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Abstract—The problem of simultaneous multicasting of multiple
messages with the help of a relay terminal is considered. In partic-
ular, a model is studied in which a relay station simultaneously as-
sists two transmitters in multicasting their independent messages
to two receivers. The relay may also have an independent mes-
sage of its own to multicast. As a first step to address this gen-
eral model, referred to as the compound multiple access channel
with a relay (cMACr), the capacity region of the multiple access
channel with a “cognitive” relay is characterized, including the
cases of partial and rate-limited cognition. Then, achievable rate
regions for the cMACr model are presented based on decode-and-
forward (DF) and compress-and-forward (CF) relaying strategies.
Moreover, an outer bound is derived for the special case, called
the cMACr without cross-reception, in which each transmitter has
a direct link to one of the receivers while the connection to the
other receiver is enabled only through the relay terminal. The ca-
pacity region is characterized for a binary modulo additive cMACr
without cross-reception, showing the optimality of binary linear
block codes, and thus highlighting the benefits of physical layer
network coding and structured codes. Results are extended to the
Gaussian channel model as well, providing achievable rate regions
for DF and CF, as well as for a structured code design based on
lattice codes. It is shown that the performance with lattice codes
approaches the upper bound for increasing power, surpassing the
rates achieved by the considered random coding-based techniques.

Index Terms—Cognitive radio, lattice coding, multicasting, net-
work coding, relay channel.
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Fig. 1. Illustration for an application of the compound multiple access channel
with a relay: two multicasting satellites helped by a third one acting as a relay
for both multicast transmissions.

I. INTRODUCTION

C ONSIDER two noncooperating satellites each multicast-
ing radio/TV signals to users on Earth. The coverage area

and the quality of the transmission is generally limited by the
strength of the direct links from the satellites to the users. To
extend coverage, to increase capacity or to improve robustness,
a standard solution is that of introducing relay terminals, which
may be other satellite stations or stronger ground stations (see
Fig. 1). The role of the relay terminals is especially critical in
scenarios in which some users lack a direct link from any of
the satellites. Moreover, it is noted that the relays might have
their own multicast traffic to transmit. A similar model applies
in the case of noncooperating base stations multicasting to mo-
bile users in different cells: here, relay terminals located on the
cell boundaries may help each base station reach users in the
neighboring cells.

Cooperative transmission (relaying) has been extensively
studied in the case of two transmitting users, both for a single
user with a dedicated relay terminal [1], [2] and for two coop-
erating users [3]. Extensions to scenarios with multiple users
are currently under investigation [2], [5]–[11]. In this work,
we aim at studying the impact of cooperation in the setup of
Fig. 1 which consists of two source terminals simultaneously
multicasting independent information to two receivers in the
presence of a relay station. While the source terminals cannot
directly cooperate with each other, the relay terminal is able
to support both transmissions simultaneously to enlarge the
multicast capacity region of the two transmitters. Moreover, it is
assumed that the relay station is also interested in multicasting
a local message to the two receivers (see Fig. 2).

The model under study is a compound multiple access
channel with a relay (cMACr) and can be seen as an extension
of several fundamental channel models, such as the multiple
access channel (MAC), the broadcast channel (BC) and the
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Fig. 2. Compound MAC with a relay (cMACr).

frelay channel (RC). The main goal of this work is to adapt
basic transmission strategies known from these key scenarios
to the channel at hand and to identify special cases of the more
general model for which conclusive capacity results can be
obtained.

Below, we summarize our contributions.
• We start our analysis by studying a simplified version of

the cMACr that consists of a MAC with a “cognitive” relay
(see Fig. 3). In this scenario the cognitive relay is assumed
to be aware of both transmitters’ messages noncausally. We
provide the capacity region for this model and several ex-
tensions. While interesting on its own, this setup enables us
to conveniently introduce the necessary tools to address the
analysis of the cMACr. As an intermediate step between
the cognitive relay model and the more general cMACr
model, we also consider the relay with finite capacity uni-
directional links from the transmitters and provide the cor-
responding capacity region.

• We provide achievable rate regions for the cMACr model
with decode-and-forward (DF) and compress-and-forward
(CF) relaying. In the CF scheme, the relay, instead of
decoding the messages, quantizes and broadcasts its re-
ceived signal. This corresponds to the joint source-channel
coding problem of broadcasting a common source to two
receivers, each with its own correlated side information, in
a lossy fashion, studied in [20]. This result indicates that
the pure channel coding rate regions for certain multi-user
networks can be improved by exploiting related joint
source-channel coding problems.

• The similarity between the underlying scenario and the
classical butterfly example in network coding [12] is ev-
ident, despite the fact that we have multiple sources and
a more complicated network with broadcasting constraints
and multiple access interference. Yet, we can still benefit
from physical layer coding techniques that exploit network
coding. In order to highlight the possibility of physical
layer network coding, we focus on a special cMACr in
which each source’s signal is received directly by only one
of the destinations, while the other destination is reached
through the relay. This special model is called the cMACr
without cross-reception. We provide an outer bound for this
setting and show that it matches the DF achievable region,
apart from an additional sum rate constraint at the relay
terminal. This indicates the suboptimality of enforcing the
relay to decode both messages, and motivates a coding

scheme that exploits the network coding aspects in the
physical layer.

• Based on the observation above, we are interested in
leveraging the network structure by exploiting “structured
codes”. We then focus on a modulo additive binary version
of the cMACr without cross-reception, and characterize
its capacity region, showing that it is achieved by binary
linear block codes. In this scheme, the relay decodes
only the binary sum of the transmitters’ messages, rather
than decoding each individual message. Since receiver 1
[respectively 2] can decode the message of transmitter 1
[respectively 2] directly without the help of the relay, it
is sufficient for the relay to forward only the binary sum.
Similar to [21], [24] and [25], this result highlights the
importance of structured codes in achieving the capacity
region of certain multi-user networks.

• Finally, we extend our results to the Gaussian cMACr
without cross-reception, and present a comparison of
the achievable rates and the outer bound. Additionally,
we extend the structured code approach to the Gaussian
channel setting by proposing an achievable scheme based
on nested lattice codes. We show that, in the case of sym-
metric rates from the transmitters, nested lattice coding
improves the achievable rate significantly compared to the
considered random coding schemes in the moderate to
high power regime.

The cMACr of Fig. 2 can also been seen as a gener-
alization of a number of other specific channels that have
been studied extensively in the literature. To start with, if
there is no relay terminal available, our model reduces to
the compound multiple access channel whose capacity is
characterized in [4]. Moreover, if there is only one source
terminal, it reduces to the dedicated relay broadcast channel
with a single common message explored in [2] and [5]:
Since the capacity is not known even for the simpler case
of a relay channel [1], the capacity for the dedicated relay
broadcast channel remains open as well. If we have two
sources but a single destination, the model reduces to the
multiple access relay channel model studied in [2] and [32]
whose capacity region is not known in the general case
either. Furthermore, if we assume that transmitter 1 [and 2]
has an orthogonal side channel of infinite capacity to re-
ceiver 1 [respectively 2], then we can equivalently consider
the message of transmitter 1 [respectively 2] to be known in
advance at receiver 1 [respectively 2] and the corresponding
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channel model becomes equivalent to the restricted two-way
relay channel studied in [6], [7], [26], and [27].

The cMACr model is also studied in [11], in which DF and
amplify-and-forward (AF) based protocols are analyzed. An-
other related problem is the interference relay channel model
studied in [8], [9] and [10]: Note that, even though the inter-
ference channel setup is not obtained as a special case of our
model, achievable rate regions proposed here can serve as inner
bounds for that setup as well.

Notation: To simplify notation, we will sometimes use the
abbreviation: . We employ standard conven-
tions (see, e.g., [1]), in which the probability distributions are
defined by the arguments, upper-case letters represent random
variables and the corresponding lower-case letters represent re-
alizations of the random variables. We will follow the conven-
tion of dropping subscripts of probability distributions if the
arguments of the distributions are lower case versions of the
corresponding random variables. The superscripts identify the
number of samples to be included in a given vector, e.g.,

.
The rest of the paper is organized as follows. The system

model is introduced in Section II. In Section III we study the
multiple access channel with a cognitive relay, and provide
the capacity region for this model and several extensions. The
compound multiple access channel with a relay is studied in
Section IV, in which inner bounds are provided using de-
code-and-forward and compress-and-forward type relaying
strategies. Section V is devoted to a special cMACr model
without cross-reception, that is each receiver can only receiver
from one of the source terminals. As a special example the bi-
nary additive cMACr model without cross-reception is studied.
For this model, we characterize the capacity region and show
that the linear binary block codes can achieve any point in
the capacity region, while random coding based achievability
schemes have suboptimal performance. In Section VI, we
analyze Gaussian channel models for both the MAC with
a cognitive relay and the general cMACr. We apply lattice
coding/decoding for the cMACr and show that it improves the
achievable symmetric rate value significantly, especially for the
high power regime. Section VII concludes the paper, followed
by the appendices in which we have included details of the
proofs.

II. SYSTEM MODEL

A compound multiple access channel with a relay consists
of three channel input alphabets and of transmitter
1, transmitter 2 and the relay, respectively, and three channel
output alphabets and of receiver 1, receiver 2 and
the relay, respectively. We consider a discrete memoryless time-
invariant channel without feedback, which is characterized by
the transition probability (see Fig. 2).
Transmitter has message , while the relay
terminal also has a message of its own, all of which
need to be transmitted reliably to both receivers. The extension
to a Gaussian model will be considered in Section VI.

Definition 1: A code for the cMACr
consists of three sets for , two
encoding functions at the transmitters,

(1)

a set of (causal) encoding functions at the relay, ,

(2)

and two decoding functions at the receivers,

(3)

We assume that the relay terminal is capable of full-duplex
operation, i.e., it can receive and transmit simultaneously. The
joint distribution of the random variables factors as

(4)

The average probability of block error for this code is defined
as

(5)

where and .

Definition 2: A rate triplet is said to be
achievable for the cMACr if there exists a sequence of

codes with as .

Definition 3: The capacity region for the cMACr is the
closure of the set of all achievable rate triplets.

Note that the cMACr model depicted in Fig. 2 can be consid-
ered as a special case of a more general three user multicast net-
work with generalized feedback in which the two users Source
1 and Source 2 also have reception capabilities and receive gen-
eralized feedback signals from the channel. This most general
model with generalized feedback, which will not be studied in
this paper, extends the classical MAC with generalized feedback
model (see [28] and [29]) to the multicasting scenario.

III. MAC WITH A COGNITIVE RELAY

Before addressing the more general cMACr model, in this
section we study the simpler MAC with a cognitive relay sce-
nario shown in Fig. 3. This model, aside from being relevant
on its own, enables the introduction of tools and techniques of
interest for the cMACr. The model differs from the cMACr in
that the messages and of the two users are assumed to
be noncausally available at the relay terminal (in a “cognitive”
fashion [13]) and there is only one receiver (
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Fig. 3. MAC with a cognitive relay.

and ). Hence, the encoding function at the relay is now
defined as , the discrete mem-
oryless channel is characterized by the conditional distribution

and the average block error probability is de-
fined accordingly for a single receiver.

We note here that, rather than assuming perfect knowledge
of the messages at the relay terminal in a noncausal manner, it
is possible to consider a “weaker” type of cognition modeled
by “cribbing” encoders as in [14]. This more general model,
which will not be studied in this paper, allows us to consider
various types of causal cribbing at the relay terminal, leading
to intermediate rate regions between the general cMACr model
and the “fully” cognitive relay model considered in this section.
Several other versions of the basic model of Fig. 3, involving
partial information at the cognitive relay will also be considered
in this section. The following proposition provides the capacity
region for the MAC with a cognitive relay.

Proposition 1: For the MAC with a cognitive relay, the
capacity region is the closure of the set of all nonnegative

satisfying

(6a)

(6b)

(6c)

and

(6d)

for some joint distribution of the form

(7)

where is a time-sharing random variable.
Proof: The proof can be found in Appendix A.

Remark 1: A more general MAC model with three users and
any combination of “common messages” (i.e., messages known
“cognitively” to more than one user) is studied in [15, Section
VII]. However, as stated in [16], the generalized capacity region
proposed in [15, eq. (65)] is not correct. The correct capacity
region was later given by Han in [17]. While our setup can be
obtained as a special case of the more general model studied in
[17], we provide a capacity region characterization for this spe-
cial case without resorting to any auxiliary random variables,
while the characterization of Han specialized to the cognitive
relay setup requires the introduction of three auxiliary random
variables and is expressed using eight inequalities. A more gen-
eral message hierarchy that results in a capacity region charac-
terization that does not include auxiliary random variables (or a
reduced number thereof with respect to [17]) is found in [18].

Towards the goal of accounting for nonideal connections be-
tween sources and relay (as in the original cMACr), we next
consider the cases of partial and limited-rate cognition (rigor-
ously defined below). We start with the partial cognition model,
in which the relay is informed of the message of only one of the
two users, say of message .

Proposition 2: The capacity region of the MAC with a par-
tially cognitive relay (informed only of the message is
given by the closure of the set of all nonnegative
satisfying

(8a)

(8b)

(8c)

(8d)

and

(8e)

for an input distribution of the form
where is a time-sharing random variable.

Proof: The proof can be found in Appendix B.

The model in Fig. 3 can be further generalized to a scenario
with limited-capacity cognition, in which the sources are con-
nected to the relay via finite-capacity orthogonal links, rather
than having a priori knowledge of the terminals’ messages. This
channel can be seen as an intermediate step between the MAC
with a cognitive relay studied above and the multiple access
relay channel for which an achievable region was derived in [2]
for the case . In particular, assume that terminal 1 can
communicate with the relay, prior to transmission, via a link of
capacity and that similarly terminal 2 can communicate with
the relay via a link of capacity . The following proposition es-
tablishes the capacity of such a channel.

Proposition 3: The capacity region of the MAC with a cogni-
tive relay connected to the source terminals via (unidirectional)
links of capacities and is the closure of the set of all non-
negative triplets satisfying

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)
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and

(9g)

for some auxiliary random variables and with joint
distribution of the form

(9h)

Proof: The proof can be found in Appendix C.

Remark 2: Based on the results of this section, we can now
make a further step towards the analysis of the cMACr of Fig. 2
by considering the cMACr with a cognitive relay. This channel
is given as in Fig. 2 with the only difference being that the relay
here is informed “for free” of the messages and (simi-
larly to Fig. 3) and that the signal received at the relay is nonin-
formative, e.g., . The capacity of such a channel follows
easily from Proposition 1 by taking the union over the distribu-
tion (7) of the intersection of the two rate regions (6) evaluated
for the two outputs and . Notice that this capacity region
depends on the channel inputs only through the marginal distri-
butions and .

IV. INNER BOUNDS ON THE CAPACITY REGION OF THE

COMPOUND MAC WITH A RELAY

In this section, we focus on the general cMACr model illus-
trated in Fig. 2. As stated in the introduction, single-letter char-
acterization of the capacity region for this model is open even
for various special cases. Our goal here is to provide achievable
schemes, which are then shown to be optimal or near optimal in
certain meaningful special scenarios in the following sections.

The following inner bound is obtained by the decode-and-for-
ward (DF) strategy [1] at the relay terminal. The relay fully de-
codes both messages of both users so that we have a MAC from
the transmitters to the relay terminal. Once the relay has decoded
the messages, the transmission to the receivers takes place sim-
ilarly to the MAC with a cognitive relay model of Section III.

Proposition 4: For the cMACr as seen in Fig. 2, any rate
triplet with , satisfying

(10a)

(10b)

(10c)

(10d)

(10e)

(10f)

and

(10g)

for a time-sharing random variable with a joint distribution
of the form

(11)
is achievable by DF.

Proof: The proof follows by combining the block-Markov
transmission strategy with DF at the relay studied in [2, Section
IV-D], the joint encoding used in Proposition 1 to handle the
private relay message and backward decoding at the receivers.
Notice that conditions (10a)–(10c) ensure correct decoding at
the relay, whereas (10d)–(10g) follow similarly to Proposition
1, ensuring correct decoding of the messages at both receivers.

Next, we consider applying the compress-and-forward (CF)
strategy [1] at the relay terminal. With CF, the relay does not
decode the source message, but facilitates decoding at the desti-
nation by transmitting a quantized version of its received signal.
When quantizing its received signal, the relay takes into consid-
eration the received signal at the destination terminal which acts
as correlated side information and applies Wyner-Ziv source
compression (see [1] for details). In general, the lossy transmis-
sion of the relay’s received signal to the destination terminal is a
joint source-channel coding problem; however, in the case of the
classical relay channel, this is implemented by separate source
and channel coding due to its optimality in the point-to-point
setting (relay-to-destination channel).

In the cMACr scenario, unlike the single-user relay channel,
we have two distinct destinations, each with different side infor-
mation (their own received signals) correlated with the signal
received at the relay terminal. This is a multi-terminal joint
source-channel coding problem, in which case separate source
and channel coding is not optimal. The situation is similar to
the problem of lossy broadcasting of a common source to two
receivers with different side information sequences considered
in [20] (and solved in some special cases), and applied to the
two-way relay channel setup in [7]. Here, for simplicity, we
consider broadcasting only a single quantized version of the
relay’s received signal to both receivers. The following propo-
sition states the corresponding achievable rate region.

Proposition 5: For the cMACr of Fig. 2, any rate triplet
with , satisfying

(12)

(13)

and

(14)
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such that

(15)

and

(16)

for random variables and satisfying the joint distribution

(17)

is achievable with having bounded cardinality.
Proof: The proof can be found in Appendix D.

Remark 3: The achievable rate region given in Proposition
5 can be potentially improved. Instead of broadcasting a single
quantized version of its received signal, the relay can transmit
two descriptions so that the receiver with overall better quality,
in terms of its channel from the relay and the side information
received from its transmitter, receives a better description, and
hence higher rates (see [7] and [20] for details). Another pos-
sible extension, which will not be pursued here either, is to use
the partial DF scheme together with the above CF scheme sim-
ilar to the coding technique in [7].

V. CMACR WITHOUT CROSS-RECEPTION

We now focus on a special cMACr scenario in which each
source terminal can reach only one of the destination terminals
directly. Assume, for example, that there is no direct connection
between source terminal 1 and destination terminal 2, and sim-
ilarly between source terminal 2 and destination terminal 1. In
practice, this setup might model either a larger distance between
the disconnected terminals, or some physical constraint in be-
tween the terminals blocking the connection. Obviously, in such
a case, no positive multicasting rate can be achieved without the
help of the relay, and hence, the relay is essential in multicasting
data to both receivers. We model this scenario by the following
(symbol-by-symbol) Markov chain conditions:

(18a)

(18b)

which state that the output at receiver 1 depends only on the
inputs of transmitter 1 and the relay (18a), and similarly, the
output at receiver 2 depends only on the inputs of transmitter 2
and the relay (18b). The following proposition provides an outer
bound on the capacity region in such a scenario.

Proposition 6: Assuming that the Markov chain conditions
(18) hold for any channel input distribution satisfying (4), a rate
triplet with is achievable only
if

(19a)

(19b)

(19c)

(19d)

(19e)

and

(19f)

for some auxiliary random variable satisfying the joint
distribution

(20)

Proof: The proof follows by imposing the Markov chain
condition on the cut-set bound.

By imposing the condition (18) on the DF achievable rate re-
gion of Proposition 4, it can be easily seen that the only differ-
ence between the outer bound (19) and the achievable region
with DF (10) is that the latter contains the additional constraint
(10c), which generally reduces the rate region. The constraint
(10c) accounts for the fact that the DF scheme leading to the
achievable region (10) prescribes both messages and
to be decoded at the relay terminal. The following remark pro-
vides two examples in which the DF scheme achieves the outer
bound (19) and thus the capacity region. In both cases, the mul-
tiple access interference at the relay terminal is eliminated from
the problem setup so that the condition (10c) does not limit the
performance of DF.

Remark 4: In addition to the Markov conditions in (18), con-
sider orthogonal channels from the two users to the relay ter-
minal, that is, we have , where depends
only on inputs and for ; or, in other words, we
assume , and form
Markov chains for any input distribution. Then, it is easy to see
that the sum-rate constraint at the relay terminal is redundant
and hence the outer bound in Proposition 6 and the achievable
rate region with DF in Proposition 4 match, yielding the full
capacity region for this scenario. As another example in which
DF is optimal, we consider a relay multicast channel setup, in
which a single relay helps transmitter 1 to multicast its message

to both receivers, i.e., and . For such a
setup, under the assumption that forms a Markov
chain, the achievable rate with DF relaying in Proposition 4 and
the above outer bound match. Specifically, the capacity for
this multicast relay channel is given by

(21)

Notice that, apart from some special cases (like the ones illus-
trated above), the achievable rate region with DF is in general
suboptimal due to the requirement of decoding the individual
messages at the relay terminal. In fact, this requirement may be
too restrictive, and simply decoding a function of the messages
at the relay might suffice. To illustrate this point, consider the
special case of the cMACr characterized by
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and for and the channel
given as

(22)

In this model, each transmitter has an error-free orthogonal
channel to its receiver. By further assuming that these channels
have enough capacity to transmit the corresponding messages
reliably (i.e., message is available at receiver , the channel
at hand is seen to be a form of the two-way relay channel. In
this setup, as shown in [7], [25], [26] and [27], DF relaying is
suboptimal while using a structured code achieves the capacity
in the case of finite field additive channels and improves the
achievable rate region in the case of Gaussian channels. In the
following section, we explore a similar scenario for which the
outer bound (19) is the capacity region of the cMACr, which
cannot be achieved by either DF or CF.

A. Binary cMACr Without Cross-Reception: Achieving
Capacity Through Structured Codes

Random coding arguments have been highly successful in
proving the existence of capacity-achieving codes for many
source and channel coding problems in multi-user informa-
tion theory, such as MACs, BCs, RCs with degraded signals
and Slepian-Wolf source coding. However, there are various
multi-user scenarios for which the known random coding-based
achievability results fail to achieve the capacity, while struc-
tured codes can be shown to perform optimally. The best
known such example is due to Körner and Marton [21], who
considered encoding the modulo sum of two binary random
variables. See [24] for more examples and references.

Here, we consider a binary symmetric (BS) cMACr model
without cross-reception and show that structured codes achieve
its capacity, while the rate regions achievable with DF or CF
schemes are both suboptimal. We model the BS cMACr as
follows:

(23a)

(23b)

(23c)

where denotes binary addition, and the noise components
are independent and identically distributed (i.i.d.) according to

1, , and they are independent of each other and
the channel inputs. Notice that this channel satisfies the Markov
condition given in (18). We assume that the relay does not have
a private message, i.e., . The capacity region for this BS
cMACr, which can be achieved by structured codes, is charac-
terized in the following proposition.

Proposition 7: For the binary symmetric cMACr character-
ized in (23), the capacity region is the union of all nonnegative
rate pairs satisfying

(24a)

(24b)

(24c)

1���� denotes a Bernoulli distribution for which ��� � �� � � and ��� �
�� � � � �.

where is the binary entropy function defined as
.

Proof: The proof can be found in Appendix E.

For comparison, the rate region achievable with the DF
scheme given in (10) is given by (24) with the additional
constraint

showing that the DF scheme achieves the capacity (24) only if
. The suboptimality of DF follows from the

fact that the relay terminal needs to decode only the binary sum
of the messages, rather than the individual messages sent by the
source terminals. In fact, in the achievability scheme leading to
(24), the binary sum is decoded at the relay and broadcast to
the receivers, which can then decode both messages using this
binary sum.

VI. GAUSSIAN CHANNELS

In this section, we focus on the Gaussian channel and find
the Gaussian counterparts of the rate regions characterized in
Sections III and IV. We will also quantify the gap between the
inner and outer bounds for the capacity region of the cMACr
proposed in Section V.

A. Gaussian MAC With a Cognitive Relay

We first consider the Gaussian MAC with a cognitive relay.
The multiple access channel at time , is charac-
terized by the relationship

(25)

where is the channel noise at time , which is assumed to
be i.i.d. zero-mean Gaussian with unit variance. We impose a
separate average block power constraint on each channel input

(26)

for . The capacity region for this Gaussian model can
be characterized as follows.

Proposition 8: The capacity region of the Gaussian MAC
with a cognitive relay (25) with power constraints (26) is the
union of all nonnegative rate triplets satisfying

(27a)

(27b)

(27c)

and

(27d)

where the union is over all parameters .
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Fig. 4. Capacity regions of the Gaussian MAC with a cognitive relay with full
or partial cognition [(27) and (28), respectively] for � � � � � dB and for
different values of � , namely � � �� dB and � � � dB.

Proof: The result follows straightforwardly from (6) and
the conditional maximum entropy theorem by defining as the
correlation coefficient between and for .

Next, we present the capacity region for the Gaussian par-
tially cognitive relay model of (8) which follows similarly to
the fully cognitive relay scenario.

Proposition 9: The capacity region of the Gaussian MAC
with a partially cognitive relay (informed only of the message

is the union of all nonnegative rate triplets satisfying

(28a)

(28b)

(28c)

(28d)

and

(28e)

with the union taken over the parameter .
Notice that the same arguments as above can also be ex-

tended to the MAC with cognition via finite-capacity links of
Proposition 3.

Numerical Examples. For clarity of the presentation we con-
sider . In this case, it is clear that the choice is
optimal in (28). Fig. 4 shows the capacity regions with full or
partial cognition [(27) and (28), respectively] for
dB and for different values of , namely dB and

dB. It can be observed from Fig. 4 that, even with a
small power , a cognitive relay has the potential for signifi-
cantly improving the achievable rate regions. Moreover, in the
partially cognitive case, this advantage is accrued not only by
the transmitter that directly benefits from cognition (here trans-
mitter 1) but also by the other transmitter (transmitter 2), due to

Fig. 5. Maximum rate � that does not affect the rates achievable by the pri-
mary users 1 and 2 for � � � � � dB and � � � � ���� or � �
� � ���� (� is the maximum relay rate so that �� �� �� � still belongs
to the capacity region ((27) for full cognition and (28) for partial cognition).

the fact that cognition is able to boost the achievable sum-rate
[see (28)].

Next we consider a typical cognitive radio scenario where the
two “primary” users, transmitter 1 and transmitter 2, transmit
at rates and , respectively, within the standard MAC ca-
pacity region with no relay (i.e., satisfy (27) with

and and are oblivious to the possible presence of a
cognitive node transmitting to the same receiver. By assump-
tion, the cognitive node can rapidly acquire the messages of the
two active primary users (exploiting the better channel from the
primary users as compared to the receiver) and is interested in
transmitting at the maximum rate that does not affect the
rates achievable by the primary users. In other words, the rate

is selected so as to maximize under the constraint that
still belongs to the capacity region (the one char-

acterized by (27) for full cognition and by (28) for partial cog-
nition). Fig. 5 shows such a rate for both full and partial
cognitive relays for dB and two different pri-
mary rate pairs, namely and
(which is close to the sum-rate boundary as shown in Fig. 6). It
is seen that both full and partial cognition provide remarkable
achievable rates for the cognitive user even when the primary
users select rates close to their capacity in the absence of the
cognitive user.

B. Gaussian cMACr Without Cross-Reception

A Gaussian cMACr satisfying the Markov conditions (18) is
given by

(29a)

(29b)

(29c)

where is the channel gain from the users to the relay
and is the channel gain from the relay to both receiver
1 and receiver 2. The noise components are
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Fig. 6. Achievable rate region and outer bound for � � � � � � � dB,
� � �� and different values of the channel gain from the terminals to the relay,
namely � � � and � � �.

i.i.d. zero-mean unit variance Gaussian random variables. We
enforce the average power constraints given in (26). Considering
for simplicity the case we have the following result.

Proposition 10: The following rate region is achievable for
the Gaussian cMACr characterized by (29) by using the DF
strategy

(30a)

(30b)

and

(30c)

with the union taken over the parameters . More-
over, an outer bound to the capacity region is given by (30)
without the first sum-rate constraint in (31c).

Next, we characterize the achievable rate region for the
Gaussian setup with the CF strategy of Proposition 5. Here, we
assume a Gaussian quantization codebook without claiming
optimality.

Proposition 11: The following rate region is achievable for
the Gaussian cMACr (29)

(31a)

and

(31b)

where

for all .
In Section V-A, we have shown that for a binary additive com-

pound MAC with a relay, it is optimal to use structured (block
linear) codes rather than conventional unstructured (random)
codes. The reason for this performance advantage is that linear
codes, when received by the relay over an additive channel, en-
able the latter to decode the sum of the original messages with
no rate loss, without requiring joint decoding of the messages.
Here, in view of the additive structure of the Gaussian channel,
we would like to extend the considerations of Section V-A to the
scenario at hand. For simplicity, we focus on a symmetric sce-
nario where (and .
Under such assumptions, the outer bound of Proposition 6 sets
the following upper bound on the equal rate [obtained by set-
ting and in (30)]:

(32)

whereas the rate achievable with DF is given by the right-hand
side (32) with an additional term in given by

. The rate achievable by CF can be similarly
found from (31) by setting and maximizing over

.
As is well known, the counterpart of binary block codes over

binary additive channels in the case of Gaussian channels is
given by lattice codes which can achieve the Gaussian channel
capacity in the limit of infinite block lengths (see [22] for further
details). A lattice is a discrete subgroup of the Euclidean space

with the vector addition operation, and hence provides us a
modulo sum operation at the relay terminal similar to the binary
case.

For the Gaussian cMACr setting given in (29), we use the
same nested lattice code at both transmitters. Similarly to the
transmission structure used in the binary setting, we want the
relay terminal to decode only the modulo sum of the messages,
where the modulo operation is with respect to a coarse lattice
as in [26], whereas the messages are mapped to a fine lattice,
i.e., we use the nested lattice structure as in [22] (see [30] for a
generalization to a multiple relay scenario in which each relay
decodes and forwards a different linear combination of the code-
words). The relay terminal then broadcasts the modulo sum of
the message points to both receivers. Each receiver decodes
the message from the transmitter that it hears directly and the
modulo sum of the messages from the relay as explained in
Appendix F. Using these two, each receiver can also decode the
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remaining message. We have the following rate region that can
be achieved by the proposed lattice coding scheme.

Proposition 12: For the symmetric Gaussian cMACr charac-
terized by (29), an equal rate can be achieved using a lattice
encoding/decoding scheme if

(33)

Proof: The proof can be found in Appendix F.

Remark 5: Achievability of (33), discussed in Appendix F,
requires transmission at rates corresponding to a symmetric rate
point on the boundary of the MAC regions from each trans-
mitter and the relay to the corresponding receiver. However,
here, of the two senders over each MAC, one sender employs
lattice coding (each source terminal), so that the standard joint
typicality argument fails to prove achievability of these rate
points. The problem is solved by noticing that, even in this sce-
nario, it is straightforward to operate at the corner points of the
MAC region by using single user encoding and successive de-
coding. Now, in general, two different techniques are possible
to achieve any boundary rate point by using only transmission
at the corner-point rates, namely time-sharing and rate-splitting
[34]. In our case, it can be seen that time-sharing would gener-
ally cause a rate reduction with respect to (33), due to the con-
straint arising from decoding at the relay. In contrast, rate-split-
ting does not have such a drawback: the relay terminal splits its
message and power into two parts and acts as two virtual users,
while single-user coding is applied for each virtual relay user as
well as the message from the transmitter. Since lattice coding
achieves the optimal performance for single user decoding, we
can achieve any point on the boundary of the MAC region.

Numerical examples. Consider cMACr with powers
dB and channel gain from the relay to

the two terminals. Fig. 6 shows the achievable rate region and
outer bound for different values of the channel gain from the
terminals to the relay, namely and . It can be seen
that, if the channel to the relay is weak, then CF improves upon
DF at certain parts of the rate region. However, as increases,
DF gets very close to the outer bound dominating the CF rate
region, since the sum rate constraint in the DF scheme becomes
less restrictive.

In Fig. 7, the equal rate achievable with lattice codes (33) is
compared with the upper bound (32) and the symmetric rates
achievable with DF and CF for and versus

. We see that, for sufficiently large , the
lattice-based scheme is close to optimal, whereas for smaller

, CF or DF have better performance. The performance loss
of lattice-based schemes with respect to the upper bound is due
to the fact that lattice encoding does not enable coherent power
combining gains at the destination. It is also noted that both DF
and lattice-based schemes have the optimal multiplexing gain of

(in terms of equal rate).

Fig. 7. Equal rate achievable with lattice codes (33) compared with the upper
bound (32) and the rates achievable with DF and CF for � � ���� and � �

�� versus � � � � � � � .

VII. CONCLUSION

We have considered a compound multiple access channel
with a relay terminal. In this model, the relay terminal simul-
taneously assists both transmitters while multicasting its own
information at the same time. We first have characterized the
capacity region for a multiple access channel with a cogni-
tive relay and related models of partially cognitive relay and
cognition through finite capacity links. We then have used the
coding technique that achieves the capacity for these models
to provide an achievable rate region with DF relaying in the
case of a general cMACr. We have also considered a CF based
relaying scheme, in which the relay broadcasts a compressed
version of its received signal using the received signals at the
receivers as side information. Here we have used a novel joint
source-channel coding scheme to improve the achievable rate
region of the underlying multi-user channel coding problem.

We then have focused on another promising approach to
improve rates in certain multi-user networks, namely using
structures codes, rather than random coding schemes. We have
proved that the capacity can be achieved by linear block codes
in the case of finite field additive channels. Motivated by the
gains achieved through such structured coding approaches, we
have then analyzed the performance of nested lattice codes
in the Gaussian setting. Our results show that lattice coding
achieves rates higher than other random coding schemes for
a wide range of power constraints. We have also presented
the achievable rate regions with the proposed random coding
schemes, and provided a comparison. Our analysis has revealed
that no single coding scheme dominates all the others uniformly
over all channel conditions. Hence a combination of various
random coding techniques as well as structured coding might
be required to improve the achievable rates or to meet the upper
bounds in a general multi-user network model.

An interesting extension of the current work is to consider
the multiple multicast transmission with generalized feedback
signals at all three terminals. Note that in this more general sce-
nario there is no specific relay terminal as all three terminals can
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help the transmissions of the other two through their received
signals. Moreover, this help can be either in the form of for-
warding information for the other users as in classical relaying,
or by helping them exchange information among each other to
facilitate better cooperation among the two.

APPENDIX A
PROOF OF PROPOSITION 1

A. Types and Typical Sequences

Here, we briefly review the notions of types and strong typ-
icality that will be heavily used in the proofs. See [33] for fur-
ther details. The type of an -tuple is the empirical
distribution

where is the number of occurrences of the letter in
vector . The set of all -tuples with type is called the
type class and denoted by . For a probability distribu-
tion , the set of -strongly typical -tuples according to
is denoted by and is defined by

(34)

The definitions of type and strong typicality can be extended
to joint and conditional distributions in a similar manner [33].
The following results concerning typical sets will be used in the
sequel. For any , we have

(35)

and

(36)

for sufficiently large . Given a joint distribution , if the
i.i.d. sequences , where and are -fold
products of the marginals and , then

B. Converse

Starting from Fano’s inequality, imposing the condition
as , we have

(37)

with as . Then we also have
. We can obtain

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

where (40) follows from Fano’s inequality; (41) follows since
given form a Markov chain,
and is a deterministic function of ; (42) follows since

form a Markov chain; (45) fol-
lows since conditioning reduces entropy; and finally (46) fol-
lows since depends only on and by the memo-
ryless property of the channel.

Similarly, we can obtain

starting from
(which follows from Fano’s inequality (37) since it implies

) and

from the inequality , which
follows from (37) as . From (37),
we also have

Now, introducing the time-sharing random variable inde-
pendent from everything else and uniformly distributed over



GÜNDÜZ et al.: MULTIPLE MULTICASTS WITH THE HELP OF A RELAY 6153

and defining for and ,
we get (6). Notice that the joint distribution satisfies (7).

C. Achievability

Code Construction: Generate an i.i.d. sequence with
marginal for . Fix a realization of
such a sequence . Generate codewords

also i.i.d. with proba-
bility distribution for . For each
pair generate codewords i.i.d. according to

, and label these codewords
as for .

Encoders: Given , encoder transmits
and encoder 3 transmits .

Decoders: The decoder looks for a triplet such
that

If none or more than one such triplet is found, an error is
declared.

Error analysis: Assume was sent.
We have an error if either the correct triplet of codewords are not
typical with the received sequence or there is an incorrect triplet
whose corresponding codewords are typical with the received
sequence. Define the event, conditioned on the transmission of

, as

From the union bound, the probability of error, averaged over
the random codebooks, is found as

From (36), as . We can also show
that for and

Similarly, for and , we have

The third error event occurs for and , and we have
for this case

Finally, if we have and , we have

Then, it follows that

Letting and , we have a vanishing error proba-
bility given that the inequalities in (6) are satisfied.

APPENDIX B
PROOF OF PROPOSITION 2

A. Converse

Similarly to the converse proof in Appendix A, we use Fano’s
inequality given in (37). Then we have

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

where (54) follows from the fact that conditioning reduces en-
tropy and forms a
Markov chain. The other inequalities follow similarly.

B. Achievability

Code Construction: Generate codewords
by choosing each -th letter i.i.d. from proba-
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bility distribution . For each generate
codewords i.i.d. according

to . Finally, generate codewords
i.i.d. with each letter drawn according to .

Encoding and error analysis follow similarly to Appendix A
and are thus omitted.

APPENDIX C
PROOF OF PROPOSITION 3

A. Converse

The converse follows from standard arguments based
on Fano’s inequality (see, e.g., Appendix A). Here, for
illustration, we derive only the first bound in (9), i.e.,

as follows. De-
fine as and the messages of cardinality

sent over the two links from the sources to the
relay. Notice that is a function only of and that is a
function only of and . Considering decoding of
from Fano’s inequality

we get

where in the third line we have used the fact that
and

and the definitions and . The proof is
concluded similarly to the proof in Appendix A.

B. Achievability

Code Construction: Split the message of the terminals as
with where stands for the

“private” message sent by each terminal without the help of the
relay and for the “common” message conveyed to the des-
tination with the help of the relay. The corresponding rates are

and . Generate a sequence
that is i.i.d. using for . Fix a realization of
such a sequence . Generate codewords

by choosing each th letter independently
with probability for . For
each generate codewords

i.i.d. with each letter drawn according to
. Finally, for each pair generate

codewords i.i.d.
according to .

Encoders: Given the messages and the arbitrary rate splits
at the transmitters ,
encoder 1 and encoder 2 send the messages and
respectively, over the finite-capacity channels which are then
known at the relay before transmission. Terminal 1 and terminal
2 then transmit and the relay transmits

.
The rest of the proof follows similarly to Appendix A by ex-

ploiting the results in [15, Section VII].

APPENDIX D
PROOF OF PROPOSITION 5

We use the classical block Markov encoding for achievability,
and we assume for the sake of brevity of the presenta-
tion. Generalization to arbitrary finite cardinalities follows from
the usual techniques (see, e.g., Appendix A).

Codebook Generation: Generate i.i.d. codewords
from probability distribution for

. Label each codeword, for , as , where
. Generate i.i.d. codewords from proba-

bility distribution . Label each codeword
as , where and . Also, for
each , generate i.i.d. sequences from proba-
bility distribution ,
where we define

We label these sequences as , where
and .

Encoding: Let be the mes-
sage to be transmitted in block , and assume that

are
jointly typical. Then the codewords and

will be transmitted in block .
Decoding: After receiving , the relay finds the index

such that

For large enough , there will be such with high probability
if

We fix .
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At the end of block , the receiver finds indices and
such that

and

are simultaneously satisfied, assuming that and
have been previously correctly estimated. Receiver will find
the correct pair with high probability provided that
is large enough and that

Assuming that this condition is satisfied so that and
, using both and ,

the receiver then declares that was sent in
block if

(56)

We have with high proba-
bility provided that is large enough

and

(57)

for .

APPENDIX E
PROOF OF PROPOSITION 7

We first prove the converse showing that (24) serves as an
outer bound, and prove the direct part describing a structured
coding scheme that achieves this outer bound.

To prove the converse, it is sufficient to consider the outer
bound given by (19) as applied to the channel character-
ized by (23), and show that an input distribution (20) with

and independent of each other
maximizes all the mutual information terms. To this end, notice
that in the outer bound (19) with ignoring all the con-
straints involving auxiliary random variables can only enlarge
the region, so that we have the conditions

(58)

(59)

and

(60)

We can further write

and

We can see that the inequalities hold with equality under the
above stated input distribution, which concludes the proof of
the converse.

We now prove the direct part of the proposition. First, con-
sider . Transmission is organized into blocks of
bits. In each of the first blocks, say the th, the -th trans-
mitter, sends new bits, conventionally organized
into a vector . Moreover, encoding at the trans-
mitters is done using the same binary linear code characterized
by an random binary generator matrix with i.i.d.
entries .

Specifically, as in [27], terminal 1 transmits
and terminal 2 transmits where the all-zero
vector is of size (zero-padding). Since
capacity-achieving random linear codes exist for BS channels,
we assume that is the generating matrix for such a capacity
achieving code.

We define . The relay can then decode
from the received signal since
is also a codeword of the linear code generated by . This

occurs with vanishing probability of error if (24a) holds (see,
e.g., [31]). In the following -th block, the relay encodes

using an independent binary linear code with an
random binary generator matrix as . We
use the convention that the signal sent by the relay in the first
block is or any other known sequence.

At the end of the first block , where the relay sends
a known signal (which can be canceled by both receivers), the
-th receiver can decode the current bits from the
th transmitter if . Under this condition, we

can now consider the second block, or any other -th
block, assuming that the -th receiver already knows . In
the -th block, the first receiver sees the signal

. However, since is known at the
first receiver, it can be canceled from the received signal, leading
to , where is a
matrix that contains the last rows of . Due to the opti-
mality of random linear codes over the BS MAC (see, e.g., [31]),

and are correctly decoded by the first receiver if
. Repeating this argument for the second

receiver and then considering the case concludes the
proof.



6156 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 12, DECEMBER 2010

APPENDIX F
PROOF OF PROPOSITION 12

We first give a brief overview of lattice codes (see [22] and
[26] for further details). An -dimensional lattice is defined
as

where is the generator matrix. For any ,
the quantization of maps to the nearest lattice point in
Euclidean distance

The mod operation is defined as

The fundamental Voronoi region is defined as
, whose volume is denoted by and is

defined as . The second moment of lattice
is given by

while the normalized second moment is defined as

We use a nested lattice structure as in [23], where denotes
the coarse lattice and denotes the fine lattice and we have

. Both transmitters use the same coarse and fine lattices
for coding. We consider lattices such that and

, whose existence is shown in [23]. In nested
lattice coding, the codewords are the lattice points of the fine
lattice that are in the fundamental Voronoi region of the coarse
lattice. Moreover, we choose the coarse lattice (i.e., the shaping
lattice) such that to satisfy the power constraint.
The fine lattice is chosen to be good for channel coding, i.e., it
achieves the Poltyrev exponent [23].

We use a block Markov coding structure, that is the messages
are coded into blocks, and are transmitted over channel
blocks. The relay forwards the information relating to the mes-
sages from each block over the next channel block. The relay is
kept silent in the first channel block, while the transmitters are
silent in the last block. The receivers decode the messages from
the transmitters and the relay right after each block. Since there
is no coherent combining, transmitters send only new messages
at each channel block, thus sequential decoding with a window
size of one is sufficient. We explain the coding scheme for two
consecutive channel blocks dropping the channel block index in
the expressions.

Each transmitter maps its message to a fine lattice point
. Each user employs a dither vector

which is independent of the dither vector of the other user and
of the messages and is uniformly distributed over . We
assume all the terminals in the network know the dither vectors.

Now the transmitted codeword from transmitter is given by
. It can be shown that is also uniform

over .
At the end of each block, we want the relay to decode

instead of decoding both messages. Following
[26] (with proper scaling to take care of the channel gain ), it
is possible to show that can be decoded at the relay if

(61)

Then in the next channel block, while the transmitters send
new information, the relay terminal broadcasts the index of
to both receivers. The relay uses rate-splitting [34], and trans-
mits each part of the index using a single-user random code.
Let and be the rates of the two codes the relay uses, with
power allocation and , respectively. Each receiver ap-
plies successive decoding; the codes from the relay terminal are
decoded using a single-user typicality decoder, while the signal
from the transmitter is decoded by a Euclidean lattice decoder.
Successful decoding is possible if

where . This is equivalent to having

(62)

Combining this with (61), we obtain the rate constraint given in
the theorem.
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