St+1, and send them the current
momentum mt and the model θt; hence, at the beginning of
iteration t+ 1, the users in St+1 only need to pull the average
model difference ∆̄t at the beginning of iteration t+1. Hence,
although the additional communication load at the downlink
side cannot be prevented, the corresponding latency can be
reduced by overlapping it with the computation time.

III. NUMERICAL RESULTS

A. Simulation setup

For the experiments, we use the CIFAR-10 [24] image
classification dataset, which contains 50,000 training and
10,000 test images from 10 classes. Training images are
distributed equally among 100 users. We consider a neural
network architecture with four convolutional layers and four
fully connected layers with no batch normalization applied
to the outputs of the layers. Max-pooling is also utilized for
scaling down the image size. We set the weight decay to
4× 10−4 in all the experiments.

B. Simulation results

To analyze the performance of the proposed FedADC
scheme under non-iid data distribution, we consider the sort
and partition approach to distribute the training dataset among
the users. In the sort and partition approach, the images in the
training dataset are initially sorted based on their labels, and
then they are divided into blocks and distributed among the
users randomly based on a parameter s, which measures the
skewness of the data distribution. To be more precise, s defines
the maximum number of different labels within the local
dataset of each user, and therefore, the smaller s is, the more
skewed the data distribution is. In our numerical experiments,
we consider three different scenarios for the skewness of the
data distribution with s = 2, 3, 4, respectively.

In all the experiments, we train the given DNN architecture
for 500 communication rounds, each of which consists of H =
8 local iterations. We fix the user participation ratio to c =



0.2; that is, at each iteration only 20 users participate in the
training. We use a batch size of 64.

We consider FedAvg and SLOWMO frameworks as bench-
mark strategies. To provide a fair comparison, we tune all
the hyper-parameters including the learning rate η and the
momentum coefficient β for each framework separately. For
this we carry out a grid search over the values of η ∈
{0.01, 0.025, 0.05, 0.1} and β ∈ {0.6, 0.7, 0.8, 0.9}. We fix
α = 1 similarly to [19]. For FedADC, we implement both
variations illustrated with blue and red in Algorithm 3, de-
noted as FedADC-Blue and FedADC-Red, respectively, in the
figures. Finally, we remark that each experiment is repeated
10 times, and the average test accuracy results are presented.

The convergence results of the FedADC, FedAvg and
SLOWMO schemes under non-iid data distribution for s =
2, 3, 4 are illustrated in Fig.s 1a-1c, respectively. One can
clearly observe that SLOWMO provides a significant improve-
ment over FedAvg, but in all three scenarios, the proposed
FedADC scheme outperforms SLOWMO. The improvement
of SLOWMO with respect to FedAvg is consistent with the
observations in [9] and [19]; that is, the use of server side
momentum can help to mitigate the impact of local drifts, and
it also accelerates learning. However, by comparing the gap
between the proposed FedADC framework and SLOWMO for
different s values, we also observe that SLOWMO mainly
serves for acceleration rather than a drift control mechanism,
thus the performance gap between FedADC and SLOWMO
widens as the parameter s decreases, i.e., as the data distribu-
tion becomes more skewed.

Finally, in Fig. 2, we compare the test accuracy of the
FedADC scheme for different s parameters to investigate its
robustness against non-iid data distribution. We observe that,
in all the cases FedADC passes %80 test accuracy within
500 communication rounds. Besides, the simulation results
indicate that, although the convergence speed slows down as s
decreases, it seems FedADC still converges to a similar test ac-
curacy level for different s values, which shows the robustness
of the FedADC scheme to non-iid data distribution. We also
observe that when s is larger, the two local update mechanisms
illustrated with red and blue in Algorithm 3 perform almost
identical. However, as s decreases the Nesterov-type model
updates, illustrated with red, performs slightly better as one
can observe in Fig. 2.

IV. CONCLUSION

In this paper, we introduced a novel FL framework that is
more robust to data heterogeneity across users. The proposed
strategy embeds the momentum update step typically used at
the server side into the local model update procedure to control
the local drift and to prevent divergence. Through experiments
on a CNN architecture for image classification on the CIFAR-
10 dataset, we show that the proposed FedADC approach
accelerates the training while also preventing local drifts, and
as a result, outperforms both of the benchmarks, FedAvg and
SLOWMO, in terms of the convergence speed and final test
accuracy.

Fig. 2: Convergence performance of FedADC for non-iid
data distribution with s = 2, 3, 4.
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S. Kumar, and H. B. McMahan, “Adaptive federated optimization,”
CoRR, vol. abs/2003.00295, 2020.

[21] K. Chen, H. Ding, and Q. Huo, “Parallelizing adam optimizer with
blockwise model-update filtering,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 3027–
3031.

[22] M. Zhang, J. Lucas, J. Ba, and G. E. Hinton, “Lookahead optimizer:
k steps forward, 1 step back,” in Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019, pp. 9597–9608.

[23] J.-K. Wang, C.-H. Lin, and J. Abernethy, “Escaping saddle points faster
with stochastic momentum,” in International Conference on Learning
Representations, 2020.

[24] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 (Canadian Institute
for Advanced Research).” [Online]. Available: http://www.cs.toronto.
edu/~kriz/cifar.html


