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Abstract

A distributed binary hypothesis testing problem is studied in which multiple observers transmit their
observations to a remote detector over orthogonal discrete memoryless channels. The detector uses the
received information from the observers along with its own observations to test for the joint distribution
of the data. Single-letter inner and outer bounds for the type 2 error exponent (T2EE) is established
for the special case of testing against conditional independence (TACI), in the regime of vanishing
type 1 error probability constraint. Specializing this result for the one-encoder problem, a single-letter
characterization of the optimal T2EE is obtained. For the general hypothesis testing problem, a lower
bound on the T2EE is established by using a separation based scheme that performs independent channel
coding and hypothesis testing. It is shown that this separation based scheme recovers the optimal T2EE
when specialized for the case of TACI. A joint hypothesis testing and channel coding scheme based on
hybrid coding is also proposed and the T2EE achievable under this scheme is analyzed. In general, this

scheme is expected to achieve a better performance compared to the separation based scheme.

I. INTRODUCTION

Given data samples, statistical hypothesis testing (HT) deals with the problem of ascertaining
the true assumption, that is, the true hypothesis, about the data from among a set of hypotheses.
In modern communication networks (like in sensor networks, cloud computing and Internet of
things (IoT)), data is gathered at multiple remote nodes, referred to as observers, and transmitted

over noisy links to another node for further processing. Often, there is some prior statistical
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knowledge available about the data, for example, that the joint probability distribution of the
data belongs to a certain prescribed set. In such scenarios, it is of interest to identify the true
underlying probability distribution, and this naturally leads to the problem of distributed HT
over noisy channels, which is depicted in Fig. 1. Each encoder [, [ = 1,...,L, observes k
samples independent and identically distributed (i.i.d) according to Fp;,, and communicates its
observation to the detector by n uses of the discrete memoryless channel (DMC), characterized by
the conditional distribution Py;x,. The detector decides between the two hypotheses, Hy and Hy,
based on the channel outputs Y/, ..., Y} as well as its own observations V* and Z*, where H,
(resp. Hy) is the hypothesis that the data (Uy,...,Ur,V, Z) is distributed according to the joint
distribution Py, y, vz (tesp. Qu,..u,vz). Our goal is to characterize the set of achievable type
2 error exponents (T2EE’s) for a prescribed constraint on the type 1 error probability. We will
refer to this problem as the general hypothesis testing with side-information (GHTS) problem.
The instance of the GHTS problem in which Hy : Py, .v,vz and Hy : Py, v,z X Pviz X Pz
will be referred to as the testing against conditional independence (TACI) problem. The special
cases of the GHTS and the TACI problem when the side information Z is absent is referred to
as the testing against independence (TAl) and the general hypothesis testing (GHT) problem,
respectively.

In the non-distributed scenario in which, the detector performs a binary HT on the probability
distribution of the data observed directly, the optimal T2EE is characterized by the well-known
lemma of Stein [1] (see also [2]). The study of distributed statistical inference under communica-
tion constraints was conceived by Berger in [3]. In [3], and in the follow up literature summarized
below, communication from the observers to the detector are assumed to be over rate-limited
error-free channel. Ahlswede and Csiszar studied the GHT problem for the case of a single
observer (L = 1) [4]. They proved a tight single-letter characterization of the optimal T2EE for
the TAI problem and also established a lower bound for the GHT problem. Furthermore, they
also proved a strong converse which states that the optimal achievable T2EE is independent of
the constraint on the type 1 error probability. A more general lower bound for the TAI problem
with a single observer is established by Han [5], which recovers the corresponding lower bound
in [4]. Han also considered complete data compression in a related setting where either Uy, or V,
or both (also referred to as two-sided compression setting) are compressed and communicated
to the detector using a message set of cardinality two. It is shown that, asymptotically, the

optimal T2EE achieved in these three settings are equal. In contrast, even the TAI problem with



two-sided compression and general rate constraints remains open till date. Shalaby et. al [6]
extended the complete data compression result of Han to show that the optimal T2EE is not
improved even if the rate constraint is relaxed to that of zero-rate compression (sub-exponential
message set with respect to block-length). Shimokawa et. al [7] obtained a better lower bound
for the GHT problem by considering quantization and binning at the encoder along with a
minimum empirical-entropy decoder. Rahman and Wagner [8] established inner bound for the
TACI problem with L observers, by performing quantization and binning at the encoders. This
quantize-bin-test bound is then shown to be tight, and also to coincide with the one achieved
by the Shimokawa-Han-Amari scheme in [7] for the case of a single observer, thereby implying
the optimality of both these schemes. The optimal T2EE for the TAI problem with two decision
centers is obtained in [9], where the encoder communicates to both detectors via a common bit-
pipe in addition to individual private bit-pipes to each. The TACI problem with multiple observers
is still open, although a special case has been solved in [10] when the observed data follows a
certain Markovian condition. The T2EE for more complex settings involving interaction between
two observers, where one of the observer also acts as the detector has also been studied in [11],
[12]. The observers exchange messages over a noiseless link for A rounds of interaction under a
constraint on the total exchange rate. On completion of K rounds, the HT decision is taken at the
observer which receives the last message. The optimal T2EE for TAI in this model with K =1
and K > 1 is obtained in [11] and [12], respectively. A lower bound on the optimal T2EE for
the general HT case in this setting is established in [13]. The authors also prove a single-letter
expression for the optimal T2EE in the zero-rate compression regime, analogous to that of [6].
When the detector also performs lossy source reconstruction in addition to hypothesis testing,
the set of all simultaneously achievable T2EE-distortion pairs for the GHT problem is studied
in [14]. Therein, the authors also prove a single-letter characterization of the T2EE-distortion
region for the special case of TAIL. Recently, the GHT problem has been studied in a multi-hop
network scenario where the communication from the observer to the detector happens over a
relay network [16].

While the works mentioned above have studied the unsymmetric case of focusing on the T2EE
for a constraint on the type 1 error probability, other works have analyzed the trade-off between
the type 1 and type 2 error probabilities in the exponential sense. In this direction, the optimal
trade-off between the type 1 and type 2 error exponents in the non-distributed scenario is obtained

in [17]. The distributed version of this problem is first studied in [18], where inner bounds on the



above trade-off are established for the GHT problem. This problem has also been explored from
an information geometric perspective for the zero-rate compression scenario in [19] and [20],
which provides further insight into the geometric properties of the optimal trade-off between the
two exponents. A Neyman-Pearson like test for the GHT problem in the zero-rate compression
scenario is proposed in [21], which in addition to achieving the optimal trade-off between the two
exponents, also achieves the optimal second order asymptotic performance among all symmetric
(type-based) encoding schemes. However, the optimal trade-off between the type 1 and type
2 error exponents for the general distributed HT problem remains open till date. Recently, an
inner bound for this trade-off is obtained in [22], by using the reliability function of the optimal
channel detection codes.

In contrast, HT in distributed settings that involve communication over noisy channels has
received relatively less attention in the past. In noiseless rate-limited settings, the encoder can
reliably communicate its observation subject to a rate constraint. However, this is no longer the
case in noisy settings, which complicates the study of error exponents in HT. A measure of the
noisiness of the channel is the so-called reliability function E(R) (function of the communication
rate R) of the channel [23]. E(R) denotes the exponent (first order) of best asymptotic decay
of the probability of error achievable in channel coding when the rate of messages is R. It is
reasonable to expect that F/(R) plays a role in the characterization of the achievable T2EE. The
problem of designing a channel codebook that achieves a reliability of F(R) is an open problem
in general. However, it is well known that E(R) > E,(R), where E,(R) is the random coding
exponent [23]. As the name suggests, the existence of a channel codebook achieving E,.(R) can
be shown by the standard random coding method.

The goal of this paper is to study the best attainable T2EE for the GHTS problem, and obtain
a computable characterization of the same. Although a complete solution is not to be expected
(since even the corresponding noiseless case is still open), the aim is to provide an achievable
scheme for the general problem, and to discuss special cases in which a tight characterization
can be obtained. The main contributions can be summarized as follows. We establish single-letter
lower and upper bounds on the achievable T2EE for the TACI problem with multiple observers.
This is done by first mapping the problem to an equivalent joint source channel coding (JSCC)
problem with helpers. The Berger-Tung bounds [24] and the source- channel separation theorem
in [25] are then used to obtain the desired bounds. Subsequently, these bounds are shown to be

tight for the special case of a single observer. This tight single-letter characterization for TACI
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Fig. 1: Illustration of the system model.

reveals that the optimal T2EE depends only on the marginal distributions of the observed data
and the channel rather than on their joint distribution. Motivated by this, we obtain a lower bound
on the T2EE for the GHTS problem for the case of a single observer, by using a separation
based scheme that performs independent hypothesis testing and channel coding. This scheme
recovers the optimal T2EE for TACI derived previously. We then analyze the T2EE achieved by
a generalization of the separation based scheme, in which, hybrid coding is used to communicate
the observations from the encoder to the detector.

The rest of the paper is organized as follows. In Section II, we introduce the system model,
definitions and supporting lemmas. Following this, we introduce the L—helper JSCC problem
and obtain lower and upper bounds for the achievable T2EE for the TACI problem in Section
III. In Section IV, we describe the separation based scheme followed by the hybrid coding based
scheme for the GHTS problem, and state the T2EE attained by these schemes. The proofs of

these results are presented in the Appendices. Finally, we conclude the paper in Section V.

A. Notations

Random variables (r.v.’s) are denoted by capital letters (e.g., X), their realizations by the
corresponding lower case letters (e.g., x), and their support by calligraphic letters (e.g., &X).
The cardinality of X is denoted by |X|. The joint distribution of r.v.’s X and Y is denoted
by Pxy and its marginals by Px and Py. X — Y — Z denotes that X, Y and Z form
a Markov chain. For m,l € Z*, X™ denotes the sequence X1,...,X,,, while X;” denotes
the sequence X;1,...,X; . D(Px||Qx), Hpy (X), Hp,, (X|Y) and Ip,, (X;Y) represent the
standard quantities of Kullback-Leibler (KL) divergence between distributions Px and (x, the

entropy of X with distribution Py, the conditional entropy of X given Y and the mutual



information between X and Y with joint distribution Pxy, respectively. When the distribution
of the r.v.’s involved are clear from the context, the entropic and mutual information quantities
are denoted simply by I(X;Y), H(X) and H(X|Y), respectively. Given realizations X" = z"

and Y™ = y", H.(x"|y") denote the conditional empirical entropy defined as

He(2"[y") = Hpeo (X]Y), (1)
where Pgy denote the joint type of (z”,y™). For a € R*, [a] denotes the set of integers
{1,2,...,[a]}. All logarithms considered in this paper are with respect to the base 2. For any
set G, G¢ denotes the set complement. ay ﬂ 0 indicates that limj_,., a; = 0. For functions
fi:A— Band fy : B— C, fyo fi denotes function composition. Finally, 1(-), O(-) and o(-)

denote the indicator function, the Big-o and the Little-o notation of Landau, respectively.

II. SYSTEM MODEL AND DEFINITIONS

All the r.v.’s considered henceforth are discrete with finite support. Let k,n € Z* be ar-
bitrary. Let £ = {1,..., L} denote the set of observers which communicate to the detector
over orthogonal noisy channels, as shown in Fig. 1. For [ € L, encoder [ observes UF, and
transmits codeword X' = l(km)(Ul’“), where fl(k’") : UF — X is a stochastic mapping. Let
7 := 7 denote the bandwidth ratio. The channel output Y/ is given by the probability law
Pypixp(u2la) = TIy Tl Prgx, (w

detector are independent of each other and memoryless. Depending on the received symbols Y

), i.e., the channels between the observers and the

and its own observations (V* Z¥), the detector makes a decision between the two hypotheses
Hy : Pyyz or Hy : Qu,vz according to the map g*m™) : Y7 x V¥ x ZF — {H, H}. Let
Ay € V2 x V¥ x Z* denote the acceptance region for Hy, i.e., g™ (y2, ok, %) = Hy if
(y2, 0%, 2F) € Ay and g™ (y2, ¥, 2F) = Hy otherwise. It is assumed that P,vz << Qu,vz,
i.e., the joint distribution of the data under Hj is absolutely continuous' with respect to that under
H;.

Let & (k:, n, fl(k’n), e ék’n), g(k’”)> i= Pypyige (Asz,n)) and (3 (k‘, n, fl(k’n), cee ,gk’n), (k’")> :
ngvk 71 (Akn)) denote, respectively, the type 1 and type 2 error probabilities for the encoding

'This assumption is necessary for the Kullback-Leibler divergence quantities like D(Pyn -k 41 ||@yny% 2 ) that characterize
the T2EE to be finite.



functions fF™, ..., g‘“") and decision rule ¢*™. Define
B (ko S8, ) = inf 5 (om 157, 5, gt @)
such that
Q (k;,n, l(k’n), e ék’n), g(k’”)) <,
and

(Zkv Vk? Ul’z) o Ulk - Xln o Yin7 le 'Cu

where X' = l(k’n)(Ul’“), [¢:= L\l and
k.7 €):= inf o, fom) ) )
B( vy ) /6 9 7f1 9 7fL )
1 L7

Definition 1. A T2EE « is said to be (7,¢€) achievable for the GHT problem if there exists a
sequence of integers k, corresponding sequences of encoding functions fl(k’n’“)7 cee gf’n’“) and

decoding functions ¢%"™) such that n, < 7k, ¥ k, and for any 6 > 0,

log (B(k, T,€))

lim sup < —(k=9). 4)
k—o0 k
Let
k(T,€) :=sup{x' : ' is (7,¢€) achievable}, and (3)
O(1) := sup O(k, 1), (6)
kez+
where
D(Pyn n
O(k,7):=  sup ( veviz|Qu; Vka). @)
fl(k,n) 7777 f(k,n) k
nngL

Next, we obtain single-letter inner and outer bounds on x(7, €) for the problem of TACI over
noisy channels. Our approach is similar to that in [4], in that we first obtain bounds on (7, ¢€)
in terms of d(7), and subsequently show that §(7) has a single-letter characterization in terms of
information theoretic quantities. We establish this characterization by considering an equivalent

JSCC problem with noisy helpers.



Lemma 2. For the GHT problem with any bandwidth ratio T > 0, we have
(l) lim sup log (B(k,7,€)) < _0(7_), Y € c (07 1)

k—o0 k

(ll) lim liminf 10%(5(’9 7,6)) _9(7-)

e—0 k—oo

Proof: Note that for 7 = 0, n = 0, which implies that the observer does not transmit
anything. Then, from Stein’s lemma [4] for ordinary hypothesis testing, () and (i) follows,
where 0(0) := D(Pyz||Qvz). When 7 > 0, the proof is similar to that of Theorem 1 in [4].
Here, we prove (i), which states that a T2EE of (7) is achievable. The proof of (ii) follows
in a straightforward manner from the proof given in [4] and is omitted here. Let k € Z* and

k"’“), l € L, and f/ﬁﬁ * be the channel block length, encoding

€ > 0 be arbitrary, and 7y, fz
functions and channel outputs respectively, such that k0(k, 7) — D(PYZL,C — |QYEﬁk v Zk) < ke .

For each | € L, {ffl"’“ ( ])} N form an infinite sequence of i.i.d. r.v.’s indexed by j. Hence, by
JET

the application of Stein’s Lemma [4] to the sequences {Y”’“( N, VEG), Z%( j)} ,» We have
jez

s BB ) TPyl Qupeyizs)

—(0(k, 7) — @) (8)

For m > kj, B(m,7,¢) < B(kj, ,€). Hence,

log (6(m, 7, €)) log (B(kj, 7, ¢€))

lim sup < lim sup :
m—00 m j—o0 k]
—(0(k,7) — ¢€).

Note that the left hand side (L.H.S) of the above equation does not depend on k. Taking infimum
with respect to k£ on both sides of the equation and noting that € is arbitrary, proves (7).

Remark 3. Part (it) of Lemma 2 is known as the weak converse for the HT problem in
the literature and (i) and (ii) together imply that 0(T) is the optimal T2EE as ¢ — 0, i.e.,
lim._,o k(7,€) = (7). For € = 1, note that the optimal T2EE is oo since it is possible to choose

Afk n) = V" x V¥ x ZF while satisfying the type 1 error probability constraint.

Part (i) of Lemma 2 proves the achievability of the T2EE 6(7) using Stein’s Lemma. In



Appendix A, we show an explicit proof of the achievability by computing the type 1 and type 2
errors for a block-memoryless stochastic encoding function at the observer and a joint typicality
detector. Note that for the TACI problem, the KL-divergence in (7) becomes mutual information,
and we have

(V" :Ele) ot

(ZF, VEY —UF - X — Y, 1€ L.

Although Lemma 2 implies that §(7) is an achievable T2EE, it is in general not computable as
it is characterized in terms of a multi-letter expression. However, as we will show below, for
the TACI problem, single-letter bounds for 6(7) can be obtained. By the memoryless property

of the sequences V* and Z*, we can write

H(VFYR, ZF
O(t)=H(\V|Z) — inf (VTYE, 27)
fl(k’n) fékvn) k

.....

(€))

(ZF, VEY —UF - X~ Y, e L.

In the next section, we introduce the L—helper JSCC problem and show that the multi-letter
characterization of this problem coincides with obtaining the infimum in (9). The computable
characterization of the lower and upper bounds for (9) then follows from the single-letter outer

and inner bounds available for the L—helper JSCC problem.

III. L—HELPER JSCC PROBLEM

Consider the model shown in Fig. 2 where there are L + 2 correlated discrete memoryless
sources (Ug, V, Z) i.i.d. with joint distribution Py, 2. For 1 <[ < L, encoder fl(k’n) T UF — X
observes the sequence U} and transmits X' = fl(k’")(Uf) over the corresponding DMC Py, x,,
while encoder f*: V¥ — M = {1,... 282} observes V*, and outputs M = f*(V*). Decoder
g™ has access to side-information Z*, receives fF ,(V*) error-free, observes Y and outputs
V¥ according to the map ¢*™ : Y x M x Z¥ — V¥ The goal of g™ is to reconstruct V*
losslessly. We will first establish the multi-letter characterization of the rate region of the L—

helper JSCC. Prior to stating the result, we require some new definitions.
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Fig. 2: L—helper JSCC problem.

Definition 4. For a given bandwidth ratio T, a rate R is said to be achievable for the L-helper
JSCC problem if for every \ € (0, 1], there exist sequences of positive numbers 0y, tending to 0

as k — oo, encoders f*(-), fl(k’"")(-), and decoder g™ (-, -,-) such that n;, < 7k and

P (g,(f’”“ (Y™, M, Z%) = vk) >1— X and

log(|M])
—= < .
3 < R+ 0y

Let
R(7) :=inf{R : R is achievable.} (10)

We next show that the problem of obtaining the infimum in (9) coincides with the multi-letter

characterization of R(7) in (10). Define

H(V¥kYp, ZF
R, :=  inf (VEYE, 27) s.t (11)
f(k,n) fék,n) k

(ZF, VR - Uf - X' =Y, 1€ L.
Theorem 5. For the L—helper JSCC problem,
R(7) = i%f Ry.

Proof: The proof is given in Appendix B. [ ]
Having shown the equivalence between the multi-letter characterizations of 6(7) for the TACI
problem over noisy channels and R(7) for the L—helper JSCC problem, our next step is to

obtain computable single-letter lower and upper bounds on R(7), which can then be used to



obtain bounds on 6(7). For this purpose, we use the source-channel separation theorem [25,
Th. 2.4] for orthogonal multiple access channels. The theorem states that all achievable average
distortion-cost tuples in a multi-terminal JSCC (MT-JSCC) problem over an orthogonal multiple
access channel (MAC) can be obtained by the intersection of the rate-distortion region and the
MAC region. We need a slight generalization of this result when there is side information Z at
the decoder, which can be proved similarly to [25]. Note that the L—helper JSCC problem is a
special case of the MT-JSCC problem with L + 1 correlated sources Py and side information
Z available at the decoder, where the objective is to reconstruct V' losslessly. Although the above
theorem proves that separation holds, a single-letter expression is not available in general for the
multi-terminal rate distortion problem [24]. However, single-letter inner and outer bounds have
been given in [24], which enable us to obtain single-letter upper and lower bounds on R(7) as

follows.

Theorem 6. For G C L, let Cg := ), ., C), where C; := max 1(X};Y)) denotes the capacity of
X
the channel Py, x,. For the L—helper JSCC problem with balna’width ratio T, define

R'(r) == infmax Fg, (12)

where

Fg = H(V|Wge, Z) + I(Ug; Wg|Wee, V. Z) — 7> C

leg
for some auxiliary rv.’s Wi, | € L, such that
(2, V, Ue, Wie) = U — Wi, 13)
Wi < |[U| +4, and V¥ G C L,
I(Ug; WV, Wge, Z) < 7Cg. (14)

Similarly, let R°(T) denote the right hand side (R.H.S) of (12), when the auxiliary rv.’s W, | € L
satisfy [W,| < |Uj| + 4, Eqn.(14) and

(V,Us, Z) — Uy — Wi. (15)



Then,

Re(7)

IN

R(t) < RY(7), and (16)

H(V|Z)—R(r) < 0(r) < H\V|Z) — R°(7). (17)

Proof: From the source-channel separation theorem, an upper bound on R(7) can be
obtained by the intersection of the Berger-Tung (BT) inner bound [24, Th. 12.1] with the
capacity region (C4,...,Cp,Cp.1), where Cp,; is the rate available over the noiseless link
from the encoder of source V' to the decoder. Writing the BT inner bound ? explicitly, we obtain

that for all G C L (including the null-set),

[(Ug; Wg’V; Wgc, Z) < 27_017
leg

1(Ug; WV, Wee, Z) + H(V|Wge, 2) < Y 7C) + Cpya,
leg

where the auxiliary r.v.’s W, satisfy (13) and |W)| < U] + 4. Taking the infimum of Cp
over all such W, and denoting it by R’(7), we obtain the second inequality in (16). The other
direction in (16) is obtained similarly by using the BT outer bound [24, Th. 12.2]. Since R(7)
is equal to the infimum in (9), substituting (16) in (9) proves (17). [ |

The BT inner bound is tight for the two terminal case, when one of the distortion requirements
is zero (lossless) [24, Ch.12]. Thus, we have the following result (for convenience, we drop the

index 1 from the associated variables).

Proposition 7. For the TACI problem with L = 1 and bandwidth ratio T,

O(r) =sup I(V; W1Z2), (18)
W
such that 1(U;W|Z) < 7C, (19)

Proof: Note that the Markov chain conditions in (13) and (15) are identical for L = 1.

2R(t) can be improved by introducing a time sharing r.v. T' (independent of all the other r.v.’s) in the BT inner bound, but
it is omitted here for simplicity.



Hence,
R'(1) = R°(1) = R(1). (21)

Using the BT inner bound in [24, Ch.12], we obtain R(7) as the infimum of R’ such that

H(V|Z,W) < R, (22)
[(U; WV, Z) < 7C, (23)
H\VI|Z,W)+I(U;W|Z) < 7C+ R, (24)

for some auxiliary r.v. W satisfying (20). Hence,
R(7) = i‘I/‘l/f max (H(V|VV, Z), HV|W,Z)
+ (U W|Z) - 7C). (25)
such that (20) and (23) hold. We next prove that (25) can be simplified as
R(1) = iélfo(V|Z, W), (26)

such that (19) and (20) are satisfied. This is done by showing that, for every r.v. W for which
I(U;W|Z) > 7C, there exists a r.v. W such that

[(U:W|2) = 7C, 27)

H(VIW,Z) < H(VIW, 2) + I({U;W|Z) = 7C, (28)
and (20) and (23) are satisfied with W replaced by . Setting

_ W, with probability 1-p,
W = (29)

constant, with probability p,
suffices, where p is chosen such that I(U; W|Z) = 7C. To see this, first note that H(V|W, Z)
is an increasing function of p, while I(U;W|Z) and I(U; W|V, Z) are decreasing functions of
p. Hence, it is possible to choose p such that (27) and (23) are satisfied with W in place of W.

It is clear that such a choice of W also satisfies (20). To complete the proof of (26), it remains



to be shown that for such a IV, (28) holds. We can write,
H(V|W,Z) = (1—-p)H(VIW,Z) +pH(V|Z). (30)

Taking derivative with respect to p, we obtain

d

d—pH(V|W, Z)=1(V;W|Z). 31)
Similarly,
d _
d—H(U\W, Z)=1U,W|Z). (32)
P

For the Markov chain in (20), we have [(V;W|Z) < I(U;W|Z) by the data processing
inequality [23]. Hence, we have that

d - d -
—H 7)< —H Z).
5 HVIW.2) < SHWUIW. 2) (33)
From (33), it follows that
F(p):=HVIW,Z)+ I(U;W|Z) —1C (34)

is a decreasing function of p. Together with the fact that H(V|W, Z) is increasing with p, it
follows that (28) is satisfied for W chosen in (29). Having shown (26), (18) now follows from
(17) and (21). This completes the proof. [ ]

IV. T2EE FOR THE GHTS PROBLEM

As shown in Appendix A, the optimal T2EE for the GHT problem is achieved when the input
to the channel X" is generated correlated with the observed source sequence U*, according to
some conditional distribution Pyn 7+ and the optimal test achieving the Stein’s exponent, i.e.,
the Neyman-Pearson test, is performed on blocks of data (received and observed) at the detector.
The encoder and the detector for such a scheme would be computationally complex to implement
from a practical viewpoint. In this section, we propose and analyze the T2EE achieved by two
simple schemes for the GHTS problem with L = 1. The first one is a separation based scheme
that performs independent hypothesis testing and channel coding while the second one is a joint

hypothesis testing and channel coding scheme that utilizes hybrid coding.



A. Separate Hypothesis Testing and Channel Coding Scheme

In [7], Shimokawa et.al. obtained an achievable T2EE for the GHT problem (L = 1) in the
rate-limited noiseless channel setting using a quantization and binning scheme. In this scheme,
the type of the observed sequence is sent by the encoder to the detector, which aids in the HT?.
Since the number of types is polynomial in the block-length, these can be communicated error-
free at asymptotically zero-rate. Intuitively, it is desirable to do the same in the noisy channel
setting as well; however, this is not possible in general.

In this subsection, we propose a separate hypothesis testing and channel coding (SHTCC)
scheme for the GHTS problem and analyze its T2EE. In the SHTCC scheme, the encoding and

decoding functions are restricted to be of the form f*™ = fék’") ) fék) and g+ = g(sk) o gg’n),
respectively. The source encoder fék) U - M = {0,1,---,[2"]} generates an index

M € M based on the observed sequence U* and the channel encoder fék’”) M = C =
{X"(5), j € [0:[2%]]} maps M into the codeword X" (M) from the channel codebook C. Note
that the rate of this coding scheme is ’“n—R = § bits per channel transmission. The channel decoder
ggc . V" — M maps the received sequence into an index M, and ggk) MV {Hoy, H,}
outputs the result of the HT. The codewords X"(j), j € [1 : [2"%]], in C are generated i.i.d.
according to the distribution Py that achieves the exponent ET(g) for channel decoding error.
We let M = 0 denote a special error message indicating that the observed sequence U* is not
typical. Since maximum possible reliability is desirable for M = 0, it is clear that X™(0) has
to be chosen such that it achieves the best exponent for the error probability at the channel
decoder. By generating all the [2%%] + 1 codewords in Ciid according to Py, it is clear that
this exponent is at least E,.(;R), but it can be higher in some cases.

We next state as a result the T2EE achieved by the SHTC scheme. The subscript denoting
the observer index from all the relevant variables is omitted as L = 1. Also, since the side-

information Z and V' play the same role for the GHT problem, it is enough to consider only

one side-information, which we denote by V.

Theorem 8. Consider the GHT problem with L = 1, bandwidth ratio T, and noisy channel Py|x

3In order to achieve the T2EE proposed in [7], it is in fact sufficient to send a message indicating whether the observed
sequence is typical or not, instead of sending the type of the observed sequence.



with capacity C. Then, k(T,€) > kg for 0 < € < 1, where

ke:= sup min (E\(Pww), E2(R, Pww), Es(R, Pww,7), Es(R, Pwjy, 7)), (35)
(Pwu.R)EB

where

B:={(Pww,R): Ip(U;W|V)<R<7C, V-U—-W},

Ei\(Pwy) = min D(Pyyw || Quvw), (36)

Pyow €T (Puw,Pyw)

’

PUVWE%?})UW7PV) D(PUVW”QUVW) + (R — IP(U; W|V)),
EQ(Ra PW|U) = lf[P<U, W) > R, (37)

| 0, otherwise,

;

PooweTsPow.Pv) D(Poii||Quvw) + (R — Ip(U; W|V))
+TE (7). if Ip(U; W) > R,
E3(R7 PW|U77—) = ' (38)
Poviwes(Pow Py D(Poow||Quvw) + Ip(V; W) + 7E, (£),
otherwise,

/

EA(R, P, 7) = D(Py||Qv) + (R — Ip(U;W|V)) + Ey(R, 1), if Ip(U: W) > R,

D(Py||Qv) + Ip(V; W) + Ey(R, T), otherwise,
\
(39

R
Povw = Puv Py, Quvw = QuvPww, Es(R,T7) > TE, (;) , (40)

Ti(Pow, Pvw) == {Pypw € TU XV xW) : Py = Pow, Ppyw = Pvw},
To(Pow, Pv) = {Pgiw, € TU XV x W) : Pgyi, = Pow, Py = Py, Hp(W|V) < HW|V)},

E(PUW7PV> = {PUVW S T(Z/{ x VYV X W) : PﬁW = PUw, Pf/ = Pv}

The proof of Theorem 8 is given in Appendix C. Although the expression «, in Theorem 8
appears complicated, the terms FEy(Pyy) to Es(R, Py, T) can be understood to correspond
to exponents caused due to distinct events that can possibly lead to a type 2 error. Note that
Ey(Pw) and Ey(R, Pwy) are the same terms appearing in the exponent achieved by the

Shimokawa-Han-Amari scheme [7] for the noiseless channel setting, while E3(R, Py, 7) and



E4(R, Py, T) are additional terms introduced due to the channel. £3(R, Py, T) corresponds
to the event when the encoder transmits a message M # 0, but the channel decoder outputs
M # M and ggk)(]V[, V*) = Hy. Ey(R, Py v, 7) is due to the error event when the error message
M = 0 is transmitted, the channel decoder outputs M # M and gék)(M ,V*) = H,.

The term E(R,7) in (40) requires further explanation. This corresponds to the best error
exponent in channel coding that can be achieved for the error message M = 0 when the
codewords for the remaining [2%%] messages in C achieve the random coding error exponent
TE,(£). As mentioned above, E,(R,7) is at least equal to TE,(£). However, E,(R, ) may
be significantly higher in some cases, for instance, when the channel has positive zero error
capacity [23] and it is possible to choose one error-free channel codeword while simultaneously
achieving 7E,(£) for the remaining [2*%] codewords, in which case E (R, 7) = oc.

We next show that the SHTCC scheme when specialized to the case of TACI recovers the
result of Proposition 7, which implies its optimality (as the probability of type 1 error tends to
zero). Towards that end, it is convenient to state the T2EE achievable by the SHTCC scheme

for the case when additional side-information Z is available at the detector.

Remark 9. The extension of Theorem 8 to the case when additional side information 7 is

available at the detector is straightforward. Let ks denote the value of ks when,

(i) Pyvw and Quyw are replaced by Pyyzw = PyyzPywy and Quvzw = QUVZPW|U,

respectively,

(ii) D(Pyiyw||Quvw) and D(Py||Qv ) are replaced by D( P 71 ||Quvzw) and D(Py z||Qv z),
respectively,

(iii) Ip(U;W|V), Ip(U; W) and Ip(V; W) are replaced by Ip(U; WV, Z), Ip(U;W|Z) and
Ip(V;W|Z), respectively,

(iv) set B is replaced by B° = { Py : Ip(U;W|V,Z) < R<7C, (V,Z)-U - W}

(v) sets Ti(Pyw, Pvw), To(Puw, Py) and Ts(Pyw, Py) are replaced, respectively, by

7?<PUW; Pvzw) = {PUVZW S T(U XV x W x Z) : PUW = Pyw, P\?ZW = Pvzw},
ES(PUw,Pvz) :{Pﬁ‘}ZWET(uXVXWXZ)PUW:PUw, P\?Z:PVZy
Hp(W|V, Z) < HWI|V, Z)},

ES(PUw,Pvz)Z:{PU‘”/ZWET(UXVXWXZ)IPUW:PUV[/, Pf/Z:PVZ}



It can be shown along the similar lines to the proof of Theorem 8 that ks is an achievable T2EE

for the GHTS problem.

The value of ks when specialized to the case of TACI recovers the optimal T2EE given in
Proposition 7 as follows. Let B := {(Pw, R) : I(U;W|Z) < R < 7C}. Note that B’ C B*
since [(U; W|V, Z) < I(U; W|Z), which holds due to the Markov chain relation (Z,V)—U—-W.

Now, consider (P, R) € B'. For such W, we have

El(PW|U) = min D(PﬁVZW||PZPU|ZPV|ZPW\U)

Py zw €T (Puw Pyw z)
=1(V;W12),
Es(R, Pwy) > I(U; W|2) — I(U; WV, Z) = I(V; W|Z),
E3(R, Pwiy,T) = Py puweTePow.Poz) D(Pov zl|PzPoizPoizPwiw) + I(V;W|Z) 4+ 7B, (g)
> I(V;W|Z), (41)
Ey(R, Pwy,7) = D(Pyz||Pvz) + I(V;W|Z) 4+ Ey(R,T)
> I(V; W1Z), 42)

where in (41) and (42), we used the non-negativity of D(:||-), E.(-) and Es(R,T).

Hence, we obtain that,

k(T,€) > sup min{FE (R, Pw), E2(R, Pww), Es(R, Pwu, 7), Ea(R, Py, 7)}

Pw‘UEBS

> sup I(V;W]2)

PW‘UEBS

> sup I(V;W|Z) (43)
PW‘UEBI

= sup I(V;W|Z), (44)

Py [(W3U|2)<7C

where in (43) we used the fact that B’ C B%; and (44) follows since [(V;W|Z) and I(U; W |Z)
are continuous functions of Py y.

The achievability of the optimal T2EE for TACI by using the SHTCC scheme shows the
interesting fact that a noisy channel does not always degrade the performance of HT, in com-
parison to a noiseless channel of same capacity. Furthermore, it also shows that for TACI, the

effect of the noisiness of the channel on the T2EE can be completely nullified by using a simple



separation based coding scheme. From (41) and (42), notice that this happens due to the fact
that E5(R, Py, 7) and E4(R, Py, 7) are both larger than I(V; W|Z). This can be explained
intuitively as follows. For the scheme discussed in Appendix C that achieves a T2EE of x°, a
type 2 error occurs only when the detector decodes a codeword W* that is jointly typical with
the side information sequence (V*, Z¥). For the case of TACI, when H, is the true hypothesis,
then with high probability, the codeword W*(J) chosen by the encoder is not jointly typical
with V¥, ie., (W*(J),V*) ¢ T}, . .- Then, the above phenomenon corroborates the fact that
given an error occurs at the channel decoder, the probability (averaged over randomly generated

codebooks) that (W* V*) e T[’}VW‘Z]& decays exponentially as 2~ %/(ViVIZ),

B. Local Decision Scheme (Zero-Rate Compression Scheme)

The SHTCC scheme described above is a two stage scheme in which the encoder at the
observer communicates a compressed version of the actual observations using the optimal channel
code of rate § bits per channel use (R < 7C'), while the detector makes its decision on the
hypothesis using an estimate of the compressed version based on the output of the channel
decoder and side-information V". Now, suppose the observer makes the decision about the
hypothesis locally using its observations U™ and transmits this 1 bit decision to the detector
using a channel code (for |M| = 2 messages over n channel uses), while the detector outputs its
decision based on M and V™. Note that the rate of the code is R = % bits per channel use, which
tends to zero asymptotically. The encoder f*m) = f%™ o f) and decoder gtb:m = g o g%
are thus specified by the maps fék) : U* — {0,1} (0 and 1 denote local decisions of H, and
Hy, respectively), f&™ : {0,1} — &, g%™ : ym — {0,1} and g : VF x {0,1} — {Hy, H,}.

Consider the encoder at the observer with fék) and fék’n) defined as follows.

0, if P €T

k ) U [PU]57
f$ ) =

1, otherwise,

and
a™, if fék)(uk) =0,

b", otherwise.
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Here, o™ and 0" denote the codewords formed by repeating the symbols a and b from the channel

input alphabet X', which are chosen such that
EC = D<PY|X:(1HPY|X:I)) = arg II/laX D(Py|X:J}||Py‘X:x/). (45)

Notice that F¢ is the best channel coding error exponent achievable for the message M = 1 for
a channel code with message set M = {0, 1} (with equally probable messages 0 and 1), when
the probability of decoding error goes to 0. Let the decoder be defined by

0, if y" € 11

k,n n P —als!?
95" ") = e

1, otherwise,

where, ¢’ > §, and

: k.n n
®) (K (kn)( m 0, if Py € Tipy), and g™ (y") =0,
gs (v 90 (Y )) =
1, otherwise.

By the law of large numbers, the probability of type 1 error goes to zero since,
Jim B(O* € Th | = H) =1,
lim P(V* € Tfp,;,|H = Ho) = 1,

k—o0

and lim P(Y" € Tipy s

n—oo

\H = Hy) = 1.

a]é’

Note that a Type 2 error occurs only under two events. The first is when the observed sequences
u* and v* are Py-typical and Py -typical, respectively, and there is no error at the channel
decoder. The second event that causes an error is when the observed sequence v* is Py -typical,
but u* is not Py-typical and the channel decoder fék’") makes a decoding error. It is not hard

to see that this scheme achieves a T2EE given by

Ry :mln(D(PUHQU),EC)—|—D(Pv||Qv) (46)

Note that when the marginals of U and V' are the same under both hypothesis (as in the case
of TACI), we get x; = 0; and hence, the SHTCC scheme performs strictly better than the local

decision scheme. However, the performance of these two schemes are not comparable in general.
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C. Joint Hypothesis Testing and Channel Coding Scheme

Hybrid coding is a form of JSCC introduced in [26] for the lossy transmission of sources
over noisy networks. As the name suggests, hybrid coding is a combination of the digital and
analog (uncoded) transmission schemes. For simplicity, assume that 7 = 1, i.e., £k = n. In
hybrid coding, the observed sequence U™ is first mapped to one of the codewords within a
compression codebook. Then, a symbol-by-symbol function of the codeword, U™ and a time
sharing sequence S™ (that is known a priori to the encoder and decoder) is transmitted as the
channel codeword X". This procedure is reversed at the decoder, in which, the decoder first
attempts to reconstruct the compression codeword using the channel output Y”, S™ and its own
correlated side information V. Then, the reconstruction U” is obtained as a symbol-by-symbol
function of the reconstructed codeword, Y™, V™ and S™. In this subsection, we analyze the T2EE
achieved by a Joint Hypothesis Testing and Channel Coding (JHTCC) scheme that utilizes hybrid
coding for the communication between the observer and the detector. In the JHTCC scheme, we
consider a slight generalization of hybrid coding in that, we allow the channel input X" to be
generated according to an arbitrary memoryless stochastic function, instead of a deterministic
function. After reconstructing the quantization codeword, the detector performs the hypothesis
test using the reconstructed codeword, channel output and side-information. As before, the side-
information V" and Z" play symmetric roles; and hence, it is sufficient to state the result with

only V.

Theorem 10. Consider the GHT problem with L = 1, bandwidth ratio T = 1 and channel Py |x

with capacity C. Then, k(7,€) > kp, for 0 < € <1, where

. / /
K = sup min <E1(PW|U7PS7PX|UWS)7 E5(Pwiv, Ps, Pxjuws),
(PW|U7 Pgxr, PX\UWS>E By,

E}(Psx)), (47

Bh = {(PW\U7PSX/7PX|UWS) . Ip(U,W) < IP(W, Y,V|S)} 5

Ei(PW\U, Psg, PX\UWS) = miAn R D(P~VV~VS‘Y/||QUVWSY); (48)
Pgiwsv €T (Puw,Pvwsy)

Ey(Pwiu, Ps, Pxjuws) = min D(Pﬁvwgﬂ\@wwsy) + I,(W;V,Y1S)
Poow sy €T (Puw . Prwsy

- 115(U; W)> (49)
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E4(Psxr) = D(Pysy|[Qusy) + Ip(W; V,Y[S) = I5(U; W), (50)
pUVWSX’XY(PWWa Psx, Pxjuws) = PovPwivPsx PxjuwsPy|x (51
QUVWSX’XY(PW|U7 Psx:, Pxjuws) = Quv Pwiu Psx' Pxjuws Py |x, (52)
Quvsxxy(Psx) = QuvPsx1(X = X') Pyx,

T (Pow, Prwsy) = {Popwsy € TU XV x W x 8 x V) : Pyyir = Pow, Ppyirgy = Brwer},

T3 (Pow. Prwsy) = {Popiwsy € TU XV X W x S x V) : Py = Pow, Pygy = Proy,

H(W|V,S,Y) > Hp(W|V,S,Y)}.
Corollary 11.

k(T,€) > max (kp, ki, ks), Ve € (0,1]. (53)

The proof of Theorem 10 is given in Appendix D. To contrast with Theorem 8, note that
Theorem 10 has three competing factors in the T2EE characterization instead of four. Similar to
the SHTCC scheme, these factors can be related to the various error events that occur in hybrid
coding. More specifically, let the event that the encoder is unsuccessful in finding a codeword
typical with U™ in the quantization codebook be referred to as the encoding error, and the event
that happens when a wrong codeword (unintended by the encoder) is reconstructed at the detector
be referred to as the decoding error. Then, E}(Pwu, Ps, Pxjyws) is related to the event that
neither the encoding nor the decoding error occurs, while £ ( Py v, Ps, Pxjuws) and E5(Psx)
are related to the events that only the decoding error and both the encoding and decoding errors
occur, respectively.

We next show that JHTCC scheme achieves the optimal T2EE for TACI. In Theorem 10,
let W be of the foorm W = (W, X), such that X is independent of (X' W, U, V), and
(U, V,W,, S, X") — X — Y. Then, it follows that

Povw.sxixy (Pw.u, Px, Psx') = Pov P Psx: Px|s Pyx, (54)
QUVWCSX’XY(PWC|U; Px, Psx) = Quv Pw,juPsx' Px|sPy|x, (55)
Quvsxixy(Psx) = QuvPsx 1(X = X') Pyx, (56)

[(W;V,Y|S) = Ip(U; W) = I5(X;Y|S) = Io(U; W) + 15(V: W)



= [5(X;Y|S) — I(U; W,|V),

By = {Pw.u, Psx', Px|s : Ip(U;W.|V) < I(X;Y|S)}.
Using (54)-(58) in Theorem 10, we obtain

Ei(Pwiv, Ps, Pxjuws) = E{(Pw,ju, Ps, Px|s)

- min D(PUVWS?HQUVWSY)
Paiw sy €T (Puw,Pvwsy

> min D(Pyiir || Quvw,)

Poow €T (Pow, ,Pyw,

+ min D(PS*Y/WVWHQSY\UWC Poy)

Poowsy €T (Puwe, Prwesy)

= E(Pw,v) + min D(Pygowsll@vivw.s Poows):

Poowsy €T, (Puwe,Pvwesy)

EQ(PWIU’ Ps, PXIUWS) = EQ(PWC|U7 Ps, PX|s)

- min - D(Pgiisy||Quvwsy) + Ip(W;V,Y|S) — I5(U; W)
Poivw sy €T3 (Puw,Prwsy)

- min D(PUVWSY/HQUVWSY)+Ip(X;Y|S) —1x(U;WV)
Py v gy €T3 (Puw ,Pywsy)

. min - D(Pyppl|Quvw.) + +1p(X;Y[S) — [5(U; W V)

g ET2(Puw,,Pv)

v

+ min D(Psy g | Qsyww. | Povr)
Pyovw sy €T3 (Puwe,Pvwesy)
min D (P |lQuvw.) + 1p(X;Y[S) = Ip(U; We|V)

Pyiow€T3(Puw,.Py)

\Y]

+ min D(Py w5l Qvivw.s| Povws),
Py ow sy €T3 (Puwe,Pywesy)

B4(Psxr) = D(Pysy||Qusy) + Ip(W; V,Y|S) — I(U; W)

= D(Py||Qv) + Ip(X;Y|S) — Ip(U; We|V) + D(Pys]|Qys| Ps).
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(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

Now, we specialize Theorem 10 for TACI by substituting V' = (V’,Z), such that the joint

distribution of the r.v’s U,V’ and Z is Pyyz and Quyriz = Pz Py\z Py 1z under Hy and Hy,
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respectively. Then, it follows from (59), (63) and (64) that

Ei(Pw,u, Ps, Pxs) > E1(Pw, ) = Ip(V'; We|Z), (65)
E(Pw, v, Ps, Pxis) > Ip(X;Y|S) = Ip(U;W V', Z), (66)
Ey(Psxr) > I1p(X;Y|S) — Ip(U; W V', Z), (67)

such that (PWC‘U, Pgxr, PX|S) € By,, where B, is as defined in (58). Let
B;L = {(PWC|UaPSX’7PX|S) . Px|5 = Px, ]p(U, WC‘Z) < IP(X,Y)} (68)

Note that B), € B}, due to the Markov chain (V’, Z) —U —W.. Thus, for any (Py, v, Psx', Px) €

1., we have from (66) that,

I5(X5Y) = 15(U; WV, Z)

=I1:(X;Y) = Io(U; WL Z) + I (VI W | Z) > Tp(V; We| Z). (69)

This proves that E'|(Pyw, v, Ps, Px), E5(Pw,ju, Ps, Px) and E5(Psx/) are all greater than or
equal to 15(V';W,|Z) for (Pw, v, Ps, Px) € B;,. Taking supremum over all Px and noting that
I5(X;Y) < C, it follows that the optimal T2EE given in Proposition 7 is achievable.

Since separate source and channel coding is a special case of hybrid coding, it is expected
that JHTCC scheme can achieve a larger T2EE compared to SHTCC scheme. However, we do
not have a proof of this claim. Note that since the KL-divergence is non-negative, we obtain

from (59) that, E{(Pw v, Ps, Pxjuws) = E1(Pw,jv). Also, we can write

sup |E5(Pwu, Ps, Pxjyws) — Es(Ip(X;Y[S), Puw,ju, 1))
(Pw, v PsxrPx|s)EBn
= sup min D(Pygiw sl Qvivw.s| Povs)
(Pwe.u-Psx1Px|s)EBR - Payw sy €T3 (Puwe . Pvwesy)
— B Ip(X;Y19))] (70)

and

sup [E4(Psx:) — Es(Ip(X;Y]S), Pw,v, 1)]

(Pw.|v-PsxrPx|s)EBn
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- sup | D(Pysl|Qyis|Ps) = Eo(Ip(X;Y19), 1)] (71)

(Pwejv»Psxr:Px|s)€Bn
The difficulty in the proof of the above claim lies in showing that the R.H.S. of (70) and (71)
are non-negative, from which the result would immediately follow.

From a practical viewpoint, the complexity of implementing the SHTCC, local decision and
JHTCC schemes are all different. Evidently, the local decision scheme is the simplest since
it involves the communication of only a single bit of information between the observer and
the detector. The SHTCC scheme is more complex than the local decision scheme; however, it
still utilizes a modular approach, in which, the HT and channel coding are done separately by
independent blocks, both at the encoder and the detector. On the other hand, channel coding and
HT is done jointly in the JHTCC scheme, which makes it the most complex among the schemes

studied here.

V. CONCLUSIONS

In this paper, we have studied the T2EE achievable for the distributed HT problem over
orthogonal DMC’s with side information available at the detector. For the special case of TACI,
single-letter upper and lower bounds are obtained for the T2EE, which are shown to be tight
when there is a single observer in the system. It is interesting to note that the reliability function
of the channel does not play a role in the T2EE for TACI. We also established single-letter
lower bounds on the T2EE for the GHT problem with a single observer, first using the SHTCC
scheme that performs independent HT and channel coding and then using the JHTCC scheme

that utilizes hybrid coding for the communication between the observer and the detector.

APPENDIX A

T2EE USING JOINT TYPICALITY DETECTOR

Here, we provide the proof for the case L. = 1. For given arbitrary positive integers k£ and n
such that n < k7, fix fl(k’n) = Pxnjyr. For any integer j and sequence ulfj , the observer transmits
X {Lj = l(kj’nj )(u]fj ) generated i.i.d. according to H§/:1 Penjk—yk(jry- The detector declares Hy :
Pyyz if (Y, V¥, Z4) € T[JY;LV’@Z'V](;J, (here §; — 0 as j — oo) where (Y, U, Vk ZF) ~

PY1n|U{cP§"fZ and H, : Qu,vz otherwise. To simplify the exposition, we denote (Y{*,V* Z*)
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J J :
and T ey by Wj, and T[W s, respectively. By the Markov lemma [24], type 1 error

probability tends to zero as j — oo. The type 2 error probability is bounded by

(kjm, j
4 (krj,nj ;o ) < Qypiveiges <T[vak,n}5j>

< D DL Quy (wi)
PGT[JW s, ’neT
@ Z Z o~i(H(P)+D(PlIQw, ,,))
PeT’.
[Wkn](sj
LS 2—jD(15HQw,Q,n) 2 (j + 1)MWenlg=3Bra)
PeT[JWkn]%
where,
Bin(j) := min  D(P||Qw,,,)
pPeT?

and (a), (b) and (c) follow from Lemmas 2.3, 2.6 and 2.2 in [23], respectively. Hence,

(ks :
log <ﬁ <kja?;; S, >> < _B’“’Z(j) + 03 (9),

where 0}, ,,(j) := Wi# and [Wi,n| = |Y|"|V|*|Z|*. Note that for any k and n, 6, ,,(j) — 0
as j — oo. Also, since J; is chosen such that it tends to 0 as j — oo, By ,(j) converges to
D(Pw,_,||Qw,.,) by the continuity of D(]5||kaﬁn) in P for fixed Qw,,,- Since k, n and flom)
are arbitrary, it follows from (4) and (6) that (1) is an achievable T2EE for any upper bound

e on the type 1 error probability. It is easy to see that this scheme can be generalized to L > 1.

APPENDIX B

PROOF OF THEOREM 5

For the achievability part, consider the following scheme.

Encoding: Fix k,n € Z" and Pxpiyr at encoder [, [ € L. For j € Z, upon observing u?,
encoder [ transmits X" i = fl(kj’”j)(Ulkj ) generated i.i.d. according to Hj, 1 Pzt () En-
coder L+ 1 performs uniform random binning on V¥, i.e., L+1 VR M ={1,2,--- 2ME}
By uniform random binning, we mean that f; +1(ij ) = m, where m is selected uniformly at

random from the set M.
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Decoding: Let M denote the received bin index, and 6 > 0 be an arbitrary number. If there

exists a unique sequence V*/ such that £}’ (V*) = M and (V¥ Y7, 7)) € TY

Lt1 (VEYZZk]5 then

the decoder outputs ¢*7)(M, Y9 Z*) = V' _ Else, an error is declared.
Analysis of the probability of error: The possible error events under the above encoding

and decoding rules are: & = {(V* Y7, 7+ ¢ T[J"/kyn 24, and
Lo

IV L VN P (VMY = 7 (V)

(ij’ YZL]7 Zk]) c T[]VkYE"ZkLS

E =

By the joint typicality lemma [24], Pr(&;) — 0 as j — oco. Also,

]P(82) = Z ]P)(Ukj»yzj> ij) xP <f]l<ji-1(‘~/k]) = ffi—l(vkj)v (ijv ?J?:ja zkj) € T[JV’“YK”Z’“]5>
vkj7yzj7zkj

= Y Py M) D e MR
kj oI ki kjeTd
v ]7y[: ,27% v JGT[VkYZ:IZk]L;
- k n 7k 1.
< I HVEYE,ZP)+6) ,—kjR

ki (H(Vk\ykg,zk)w 7R)
=€

Hence, P(&) — 0 as j — oo if R > H(VF|YR, Z%) + 46, (ZF,VF) - UF - X =Y, 1 € L.

. . . . H(VE)Yp ZF) . .
Since § > 0 is arbitrary, this proves that R > —— %~ is an achievable rate.

For the converse, we have by Fano’s inequality that H(V*|fF, ,(V*), Y2, Z*) < ~;, where
v — 0 as kK — oco. Hence, we obtain
kR =log(|M|) > H(M|YE, Z")

= H(M|Y}, ZF)y — HV¥|M, Y}, Z%)
+ H(V¥IM, Y}, Z)

> H(VE M|YE, Z5) =

= H(V*YP, Z") + HM|V*, Y, ZF) —

> H(VFIYE, Z8) = .

This proves the converse by noting that (Z*, V*) — UF — X — Y,", | € L holds for any

communication scheme.
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APPENDIX C

PROOF OF THEOREM &

We first describe the encoding and decoding operations in the SHTCC scheme. The random
coding method is used to analyze the type 1 and type 2 error probabilities achieved by this
scheme, averaged over the ensemble of randomly generated codebooks. This guarantees the
existence of at least one deterministic codebook that achieves same or lower type 1 and type 2
error probabilities. We mention here that unless specified otherwise, the mutual information and
entropy terms appearing in the proof below, like for example, I(U; W), I(U; W|V), H(W|V)
etc. are computed with respect to the joint distribution Pyyvw = Puv Py

Codebook Generation:

Fix 0 < R < 7C, conditional distribution Py;; and positive numbers §', 6", 9, 6 >0
(whose values will be specified later in the proof). Generate 2/ (UiW)+3")

W*(j), j € [220@W)+] randomly according to the distribution []¥_, Py (w;) where

Z Z PU PW\U w|u)

ueUd wew

independent sequences

Denote this codebook by C which is referred to as the source codebook. Next, the channel
codebook used by f, (:n) i3 obtained by independently generating {2’“’3} codewords X"(m), m €
[1: [2¥7]] iid. according to the distribution [, Px(z;), such that it achieves the random
coding exponent £, ( ) of the channel Py|x [27]. The codeword X™(0) corresponding to M = 0
is chosen such that it achieves an error probability with exponent (R, 7) at the channel decoder.
Denote this collection of codewords by C.

Encoding: If I(U; W)+0' > R, i.e., the number of codewords in the source codebook is larger
than the number of codewords in the channel codebook, the encoder performs uniform random
binning on the sequences W*(j), j € [2F!U 3W)+5')} in C, i.e., for each codeword in C, it selects
an index uniformly at random from the set [2"7]. Denote the bin index selected for W*(j) by
f5(5). If the observed sequence U* is typical, i.e., U* € T, [U] , the source encoder fék) first
looks for a sequence W*(J) such that (U*, W*(J)) € Tjfy., 6 > & If there exists multiple
such codewords, it chooses one of the index J among them uniformly at random and outputs
the bin-index M = fg(J), M € [1: 2*] or M = J depending on whether I(U; W) + ¢ > R
or otherwise. If U* ¢ T, [U] or such an index J does not exist, fs(k) outputs the error message

M = 0. The channel encoder fék’") outputs the codeword X" (M) from the codebook C.
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Decoding: At the decoder, gg ) maps the received channel output Y" to an estimate M of
the transmitted message M. If M =0, H, is declared. Else, given the side information sequence
V* and estimated bin-index M, g™ searches for a typical sequence W* = Wk([) € T[l‘C’V}s’

§ = |U|d in the codebook such that

[ = argmin H,(W*)|VF).

I: M=fp(l),

k k
w (l)eT[W](§

The decoder declares Hy if (W*,V*) e T[’I},W for 6 > ¢, else, H; is declared.
We next analyze the Type 1 and Type 2 error probabilities achieved by the above scheme (in
the limit 6,8, — 0).

Analysis of Type 1 error: A type 1 error occurs only if one of the following events happen.

Eow = {9m (Y") # X" (M)}

5//
Erp = (UFVF) & Tiiy,, 0 = —}

VI

39 1 - 9k( (U%W)"“S/)] : (Uk,Wk(])) S T[];JWB}

{

p=ipic

= {(VEWHD)) ¢ T, |
|

Jie 1 2“<UW+6’} LT fp(l) = f5(J), WH(1) € Ty,
H (WkD)|VF) < He(Wk(J)IVk>}

The probability of the event -, that an error occurs at the channel decoder ggC ™) tends to 0
as n — oo since E, ( ) is positive for R < 7C'. Erp tends to 0 asymptotically by the weak law of
large numbers. Note that given &%, holds, U* € T),, and by the covering lemma [23, Lemma
9.1], it is well known that Egg tends to 0 doubly exponentially for 6 > ¢” and ¢’ appropriately
chosen. Given &f; N EFy holds, it follows from the Markov chain relation V' — U — W and the
Markov lemma [24], that P(£y,x) tends to zero as k — oo for 6> 6 (appropriately chosen).
Next, we consider the probability of the event £pp. Given that &5, N Efp N £ holds, note
that limy,_,oo H.(W"*(.J)|V*) — H(W|V) as § — 0. Thus, we have
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P(£DE| VF = Uka Wk(J) = wkagz(QE NEpp N SIC“E)

ok (I(U;W)+8")

= 121: Z P(fB(l) = fa(J), W*I) =af| VF =oF Wk = w*,
o akeTk . -
147 Wi

He (0 0%) <H (w*[v")

Eiip N Epp N Efip)

ok (I(U;W)+5") 1
— Z Z P(Wk(1) = @F| VF =% W) = w", £ N EGL NESE) 7R
=1, wkeTk . -
W]
7 He(u?kh)’f)
<He(wk[vP)

ok(I(U;W)+5")

< Z Z 9 . 9—kRo—k(H(W)-01) (72)
= w :
l;:f kET[kW]s
He (" |v*) <He (w"[v%)
ok (I(U;W)+8")
< Z (k + 1)MIVE Qk(HWIV)dmn (k) o o . g=kRo=k(H(W)=51) (73)

=1,
I£J

< Q—k(R—J(U;WW)—(sg’“))

)

where &, = O(8), (k) = |Ho(wk[o*) — H(W|V)| and 65" = &, + L[V|[W|log(2k + 2) + &' +
71 (k) Wy 0 as 9,8',6 — 0. To obtain (72), we used the fact that

PWH(1) = @] Epp N Epp N Exg WHJT) = b, VF = oF)

<2x P(WH() = "] £, NESL N ESL, VE = 0F). (74)

This follows similar to (94), which is discussed in the type 2 error analysis section below. In
order to obtain the expression in (73), we first summed over the types P of sequences within
the typical set T[’;V],; that have empirical entropy less than H,(w*|v*) and used the facts that
the number of sequences within such a type is upper bounded by 2F(HWIV)+71(k) and the total

VIWI [23]. Summing over all (w*,v*) € TF

number of types is upper bounded by (k + 1) VWl;>

we obtain
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P(Epe|Esrr NERE N ETR)
< Z P(Wk(J) = wk, VF = 0%E5, N ELL NES) o—k(R—I(U;W|V)-5{")

(wk ,v’“)GT[];VV]5

< 9 k(R-IW;W|V)~5) (75)

Hence, if I(U;W|V) < R < 7C, the probability of the events causing Type 1 error tends to
zero asymptotically.
" = W6

and hence we can restrict the type 2 error analysis to only such V*. Denote the event that a

"’

Analysis of Type 2 error: First, note that a type 2 error occurs only if V* € T[’{;]&

type 2 error happens by Dy. Let

&= {U" ¢ Ty, }. (76)
The type 2 error probability can be written as

Blkor)= Y. PUN =t VE= ot H) BD|US = VE= o). (1)

(uk wk)euk xVk
Let Engp = ELp N ES. The last term in (77) can be upper bounded as follows.
P(Do|U* = u*, VF = ")
= P(Enp|U* = uF, VE = oF) P(Do|U* = u*, VF =% Enp)
+P(ES LU =P, VE = oF) P(Dy|U* = uP, VF =0k €5 L)

< P(Do|U* = ¥, VF = oF Enp) + P(Do|U* = uF, VF = oF E5L).
Thus, we have

B(k, 7€)
< Y PO =t VE =M H) [P(D|UF = uF, VE =08, Enp)

(uk k) euk x vk

+P(Do|U* = uF, VF =% E5)]. (78)

First, assume that £y holds. Then,
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ok(I(U;W)+58") gkR

P(Dy| UF = VF =¥ Enp) = D D P(J=j fa(J) =m| Uk = vk, VF =" Eyp)
j=1 m=1
P(Do|U* = uF, VF =" J =, fp(J) =m, Exp).  (79)

By the symmetry of the codebook generation, encoding and decoding procedure, the term
P(Do|U* = u*, VF =% J =34, fg(J) = m, Exg) in (79) is independent of the value of J and

fB(J). Hence, w.l.o.g. assuming J = 1 and fp(J) = 1, we can write

k k k k
]P’(Do‘ U =u ,V = ,gNE)
ok(I(U;W)+5') 9kR

= Y. D P(J=j fs(J)=m| U =¥, VF =¥ Enp)
j=1 m=1

]P)(DO|Uk = ukuvk = vk7 J = 17fB<J) = 17 5NE>
= P(D0|Uk = uka Vk - Uk) J = 17 fB(‘]) = 17 SNE)
= > PWH1) = wbU* = b,V =0k, T =1, f5(]) =1, Eng)
whkeWwk

P(Do|U* = u*, VF =% J =1, f5(J) = 1, W*(1) = v, Enp). (80)

Given Eyg holds, Dy may occur in three possible ways (i) when the channel decoder makes an
error and the codeword retrieved from the bin is jointly typical with V* (ii) when an unintended
wrong codeword is retrieved from the correct bin that is jointly typical with V* and (iii) when
there is no error at the channel decoder and the correct codeword is retrieved from the bin, that
is also jointly typical with V*. We refer to the event in case (i) as the channel error event Ec;

and that in case (ii) as the binning error event Egp, respectively. More specifically,

Ecp = {M = g™ (Y") # M} and 8D
Epr = {3 le [1 : Qk(I(U;W)M/)] LA, fe(l) = M, WHD)) € Tip,,

87

(VE WD) € T[’;VW]S}. (82)



33

Define the following events

F={U"=u"VF=2" T =1, fp(J) =1, WFQ1) = w*, Eng}, (83)
‘Fl = {Uk = uka Vk = Uk; J = 17 fB(J) = 17 Wk<1) = wkv ENEa SCE}a (84)
Fo={UF =k VF =0F J=1,fp()) = 1,WF1) =w", Enp, E&p), (85)

f21 - {Uk = ukvvk - Uk7 J - 1afB(‘]) = 17Wk<1) = wkv gNEa gg’Ea 5BE}7 (86)

Fao ={U* =", VF =0F T =1, fp(J) = 1L,WFQ1) =u”, Enp, Epy Espt. (BT)
The last term in (80) can be expressed as follows.
P(Dy|F) = P(Ecp|F) P(Do|Fr) + P(EGE|F) P(Dy|Fa),
where
P(Do|F2) = P(Epp|Fa) P(Do|Far) + P(E5 5| F2) P(Do|Fan). (88)

Since the channel encoder and decoder uses randomly generated codewords achieving the best

random coding error exponent E,(£), we have
P(Ecu]F) = 275 (F) = o7h75(2), (89)

Next, consider the type 2 error event which happens when H is declared in spite of an error at
the channel decoder. We need to consider two separate cases (1) [(U; W) > Rand I(U; W) < R.
Note that in the former case, binning is performed and type 2 error happens at the decoder only
if a sequence W*(1) exists in the wrong bin M # M = fz(.J) such that (V¥ W*(1)) e T[’;W}S.
However as noted in [26], the calculation of probability of this event does not follow using the
standard random coding argument usually encountered in achievability proofs due to the fact
that the codeword W*(.J) chosen depends on the entire codebook. Following techniques similar
to [26], we analyze the probability of this event (averaged over the codebooks C, C and random

binning) as follows. We first consider the case when I(U; W) > R.

P(Do|Fy) <P(3 W) fo(l) = M # 1, (WH(1),v%) € Thiyy, | F1)
ok (I(U:W)+8")

< Y Y U B(M =l Fy) P(WHD),0Y) € Thiyyy, + fo(l) = il F)

1=2 el
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ok (I(U:W)+5")

= > N rwr=wlr) Y PWEQ) =@t f(l) =m|F)

=2 Mm#l wk:
(wk vk)ET[’;VV]S
ok (I(U:W)+5") 1
= Z ZP(M = m|F1) Z P(WH(1) = @*|Fy) SRR (90)
=2 Mm#l wk:
(wk Uk)eT[’;VV]s
ok (I(U:W)+5") 1
= Y > PWHI) = a1 F) S o1
1=2 @k
(", vk)ET Vis
Let C; = C\{W"(1), W¥(l)}. Then,
PWH(l) = | F) = Y P(C Wh(l) = | F, ¢ = ). 92)

C, =c

The last term in (92) can be upper bounded as follows.

P(WH(1) = w*|Fy, € =¢)

P(WH(I) =of, UF =uk, Ve =0k T =1, fp(J) = 1L, WH1) = w*, Eng, Ecp, C; =0
= P(Uk =k, VE =0k, J =1, fg(J) = 1,Wk(1) = w*, Exg, Ecp, C = c)

=P(W"(1) = w*|U" = ¥, VF =%, Enp, Ecp,C = ¢)
P(J =1, fg(J) = 1, Wk(1) = w*|W*(1l) = 0%, U* = u*, V*F =k, Exg, Ecp, C =)
P(J =1, f(J) = 1, Wh(1) = wh|UF = uF, VF = vk, Exp, Ecp, C = c)
= P(Wk( ) = ~klUk = U Vk = U gNE; SCE, li = C)
P(J =1, fp(J) = 1, WkQ1) = w*|W*(1) = 0%, U* = u*, V*F =o*, Exg, Ecp, C =)
P(J =1, f5(J) = 1, WH(1) = wh|U* = uF, VF = ok, Eng, Eom, C = ©)
:P(Wk()_ ~k|Uk—U Vk—v ENE; ECEa l_ :C)
]P)(Wk(l) = wk|Wk( ) =w ,Uk =U ,Vk = Uk, 5NE7 ECEH f = C)
PWH(1) = wh|UF = ub, VF = vk, Exg, Ecp, C = c)

P(J = 1WkQ1) = wh W*(1) = @%, UF = u* VF =k Eng, Ecr, C7 =c)
P(J = 1|Wk(1) = wk, UF = uk, Vk = vk 5NE, Ecr, C; =¢)
P(fp(J) =1|J = 1,W*(1) = w* W) = %, U* = u*, V¥ =k Exg, Ecp, C =)

B(fn()) = 11 = L,IVH(1) = wh, UF = b VE= b Exp, op G =0)

(93)
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Since the codewords are generated independently of each other and the binning operation is

done independent of the codebook generation, we have

PWF(1) = w*|WH(l) = @*, U* = u*, VE = Enp, Ecp, € =)

=P(W*(1) = w*|U" = u*, V¥ =¥ Eng, Ecr, C =c),
and

P(fp(J) = 1|J = 1,W*(1) = ", WH(l) = @", U* = u*,V* =%, Enp, Ecp, C =0)

=P(fp(J) =1|J = 1L,W(1) = w®, U* =", V* =" Enp, Eon, L =0)

Consider the term in (93). Let N(u*,C;) = [{w*(lI') € C; : I £ 1, I # 1, (wF(l'),u") €
T["“,VU]&}]. Recall that if there are multiple sequences in the codebook C that are typical with
the observed sequence U*, then the encoder selects one of them uniformly at random. Thus if
(", uk) € ﬂlf/vU]é’ then

P(J = 1|Wk(1) = w*, Wk(l) = @%, U* = u*, VF = v* Enp, Ecp, C7 =0)
P(J = 1|Wk(1) = wk, UF = uk, VF = vk Eng, Ecp, C~ = ¢)

1 1
N [N(u’f,C_) +2} P(J = 1|Wk(1) = wk, Uk = uk, VE =0k Enp, Ecp, C~ =)
k —
Nu",C7)+1 -1
~ Nwk,C)+2

If (0", uk) ¢ T[];:/VU],;’ then

P(J = 1|Wk1) = w*, Wk(l) = @%, U* = u* VF = vk Enp, Ecr, C =c)
P(J = 1|Wk(1) = wk, UF = uk, VF = vk Eng, Ecr, C~ = ¢)

1 1
n [N(u’f,C—) +1:| P(J: HWk(l) :wk,Uk zu’“,V’“ :Uk,(‘:NE, 50E7 C— = C)
k —
N(u®,C™)+2 <9
~ N(uk,C)+1—

Hence, the term in (92) can be upper bounded as

P(W*(1) = w"|F1)

<Y P(C =c) 2 PWH(1) = a*|U* = uF, VF =% Enp, Ecp, C =)
C—=c

=2 P(WHk(1) = o*|U* = u*, VF =oF Enp, Ecr). (94)
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Substituting (94) in (91), we obtain

P(Dy|F1)
ok(I(U:W)+5) 1
k _ ~k|yrk _ , k k __ ,k
< ; Z 2 PWH(l) = 0*|U* = uf, V* =" Exp, o) 5ip
(ﬁzk,vksUGT

k(I(U:W)+5")

- S 2 xRN QkLR

=1 wk:
(zbk,vk)ET[k

< 2—k(R—I(U;W\V)—6flk>)7 95)

where 551k) = 6’+51+53+%£>0 as 0, 6" — 0.
For the case I(U; W) < R (when binning is not done), the terms can be bounded similarly

using (94) as follows.

P(Do|F1) = Y B(M = ] Fy) B(W* (1), o) € Ty, | F)

m#l
<Y P(M =m|F) > 2PWrm) = ¥ |UN = uF VF = ok Enp, Ecp)
m#l whk:
(u?k,vk)ET[’;VV]g
< Z IP’(M _ m|}—1) 2—k(I(V;W)—(61+63+%)) < 2—k(I(V;W)_5Z(lk))‘ (96)

£l

Next, consider the event when the encoding and channel error does not happen, i.e., Exg N Efp
holds. For the case I(U;W) > R, the binning error event denoted by Ezp happens when
a wrong codeword W¥(l), I # J is retrieved from the bin with index M by the empirical
entropy decoder such that (W*(I),V*) € T[’{jvv}é. Let Py denote the type of Ppeyrpye(y).
Note that Py, € 7'[5‘4/]5 when Eyp holds. If H(W|V) < H(W|V), there exists a codeword in
the bin with index M having empirical entropy strictly less than H(W|V'). Hence, the decoded
codeword W* ¢ T [’%V]S(asymptotically) since (W’“, Vk) € T[’f,vv}s necessarily implies that
H (WF|V*) .= H(Pg|Pyr) — H(W|V) as 6 — 0. Consequently, a Type 2 error can happen
under the event £z only when H(W|V') > H(W|V). The probability of the event £z can be
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upper bounded under this condition as follows.

P(83E|FQ)

<P (3 1#1, 1e[l: 2UUWMFN g1y =1 and (WH(1),0%) € T[’;W]gyfg)
ok (I(U;W)+8")

< Y P(W0.0) € Ty, B) P(fo() = 1F (WD), 0) € Ty, )

=2

ok (I(U;W)+5")
-y P((Wk(l),vk) eT[’;ka) 9-kR
=2

ok (I(U;W)+5")

IN

> 2PWH) = U = uF VF =0k, Eng, E6p) 27 97)

wk:
(ﬂ)k,vk)ET[’;VV]S

N
[|
I\

_ 9 k(R-IU;W|V)~5{) (98)

In (97), we used the fact that
P (W) = @*|F) <2 P(WH(1) = @*|U* =¥, VF =oF Enp, Edp), (99)

which follows in a similar way as (94). Also, note that, by definition, P(Dy|F2;1) = 1.
We proceed to analyze the R.H.S of (78) which upper bounds the type 2 error 3(k, 7, €), in
the limit ¥ — oo and 4, &’,6 — 0. Towards this end, we first focus on the the case when Eyp

holds. From (80), it follows that

lim  lim > PUF =uF VE =08 Hy) P(Do|U" = uF, VF =0k Eyp)  (100)
k—=oo §5,6'=0
(uk vk)euk xVk

= lim lim Z P(U* = u*, V* = o*|H,)

k—oo  §5,6/=0
00 (uk wk)elr x vk

P(Do|U* = u*, VF =0 J =1, f5(J) = 1,EnE). (101)

Rewriting the summation in (101) as the sum over the types and sequences within a type, we
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obtain

P(Dy| Ex)
- Y ¥ [P(Uk = ", VF = oF| H)) P(Dy|F)
Poowe  (uF ok wh)

k
TEUXVXW) ETP T

P(WH(1) = wh|U* = uf, VF = ok, J = 1, fz(J]) = 1,5NE)]. (102)

Since H; is the true underlying hypothesis, we have

P(U* = uf, VF = oF|H)) POWF(1) = w*|U* = uF VF =% J =1, fz(J) = 1,EnE)
k
H Quv (ui, vi)] P(W*(1) = w®|U" =% VF =% T =1, f5(J) = 1,EnE)

i=1

k
< [H QUV(uiy'Ui) |TP1 ’ < 2-’6(H(U‘7)-i-D(Pf;(/||QUV)-i-H(W\0)—%\Z/’HVVl10}%(/’€+1))7 (103)
i=1 WO

where Py denotes the type of the sequence (u*, v* w").

With (89), (95), (96), (98) and (103), we have the necessary machinery to analyze (102). First,

consider that the event Exp N EE, N E5 holds. In this case,

]P)(DO|~F22) - ]P)(DO‘Uk = uka Vk - vka J = 17fB<J) - ]-7 Wk(:l) - wkvgNEagéEWg%E')

L, if Py € Ty,

= and Pk, » € T[VW] (104)

0, otherwise.

Thus, the following terms in (102) can be simplified (in the limit (5,5 — 0) as

Lim ) 6116m ) > > []P’(U’“ = uF, VF = o |H)) P(EEL|F) P(ESL|Fa) P(Do|Faz)
o) [N
w7 Poow€  (uf ok wh)

k
TEUXVXW) GTP UV

P(W*(1) = w®|U" =u* VP =%, J =1, fg(J) = 1,EnE)

< lim lim [[p U* =k VF = oF|Hy) P(D,| F
T k—oo 575’5/*@ Ze ( kz ( ’ 1) ( 0| 22)
UVW u

TEUXVXW) eTp oW
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P(W*(1) = wk|UF = o, VE = o ] =1, f5(J) = 1,5NE)]

< lim (k 4+ DAMIMVE max ok H (VW) o—k(H(UV)+D(Pyp||Quy )+H (WD)~ Ul W] log(k+1))
T k—oo Pﬁf/‘;vé

Ti(Puw,Pvw)
= lim 27, (105)
k—oo
Here
Ey = min . H(UV) + D(Pgy||Quv) + HWI|U) — H{UVW)
Ti(Pow Pyw)

Pree 1 Pr
= P e E :PUVW log ( uv — ~U~ PUVW) —o(1)
ovw vV EUW

Ti(Puw,Pvw)

= min D(PﬁvaQva) - 0(1) ﬂ El(PW|U), (106)

Pyow € Ti(Puw,Prw)
and Quvw = QuvPwy. To obtain (105), we used (103) and (104). This results in the term
Ey(Pyy) in (36).

Next, consider the terms corresponding to the event EypNEEENERE in (102). Note that given
the event Fp; = {U* = u*, VE =oF J =1, fp(J) = 1,Wk(1) = w*, Enp, E&p, Epp} occurs,
Py € Ty, Also, Do can happen only if H(w"[v*) > H(W|V) — ~5(6) for some positive
function v,(6) € O(9) and P, € T[’f/] . Using these facts to simplify the terms corresponding
to the event Eyp N E&E N Epp in (102), we obtain

lim ol Y7 kzk: i [P(U* =, V* = v"|Hy) PEELIF) P(Epp|F2) P(DolFan)

Poowe  (uf ok w

k
TEUXVXW) GTP T

P(WH(1) = wh[U% =, VE =k, J = 1, f5(J) = 1, Ex)]

<lim  lm Y Z []P’(Uk = u, V* = o*|H)) P(Epp|Fa) P(Dy|Far)

k—oo 61560
Pyoywe  (uFof wk

k
TEUXVYXW) GTP T

B(WH(L) = whU* = b VE = of T = 1, fp(J) = 1, )|

< lim max  QRHOVW)g=k(H(OV)+D(Py||Quv)+H(W|D)+R—I(U;W|V))
T k—oo PU\_/V_VG
T2(Puw,Pv)

o([U[[VI[W]log(k-+1)+U|W|log(k+1))
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— lim 27*Ea (107)

k—o0

where,

By = min_ H(UV)+ D(Pyyl|Quv) + HW|U) + R — I(U; W|V)
Ts(Puw Py)

1 1
— VIV gl + 1) = Ul W] Tog(k + 1)

9, By(R, Puw). (108)

Note that Egg occurs only when I(U; W) > R.

Next, consider that the event Exp N Ecp holds. As in the case above, note that given F; =
{UF = uk VFE =% J =1, fg(J) = 1, WE(1) = w*, Eng, Ecr}y Pupwr € T[UW} and Dy
occurs only if Py € T, []‘6/]5/"' Using these facts and eqns. (95), (96) and (89), it can be shown
that the terms corresponding to this event in (102) result in the factor E3(R, 7) given in (38).

Finally, we analyze the case when the event £f occurs. Since the encoder declares H; if
M = 0, it is clear that Dy occurs only when the channel error event £-p happens. Thus, we

have

P(Dy| U = u*, VF =oF £54) =P(Ecp| UF = u*, VF =oF £5.1)

P(Dy| UF = u*, VF =0k 500 Ecr). (109)
From the coding scheme, it follows that
P(Ecp| UF = uk VF =oF £5p) < 27FE(R7), (110)

When binning is performed at the encoder, Dy occurs only if there exists a sequence Wk
in the bin A # 0 such that (W’“, Vk) e ﬂlévv] Also, recalling that the encoder sends the
error message M = 0 independent of the source codebook C, it can be shown using standard

arguments that for such v* € T[v] o
P(Do| U* = u", V* =", Expn Ecp) < 27MATIEWIVI=0s), (1)

where 05 = §; + 03 + ¢'. Thus, from (109), (110) and (111), we obtain
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lim Y " P(U* =", V* = o*|H)) P(Do| U = b, VF =¥, &N Ecp)

5,6',6—0
"y Uk,’Uk

< 2 kDIVIIRV) 5 9=kEs(Ro) o o= k(R=I(U;WIV))) (112)

On the other hand, when binning is not performed, Dy occurs only if (W (M), V*) e T[’{;VV]S

and in this case, we obtain

lim > PU* = uf, V* = o*|H)) P(Do| U* =¥, VF =¥, €50 Eci)

5,6',6—0
"y Uk,’l)k

< 9=kD(Pv|IQv) « 9=kEs(R,T) o o—kI(V;W) (113)

This results in the factor E4(R, 7) in (39). Since the T2EE is lower bounded by the minimal
value of the exponent due to the various type 2 error events, this completes the proof of the

theorem.

APPENDIX D

PROOF OF THEOREM 10

We only give a sketch of the proof as the intermediate steps follow similar to that given in
the proof of Theorem 8.
Codebook Generation:

Fix distributions (P v, Psx’, Pxjuws) € By, and let

Povwsxxy(Pwiv, Psx', Pxjuws) = PovPwiuPsx' Pxjpws Py|x-

Generate the quantization codebook C = {W"(j), j € [2"Up(UiW)+)]1  where each code-
word W™ (j) is generated independently according to the distribution [, Py, where Py =
> wew Pu(u) Py (wlu). Also, generate a sequence S™ (for time-sharing) i.i.d. according to the
distribution [ [}, Ps. The realization S™ = s" is revealed to both the encoder and detector.
Encoding: If the observed sequence U" is typical, i.e., U" € T[?J} , the encoder first looks

s

for a sequence W"(J) such that (U™, W™"(J)) € T, L d > ¢". If there exists multiple such

[Pow
codewords, it chooses one among them uniformly at random. The encoder transmits X" over

the channel, where X" is generated according to the distribution [[}_; Pxjuws(xi|w;, w;, s;). If
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ur ¢ T, [’5}6” or such an index J does not exist, the encoder generates the channel input X"

randomly according to [[\_; Px/s(zs]s;).

Decoding: The detector first checks if (V" S™ Y") € T[’lg , 0 > 0. If the check is
unsuccessful, H; is declared. Else, searches for a typical sequence wn = W"(Z) € T[Ifmg,

6 = |W|d in the codebook such that

W) = argmin H, (W"(0)[V", 8", Y™).

wn(l)eT™
US [Pwls

If (V™5™ Y™ W”) S e’ H, is declared, else H; is declared.
4

[Pvsy
Analysis of Type 1 error:

A type 1 error occurs only if one of the following events happen.

& n n an ™ < 6"
5TE={(U ACOES S 5_!V\IS!}

Eop={Bje 1.2 <UW>+5’]:<U",W"<J'>>6T@ }

[Puw]s

(V" WD), 5" ¢ T, o

[Pywsls

[Pvwsyls

Jle 1 on( <UW+5’} LA, WD) €T

{
5= {
{ (V" Wn(J), 8", Y") ¢ T }
{

H (W ()|V™, 87, Y™) < He(W”(J)|V”,S”,Y")}

By the weak law of large numbers, Erp tends to 0 asymptotically with n for any § > 0. The
covering lemma guarantees that Egp N S%E tends to 0 doubly exponentially for § < ¢ and ¢’
appropriately chosen. Given 5,% 5N 5‘; p holds, it follows from the Markov lemma and the weak
law of large numbers, respectively, that IP’(E:' vE) and IP’(E:’CE) tends to zero asymptotically for
6> 0 (appropriately chosen). Next, we consider the probability of the event £pp. Given that
Eqp N ES N ESE N ESy holds, note that lim, o H,(W™(J)|[V", S, Y™) — H(W|V,S,Y) as

& — 0. Hence, similar to that shown in Appendix C, it can be shown that
5 & 5 5 5 : : (n)
P(Eppléér N EyRr N Epp N &) < 2~ p (WY VQ=1p(UiW) =057

where (5 D0 as 5,0" — 0. Hence, if I (U W) < Ip(W;Y,V,Q), the probability of the

events causing Type 1 error tends to zero asymptotically.
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Analysis of Type 2 error: The analysis of the T2EE is very similar to that of the SHTCC
scheme given in Appendix C. Hence, only a sketch of the proof is provided, with the differences
from the proof of the SHTCC scheme highlighted.

Let & be defined as in (76). Then, as in Appendix C, the type 2 error probability can be

written as

B(n,1,€)
< Y PUt=wnVT :v”IHl)[P(éEEmegW”:u",vn )

(umpm)eUn xyn

+ P(Do|U™ = u™, V" = 0", Eng) + P(Do|U™ = u™, V™ = 0™, &) |, (114)

where, Eyp = £5, NES. As before, it is sufficient to restrict the analysis to the events £y and

&y that dominate the type 2 error. Define the events

Ers = {3 le [1 L nUIUWFN L oL g W (D) € T

[Pwl;’

(V" W), 8™ Y™ e Tﬁﬁvwsﬂg}v (115)
F={Ur=u"V"=0v",J=1,W"1) =w", 5" =s",Y" = y", Eng}, (116)
Fi={Ur=u", V" =v",J=1,W"(1) =w", 5" = s",Y" = 4", Eng, ES ), (117)
Fo={U"=u" V" =", J=1,W"(1) =w",S" =s",Y" = y", Eng, Em}. (118)

By the symmetry of the codebook generation, encoding and decoding procedure, the term
P(Do|U™ = u", V" = v",J = j, Eyg) is independent of the value of J. Hence, w.lo.g.

assuming J = 1, we can write

IP’(D0| Ur=u",V" = v”,gNE)
on(I(U;W)+6")

= Z P(J :]| Un = u",V” = Un,gNE) ]P)(DO’Un = u”,V” = Un,J = 1, gNE)

j=1
= P(Do|U" = u™, V" =", J =1, Eng)
= ) PW'()=w"S"=s"Y" =y U =u" V" =0",J =1, Eng)

P(Do|U" = u™, V" =", J = 1L,W"(1) =w", 5" = ", Y" = y", Enp)
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— Z P(W"(1) =w",S" =s",Y" =y"|U" =u", V" =", J =1, éNE)

(wn’sn7yn)
€ WnxSmxYy"

P(Do| F). (119)
The last term in (119) can be upper bounded using the events in (116)-(118) as follows.
P(Dy| F) < P(Dy| Fi1) + P(Erz| F) P(Do| Fo).

We next analyze the R.H.S of (114), which upper bounds the type 2 error 5(n, 1,¢€), in the

limit n — oo and ¢, 0’ ,5 — 0. First, note that, Also,

1, if Pyuyn € T

[Puwls

P(Do|F1) = and Pynyngnyn € T, ,

[Pvwsyls

(120)

0, otherwise.

Hence, the terms corresponding to the event Fi in (114) can be upper bounded (in the limit

8,0 — 0) as

lim  lim Z [IP’(D()]]}I) P(U" =u™, V" =v"|Hy)

n—00  § 5,50
» (u’lL7,U7L7w7l7S’lL7yn)

€ UM XV XWN XS x Y™

(W (1) = w", 8" = 5" Y" = y"|U" =", V" =", J =1, Exp)]

< lim  lim 3 3 []P’(DOU:}) P(U" = u", V" = v"|H,)
n—00 53550 P L
oW Sy € (u" ™ w™, 8" y™)
T (UXVXWXSXY) ETPU\"/WS?

IP)(STZ - Snayn = yn|Un - u”) J — 17 Wn(]') - wn7 gNE)
POV (1) = w"|U" =", ] =1, Exr)]

< lim  lim > 3 [P('DO| 7)) x 27 (HOVD(EspliQuv)
0o Pyoway€ (u™ v w8 y"™)
TrUXVXWXSXY)  €Tpy om0

o—n(H(W|0)= & Ul[W|log(n+1)) o-n(H(SY| W)+D(P§§/WWHpsﬁywwsmgw))}

< lim max
n—00 Povwsy €
T/ (Puw,Pvwsy)

[Q—n(HwVHD(PWHQUv)) o—n(H(W|T)= L Ul[W|log(n+1))

o=n(H(SY|UW)+D(Psy g | Ps Pyjuws [ Powi)) o 2n(H(U\~/V~V§}~/)—%HL{HV\\W||S\|y|10g(n+1))]
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= lim 27"Fin, (121)
n—oo
where,
P [Ham+D(Pwu@m+H<W|U>+H<Ss>|ﬁvv>
Povwsy €

T/ (Puw,Pvwsy)

A 4 N |
+ D(Psyiowl| Ps Privws| Pow) — HUVWSY) = —([U|[W] + [U||[VI[WI[S]|V]) log(n + 1)

_ 1 Pyy Py 1 Psyow
— min P~~~~~10 Uv U _ | P"~~~~ _01
A VZWS ey T8 (PUV Quv Pow Payiow Psyuw vvwsy @

T! (Puw,Pywsy) U Y
= min D(PUVW§37|QUVPW‘[~]PSY|UW) —o(1)
Py €

T/ (Puw,Pvwsy)

o, E{(Pwu, Ps, Pxjuws)- (122)

Here, (122) follows from the fact that PVT/\U — Py )y given & NE, as 0 — 0.

Next, consider the terms corresponding to the event ]:"2 in (114). Given .7:"2, Pyw € T[’[‘]W](s and
Dy occurs only if (V", 5", Y") € Tt 8" = (W6, and H(W|V,S,Y) > Hs(W|V,S,Y)—
5///

72(9), for some 2(d) € O(J). Thus, we have,

lim  lim 3 [P(Do|ﬁ2) x P(Eps|F) x PU" = u", V" = v"|Hy)
IR GEE0 g

€ UM XV XWN XSSP XY™

(W™ (1) = w", 8" = 5", Y" = y"|lU" =", V" =", J =1, Exp)|

< lim  lim Z Z [P(Do\]:—z) X P(STz‘]:—)

n—=0o0  §/.5,5—0 P nomom

oSy € (u™ o w,s"y")

THUXVXWXSEXY)  €Tpso s ac

P(U" =u", V" =0"[H) PW"(1) = w"|U" = u",J =1, Enp)
P(S" = 5, Y™ = y"|U" =, T = 1WA (1) = ", E)]

< lim  lim Z Z [P(Dolﬁz)- 9. 9 n(Ip(WiViSY)~I5(UsW)~br)
n—00  §.5,5—0 Poomar € (™ o™ 05 )

THUXVXWXSXY) GTPOVWS?

o=n(HOV)+D(PyyIQuv)) o—n(H(W|U)=%u|[W/log(n+1))

Q—n(H<5?|UW>+D<PS~y|m||PSPY|UWS|P[~JW>)] (123)
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< lim A [Tn(HwVHD(Pm@UV)) w 9~ n(HOW[O)=Xu|W|log(n+1))

n—00 Poywsy€
T3 (Puw ,Pywsy)

27n(1p(W;V,S,Y)ffﬁ,(U;W),(%i%)

o=n(H(SY|UW)+D(Psy 5y || Ps Pyjows|Powi)) 5 on(HOVWSY) =L || [VIWI|S|| V] log(n-+1) )

= lim 27", (124)
n—oo
where,
B, = min c D(PUVWSY‘QUVPW\UPSYWW) + I (W;V.5Y) = Ip(U; W) — o(1 )]
UVWSY
T (Puw Prwsy)
(n)
— E5(Pwu, Ps, Pxjuws)- (125)

In (123), we used the fact that

P(Epa| F) < 2 x 27" (Ip(WiViSY)=Lp(UW)—07)

Y

which follows from

P (W™(l) = 0" F) <2 P(WF() = @F|U™ = u™, V" = o™, 8" = s, Y™ = 4", Eng, Em).
(126)

Eqn. (126) can be proved similar to (94).

Finally, we consider the case when &, holds.

lim lim ZIP’ "=u", V" =0"|Hy) P(Dy| U™ =u™, V" =", &)

n—00 § 4/ 5%0

= lim lim P(U" =u™, V" =" |Hy)
N0 6,51,6-0 S
Y P(S"=s"Y"=y" Dol Ut =u", V" =", &)

Sn’y’n

=lim lim Y PU"=u"V"= v”|H1)[ S OP(ST =Y =y Ut =" V=", &)

n—00 § 6/ 5§50

unon sTyn
P(Do| U" =u", V" =0", 8" =s"Y" =9y", &)

= lim lim Z P(U™ =u", V" =" |H,) [ Z P(S" =s",Y" =y"| &)

n00 6,6,6-0 4 g
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]P)(D0| vn - Una Sn - Snuyn - yna 50)

= lim lim P(V" = o"|Hy) P(S" = 5", Y" = 4| &)

N0 6.5 620

P(Do| V" = v", 8" = s", Y™ = y", &). (127)

Again, D, occurs only if there exists a sequence (W™(l),V™, S*,Y") € Tﬁf‘wvsy]

I € [2nIp(UiW)+9)] Noting that the quantization codebook is independent of the (V™ S Y™)

~ for some
9

given that & holds, it can be shown using standard arguments that
P(Do| V" = 0", 8" = s", Y" = y", &) < 27 "pWViVSY)=Ip(U:W)=0r), (128)
Also,
P(S" = s, Y" = y"| &) < 9—n(H(SY)+D(Psy||Qsy)) (129)
Hence, using (128) and (129) in (127), we obtain

lim lim Y P(V"=0"[H) P(S" =" Y" =y"| &)

no0 6,650,650 n

P(Dy| V" =0v", 8" =s",Y" =y", &)

< lim lim Z Q—N(H(V)-FD(P(/HQV)) 2—71(H(S?)+D(P§}7|‘st)) 9—n(Ip(WiV,S,Y) =1 (U;W)—b7)

S om0 S0
v,8 Y

< lim (n + 1)\V||5H3’| max QTLH(VS?) Q—H(H(V)JFD(PHIQV)) Q—H(H(S?)-FD(ngIIst))

o Py sy =Pvsy

2—n(Iﬁ(W;V,S,Y)—Ip(U;W))

= lim 27",
n—oo

where,

By, = min  D(PpgypllQusy) + Ip(WiV,S.Y) = Ip(U; W) = [V|[S]|Y]log(n + 1)

vy =Fvsy

W B (Psxi).

Since the T2EE is lower bounded by the minimal value of the exponent due to the various type

2 error events, this completes the proof of the theorem.
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