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Learning to Speak on Behalf of a Group: Medium
Access Control for Sending a Shared Message

Shaan ul Haque, Siddharth Chandak, Federico Chiariotti, Deniz Gündüz, and Petar Popovski

Abstract—The rapid development of Internet of Things (IoT)
technologies has not only enabled new applications, but also
presented new challenges for reliable communication with limited
resources. In this work, we define a novel problem that can
arise in these scenarios, in which a set of sensors need to
communicate a joint observation. This observation is shared by
a random subset of the nodes, which need to propagate it to the
rest of the network, but coordination is complex: as signaling
constraints require the use of random access schemes over shared
channels, sensors need to implicitly coordinate, so that at least one
transmission gets through without collisions. Unlike the majority
of existing medium access schemes, the goal is to make sure
that the shared message gets through, regardless of the sender.
We analyze this coordination problem theoretically and provide
low-complexity solutions. While a clustering-based approach is
near-optimal if the sensors have prior knowledge, we provide
a distributed multi-armed bandit (MAB) solution for the more
general case and validate it by simulation.

Index Terms—Distributed coordination, multi-armed bandit,
Thompson sampling, random access

I. INTRODUCTION

Over the past few years, the rise of the Internet of Things
(IoT) [1] has opened new possibilities in the manufacturing,
energy, and health sectors. The promise of 5G and beyond net-
works is to support massive numbers of sensors and machine-
type devices, along with sporadic low-latency communica-
tions, without affecting human communication traffic [2].
However, there are still many open problems in coordinating
medium access for sporadically active sensors [3], particularly
in remote deployments with very limited resources. As random
access schemes like slotted ALOHA are entirely distributed,
and only require limited overhead for slot synchronization,
they often represent the best choice for these scenarios [4],
but the risk of collisions is a significant drawback, particularly
for scenarios with a large number of nodes [5].

An interesting scenario in this context is the transmission of
an observation or a decision that is shared by the devices in
a given active set. For example, this could be the position
of a target object, or an abnormal value of a parameter,
which is shared by a subset of the sensors in the network
and needs to be communicated to the rest of the sensor
network or to an external controller. This scenario, which
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we call medium access with a shared message, is relevant
in several applications pertaining to networked control and
coordination, in which the whole network needs to perform
an action synergistically. In our case, each of the active sensor
nodes has the same piece of information, namely the shared
message, which they want to deliver to the other nodes in a
single shot, i.e., without the possibility of retransmissions or
coordination [6]. This is relevant both in ultra-reliable low-
latency communication (URLLC), in which the strictest con-
straint is the latency requirement, and in wide-area scenarios,
in which energy consumption is the foremost concern. In this
context, traditional throughput maximization-based schemes
are extremely inefficient, as they assume each packet carries
independent information. We further assume that the active set
evolves in a random fashion from one time slot to the next,
and each sensor knows only its own membership of the current
active set. The challenge here is that a node from the active
set cannot coordinate with the other active nodes to send the
shared message. The problem looks deceptively simple, but
coordinating with limited signaling or shared prior knowledge
is extremely difficult. Exploiting correlations in the activity of
the sensors to maximize the throughput has been considered
in [7], [8]. A related, but different problem has been treated
in [9], where the objective is to reliably transmit a shared alarm
message by superposing individual signals; this is different
from the collision model adopted here, and does not require
coordination between the sensors.

We first prove the existence of an optimal deterministic
solution to this coordination problem, which is then shown
to be NP-hard by modeling the correlations in sensor activity
as edge weights in a graph. The coordination problem with
deterministic strategies is an instance of a slightly modified
weighted graph coloring problem (WGCP) [10], which is a
well-known NP-hard problem. Distributed solutions to the
WGCP exist [11], and have been used in communications
scenarios [12], but they either require signaling between the
nodes or more extensive shared feedback. Our scenario allows
for extremely limited signaling, as the sensors only receive an
acknowledgment (ACK) in case of correct packet reception.
We provide a clustering-based solution, which is near-optimal
if only two sensors are active at a given time. However, this
does not generalize to larger active sets. Instead, we introduce
a heuristic to construct the clusters in the general case. We also
propose an efficient distributed learning solution using multi-
armed bandits (MABs), which can learn correlation patterns
and adapt to them without any signaling except for the ACK.

The rest of the letter is organized as follows: Sec. II presents
the system model and theoretical analysis. Sec. III presents our
two heuristic solutions, which are evaluated through numerical
simulations in Sec. IV. Finally, we conclude the paper and
present ideas for future work in Sec. V.
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II. SYSTEM MODEL

We consider a set N of N wireless sensors, which share
M orthogonal transmission opportunities in time or frequency.
In each time slot t, a random subset A(t) ⊆ N of sensors,
with cardinality A(t) = |A(t)|, become active. The active set
is drawn independently at each slot according to probability
mass function (PMF) pA(A). A shared message, e.g., an alarm
signal, is to be transmitted by the active sensors to the inactive
nodes (which cannot sense the state of the system) or to an
external controller. The objective of the active sensors is to
deliver the message over the M opportunities, regardless of
which sensor it comes from. The challenge lies in the fact
that the active sensors have no knowledge of the other sensors
in A, and there is no way to explicitly coordinate. The sensors
can only agree on a MAC protocol a priori.

It is clear that the inactive sensors at each time slot must
remain silent. Each active sensor a ∈ A(t) must decide on a
transmission pattern, called a move, expressed as vector xa ∈
{0, 1}M , where xa,m = 1 means that sensor a transmits at
the m-th opportunity. We can represent the moves of all the
sensors as an A(t)×M matrix X(t), with vector xa as its a-th
row. In the following, we omit the time index t for readability.
We consider a simple collision channel, where the condition
for transmission success ξ(X,A) is:

ξ(X,A) = I

(
∃m ∈ {1, . . . ,M} :

∑
a∈A

xa,m = 1

)
, (1)

where I(·) is the indicator function, equal to 1 if the con-
dition holds, and 0 otherwise. Note that there is a total of
2M possible moves for each sensor at each time slot. The
constrained problem in which each sensor can transmit only
once is a special case of this problem, and in general leads
to suboptimal solutions, including in some of the cases that
we analyze below. The basic rationale for considering multiple
transmissions from the same sensor is the same as in irregular
repetition slotted ALOHA (IRSA) schemes [13], which exploit
the repetitions to improve throughput and reliability. We can
define the strategy of node a as the PMF φa(x) over the set of
possible moves, and represent the strategies of all the sensors
in matrix Φ ∈ [0, 1]N×2M

, where element φn` corresponds to
the probability of sensor n choosing move ` when it is active.
We have

∑2M

x=1 φn,x = 1, ∀n ∈ N . By applying the law of
total probability, we get:

E [ξ|Φ] =
∑

A∈P(N )

pA(A)
∑

X∈{0,1}N×M

ξ(X,A)
∏
a∈A

φa(xa), (2)

where P(·) denotes the power set, and φa(xa) denotes the
probability of sensor a choosing move xa. We then define our
optimization problem, whose solution gives Φ∗, one of the
strategies that maximize the expected delivery probability:

Φ∗ = arg max
Φ∈[0,1]N×2M

E [ξ|Φ] . (3)

Theorem 1. At least one of the optimal solutions to the
optimization problem is a deterministic strategy; that is,

∃ Φ ∈ {0, 1}N×2M

: E [ξ|Φ] = E [ξ|Φ∗] . (4)

Proof. As the value of ξ is between 0 and 1, its expected value
is bounded in the compact interval [0, 1], and the [0, 1]N×2M

region specified by the constraints on Φ is also compact.
Accordingly, there exists at least one global maximum.

Assume that in the optimal solution there is at least one
sensor with a non-deterministic policy, which we denote as 1.
We can then look at all possible moves x1 and compute the
values of the deterministic strategies for sensor 1:

E
[
ξ|(δ(x1); Φ∗−1)

]
=
∑

A∈P(N ):1/∈A

pA(A)E [ξ|Φ,A] +
∑

A∈P(N ):1∈A

pA(A)

×
∑

X−1∈{0,1}(N−1)×M

ξ((x1;X−1),A)

A∏
a=2

φa(xa),

(5)
where X−1 is matrix X without its first row. We can then
substitute this into (2):

E [ξ|Φ] =
∑

x1∈{0,1}M
φ1(x1)E

[
ξ|(δ(x1); Φ∗−1)

]
. (6)

Then, the strategy Φ′ that maximizes the expected value:

Φ′ =

(
arg max
x1∈{0,1}M

E
[
ξ|(δ(x1; Φ∗−1)

]
; Φ−1

)
, (7)

will be a deterministic one due to the linearity of the objective
with respect to φ1(x1) and the compactness of the simplex.
By repeating this operation for all the sensors with non-
deterministic strategies, we can find a deterministic solution
Φ(d) that satisfies the condition in (4).

Hence, we can focus on deterministic strategies over the
discrete set of moves {0, 1}N×M instead of the continuous
probability space [0, 1]N×2M

without loss of optimality:

X∗ = arg max
X∈{0,1}N×M

E [ξ|X] . (8)

The problem is trivial if only one user is active at a time,
i.e., if A(t) = 1,∀t: in that case, there is no interference and
the trivial solution xa,m = 1,∀a ∈ A(t) is always successful.
The same happens if M ≥ N , in which case the access to the
medium can be entirely orthogonal. However, the problem is
extremely complex in the general case.

Theorem 2. The problem defined in (8) is NP-hard if A ≥
2, ∀ A : pA(A) > 0.

Proof. We will prove the NP-hardness of the problem if all
the active sets have A(t) = 2, ∀t, i.e., if exactly two nodes
are active at a given time, by showing its equivalence to an
instance of the WGCP [14]. WGCP determines the k-coloring
of a weighted undirected graph G = (V, E , w) with minimum
weight [10]: it assigns an integer number cv ∈ {1, . . . , k} to
each vertex v ∈ V . The optimal k-coloring is then the solution
to the following weight minimization:

c∗ = arg min
c∈{1,...,k}|V|

∑
(u,v)∈E:cu=cv

wu,v. (9)

In our case, we can consider a fully connected graph with
V = N . We assign weights equivalent to the probability of two
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sensors being active at the same time, i.e., wu,v = pA({u, v}).
We can then define the weight minimization as:

X∗ = arg min
X∈{0,1}N×M

∑
u,v∈N ,u6=v

pA({u, v})ξ(X, {u, v}). (10)

As solving the communication problem is equivalent to solving
the WGCP, it is NP-hard for A = 2. If there are sets with non-
zero probability and size A > 2, the problem is equivalent
to a weighted hypergraph coloring problem (WHCP), which
models active sensor sets as weighted edges between two or
more nodes and is also NP-hard [15]. Although the problem is
equivalent to a WHCP in terms of complexity, the definition
is slightly different, as some combination of strategies might
result in a successful transmission even if multiple sensors
choose the same move, e.g., if two nodes choose to be silent,
while the third transmits. The condition is then on ξ, as in (10),
and not on the colors (i.e., the strategies) themselves.

III. SOLVING THE COORDINATION PROBLEM

In the following, we present two solutions to this complex
problem. The first solution is based on clustering and requires
full knowledge of pA. The second is based on MAB learning,
and requires a training period in which the nodes attempt
to communicate and learn how to coordinate. Unlike the
clustering-based solution, MAB learning can be performed
online, as it does not require an oracle view of the network:
while knowing exactly which sensors are active at any given
time is necessary to estimate pA, the sensors can independently
implement MABs and try all strategies, using acknowledg-
ments for correctly transmitted packets as their only feedback.
The clustering-based solution is limited to the case with
A = 2, and its generalization to larger active sets is non-
trivial. Yet, its main advantage is its immediate applicability
when the activation distribution pA is known, with no training
period required, as it is derived analytically.

Although finding the optimal strategy is NP-hard, we can
always find an optimal solution by brute force, enumerating
all N2M

possible strategies. Naturally, the complexity of this
solution makes it impractical in most cases, but we can
still perform the computation for the small networks that we
consider, in order to show the optimality gap.

A. Clustering-based solution

When A = 2, we can use the graph representation that we
exploited to prove the NP-hardness of the problem to design
a clustering-based solution. In this solution, we will group the
sensors into 2M clusters, and assign the same move to all the
sensors in the same cluster. We will have a collision if and only
if two sensors from the same cluster are active simultaneously.
This approach is suboptimal, but the optimality gap is small
in the scenarios we considered.

To minimize the collision probability, we employ the prob-
ability of two sensors being together in the active set as a cost
du,v = pA({u, v}), where the total cost of a cluster C is given
by the sum of the pairwise costs in the cluster:

d(C) =
∑

u,v∈C,u<v
pA({u, v}). (11)

Note that the total cost summed over all clusters is equivalent
to the failure probability of the scheme if |A| = 2, i.e., only
one pair of sensors can be active at any time.

We employ a divisive clustering approach [16], which tries
to minimize this total cost at each step in a greedy fashion.
This approach significantly outperformed agglomerative and
K-means clustering in our experiments. We use a modified
version of the DIANA clustering algorithm [17], which starts
from a single cluster, then iteratively splits the cluster by
dividing the highest-cost cluster, starting from the highest-cost
node in it. If A > 2, we need to consider nodes one at a time,
starting from the highest-probability one and assigning each
node to a strategy iteratively. This heuristic is relatively simple
and usually has a small optimality gap, but also requires full
knowledge of the activation probability matrix.

B. Distributed learning approach
It is also possible to learn the optimal policy in a distributed

fashion, implementing a MAB for each sensor. MABs are
learning agents that have a number of arms, which correspond
to possible actions, and learn by trying each arm and estimat-
ing its expected value over time. There are several sampling
strategies to choose which action to use, balancing between
exploration (i.e., choosing the action to gain new information)
and exploitation (i.e., choosing the action with the highest
potential value based on past experience). In our problem,
each sensor chooses from 2M arms, each corresponding to
a different move. Each sensor will try different transmission
patterns whenever it is active, and get a reward ξ(t) = 1 if the
communication is successful and 0 otherwise, i.e., the shared
reward. Since all active sensors are trying to communicate the
same piece of information, the communication is considered as
successful even if the packet is transmitted by another sensor;
that is, the reward depends on the network’s success as a
whole, and not any individual sensor’s action.

Our solution is a distributed version of Thompson sampling
for Bernoulli MABs [18]: every time a sensor is active, it
chooses a move based on the Thompson sampling algorithm,
which is described and explained in [19], and observes the
reward. The sampling strategy needs to be entirely distributed,
as the only coordination signal available to the agents is the
shared binary feedback. The system can also be modeled as a
repeated N -player cooperative incomplete information game,
in which the unknown information is the membership of the
active set. Theorem 1 proves that a pure Nash equilibrium
exists, and that it represents the optimal strategy, but there
might be other suboptimal equilibria. The Thompson sampling
solution converges to an equilibrium with bounded regret [20],
in which no agent tries to unilaterally deviate from the
joint policy, but the distributed solution might converge to a
suboptimal equilibrium, i.e., a local maximum.

The distributed Thompson sampling algorithm is given in
Algorithm 1, which is run independently at each sensor: every
time a node is active, it uses a Beta distribution to assign
probabilities to each action based on the expected reward of
the action, then observes the result of the move and updates
its values. This requires no coordination, as each sensor acts
independently, and leads to quick convergence.
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(a) Graphical representation.
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(b) Performance with A(t) = 2,∀t.
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(c) Performance with A(t) = 3,∀t.

Fig. 1: Results in the regular scenario with N = 10, M = 2.

Algorithm 1 Distributed Thompson sampling
1: α← ones(2M )
2: k ←ones(2M )
3: while sampling do . Loop over communication rounds
4: if active then . Only transmit if active
5: X ←CHOOSEACTION(M,α, k)
6: ξ ←MOVE(X) . Observe result of the action
7: α, k ←THOMPSONUPDATE(X, ξ, α, k) . Update action value
8: function THOMPSONUPDATE(X, ξ, α, k)
9: k[X]← k[X] + 1 . Increase sample size for a

10: α[X]← α[X] + ξ . Update total reward
11: return α, k
12: function CHOOSEACTION(M,α, k)
13: θ ←zeros(2M )
14: for X ∈ {0, . . . , 2M − 1} do
15: θ[X]←BETA(α[X], k[X] + 1−α[X]) . Sample from Beta distribution
16: return arg max(θ)

IV. NUMERICAL RESULTS

In the following, we show the simulation results for the
clustering and learning solutions. We consider a system with
N sensor nodes, transmitting over M = 2 opportunities. We
limit the number of simultaneously active agents to the cases
with A = 2 and A = 3. Although the clustering solution only
works in the former, the MAB solution works equally well in
both of these cases. Furthermore, we consider two different
types of node activation distributions:

1) Regular activation: we consider a correlated activation
pattern with significant regularity, which might be, e.g.,
due to the physical location of the sensors. Sensors
that are closer together are often simultaneously active,
while sensors that are farther apart have a smaller joint
activation probability;

2) General case: pA is a general PMF with no apparent
regularity. Hand-designing a solution for this case is
extremely difficult, as it requires to solve the overall
problem and there are no regular features to exploit.

We also tested the algorithm in a case with deterministic
activation, i.e., in which each sensor is only in one possible
active set. As expected, this case leads to the election of a
leader in each group, who always transmits, while the other
nodes remain silent. The sensors as a whole can transmit 100%
of the alarms in this case, and convergence of the distributed
MAB to the optimal solution is extremely fast.

A. Regular activation

In this model, we assume that N = 10 sensors are located
around a circle (see Fig. 1a), and that sensors closer to each
other are more likely to be active at the same time. At each

time t, first sensor in A(t) is picked at random with probability
1
N , while the second sensor is picked with probability p(d),
which depends on the distance from the first sensor along
the circle: if d = 1, the probability is 0.275, if d = 2, it is
0.125, if d= 3, it is 0.075, and if d= 4, it is 0.025. This is
shown graphically in Fig. 1a: if sensor 1 is picked, the higher
probability of picking closer sensors as the second sensor is
depicted as a deeper blue. The sensor diametrically opposite
to the first one is never picked. When A = 3, the third sensor
is picked from the same distribution, considering the distance
from the second sensor. The strategy is intuitive: nodes that
often appear together should have different strategies, so as to
avoid collisions and transmit the shared message in at least
one of the 2 opportunities. This implies that some sensors
are always silent, and others use both opportunities: as this is
only a problem in case of two sensors with the same strategy,
maximizing the number of different strategies by assigning
(0, 0) and (1, 1) to some nodes is the best choice. If A = 3,
the situation is slightly different, as it is possible to achieve an
optimal solution by only using strategies (1, 0) and (0, 1): the
objective of the sensors in this case is to avoid a scenario in
which all three collide in the same transmission opportunity,
as any other combination leads to a successful transmission.

The results are shown in Fig. 1, which includes the best and
worst results from 5 independent runs of the distributed MAB
approach: in the worst case, this approach might get stuck in a
suboptimal equilibrium, corresponding to a local maximum of
the reward function. When A = 2, the MAB solution always
reaches the optimum, while the clustering solution has a small
optimality gap. If A = 3, the situation is reversed, and the
MAB solution converges to a slightly suboptimal solution. In
the worst case, the optimality gap of the worst learning curve
is close to 0.01. However, the MAB solution does not require
any prior knowledge of the activation probabilities, and can
be trained online with no knowledge beyond a shared ACK
signal in relatively few iterations.

B. General scenario

Finally, we show the results for a general scenario, using a
randomly drawn activation probability matrix with N = 20.
In this scenario, A = 3 case is harder, as Fig. 2 shows: the
success rate for the best MAB training is slightly below 0.75,
while still outperforming the heuristic. If A = 2, the MAB
and clustering solutions have similar performance, close to
0.85. In this case, we do not know the optimal solution as
the brute-force search required to find it is too complex due



5

0 10 20 30 40

0.7

0.75

0.8

0.85

Iterations (×103)

Su
cc

es
s

R
at

e

Best MAB

Worst MAB

Heuristic

(a) M = 2, A(t) = 2,∀t.

0 10 20 30 40 50

0.7

0.72

0.74

Iterations (×103)

Su
cc

es
s

R
at

e

Best MAB

Worst MAB

Clustering

(b) M = 2, A(t) = 3, ∀t.

0 20 40 60 80 100
0.8

0.85

0.9

0.95

Iterations (×103)

Su
cc

es
s

R
at

e

Best MAB

Worst MAB

Heuristic

(c) M = 4, A(t) = 4, ∀t.

Fig. 2: Performance in the general scenario with N = 20.

to the large number of sensors. However, training times for
the MAB solution appear to scale, and the final performance
is close to the clustering-based heuristics, which starts with
the full knowledge of the environment. The MAB solution
with Thompson sampling is general, fast, efficient, and robust,
as it can easily deal with errors on the acknowledgments
as well as the packets. However, Thompson sampling does
not always reach the optimal solution, as it can get stuck in
local maxima: using an ε-greedy strategy guarantees better
performance after convergence, but requires approximately
1000 times more samples to reach convergence, and as such
becomes impracticable in realistic scenarios.

The same happens in a more complex scenario, shown in
Fig. 2c, with M = 4 and A = 4: in this case, the MAB
solution performs slightly worse than the heuristic, but it can
still reach convergence in relatively few samples, and the
optimality gap of the worst learning curve is just 0.03. It is
important to note that the constructive heuristic requires full
knowledge of the activation probabilities, which are hard to
estimate accurately in practice. On the other hand, the MAB
solution only requires the ACK signal, and has relatively fast
convergence, making it an attractive alternative.

V. CONCLUSIONS AND FUTURE WORK

We have introduced and examined a novel distributed co-
ordination and communication problem, in which multiple
wireless sensors need to coordinate and find a common
strategy to transmit a shared message. The problem is fun-
damentally different from general error rate minimization, in
which every packet contains different information, and is NP-
hard. We proved that a deterministic optimal solution exists,
and proposed two heuristics with a small optimality gap in
practical conditions. The clustering-based heuristic is close to
the optimum, but requires a priori knowledge of the system,
while the MAB solution can get stuck in a local maximum,
but it can be trained online with no additional signaling.

There are several possible avenues of future work on the
topic, including the use of more advanced learning mecha-
nisms, such as neural network-based bandits which can gener-
alize experience and converge with fewer training samples.
Another interesting research direction is the application of
these principles to swarm control, in which the sensors are
exchanging information about a shared environment, which
they can directly modify by acting in concert. Finally, the
scalability of the solutions to scenarios with massive numbers
of devices is a significant challenge for future research.
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