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Abstract

A distributed binary hypothesis testing problem is studied in which multiple observers transmit their

observations to a remote detector over orthogonal discrete memoryless channels. The detector uses the

received information from the observers along with its own observations to test for the joint distribution

of the data. Single-letter inner and outer bounds for the type 2 error exponent (T2EE) is established

for the special case of testing against conditional independence (TACI), in the regime of vanishing

type 1 error probability constraint. Specializing this result for the one-encoder problem, a single-letter

characterization of the optimal T2EE is obtained. For the general hypothesis testing problem, a lower

bound on the T2EE is established by using a separation based scheme that performs independent channel

coding and hypothesis testing. It is shown that this separation based scheme recovers the optimal T2EE

when specialized for the case of TACI. A joint hypothesis testing and channel coding scheme based on

hybrid coding is also proposed and the T2EE achievable under this scheme is analyzed. In general, this

scheme is expected to achieve a better performance compared to the separation based scheme.

I. INTRODUCTION

Given data samples, statistical hypothesis testing (HT) deals with the problem of ascertaining

the true assumption, that is, the true hypothesis, about the data from among a set of hypotheses.

In modern communication networks (like in sensor networks, cloud computing and Internet of

things (IoT)), data is gathered at multiple remote nodes, referred to as observers, and transmitted

over noisy links to another node for further processing. Often, there is some prior statistical

This work was presented in part at the International Symposium on Information theory (ISIT), Aachen, 2017 [15].



2

knowledge available about the data, for example, that the joint probability distribution of the

data belongs to a certain prescribed set. In such scenarios, it is of interest to identify the true

underlying probability distribution, and this naturally leads to the problem of distributed HT

over noisy channels, which is depicted in Fig. 1. Each encoder l, l = 1, . . . , L, observes k

samples independent and identically distributed (i.i.d) according to PUl , and communicates its

observation to the detector by n uses of the discrete memoryless channel (DMC), characterized by

the conditional distribution PYl|Xl . The detector decides between the two hypotheses, H0 and H1,

based on the channel outputs Y n
1 , . . . , Y

n
L as well as its own observations V k and Zk, where H0

(resp. H1) is the hypothesis that the data (U1, . . . , UL, V, Z) is distributed according to the joint

distribution PU1...ULV Z (resp. QU1...ULV Z). Our goal is to characterize the set of achievable type

2 error exponents (T2EE’s) for a prescribed constraint on the type 1 error probability. We will

refer to this problem as the general hypothesis testing with side-information (GHTS) problem.

The instance of the GHTS problem in which H0 : PU1...ULV Z and H1 : PU1...UL|Z × PV |Z × PZ
will be referred to as the testing against conditional independence (TACI) problem. The special

cases of the GHTS and the TACI problem when the side information Z is absent is referred to

as the testing against independence (TAI) and the general hypothesis testing (GHT) problem,

respectively.

In the non-distributed scenario in which, the detector performs a binary HT on the probability

distribution of the data observed directly, the optimal T2EE is characterized by the well-known

lemma of Stein [1] (see also [2]). The study of distributed statistical inference under communica-

tion constraints was conceived by Berger in [3]. In [3], and in the follow up literature summarized

below, communication from the observers to the detector are assumed to be over rate-limited

error-free channel. Ahlswede and Csiszár studied the GHT problem for the case of a single

observer (L = 1) [4]. They proved a tight single-letter characterization of the optimal T2EE for

the TAI problem and also established a lower bound for the GHT problem. Furthermore, they

also proved a strong converse which states that the optimal achievable T2EE is independent of

the constraint on the type 1 error probability. A more general lower bound for the TAI problem

with a single observer is established by Han [5], which recovers the corresponding lower bound

in [4]. Han also considered complete data compression in a related setting where either U1, or V ,

or both (also referred to as two-sided compression setting) are compressed and communicated

to the detector using a message set of cardinality two. It is shown that, asymptotically, the

optimal T2EE achieved in these three settings are equal. In contrast, even the TAI problem with
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two-sided compression and general rate constraints remains open till date. Shalaby et. al [6]

extended the complete data compression result of Han to show that the optimal T2EE is not

improved even if the rate constraint is relaxed to that of zero-rate compression (sub-exponential

message set with respect to block-length). Shimokawa et. al [7] obtained a better lower bound

for the GHT problem by considering quantization and binning at the encoder along with a

minimum empirical-entropy decoder. Rahman and Wagner [8] established inner bound for the

TACI problem with L observers, by performing quantization and binning at the encoders. This

quantize-bin-test bound is then shown to be tight, and also to coincide with the one achieved

by the Shimokawa-Han-Amari scheme in [7] for the case of a single observer, thereby implying

the optimality of both these schemes. The optimal T2EE for the TAI problem with two decision

centers is obtained in [9], where the encoder communicates to both detectors via a common bit-

pipe in addition to individual private bit-pipes to each. The TACI problem with multiple observers

is still open, although a special case has been solved in [10] when the observed data follows a

certain Markovian condition. The T2EE for more complex settings involving interaction between

two observers, where one of the observer also acts as the detector has also been studied in [11],

[12]. The observers exchange messages over a noiseless link for K rounds of interaction under a

constraint on the total exchange rate. On completion of K rounds, the HT decision is taken at the

observer which receives the last message. The optimal T2EE for TAI in this model with K = 1

and K > 1 is obtained in [11] and [12], respectively. A lower bound on the optimal T2EE for

the general HT case in this setting is established in [13]. The authors also prove a single-letter

expression for the optimal T2EE in the zero-rate compression regime, analogous to that of [6].

When the detector also performs lossy source reconstruction in addition to hypothesis testing,

the set of all simultaneously achievable T2EE-distortion pairs for the GHT problem is studied

in [14]. Therein, the authors also prove a single-letter characterization of the T2EE-distortion

region for the special case of TAI. Recently, the GHT problem has been studied in a multi-hop

network scenario where the communication from the observer to the detector happens over a

relay network [16].

While the works mentioned above have studied the unsymmetric case of focusing on the T2EE

for a constraint on the type 1 error probability, other works have analyzed the trade-off between

the type 1 and type 2 error probabilities in the exponential sense. In this direction, the optimal

trade-off between the type 1 and type 2 error exponents in the non-distributed scenario is obtained

in [17]. The distributed version of this problem is first studied in [18], where inner bounds on the
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above trade-off are established for the GHT problem. This problem has also been explored from

an information geometric perspective for the zero-rate compression scenario in [19] and [20],

which provides further insight into the geometric properties of the optimal trade-off between the

two exponents. A Neyman-Pearson like test for the GHT problem in the zero-rate compression

scenario is proposed in [21], which in addition to achieving the optimal trade-off between the two

exponents, also achieves the optimal second order asymptotic performance among all symmetric

(type-based) encoding schemes. However, the optimal trade-off between the type 1 and type

2 error exponents for the general distributed HT problem remains open till date. Recently, an

inner bound for this trade-off is obtained in [22], by using the reliability function of the optimal

channel detection codes.

In contrast, HT in distributed settings that involve communication over noisy channels has

received relatively less attention in the past. In noiseless rate-limited settings, the encoder can

reliably communicate its observation subject to a rate constraint. However, this is no longer the

case in noisy settings, which complicates the study of error exponents in HT. A measure of the

noisiness of the channel is the so-called reliability function E(R) (function of the communication

rate R) of the channel [23]. E(R) denotes the exponent (first order) of best asymptotic decay

of the probability of error achievable in channel coding when the rate of messages is R. It is

reasonable to expect that E(R) plays a role in the characterization of the achievable T2EE. The

problem of designing a channel codebook that achieves a reliability of E(R) is an open problem

in general. However, it is well known that E(R) ≥ Er(R), where Er(R) is the random coding

exponent [23]. As the name suggests, the existence of a channel codebook achieving Er(R) can

be shown by the standard random coding method.

The goal of this paper is to study the best attainable T2EE for the GHTS problem, and obtain

a computable characterization of the same. Although a complete solution is not to be expected

(since even the corresponding noiseless case is still open), the aim is to provide an achievable

scheme for the general problem, and to discuss special cases in which a tight characterization

can be obtained. The main contributions can be summarized as follows. We establish single-letter

lower and upper bounds on the achievable T2EE for the TACI problem with multiple observers.

This is done by first mapping the problem to an equivalent joint source channel coding (JSCC)

problem with helpers. The Berger-Tung bounds [24] and the source- channel separation theorem

in [25] are then used to obtain the desired bounds. Subsequently, these bounds are shown to be

tight for the special case of a single observer. This tight single-letter characterization for TACI
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Fig. 1: Illustration of the system model.

reveals that the optimal T2EE depends only on the marginal distributions of the observed data

and the channel rather than on their joint distribution. Motivated by this, we obtain a lower bound

on the T2EE for the GHTS problem for the case of a single observer, by using a separation

based scheme that performs independent hypothesis testing and channel coding. This scheme

recovers the optimal T2EE for TACI derived previously. We then analyze the T2EE achieved by

a generalization of the separation based scheme, in which, hybrid coding is used to communicate

the observations from the encoder to the detector.

The rest of the paper is organized as follows. In Section II, we introduce the system model,

definitions and supporting lemmas. Following this, we introduce the L−helper JSCC problem

and obtain lower and upper bounds for the achievable T2EE for the TACI problem in Section

III. In Section IV, we describe the separation based scheme followed by the hybrid coding based

scheme for the GHTS problem, and state the T2EE attained by these schemes. The proofs of

these results are presented in the Appendices. Finally, we conclude the paper in Section V.

A. Notations

Random variables (r.v.’s) are denoted by capital letters (e.g., X), their realizations by the

corresponding lower case letters (e.g., x), and their support by calligraphic letters (e.g., X ).

The cardinality of X is denoted by |X |. The joint distribution of r.v.’s X and Y is denoted

by PXY and its marginals by PX and PY . X − Y − Z denotes that X, Y and Z form

a Markov chain. For m, l ∈ Z+, Xm denotes the sequence X1, . . . , Xm, while Xm
l denotes

the sequence Xl,1, . . . , Xl,m. D(PX ||QX), HPX (X), HPXY (X|Y ) and IPXY (X;Y ) represent the

standard quantities of Kullback-Leibler (KL) divergence between distributions PX and QX , the

entropy of X with distribution PX , the conditional entropy of X given Y and the mutual
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information between X and Y with joint distribution PXY , respectively. When the distribution

of the r.v.’s involved are clear from the context, the entropic and mutual information quantities

are denoted simply by I(X;Y ), H(X) and H(X|Y ), respectively. Given realizations Xn = xn

and Y n = yn, He(x
n|yn) denote the conditional empirical entropy defined as

He(x
n|yn) = HPX̃Ỹ

(X̃|Ỹ ), (1)

where PX̃Ỹ denote the joint type of (xn, yn). For a ∈ R+, [a] denotes the set of integers

{1, 2, . . . , dae}. All logarithms considered in this paper are with respect to the base 2. For any

set G, Gc denotes the set complement. ak
(k)−→ 0 indicates that limk→∞ ak = 0. For functions

f1 : A → B and f2 : B → C, f2 ◦ f1 denotes function composition. Finally, 1(·), O(·) and o(·)

denote the indicator function, the Big-o and the Little-o notation of Landau, respectively.

II. SYSTEM MODEL AND DEFINITIONS

All the r.v.’s considered henceforth are discrete with finite support. Let k, n ∈ Z+ be ar-

bitrary. Let L = {1, . . . , L} denote the set of observers which communicate to the detector

over orthogonal noisy channels, as shown in Fig. 1. For l ∈ L, encoder l observes Uk
l , and

transmits codeword Xn
l = f

(k,n)
l (Uk

l ), where f
(k,n)
l : Ukl → X n

l is a stochastic mapping. Let

τ := n
k

denote the bandwidth ratio. The channel output Y n
L is given by the probability law

PY nL |Xn
L
(ynL|xnL) =

∏L
l=1

∏n
j=1 PYl|Xl(yl,j|xl,j), i.e., the channels between the observers and the

detector are independent of each other and memoryless. Depending on the received symbols Y n
L

and its own observations (V k, Zk), the detector makes a decision between the two hypotheses

H0 : PULV Z or H1 : QULV Z according to the map g(k,n) : YnL × Vk × Zk → {H0, H1}. Let

A(k,n) ⊆ YnL × Vk × Zk denote the acceptance region for H0, i.e., g(k,n)(ynL, v
k, zk) = H0 if

(ynL, v
k, zk) ∈ A(k,n) and g(k,n)(ynL, v

k, zk) = H1 otherwise. It is assumed that PULV Z << QULV Z ,

i.e., the joint distribution of the data under H0 is absolutely continuous1 with respect to that under

H1.

Let ᾱ
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , g(k,n)

)
:= PY nL V kZk(A

c
(k,n)) and β̄

(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , g(k,n)

)
:=

QY nL V
kZk(A(k,n)) denote, respectively, the type 1 and type 2 error probabilities for the encoding

1This assumption is necessary for the Kullback-Leibler divergence quantities like D(PY nV kZk ||QY nV kZk ) that characterize
the T2EE to be finite.
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functions f (k,n)
1 , . . . , f

(k,n)
L and decision rule g(k,n). Define

β′
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , ε

)
:= inf

g(k,n)
β̄
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , g(k,n)

)
, (2)

such that

ᾱ
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , g(k,n)

)
≤ ε,

and

(Zk, V k, Uk
lc)− Uk

l −Xn
l − Y n

l , l ∈ L,

where Xn
l = f

(k,n)
l (Uk

l ), lc := L\l and

β(k, τ, ε) := inf
f

(k,n)
1 ,...,f

(k,n)
L

n≤τk

β′
(
k, n, f

(k,n)
1 , . . . , f

(k,n)
L , ε

)
.

Definition 1. A T2EE κ is said to be (τ, ε) achievable for the GHT problem if there exists a

sequence of integers k, corresponding sequences of encoding functions f (k,nk)
1 , . . . , f

(k,nk)
L and

decoding functions g(k,nk) such that nk ≤ τk, ∀ k, and for any δ > 0,

lim sup
k→∞

log (β(k, τ, ε))

k
≤ −(κ− δ). (4)

Let

κ(τ, ε) := sup{κ′ : κ′ is (τ, ε) achievable}, and (5)

θ(τ) := sup
k∈Z+

θ(k, τ), (6)

where

θ(k, τ) := sup
f

(k,n)
1 ,...,f

(k,n)
L

n≤τk

D
(
PY nL V kZk ||QY nL V

kZk
)

k
. (7)

Next, we obtain single-letter inner and outer bounds on κ(τ, ε) for the problem of TACI over

noisy channels. Our approach is similar to that in [4], in that we first obtain bounds on κ(τ, ε)

in terms of θ(τ), and subsequently show that θ(τ) has a single-letter characterization in terms of

information theoretic quantities. We establish this characterization by considering an equivalent

JSCC problem with noisy helpers.
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Lemma 2. For the GHT problem with any bandwidth ratio τ ≥ 0, we have

(i) lim sup
k→∞

log(β(k,τ,ε))
k

≤ −θ(τ), ∀ ε ∈ (0, 1).

(ii) lim
ε→0

lim inf
k→∞

log(β(k,τ,ε))
k

≥ −θ(τ).

Proof: Note that for τ = 0, n = 0, which implies that the observer does not transmit

anything. Then, from Stein’s lemma [4] for ordinary hypothesis testing, (i) and (ii) follows,

where θ(0) := D(PV Z ||QV Z). When τ > 0, the proof is similar to that of Theorem 1 in [4].

Here, we prove (i), which states that a T2EE of θ(τ) is achievable. The proof of (ii) follows

in a straightforward manner from the proof given in [4] and is omitted here. Let k ∈ Z+ and

ε̃ > 0 be arbitrary, and ñk, f̃ (k,ñk)
l , l ∈ L, and Ỹ ñk

L be the channel block length, encoding

functions and channel outputs respectively, such that kθ(k, τ)−D
(
P
Y
ñk
L V kZk

||Q
Y
ñk
L V kZk

)
< kε̃ .

For each l ∈ L,
{
Ỹ ñk
l (j)

}
j∈Z+

form an infinite sequence of i.i.d. r.v.’s indexed by j. Hence, by

the application of Stein’s Lemma [4] to the sequences
{
Ỹ ñk
L (j), V k(j), Zk(j)

}
j∈Z+

, we have

lim sup
j→∞

log (β(kj, τ, ε))

kj
≤
−D

(
P
Y
ñk
L V kZk

||Q
Y
ñk
L V kZk

)
k

,

≤ −(θ(k, τ)− ε̃). (8)

For m ≥ kj, β(m, τ, ε) ≤ β(kj, τ, ε). Hence,

lim sup
m→∞

log (β(m, τ, ε))

m
≤ lim sup

j→∞

log (β(kj, τ, ε))

kj

≤ −(θ(k, τ)− ε̃).

Note that the left hand side (L.H.S) of the above equation does not depend on k. Taking infimum

with respect to k on both sides of the equation and noting that ε̃ is arbitrary, proves (i).

Remark 3. Part (ii) of Lemma 2 is known as the weak converse for the HT problem in

the literature and (i) and (ii) together imply that θ(τ) is the optimal T2EE as ε → 0, i.e.,

limε→0 κ(τ, ε) = θ(τ). For ε = 1, note that the optimal T2EE is ∞ since it is possible to choose

Ac(k,n) = Yn × Vk ×Zk while satisfying the type 1 error probability constraint.

Part (i) of Lemma 2 proves the achievability of the T2EE θ(τ) using Stein’s Lemma. In
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Appendix A, we show an explicit proof of the achievability by computing the type 1 and type 2

errors for a block-memoryless stochastic encoding function at the observer and a joint typicality

detector. Note that for the TACI problem, the KL-divergence in (7) becomes mutual information,

and we have

θ(τ) = sup
f

(k,n)
1 ,...,f

(k,n)
L

k,n≤τk

I(V k;Y n
L |Zk)

k
s.t.

(Zk, V k)− Uk
l −Xn

l − Y n
l , l ∈ L.

Although Lemma 2 implies that θ(τ) is an achievable T2EE, it is in general not computable as

it is characterized in terms of a multi-letter expression. However, as we will show below, for

the TACI problem, single-letter bounds for θ(τ) can be obtained. By the memoryless property

of the sequences V k and Zk, we can write

θ(τ) = H(V |Z)− inf
f

(k,n)
1 ,...,f

(k,n)
L

k,n≤τk

H(V k|Y n
L , Z

k)

k
s.t. (9)

(Zk, V k)− Uk
l −Xn

l − Y n
l , l ∈ L.

In the next section, we introduce the L−helper JSCC problem and show that the multi-letter

characterization of this problem coincides with obtaining the infimum in (9). The computable

characterization of the lower and upper bounds for (9) then follows from the single-letter outer

and inner bounds available for the L−helper JSCC problem.

III. L−HELPER JSCC PROBLEM

Consider the model shown in Fig. 2 where there are L + 2 correlated discrete memoryless

sources (UL, V, Z) i.i.d. with joint distribution PULV Z . For 1 ≤ l ≤ L, encoder f (k,n)
l : Ukl → X n

l

observes the sequence Uk
l and transmits Xn

l = f
(k,n)
l (Uk

l ) over the corresponding DMC PYl|Xl ,

while encoder fk : Vk →M = {1, . . . , 2kR} observes V k, and outputs M = fk(V k). Decoder

g(k,n) has access to side-information Zk, receives fkL+1(V k) error-free, observes Y n
L and outputs

V̂ k according to the map g(k,n) : YnL ×M×Zk → V̂k. The goal of g(k,n) is to reconstruct V k

losslessly. We will first establish the multi-letter characterization of the rate region of the L−

helper JSCC. Prior to stating the result, we require some new definitions.
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Fig. 2: L−helper JSCC problem.

Definition 4. For a given bandwidth ratio τ , a rate R is said to be achievable for the L-helper

JSCC problem if for every λ ∈ (0, 1], there exist sequences of positive numbers δk tending to 0

as k →∞, encoders fk(·), f (k,nk)
l (·), and decoder g(k,nk)(·, ·, ·) such that nk ≤ τk and

P
(
g

(k,nk)
h

(
Y nk ,M,Zk

)
= V k

)
≥ 1− λ and

log(|M|)
k

≤ R + δk.

Let

R(τ) := inf{R : R is achievable.} (10)

We next show that the problem of obtaining the infimum in (9) coincides with the multi-letter

characterization of R(τ) in (10). Define

Rk := inf
f

(k,n)
1 ,...,f

(k,n)
L

n≤τk

H(V k|Y n
L , Z

k)

k
s.t (11)

(Zk, V k)− Uk
l −Xn

l − Y n
l , l ∈ L.

Theorem 5. For the L−helper JSCC problem,

R(τ) = inf
k
Rk.

Proof: The proof is given in Appendix B.

Having shown the equivalence between the multi-letter characterizations of θ(τ) for the TACI

problem over noisy channels and R(τ) for the L−helper JSCC problem, our next step is to

obtain computable single-letter lower and upper bounds on R(τ), which can then be used to



11

obtain bounds on θ(τ). For this purpose, we use the source-channel separation theorem [25,

Th. 2.4] for orthogonal multiple access channels. The theorem states that all achievable average

distortion-cost tuples in a multi-terminal JSCC (MT-JSCC) problem over an orthogonal multiple

access channel (MAC) can be obtained by the intersection of the rate-distortion region and the

MAC region. We need a slight generalization of this result when there is side information Z at

the decoder, which can be proved similarly to [25]. Note that the L−helper JSCC problem is a

special case of the MT-JSCC problem with L+ 1 correlated sources PULV and side information

Z available at the decoder, where the objective is to reconstruct V losslessly. Although the above

theorem proves that separation holds, a single-letter expression is not available in general for the

multi-terminal rate distortion problem [24]. However, single-letter inner and outer bounds have

been given in [24], which enable us to obtain single-letter upper and lower bounds on R(τ) as

follows.

Theorem 6. For G ⊆ L, let CG :=
∑

l∈G Cl, where Cl := max
PXl

I(Xl;Yl) denotes the capacity of

the channel PYl|Xl . For the L−helper JSCC problem with bandwidth ratio τ , define

Ri(τ) := inf
WL

max
G⊆L

FG, (12)

where

FG = H(V |WGc , Z) + I(UG;WG|WGc , V, Z)− τ
∑
l∈G

Cl

for some auxiliary r.v.’s Wl, l ∈ L, such that

(Z, V, Ulc , Wlc)− Ul −Wl, (13)

|Wl| ≤ |Ul|+ 4, and ∀ G ⊆ L,

I(UL;WG|V,WGc , Z) ≤ τCG. (14)

Similarly, let Ro(τ) denote the right hand side (R.H.S) of (12), when the auxiliary r.v.’s Wl, l ∈ L

satisfy |Wl| ≤ |Ul|+ 4, Eqn.(14) and

(V, Ulc , Z)− Ul −Wl. (15)
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Then,

Ro(τ) ≤ R(τ) ≤ Ri(τ), and (16)

H(V |Z)−Ri(τ) ≤ θ(τ) ≤ H(V |Z)−Ro(τ). (17)

Proof: From the source-channel separation theorem, an upper bound on R(τ) can be

obtained by the intersection of the Berger-Tung (BT) inner bound [24, Th. 12.1] with the

capacity region (C1, . . . , CL, CL+1), where CL+1 is the rate available over the noiseless link

from the encoder of source V to the decoder. Writing the BT inner bound 2 explicitly, we obtain

that for all G ⊆ L (including the null-set),

I(UG;WG|V,WGc , Z) ≤
∑
l∈G

τCl,

I(UG;WG|V,WGc , Z) +H(V |WGc , Z) ≤
∑
l∈G

τCl + CL+1,

where the auxiliary r.v.’s WL satisfy (13) and |Wl| ≤ |Ul| + 4. Taking the infimum of CL+1

over all such WL and denoting it by Ri(τ), we obtain the second inequality in (16). The other

direction in (16) is obtained similarly by using the BT outer bound [24, Th. 12.2]. Since R(τ)

is equal to the infimum in (9), substituting (16) in (9) proves (17).

The BT inner bound is tight for the two terminal case, when one of the distortion requirements

is zero (lossless) [24, Ch.12]. Thus, we have the following result (for convenience, we drop the

index 1 from the associated variables).

Proposition 7. For the TACI problem with L = 1 and bandwidth ratio τ ,

θ(τ) = sup
W

I(V ;W |Z), (18)

such that I(U ;W |Z) ≤ τC, (19)

(Z, V )− U −W, |W| ≤ |U|+ 4. (20)

Proof: Note that the Markov chain conditions in (13) and (15) are identical for L = 1.

2Ri(τ) can be improved by introducing a time sharing r.v. T (independent of all the other r.v.’s) in the BT inner bound, but
it is omitted here for simplicity.
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Hence,

Ri(τ) = Ro(τ) = R(τ). (21)

Using the BT inner bound in [24, Ch.12], we obtain R(τ) as the infimum of R′ such that

H(V |Z,W ) ≤ R′, (22)

I(U ;W |V, Z) ≤ τC, (23)

H(V |Z,W ) + I(U ;W |Z) ≤ τC +R′, (24)

for some auxiliary r.v. W satisfying (20). Hence,

R(τ) = inf
W

max
(
H(V |W,Z), H(V |W,Z)

+ I(U ;W |Z)− τC
)
, (25)

such that (20) and (23) hold. We next prove that (25) can be simplified as

R(τ) = inf
W
H(V |Z,W ), (26)

such that (19) and (20) are satisfied. This is done by showing that, for every r.v. W for which

I(U ;W |Z) > τC, there exists a r.v. W̄ such that

I(U ; W̄ |Z) = τC, (27)

H(V |W̄ , Z) ≤ H(V |W,Z) + I(U ;W |Z)− τC, (28)

and (20) and (23) are satisfied with W replaced by W̄ . Setting

W̄ =

W, with probability 1-p,

constant, with probability p,
(29)

suffices, where p is chosen such that I(U ; W̄ |Z) = τC. To see this, first note that H(V |W̄ , Z)

is an increasing function of p, while I(U ; W̄ |Z) and I(U ; W̄ |V, Z) are decreasing functions of

p. Hence, it is possible to choose p such that (27) and (23) are satisfied with W̄ in place of W .

It is clear that such a choice of W̄ also satisfies (20). To complete the proof of (26), it remains
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to be shown that for such a W̄ , (28) holds. We can write,

H(V |W̄ , Z) = (1− p)H(V |W,Z) + pH(V |Z). (30)

Taking derivative with respect to p, we obtain

d

dp
H(V |W̄ , Z) = I(V ;W |Z). (31)

Similarly,

d

dp
H(U |W̄ , Z) = I(U ;W |Z). (32)

For the Markov chain in (20), we have I(V ;W |Z) ≤ I(U ;W |Z) by the data processing

inequality [23]. Hence, we have that

d

dp
H(V |W̄ , Z) ≤ d

dp
H(U |W̄ , Z). (33)

From (33), it follows that

F (p) := H(V |W̄ , Z) + I(U ; W̄ |Z)− τC (34)

is a decreasing function of p. Together with the fact that H(V |W̄ , Z) is increasing with p, it

follows that (28) is satisfied for W̄ chosen in (29). Having shown (26), (18) now follows from

(17) and (21). This completes the proof.

IV. T2EE FOR THE GHTS PROBLEM

As shown in Appendix A, the optimal T2EE for the GHT problem is achieved when the input

to the channel Xn is generated correlated with the observed source sequence Uk, according to

some conditional distribution PXn|Uk and the optimal test achieving the Stein’s exponent, i.e.,

the Neyman-Pearson test, is performed on blocks of data (received and observed) at the detector.

The encoder and the detector for such a scheme would be computationally complex to implement

from a practical viewpoint. In this section, we propose and analyze the T2EE achieved by two

simple schemes for the GHTS problem with L = 1. The first one is a separation based scheme

that performs independent hypothesis testing and channel coding while the second one is a joint

hypothesis testing and channel coding scheme that utilizes hybrid coding.
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A. Separate Hypothesis Testing and Channel Coding Scheme

In [7], Shimokawa et.al. obtained an achievable T2EE for the GHT problem (L = 1) in the

rate-limited noiseless channel setting using a quantization and binning scheme. In this scheme,

the type of the observed sequence is sent by the encoder to the detector, which aids in the HT3.

Since the number of types is polynomial in the block-length, these can be communicated error-

free at asymptotically zero-rate. Intuitively, it is desirable to do the same in the noisy channel

setting as well; however, this is not possible in general.

In this subsection, we propose a separate hypothesis testing and channel coding (SHTCC)

scheme for the GHTS problem and analyze its T2EE. In the SHTCC scheme, the encoding and

decoding functions are restricted to be of the form f (k,n) = f
(k,n)
C ◦ f (k)

S and g(k,n) = g
(k)
S ◦ g

(k,n)
C ,

respectively. The source encoder f (k)
S : Uk → M = {0, 1, · · · , d2kRe} generates an index

M ∈ M based on the observed sequence Uk and the channel encoder f (k,n)
C : M → C̃ =

{Xn(j), j ∈ [0 : d2kRe]} maps M into the codeword Xn(M) from the channel codebook C̃. Note

that the rate of this coding scheme is kR
n

= R
τ

bits per channel transmission. The channel decoder

g
(k,n)
C : Yn →M maps the received sequence into an index M , and g(k)

S :M×Vk → {H0, H1}

outputs the result of the HT. The codewords Xn(j), j ∈ [1 : d2kRe], in C̃ are generated i.i.d.

according to the distribution PX that achieves the exponent Er(Rτ ) for channel decoding error.

We let M = 0 denote a special error message indicating that the observed sequence Uk is not

typical. Since maximum possible reliability is desirable for M = 0, it is clear that Xn(0) has

to be chosen such that it achieves the best exponent for the error probability at the channel

decoder. By generating all the d2kRe + 1 codewords in C̃ i.i.d according to PX , it is clear that

this exponent is at least Er(Rτ ), but it can be higher in some cases.

We next state as a result the T2EE achieved by the SHTC scheme. The subscript denoting

the observer index from all the relevant variables is omitted as L = 1. Also, since the side-

information Z and V play the same role for the GHT problem, it is enough to consider only

one side-information, which we denote by V .

Theorem 8. Consider the GHT problem with L = 1, bandwidth ratio τ , and noisy channel PY |X

3In order to achieve the T2EE proposed in [7], it is in fact sufficient to send a message indicating whether the observed
sequence is typical or not, instead of sending the type of the observed sequence.
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with capacity C. Then, κ(τ, ε) ≥ κs for 0 < ε ≤ 1, where

κs := sup
(PW |U ,R)∈B

min
(
E1(PW |U), E2(R,PW |U), E3(R,PW |U , τ), E4(R,PW |U , τ)

)
, (35)

where

B := {(PW |U , R) : IP (U ;W |V ) ≤ R < τC, V − U −W},

E1(PW |U) := min
PŨṼ W̃∈T1(PUW ,PVW )

D(PŨ Ṽ W̃ ||QUVW ), (36)

E2(R,PW |U) :=


min

PŨṼ W̃∈T2(PUW ,PV ) D(PŨ Ṽ W̃ ||QUVW ) + (R− IP (U ;W |V )),

if IP (U ;W ) > R,

∞, otherwise,

(37)

E3(R,PW |U , τ) :=



min
PŨṼ W̃∈T3(PUW ,PV ) D(PŨ Ṽ W̃ ||QUVW ) + (R− IP (U ;W |V ))

+ τEr
(
R
τ

)
, if IP (U ;W ) > R,

min
PŨṼ W̃∈T3(PUW ,PV ) D(PŨ Ṽ W̃ ||QUVW ) + IP (V ;W ) + τEr

(
R
τ

)
,

otherwise,

(38)

E4(R,PW |U , τ) :=

D(PV ||QV ) + (R− IP (U ;W |V )) + Es(R, τ), if IP (U ;W ) > R,

D(PV ||QV ) + IP (V ;W ) + Es(R, τ), otherwise,
(39)

PUVW = PUV PW |U , QUVW = QUV PW |U , Es(R, τ) ≥ τEr

(
R

τ

)
, (40)

T1(PUW , PVW ) := {PŨ Ṽ W̃ ∈ T (U × V ×W) : PŨW̃ = PUW , PṼ W̃ = PVW},

T2(PUW , PV ) := {PŨ Ṽ W̃ ∈ T (U × V ×W) : PŨW̃ = PUW , PṼ = PV , HP (W |V ) ≤ H(W̃ |Ṽ )},

T3(PUW , PV ) := {PŨ Ṽ W̃ ∈ T (U × V ×W) : PŨW̃ = PUW , PṼ = PV }.

The proof of Theorem 8 is given in Appendix C. Although the expression κs in Theorem 8

appears complicated, the terms E1(PW |U) to E4(R,PW |U , τ) can be understood to correspond

to exponents caused due to distinct events that can possibly lead to a type 2 error. Note that

E1(PW |U) and E2(R,PW |U) are the same terms appearing in the exponent achieved by the

Shimokawa-Han-Amari scheme [7] for the noiseless channel setting, while E3(R,PW |U , τ) and
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E4(R,PW |U , τ) are additional terms introduced due to the channel. E3(R,PW |U , τ) corresponds

to the event when the encoder transmits a message M 6= 0, but the channel decoder outputs

M̂ 6= M and g(k)
S (M̂, V k) = H0. E4(R,PW |U , τ) is due to the error event when the error message

M = 0 is transmitted, the channel decoder outputs M̂ 6= M and g(k)
S (M̂, V k) = H0.

The term Es(R, τ) in (40) requires further explanation. This corresponds to the best error

exponent in channel coding that can be achieved for the error message M = 0 when the

codewords for the remaining d2kRe messages in C̃ achieve the random coding error exponent

τEr(
R
τ

). As mentioned above, Es(R, τ) is at least equal to τEr(
R
τ

). However, Es(R, τ) may

be significantly higher in some cases, for instance, when the channel has positive zero error

capacity [23] and it is possible to choose one error-free channel codeword while simultaneously

achieving τEr(Rτ ) for the remaining d2kRe codewords, in which case Es(R, τ) =∞.

We next show that the SHTCC scheme when specialized to the case of TACI recovers the

result of Proposition 7, which implies its optimality (as the probability of type 1 error tends to

zero). Towards that end, it is convenient to state the T2EE achievable by the SHTCC scheme

for the case when additional side-information Z is available at the detector.

Remark 9. The extension of Theorem 8 to the case when additional side information Z is

available at the detector is straightforward. Let κ̂s denote the value of κs when,

(i) PUVW and QUVW are replaced by PUV ZW = PUV ZPW |U and QUV ZW = QUV ZPW |U ,

respectively,

(ii) D(PŨ Ṽ W̃ ||QUVW ) and D(PV ||QV ) are replaced by D(PŨ Ṽ Z̃W̃ ||QUV ZW ) and D(PV Z ||QV Z),

respectively,

(iii) IP (U ;W |V ), IP (U ;W ) and IP (V ;W ) are replaced by IP (U ;W |V, Z), IP (U ;W |Z) and

IP (V ;W |Z), respectively,

(iv) set B is replaced by Bs = {PW |U : IP (U ;W |V, Z) ≤ R < τC, (V, Z)− U −W}.

(v) sets T1(PUW , PVW ), T2(PUW , PV ) and T3(PUW , PV ) are replaced, respectively, by

T s1 (PUW , PV ZW ) := {PŨ Ṽ Z̃W̃ ∈ T (U × V ×W ×Z) : PŨW̃ = PUW , PṼ Z̃W̃ = PV ZW},

T s2 (PUW , PV Z) := {PŨ Ṽ Z̃W̃ ∈ T (U × V ×W ×Z) : PŨW̃ = PUW , PṼ Z̃ = PV Z ,

HP (W |V, Z) ≤ H(W̃ |Ṽ , Z̃)},

T s3 (PUW , PV Z) := {PŨ Ṽ Z̃W̃ ∈ T (U × V ×W ×Z) : PŨW̃ = PUW , PṼ Z̃ = PV Z}.
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It can be shown along the similar lines to the proof of Theorem 8 that κ̂s is an achievable T2EE

for the GHTS problem.

The value of κ̂s when specialized to the case of TACI recovers the optimal T2EE given in

Proposition 7 as follows. Let B′ := {(PW |U , R) : I(U ;W |Z) ≤ R < τC}. Note that B′ ⊆ Bs

since I(U ;W |V, Z) ≤ I(U ;W |Z), which holds due to the Markov chain relation (Z, V )−U−W .

Now, consider (PW |U , R) ∈ B′. For such W , we have

E1(PW |U) = min
PŨṼ Z̃W̃∈T

s
1 (PUW ,PVWZ)

D(PŨ Ṽ Z̃W̃ ||PZPU |ZPV |ZPW |U)

= I(V ;W |Z),

E2(R,PW |U) ≥ I(U ;W |Z)− I(U ;W |V, Z) = I(V ;W |Z),

E3(R,PW |U , τ) = min
PŨṼ Z̃W̃∈T

s
3 (PUW ,PV Z) D(PŨ Ṽ Z̃W̃ ||PZPU |ZPV |ZPW |U) + I(V ;W |Z) + τEr

(
R

τ

)
≥ I(V ;W |Z), (41)

E4(R,PW |U , τ) = D(PV Z ||PV Z) + I(V ;W |Z) + Es(R, τ)

≥ I(V ;W |Z), (42)

where in (41) and (42), we used the non-negativity of D(·||·), Er(·) and Es(R, τ).

Hence, we obtain that,

κ(τ, ε) ≥ sup
PW |U∈Bs

min{E1(R,PW |U), E2(R,PW |U), E3(R,PW |U , τ), E4(R,PW |U , τ)}

≥ sup
PW |U∈Bs

I(V ;W |Z)

≥ sup
PW |U∈B′

I(V ;W |Z) (43)

= sup
PW |U :I(W ;U |Z)≤τC

I(V ;W |Z), (44)

where in (43) we used the fact that B′ ⊆ Bs; and (44) follows since I(V ;W |Z) and I(U ;W |Z)

are continuous functions of PW |U .

The achievability of the optimal T2EE for TACI by using the SHTCC scheme shows the

interesting fact that a noisy channel does not always degrade the performance of HT, in com-

parison to a noiseless channel of same capacity. Furthermore, it also shows that for TACI, the

effect of the noisiness of the channel on the T2EE can be completely nullified by using a simple
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separation based coding scheme. From (41) and (42), notice that this happens due to the fact

that E3(R,PW |U , τ) and E4(R,PW |U , τ) are both larger than I(V ;W |Z). This can be explained

intuitively as follows. For the scheme discussed in Appendix C that achieves a T2EE of κs, a

type 2 error occurs only when the detector decodes a codeword Ŵ k that is jointly typical with

the side information sequence (V k, Zk). For the case of TACI, when H1 is the true hypothesis,

then with high probability, the codeword W k(J) chosen by the encoder is not jointly typical

with V k, i.e., (W k(J), V k) /∈ T k[PVW ]δ
. Then, the above phenomenon corroborates the fact that

given an error occurs at the channel decoder, the probability (averaged over randomly generated

codebooks) that (Ŵ k, V k) ∈ T k[PVW |Z ]δ
decays exponentially as 2−kI(V ;W |Z).

B. Local Decision Scheme (Zero-Rate Compression Scheme)

The SHTCC scheme described above is a two stage scheme in which the encoder at the

observer communicates a compressed version of the actual observations using the optimal channel

code of rate R
τ

bits per channel use (R ≤ τC), while the detector makes its decision on the

hypothesis using an estimate of the compressed version based on the output of the channel

decoder and side-information V n. Now, suppose the observer makes the decision about the

hypothesis locally using its observations Un and transmits this 1 bit decision to the detector

using a channel code (for |M | = 2 messages over n channel uses), while the detector outputs its

decision based on M̂ and V n. Note that the rate of the code is R = 1
n

bits per channel use, which

tends to zero asymptotically. The encoder f (k,n) = f
(k,n)
C ◦ f (k)

S and decoder g(k,n) = g
(k)
S ◦ g

(k,n)
C

are thus specified by the maps f (k)
S : Uk → {0, 1} (0 and 1 denote local decisions of H0 and

H1, respectively), f (k,n)
C : {0, 1} → X n, g(k,n)

C : Yn → {0, 1} and g(k)
S : Vk×{0, 1} → {H0, H1}.

Consider the encoder at the observer with f (k)
S and f (k,n)

C defined as follows.

f
(k)
S (uk) =

0, if Puk ∈ T[PU ]δ ,

1, otherwise,

and

f
(k,n)
C

(
f

(k)
S (uk)

)
=

a
n, if f (k)

S (uk) = 0,

bn, otherwise.
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Here, an and bn denote the codewords formed by repeating the symbols a and b from the channel

input alphabet X , which are chosen such that

Ec := D(PY |X=a||PY |X=b) = arg max
x,x′

D(PY |X=x||PY |X=x′). (45)

Notice that EC is the best channel coding error exponent achievable for the message M = 1 for

a channel code with message set M = {0, 1} (with equally probable messages 0 and 1), when

the probability of decoding error goes to 0. Let the decoder be defined by

g
(k,n)
C (yn) =

0, if yn ∈ T n[PY |X=a]δ′
,

1, otherwise,

where, δ′ > δ, and

g
(k)
S

(
vk, g

(k,n)
C (yn)

)
=

0, if Pvk ∈ T[PV ]δ and g(k,n)
C (yn) = 0,

1, otherwise.

By the law of large numbers, the probability of type 1 error goes to zero since,

lim
k→∞

P(Uk ∈ T k[PU ]δ
|H = H0) = 1,

lim
k→∞

P(V k ∈ T k[PV ]δ
|H = H0) = 1,

and lim
n→∞

P(Y n ∈ T n[PY |X=a]δ′
|H = H0) = 1.

Note that a Type 2 error occurs only under two events. The first is when the observed sequences

uk and vk are PU -typical and PV -typical, respectively, and there is no error at the channel

decoder. The second event that causes an error is when the observed sequence vk is PV -typical,

but uk is not PU -typical and the channel decoder f (k,n)
C makes a decoding error. It is not hard

to see that this scheme achieves a T2EE given by

κl = min (D(PU ||QU), Ec) +D(PV ||QV ). (46)

Note that when the marginals of U and V are the same under both hypothesis (as in the case

of TACI), we get κl = 0; and hence, the SHTCC scheme performs strictly better than the local

decision scheme. However, the performance of these two schemes are not comparable in general.
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C. Joint Hypothesis Testing and Channel Coding Scheme

Hybrid coding is a form of JSCC introduced in [26] for the lossy transmission of sources

over noisy networks. As the name suggests, hybrid coding is a combination of the digital and

analog (uncoded) transmission schemes. For simplicity, assume that τ = 1, i.e., k = n. In

hybrid coding, the observed sequence Un is first mapped to one of the codewords within a

compression codebook. Then, a symbol-by-symbol function of the codeword, Un and a time

sharing sequence Sn (that is known a priori to the encoder and decoder) is transmitted as the

channel codeword Xn. This procedure is reversed at the decoder, in which, the decoder first

attempts to reconstruct the compression codeword using the channel output Y n, Sn and its own

correlated side information V n. Then, the reconstruction Ûn is obtained as a symbol-by-symbol

function of the reconstructed codeword, Y n, V n and Sn. In this subsection, we analyze the T2EE

achieved by a Joint Hypothesis Testing and Channel Coding (JHTCC) scheme that utilizes hybrid

coding for the communication between the observer and the detector. In the JHTCC scheme, we

consider a slight generalization of hybrid coding in that, we allow the channel input Xn to be

generated according to an arbitrary memoryless stochastic function, instead of a deterministic

function. After reconstructing the quantization codeword, the detector performs the hypothesis

test using the reconstructed codeword, channel output and side-information. As before, the side-

information V n and Zn play symmetric roles; and hence, it is sufficient to state the result with

only V n.

Theorem 10. Consider the GHT problem with L = 1, bandwidth ratio τ = 1 and channel PY |X

with capacity C. Then, κ(τ, ε) ≥ κh for 0 < ε ≤ 1, where

κh = sup
(PW |U , PSX′ , PX|UWS)∈ Bh

min
(
E ′1(PW |U , PS, PX|UWS), E ′2(PW |U , PS, PX|UWS),

E ′3(PSX′)
)
, (47)

Bh =
{(
PW |U , PSX′ , PX|UWS

)
: IP̂ (U ;W ) < IP̂ (W ;Y, V |S)

}
,

E ′1(PW |U , PS, PX|UWS) = min
PŨṼ W̃ S̃Ỹ ∈T

′
1 (P̂UW ,P̂VWSY )

D(PŨ Ṽ W̃ S̃Ỹ ||Q̂UVWSY ), (48)

E ′2(PW |U , PS, PX|UWS) = min
PŨṼ W̃ S̃Ỹ ∈T

′
2 (P̂UW ,P̂VWSY )

D(PŨ Ṽ W̃ S̃Ỹ ||Q̂UVWSY ) + IP̂ (W ;V, Y |S)

− IP̂ (U ;W ), (49)



22

E ′3(PSX′) = D(P̂V SY ||Q̌V SY ) + IP̂ (W ;V, Y |S)− IP̂ (U ;W ), (50)

P̂UVWSX′XY (PW |U , PSX′ , PX|UWS) = PUV PW |UPSX′PX|UWSPY |X , (51)

Q̂UVWSX′XY (PW |U , PSX′ , PX|UWS) = QUV PW |UPSX′PX|UWSPY |X , (52)

Q̌UV SX′XY (PSX′) = QUV PSX′1(X = X ′)PY |X ,

T ′1 (P̂UW , P̂VWSY ) = {PŨ Ṽ W̃ S̃Ỹ ∈ T (U × V ×W × S × Y) : PŨW̃ = P̂UW , PṼ W̃ S̃Ỹ = P̂VWSY },

T ′2 (P̂UW , P̂VWSY ) = {PŨ Ṽ W̃ S̃Ỹ ∈ T (U × V ×W × S × Y) : PŨW̃ = P̂UW , PṼ S̃Ỹ = P̂V SY ,

H(W̃ |Ṽ , S̃, Ỹ ) ≥ HP̂ (W |V, S, Y )}.

Corollary 11.

κ(τ, ε) ≥ max (κh, κl, κs) , ∀ε ∈ (0, 1]. (53)

The proof of Theorem 10 is given in Appendix D. To contrast with Theorem 8, note that

Theorem 10 has three competing factors in the T2EE characterization instead of four. Similar to

the SHTCC scheme, these factors can be related to the various error events that occur in hybrid

coding. More specifically, let the event that the encoder is unsuccessful in finding a codeword

typical with Un in the quantization codebook be referred to as the encoding error, and the event

that happens when a wrong codeword (unintended by the encoder) is reconstructed at the detector

be referred to as the decoding error. Then, E ′1(PW |U , PS, PX|UWS) is related to the event that

neither the encoding nor the decoding error occurs, while E ′2(PW |U , PS, PX|UWS) and E ′3(PSX′)

are related to the events that only the decoding error and both the encoding and decoding errors

occur, respectively.

We next show that JHTCC scheme achieves the optimal T2EE for TACI. In Theorem 10,

let W be of the form W = (Wc, X), such that X is independent of (X ′,Wc, U, V ), and

(U, V,Wc, S,X
′)−X − Y . Then, it follows that

P̂UVWcSX′XY (PWc|U , PX , PSX′) = PUV PWc|UPSX′PX|SPY |X , (54)

Q̂UVWcSX′XY (PWc|U , PX , PSX′) = QUV PWc|UPSX′PX|SPY |X , (55)

Q̌UV SX′XY (PSX′) = QUV PSX′1(X = X ′)PY |X , (56)

IP̂ (W ;V, Y |S)− IP̂ (U ;W ) = IP̂ (X;Y |S)− IP̂ (U ;Wc) + IP̂ (V ;Wc)
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= IP̂ (X;Y |S)− IP̂ (U ;Wc|V ), (57)

Bh = {PWc|U , PSX′ , PX|S : IP̂ (U ;Wc|V ) < I(X;Y |S)}. (58)

Using (54)-(58) in Theorem 10, we obtain

E ′1(PW |U , PS, PX|UWS) = E ′1(PWc|U , PS, PX|S)

= min
PŨṼ W̃ S̃Ỹ ∈T

′
1 (P̂UW ,P̂VWSY )

D(PŨ Ṽ W̃ S̃Ỹ ||Q̂UVWSY )

≥ min
PŨṼ W̃∈T1(P̂UWc ,P̂VWc )

D(PŨ Ṽ W̃ ||Q̂UVWc)

+ min
PŨṼ W̃ S̃Ỹ ∈T

′
1 (P̂UWc ,P̂VWcSY )

D(PS̃Ỹ |Ũ Ṽ W̃ ||Q̂SY |UWc |PŨ Ṽ W̃ )

= E1(PWc|U) + min
PŨṼ W̃ S̃Ỹ ∈T

′
1 (P̂UWc ,P̂VWcSY )

D(PỸ |Ũ Ṽ W̃ S̃||Q̂Y |UWcS|PŨ Ṽ W̃ S̃), (59)

E ′2(PW |U , PS, PX|UWS) = E ′2(PWc|U , PS, PX|S) (60)

= min
PŨṼ W̃ S̃Ỹ ∈T

′
2 (P̂UW ,P̂VWSY )

D(PŨ Ṽ W̃ S̃Ỹ ||Q̂UVWSY ) + IP̂ (W ;V, Y |S)− IP̂ (U ;W ) (61)

= min
PŨṼ W̃ S̃Ỹ ∈T

′
2 (P̂UW ,P̂VWSY )

D(PŨ Ṽ W̃ S̃Ỹ ||Q̂UVWSY ) + IP̂ (X;Y |S)− IP̂ (U ;W |V ) (62)

≥ min
PŨṼ W̃∈T2(P̂UWc ,P̂V )

D(PŨ Ṽ W̃ ||Q̂UVWc) + +IP̂ (X;Y |S)− IP̂ (U ;Wc|V )

+ min
PŨṼ W̃ S̃Ỹ ∈T

′
2 (P̂UWc ,P̂VWcSY )

D(PS̃Ỹ |Ũ Ṽ W̃ ||Q̂SY |UWc|PŨ Ṽ W̃ )

≥ min
PŨṼ W̃∈T3(P̂UWc ,P̂V )

D(PŨ Ṽ W̃ ||Q̂UVWc) + IP̂ (X;Y |S)− IP̂ (U ;Wc|V )

+ min
PŨṼ W̃ S̃Ỹ ∈T

′
2 (P̂UWc ,P̂VWcSY )

D(PỸ |Ũ Ṽ W̃ S̃||Q̂Y |UWcS|PŨ Ṽ W̃ S̃), (63)

E ′3(PSX′) = D(P̂V SY ||Q̌V SY ) + IP̂ (W ;V, Y |S)− IP̂ (U ;W )

= D(PV ||QV ) + IP̂ (X;Y |S)− IP̂ (U ;Wc|V ) +D(P̂Y |S||Q̌Y |S|PS). (64)

Now, we specialize Theorem 10 for TACI by substituting V = (V ′, Z), such that the joint

distribution of the r.v.’s U, V ′ and Z is PUV ′Z and QUV ′Z = PZPU |ZPV ′|Z under H0 and H1,
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respectively. Then, it follows from (59), (63) and (64) that

E ′1(PWc|U , PS, PX|S) ≥ E1(PWc|U) = IP̂ (V ′;Wc|Z), (65)

E ′2(PWc|U , PS, PX|S) ≥ IP̂ (X;Y |S)− IP̂ (U ;Wc|V ′, Z), (66)

E ′3(PSX′) ≥ IP̂ (X;Y |S)− IP̂ (U ;Wc|V ′, Z), (67)

such that (PWc|U , PSX′ , PX|S) ∈ Bh, where Bh is as defined in (58). Let

B′h := {(PWc|U , PSX′ , PX|S) : PX|S = PX , IP̂ (U ;Wc|Z) < IP̂ (X;Y )}. (68)

Note that B′h ∈ Bh due to the Markov chain (V ′, Z)−U−Wc. Thus, for any (PWc|U , PSX′ , PX) ∈

B′h, we have from (66) that,

IP̂ (X;Y )− IP̂ (U ;Wc|V ′, Z)

= IP̂ (X;Y )− IP̂ (U ;Wc|Z) + IP̂ (V ′;Wc|Z) ≥ IP̂ (V ′;Wc|Z). (69)

This proves that E ′1(PWc|U , PS, PX), E ′2(PWc|U , PS, PX) and E ′3(PSX′) are all greater than or

equal to IP̂ (V ′;Wc|Z) for (PWc|U , PS, PX) ∈ B′h. Taking supremum over all PX and noting that

IP̂ (X;Y ) ≤ C, it follows that the optimal T2EE given in Proposition 7 is achievable.

Since separate source and channel coding is a special case of hybrid coding, it is expected

that JHTCC scheme can achieve a larger T2EE compared to SHTCC scheme. However, we do

not have a proof of this claim. Note that since the KL-divergence is non-negative, we obtain

from (59) that, E ′1(PW |U , PS, PX|UWS) ≥ E1(PWc|U). Also, we can write

sup
(PWc|U ,PSX′ ,PX|S)∈Bh

[
E ′2(PW |U , PS, PX|UWS)− E3(IP̂ (X;Y |S), PWc|U , 1)

]
= sup

(PWc|U ,PSX′ ,PX|S)∈Bh

[
min

PŨṼ W̃ S̃Ỹ ∈T
′
2 (P̂UWc ,P̂VWcSY )

D(PỸ |Ũ Ṽ W̃ S̃||QY |UWcS|PŨ Ṽ W̃ S̃)

− Er(IP̂ (X;Y |S))
]
, (70)

and

sup
(PWc|U ,PSX′ ,PX|S)∈Bh

[
E ′3(PSX′)− E4(IP̂ (X;Y |S), PWc|U , 1)

]
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= sup
(PWc|U ,PSX′ ,PX|S)∈Bh

[
D(P̂Y |S||Q̌Y |S|PS)− Es(IP̂ (X;Y |S), 1)

]
. (71)

The difficulty in the proof of the above claim lies in showing that the R.H.S. of (70) and (71)

are non-negative, from which the result would immediately follow.

From a practical viewpoint, the complexity of implementing the SHTCC, local decision and

JHTCC schemes are all different. Evidently, the local decision scheme is the simplest since

it involves the communication of only a single bit of information between the observer and

the detector. The SHTCC scheme is more complex than the local decision scheme; however, it

still utilizes a modular approach, in which, the HT and channel coding are done separately by

independent blocks, both at the encoder and the detector. On the other hand, channel coding and

HT is done jointly in the JHTCC scheme, which makes it the most complex among the schemes

studied here.

V. CONCLUSIONS

In this paper, we have studied the T2EE achievable for the distributed HT problem over

orthogonal DMC’s with side information available at the detector. For the special case of TACI,

single-letter upper and lower bounds are obtained for the T2EE, which are shown to be tight

when there is a single observer in the system. It is interesting to note that the reliability function

of the channel does not play a role in the T2EE for TACI. We also established single-letter

lower bounds on the T2EE for the GHT problem with a single observer, first using the SHTCC

scheme that performs independent HT and channel coding and then using the JHTCC scheme

that utilizes hybrid coding for the communication between the observer and the detector.

APPENDIX A

T2EE USING JOINT TYPICALITY DETECTOR

Here, we provide the proof for the case L = 1. For given arbitrary positive integers k and n

such that n ≤ kτ , fix f (k,n)
1 = PXn

1 |Uk1 . For any integer j and sequence ukj1 , the observer transmits

Xnj
1 = f

(kj,nj)
1 (ukj1 ) generated i.i.d. according to

∏j
j′=1 PXn

1 |Uk1 =uk1(j′). The detector declares H0 :

PU1V Z if
(
Y nj

1 , V kj, Zkj
)
∈ T j

[Ỹ n1 Ṽ
kZ̃k]δj

(here δj → 0 as j → ∞) where (Ỹ n
1 , Ũ

k
1 , Ṽ

k, Z̃k) ∼

PY n1 |Uk1 P
⊗
k

U1V Z
and H1 : QU1V Z otherwise. To simplify the exposition, we denote (Y n

1 , V
k, Zk)
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and T j
[Ỹ n1 Ṽ

kZ̃k]δj
by Wk,n and T j

[W̃k,n]δj
, respectively. By the Markov lemma [24], type 1 error

probability tends to zero as j →∞. The type 2 error probability is bounded by

β′
(
kj, nj, f

(kj,nj)
1 , ε

)
≤ QY nj1 V kjZkj

(
T j

[W̃k,n]δj

)
≤

∑
P̃∈T j

[W̃k,n]δj

∑
wjk,n∈TP̃

QW j
k,n

(wjk,n)

(a)
=

∑
P̃∈T j

[W̃k,n]δj

∑
wjk,n∈TP̃

2−j(H(P̃ )+D(P̃ ||QWk,n))

(b)
=

∑
P̃∈T j

[W̃k,n]δj

2−jD(P̃ ||QWk,n) (c)

≤ (j + 1)|Wk,n|2−jBk,n(j),

where,

Bk,n(j) := min
P̃∈T j

[W̃k,n]δj

D(P̃ ||QWk,n
),

and (a), (b) and (c) follow from Lemmas 2.3, 2.6 and 2.2 in [23], respectively. Hence,

log
(
β′
(
kj, nj, f

(kj,nj)
1 , ε

))
kj

≤ −Bk,n(j)

k
+ δ′k,n(j),

where δ′k,n(j) :=
|Wk,n| log(j+1)

kj
and |Wk,n| = |Y|n|V|k|Z|k. Note that for any k and n, δ′k,n(j)→ 0

as j → ∞. Also, since δj is chosen such that it tends to 0 as j → ∞, Bk,n(j) converges to

D(PWk,n
||QWk,n

) by the continuity of D(P̃ ||QWk,n
) in P̃ for fixed QWk,n

. Since k, n and f (k,n)
1

are arbitrary, it follows from (4) and (6) that θ(τ) is an achievable T2EE for any upper bound

ε on the type 1 error probability. It is easy to see that this scheme can be generalized to L > 1.

APPENDIX B

PROOF OF THEOREM 5

For the achievability part, consider the following scheme.

Encoding: Fix k, n ∈ Z+ and PXn
l |U

k
l

at encoder l, l ∈ L. For j ∈ Z+, upon observing ukjl ,

encoder l transmits Xnj
l = f

(kj,nj)
l (Ukj

l ) generated i.i.d. according to
∏j

j′=1 PXn
l |U

k
l =ukl (j′). En-

coder L+ 1 performs uniform random binning on V k, i.e., fkjL+1 : Vkj →M = {1, 2, · · · , 2kjR}.

By uniform random binning, we mean that fkjL+1(V kj) = m, where m is selected uniformly at

random from the set M.
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Decoding: Let M denote the received bin index, and δ > 0 be an arbitrary number. If there

exists a unique sequence V̂ kj such that fkjL+1(V̂ kj) = M and (V̂ kj, Y nj
L , Zkj) ∈ T j

[V kY nL Z
k]δ

, then

the decoder outputs g(kj,nj)(M,Y nj
L , Zkj) = V̂ kj . Else, an error is declared.

Analysis of the probability of error: The possible error events under the above encoding

and decoding rules are: E1 = {(V kj, Y nj
L , Zkj) /∈ T j

[V kY nL ,Z
k]δ
} and

E2 =

∃ Ṽ
kj 6= V kj, fkjL+1(Ṽ kj) = fkjL+1(V kj)

(Ṽ kj, Y nj
L , Zkj) ∈ T j

[V kY nL Z
k]δ

 .

By the joint typicality lemma [24], Pr(E1)→ 0 as j →∞. Also,

P(E2) =
∑

vkj ,ynjL ,zkj

P(vkj, ynjL , z
kj)× P

(
fkjL+1(Ṽ kj) = fkjL+1(vkj), (Ṽ kj, ynjL , z

kj) ∈ T j
[V kY nL Z

k]δ

)
=

∑
vkj ,ynjL ,zkj

P(vkj, ynjL , z
kj)

∑
vkj∈T j

[V kY nL Z
k]δ

e−kjR

≤ ej(H(V k|Y nL ,Z
k)+δ)e−kjR

= e
kj

(
H(V k|Y nL ,Z

k)+δ

k
−R
)
.

Hence, P(E2) → 0 as j → ∞ if R > H(V k|Y n
L , Z

k) + δ, (Zk, V k) − Uk
l − Xn

l − Y n
l , l ∈ L.

Since δ > 0 is arbitrary, this proves that R >
H(V k|Y nL ,Z

k)

k
is an achievable rate.

For the converse, we have by Fano’s inequality that H(V k|fkL+1(V k), Y n
L , Z

k) ≤ γk, where

γk → 0 as k →∞. Hence, we obtain

kR = log(|M|) ≥ H(M |Y n
L , Z

k)

= H(M |Y n
L , Z

k)−H(V k|M,Y n
L , , Z

k)

+H(V k|M,Y n
L , Z

k)

≥ H(V k,M |Y n
L , Z

k)− γk

= H(V k|Y n
L , Z

k) +H(M |V k, Y n
L , Z

k)− γk

≥ H(V k|Y n
L , Z

k)− γk.

This proves the converse by noting that (Zk, V k) − Uk
l − Xn

l − Y n
l , l ∈ L holds for any

communication scheme.
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APPENDIX C

PROOF OF THEOREM 8

We first describe the encoding and decoding operations in the SHTCC scheme. The random

coding method is used to analyze the type 1 and type 2 error probabilities achieved by this

scheme, averaged over the ensemble of randomly generated codebooks. This guarantees the

existence of at least one deterministic codebook that achieves same or lower type 1 and type 2

error probabilities. We mention here that unless specified otherwise, the mutual information and

entropy terms appearing in the proof below, like for example, I(U ;W ), I(U ;W |V ), H(W |V )

etc. are computed with respect to the joint distribution PUVW = PUV PW |U .

Codebook Generation:

Fix 0 ≤ R < τC, conditional distribution PW |U and positive numbers δ′, δ′′, δ, δ̃ > 0

(whose values will be specified later in the proof). Generate 2k(I(U ;W )+δ′) independent sequences

W k(j), j ∈
[
2k(I(U ;W )+δ′)

]
randomly according to the distribution

∏k
i=1 PW (wi) where

PW (w) =
∑
u∈U

∑
w∈W

PU(u)PW |U(w|u).

Denote this codebook by C which is referred to as the source codebook. Next, the channel

codebook used by f (k,n)
C is obtained by independently generating

⌈
2kR
⌉

codewords Xn(m), m ∈[
1 :
⌈
2kR
⌉]

i.i.d. according to the distribution
∏n

i=1 PX(xi), such that it achieves the random

coding exponent Er(Rτ ) of the channel PY |X [27]. The codeword Xn(0) corresponding to M = 0

is chosen such that it achieves an error probability with exponent Es(R, τ) at the channel decoder.

Denote this collection of codewords by C̃.

Encoding: If I(U ;W )+δ′ > R, i.e., the number of codewords in the source codebook is larger

than the number of codewords in the channel codebook, the encoder performs uniform random

binning on the sequences W k(j), j ∈
[
2k(I(U ;W )+δ′)

]
in C, i.e., for each codeword in C, it selects

an index uniformly at random from the set [2kR]. Denote the bin index selected for W k(j) by

fB(j). If the observed sequence Uk is typical, i.e., Uk ∈ T k[U ]δ′′
, the source encoder f (k)

S first

looks for a sequence W k(J) such that (Uk,W k(J)) ∈ T k[UW ]δ
, δ > δ′′. If there exists multiple

such codewords, it chooses one of the index J among them uniformly at random and outputs

the bin-index M = fB(J), M ∈ [1 : 2kR] or M = J depending on whether I(U ;W ) + δ′ > R

or otherwise. If Uk /∈ T k[U ]δ′′
or such an index J does not exist, f (k)

s outputs the error message

M = 0. The channel encoder f (k,n)
C outputs the codeword Xn(M) from the codebook C̃.
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Decoding: At the decoder, g(k,n)
C maps the received channel output Y n to an estimate M̂ of

the transmitted message M . If M̂ = 0, H1 is declared. Else, given the side information sequence

V k and estimated bin-index M̂ , g(k,n)
S searches for a typical sequence Ŵ k = W k(l̂) ∈ T k[W ]δ̂

,

δ̂ = |U|δ in the codebook such that

l̂ = arg min
l: M̂=fB(l),

Wk(l)∈Tk
[W ]

δ̂

He(W
k(l)|V k).

The decoder declares H0 if (Ŵ k, V k) ∈ T k[WV ]δ̃
, for δ̃ > δ, else, H1 is declared.

We next analyze the Type 1 and Type 2 error probabilities achieved by the above scheme (in

the limit δ, δ′, δ̃ → 0).

Analysis of Type 1 error: A type 1 error occurs only if one of the following events happen.

ECE =
{
g

(k,n)
C (Y n) 6= Xn(M)

}
ETE =

{
(Uk, V k) /∈ T k[UV ]δ̄

, δ̄ =
δ′′

|V|

}
EEE =

{
@ j ∈

[
1 : 2k(I(U ;W )+δ′)

]
: (Uk,W k(j)) ∈ T k[UW ]δ

}
EME =

{
(V k,W k(J)) /∈ T k[VW ]δ̃

}
EDE =

{
∃ l ∈

[
1 : 2k(I(U ;W )+δ′)

]
, l 6= J : fB(l) = fB(J), W k(l) ∈ T k[W ]δ̂

,

He(W
k(l)|V k) ≤ He(W

k(J)|V k)

}

The probability of the event ECE , that an error occurs at the channel decoder g(k,n)
C tends to 0

as n→∞ since Er(Rτ ) is positive for R < τC. ETE tends to 0 asymptotically by the weak law of

large numbers. Note that given EcTE holds, Uk ∈ T[U ]δ′′
and by the covering lemma [23, Lemma

9.1], it is well known that EEE tends to 0 doubly exponentially for δ > δ′′ and δ′ appropriately

chosen. Given EcEE ∩ EcTE holds, it follows from the Markov chain relation V −U −W and the

Markov lemma [24], that P(EME) tends to zero as k → ∞ for δ̃ > δ (appropriately chosen).

Next, we consider the probability of the event EDE . Given that EcME ∩ EcEE ∩ EcTE holds, note

that limk→∞He(W
k(J)|V k)→ H(W |V ) as δ̃ → 0. Thus, we have
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P(EDE| V k = vk,W k(J) = wk, EcME ∩ EcEE ∩ EcTE)

≤
2k(I(U ;W )+δ′)∑

l=1,
l 6=J

∑
w̃k∈Tk

[W ]
δ̂
:

He(w̃k|vk)≤He(wk|vk)

P
(
fB(l) = fB(J), W k(l) = w̃k| V k = vk,W k(J) = wk,

EcME ∩ EcEE ∩ EcTE
)

=
2k(I(U ;W )+δ′)∑

l=1,
l 6=J

∑
w̃k∈Tk

[W ]
δ̂
:

He(w̃k|vk)

≤He(wk|vk)

P(W k(l) = w̃k| V k = vk,W k(J) = wk, EcME ∩ EcEE ∩ EcTE)
1

2kR

≤
2k(I(U ;W )+δ′)∑

l=1,
l 6=J

∑
w̃k∈Tk

[W ]
δ̂
:

He(w̃k|vk)≤He(wk|vk)

2 · 2−kR2−k(H(W )−δ1) (72)

≤
2k(I(U ;W )+δ′)∑

l=1,
l 6=J

(k + 1)|V||W| 2k(H(W |V )+γ1(k)) × 2 · 2−kR2−k(H(W )−δ1) (73)

≤ 2−k(R−I(U ;W |V )−δ(k)
2 ),

where δ1 = O(δ̂), γ1(k) = |He(w
k|vk)−H(W |V )| and δ(k)

2 = δ1 + 1
k
|V||W| log(2k + 2) + δ′ +

γ1(k)
(k)−→ 0 as δ̃, δ′, δ → 0. To obtain (72), we used the fact that

P(W k(l) = w̃k| EcME ∩ EcEE ∩ EcTE,W k(J) = wk, V k = vk)

≤ 2× P(W k(l) = w̃k| EcME ∩ EcEE ∩ EcTE, V k = vk). (74)

This follows similar to (94), which is discussed in the type 2 error analysis section below. In

order to obtain the expression in (73), we first summed over the types PW̃ of sequences within

the typical set T k[W ]δ
that have empirical entropy less than He(w

k|vk) and used the facts that

the number of sequences within such a type is upper bounded by 2k(H(W |V )+γ1(k)) and the total

number of types is upper bounded by (k + 1)|V||W| [23]. Summing over all (wk, vk) ∈ T k[VW ]δ̃
,

we obtain
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P(EDE|EcME ∩ EcEE ∩ EcTE)

≤
∑

(wk,vk)∈Tk
[WV ]

δ̃

P(W k(J) = wk, V k = vk|EcME ∩ EcEE ∩ EcTE) 2−k(R−I(U ;W |V )−δ(k)
2 )

≤ 2−k(R−I(U ;W |V )−δ(k)
2 ). (75)

Hence, if I(U ;W |V ) < R < τC, the probability of the events causing Type 1 error tends to

zero asymptotically.

Analysis of Type 2 error: First, note that a type 2 error occurs only if V k ∈ T k[V ]δ′′′
, δ′′′ = |W|δ̃

and hence we can restrict the type 2 error analysis to only such V k. Denote the event that a

type 2 error happens by D0. Let

E0 =
{
Uk /∈ T k[U ]δ′′

}
. (76)

The type 2 error probability can be written as

β(k, τ, ε) =
∑

(uk,vk)∈Uk×Vk
P(Uk = uk, V k = vk|H1) P(D0|Uk = uk, V k = vk). (77)

Let ENE := EcEE ∩ Ec0 . The last term in (77) can be upper bounded as follows.

P(D0|Uk = uk, V k = vk)

= P(ENE|Uk = uk, V k = vk) P(D0|Uk = uk, V k = vk, ENE)

+ P(EcNE|Uk = uk, V k = vk) P(D0|Uk = uk, V k = vk, EcNE)

≤ P(D0|Uk = uk, V k = vk, ENE) + P(D0|Uk = uk, V k = vk, EcNE).

Thus, we have

β(k, τ, ε)

≤
∑

(uk,vk)∈Uk×Vk
P(Uk = uk, V k = vk|H1)

[
P(D0|Uk = uk, V k = vk, ENE)

+ P(D0|Uk = uk, V k = vk, EcNE)
]
. (78)

First, assume that ENE holds. Then,
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P(D0| Uk = uk, V k = vk, ENE) =
2k(I(U ;W )+δ′)∑

j=1

2kR∑
m=1

P(J = j, fB(J) = m| Uk = uk, V k = vk, ENE)

P(D0|Uk = uk, V k = vk, J = j, fB(J) = m, ENE). (79)

By the symmetry of the codebook generation, encoding and decoding procedure, the term

P(D0|Uk = uk, V k = vk, J = j, fB(J) = m, ENE) in (79) is independent of the value of J and

fB(J). Hence, w.l.o.g. assuming J = 1 and fB(J) = 1, we can write

P(D0| Uk = uk, V k = vk, ENE)

=
2k(I(U ;W )+δ′)∑

j=1

2kR∑
m=1

P(J = j, fB(J) = m| Uk = uk, V k = vk, ENE)

P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

= P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

=
∑

wk∈Wk

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE). (80)

Given ENE holds, D0 may occur in three possible ways (i) when the channel decoder makes an

error and the codeword retrieved from the bin is jointly typical with V k (ii) when an unintended

wrong codeword is retrieved from the correct bin that is jointly typical with V k and (iii) when

there is no error at the channel decoder and the correct codeword is retrieved from the bin, that

is also jointly typical with V k. We refer to the event in case (i) as the channel error event ECE
and that in case (ii) as the binning error event EBE , respectively. More specifically,

ECE = {M̂ = g
(k,n)
C (Y n) 6= M} and (81)

EBE =
{
∃ l ∈

[
1 : 2k(I(U ;W )+δ′)

]
, l 6= J, fB(l) = M̂, W k(l)) ∈ T k[PW ]δ̂

,

(V k,W k(l)) ∈ T k[PVW ]δ̃

}
. (82)
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Define the following events

F = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE}, (83)

F1 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, ECE}, (84)

F2 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, EcCE}, (85)

F21 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, EcCE, EBE}, (86)

F22 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, EcCE, EcBE}. (87)

The last term in (80) can be expressed as follows.

P(D0|F) = P(ECE|F) P(D0|F1) + P(EcCE|F) P(D0|F2),

where

P(D0|F2) = P(EBE|F2) P(D0|F21) + P(EcBE|F2) P(D0|F22). (88)

Since the channel encoder and decoder uses randomly generated codewords achieving the best

random coding error exponent Er(Rτ ), we have

P(ECE|F) = 2−nEr(
R
τ ) = 2−kτEr(

R
τ ). (89)

Next, consider the type 2 error event which happens when H0 is declared in spite of an error at

the channel decoder. We need to consider two separate cases (i) I(U ;W ) > R and I(U ;W ) ≤ R.

Note that in the former case, binning is performed and type 2 error happens at the decoder only

if a sequence W k(l) exists in the wrong bin M̂ 6= M = fB(J) such that (V k,W k(l)) ∈ T k[VW ]δ̃
.

However as noted in [26], the calculation of probability of this event does not follow using the

standard random coding argument usually encountered in achievability proofs due to the fact

that the codeword W k(J) chosen depends on the entire codebook. Following techniques similar

to [26], we analyze the probability of this event (averaged over the codebooks C, C̃ and random

binning) as follows. We first consider the case when I(U ;W ) > R.

P(D0|F1) ≤ P( ∃ W k(l) : fB(l) = M̂ 6= 1, (W k(l), vk) ∈ T k[WV ]δ̃
|F1)

≤
2k(I(U :W )+δ′)∑

l=2

∑
m̂6=1

P(M̂ = m̂|F1) P((W k(l), vk) ∈ T k[WV ]δ̃
: fB(l) = m̂|F1)
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=
2k(I(U :W )+δ′)∑

l=2

∑
m̂ 6=1

P(M̂ = m̂|F1)
∑
w̃k:

(w̃k,vk)∈Tk
[WV ]

δ̃

P(W k(l) = w̃k : fB(l) = m̂|F1)

=
2k(I(U :W )+δ′)∑

l=2

∑
m̂ 6=1

P(M̂ = m̂|F1)
∑
w̃k:

(w̃k,vk)∈Tk
[WV ]

δ̃

P(W k(l) = w̃k|F1)
1

2kR
(90)

=
2k(I(U :W )+δ′)∑

l=2

∑
w̃k:

(w̃k,vk)∈Tk
[WV ]

δ̃

P(W k(l) = w̃k|F1)
1

2kR
. (91)

Let C−l = C\{W k(1),W k(l)}. Then,

P(W k(l) = w̃k|F1) =
∑
C−l =c

P(C−l = c)P(W k(l) = w̃k|F1, C−l = c). (92)

The last term in (92) can be upper bounded as follows.

P(W k(l) = w̃k|F1, C−l = c)

=
P(W k(l) = w̃k, Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, ECE, C−l = c)

P(Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, ECE, C−l = c)

= P(W k(l) = w̃k|Uk = uk, V k = vk, ENE, ECE, C−l = c)

P(J = 1, fB(J) = 1,W k(1) = wk|W k(l) = w̃k, Uk = uk, V k = vk, ENE, ECE, C−l = c)

P(J = 1, fB(J) = 1,W k(1) = wk|Uk = uk, V k = vk, ENE, ECE, C−l = c)

= P(W k(l) = w̃k|Uk = uk, V k = vk, ENE, ECE, C−l = c)

P(J = 1, fB(J) = 1,W k(1) = wk|W k(l) = w̃k, Uk = uk, V k = vk, ENE, ECE, C−l = c)

P(J = 1, fB(J) = 1,W k(1) = wk|Uk = uk, V k = vk, ENE, ECE, C−l = c)

= P(W k(l) = w̃k|Uk = uk, V k = vk, ENE, ECE, C−l = c)

P(W k(1) = wk|W k(l) = w̃k, Uk = uk, V k = vk, ENE, ECE, C−l = c)

P(W k(1) = wk|Uk = uk, V k = vk, ENE, ECE, C−l = c)

P(J = 1|W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, ENE, ECE, C−l = c)

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, ENE, ECE, C−l = c)
(93)

P(fB(J) = 1|J = 1,W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, ENE, ECE, C−l = c)

P(fB(J) = 1|J = 1,W k(1) = wk, Uk = uk, V k = vk, ENE, ECE, C−l = c)
.
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Since the codewords are generated independently of each other and the binning operation is

done independent of the codebook generation, we have

P(W k(1) = wk|W k(l) = w̃k, Uk = uk, V k = vk, ENE, ECE, C−l = c)

= P(W k(1) = wk|Uk = uk, V k = vk, ENE, ECE, C−l = c),

and

P(fB(J) = 1|J = 1,W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, ENE, ECE, C−l = c)

= P(fB(J) = 1|J = 1,W k(1) = wk, Uk = uk, V k = vk, ENE, ECE, C−l = c).

Consider the term in (93). Let N(uk, C−l ) = |{wk(l′) ∈ C−l : l′ 6= 1, l′ 6= l, (wk(l′), uk) ∈

T k[WU ]δ
}|. Recall that if there are multiple sequences in the codebook C that are typical with

the observed sequence Uk, then the encoder selects one of them uniformly at random. Thus if

(w̃k, uk) ∈ T k[WU ]δ
, then

P(J = 1|W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, ENE, ECE, C− = c)

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, ENE, ECE, C− = c)

=

[
1

N(uk, C−) + 2

]
1

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, ENE, ECE, C− = c)

≤ N(uk, C−) + 1

N(uk, C−) + 2
≤ 1.

If (w̃k, uk) /∈ T k[WU ]δ
, then

P(J = 1|W k(1) = wk,W k(l) = w̃k, Uk = uk, V k = vk, ENE, ECE, C− = c)

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, ENE, ECE, C− = c)

=

[
1

N(uk, C−) + 1

]
1

P(J = 1|W k(1) = wk, Uk = uk, V k = vk, ENE, ECE, C− = c)

≤ N(uk, C−) + 2

N(uk, C−) + 1
≤ 2.

Hence, the term in (92) can be upper bounded as

P(W k(l) = w̃k|F1)

≤
∑
C−=c

P(C− = c) 2 P(W k(l) = w̃k|Uk = uk, V k = vk, ENE, ECE, C− = c)

= 2 P(W k(l) = w̃k|Uk = uk, V k = vk, ENE, ECE). (94)
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Substituting (94) in (91), we obtain

P(D0|F1)

≤
2k(I(U :W )+δ′)∑

l=1

∑
w̃k:

(w̃k,vk)∈Tk
[WV ]

δ̃

2 P(W k(l) = w̃k|Uk = uk, V k = vk, ENE, ECE)
1

2kR

=
2k(I(U :W )+δ′)∑

l=1

∑
w̃k:

(w̃k,vk)∈Tk
[WV ]

δ̃

2× 2−k(H(W )−δ1) 1

2kR

= 2× 2k(I(U :W )+δ′) 2k(H(W |V )+δ3) 2−k(H(W )−δ1) 1

2kR

≤ 2−k(R−I(U ;W |V )−δ(k)
4 ), (95)

where δ(k)
4 := δ′ + δ1 + δ3 + 1

k

k−→ 0 as δ, δ′ → 0.

For the case I(U ;W ) ≤ R (when binning is not done), the terms can be bounded similarly

using (94) as follows.

P(D0|F1) =
∑
m̂6=1

P(M̂ = m̂|F1) P((W k(m̂), vk) ∈ T k[WV ]δ̃
|F1)

≤
∑
m̂ 6=1

P(M̂ = m̂|F1)
∑
w̃k:

(w̃k,vk)∈Tk
[WV ]

δ̃

2 P(W k(m̂) = w̃k|Uk = uk, V k = vk, ENE, ECE)

≤
∑
m̂ 6=1

P(M̂ = m̂|F1) 2−k(I(V ;W )−(δ1+δ3+ 1
k

)) ≤ 2−k(I(V ;W )−δ(k)
4 ). (96)

Next, consider the event when the encoding and channel error does not happen, i.e., ENE ∩ EcCE
holds. For the case I(U ;W ) > R, the binning error event denoted by EBE happens when

a wrong codeword W k(l), l 6= J is retrieved from the bin with index M by the empirical

entropy decoder such that (W k(l), V k) ∈ T k[WV ]δ
. Let PŨ Ṽ W̃ denote the type of PUkV kWk(J).

Note that PŨW̃ ∈ T k[UW ]δ
when ENE holds. If H(W̃ |Ṽ ) < H(W |V ), there exists a codeword in

the bin with index M having empirical entropy strictly less than H(W |V ). Hence, the decoded

codeword Ŵ k /∈ T k[WV ]δ̃
(asymptotically) since (Ŵ k, V k) ∈ T k[WV ]δ̃

necessarily implies that

He(Ŵ
k|V k) := H(PŴk |PV k) → H(W |V ) as δ → 0. Consequently, a Type 2 error can happen

under the event EBE only when H(W̃ |Ṽ ) ≥ H(W |V ). The probability of the event EBE can be
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upper bounded under this condition as follows.

P(EBE|F2)

≤ P
(
∃ l 6= 1, l ∈ [1 : 2k(I(U :W )+δ′)] : fB(l) = 1 and (W k(l), vk) ∈ T k[WV ]δ̃

|F2

)
≤

2k(I(U ;W )+δ′)∑
l=2

P
(

(W k(l), vk) ∈ T k[WV ]δ̃
|F2

)
P
(
fB(l) = 1|F2, (W

k(l), vk) ∈ T k[WV ]δ̃

)

=
2k(I(U ;W )+δ′)∑

l=2

P
(

(W k(l), vk) ∈ T k[WV ]δ̃
|F2

)
2−kR

≤
2k(I(U ;W )+δ′)∑

l=2

∑
w̃k:

(w̃k,vk)∈Tk
[WV ]

δ̃

2 P(W k(l) = w̃k|Uk = uk, V k = vk, ENE, EcCE) 2−kR (97)

= 2−k(R−I(U ;W |V )−δ(k)
4 ). (98)

In (97), we used the fact that

P
(
W k(l) = w̃k|F2

)
≤ 2 P(W k(l) = w̃k|Uk = uk, V k = vk, ENE, EcCE), (99)

which follows in a similar way as (94). Also, note that, by definition, P(D0|F21) = 1.

We proceed to analyze the R.H.S of (78) which upper bounds the type 2 error β(k, τ, ε), in

the limit k →∞ and δ, δ′, δ̃ → 0. Towards this end, we first focus on the the case when ENE
holds. From (80), it follows that

lim
k→∞

lim
δ,δ̃,δ′→0

∑
(uk,vk)∈Uk×Vk

P(Uk = uk, V k = vk|H1) P(D0|Uk = uk, V k = vk, ENE) (100)

= lim
k→∞

lim
δ,δ̃,δ′→0

∑
(uk,vk)∈Uk×Vk

P(Uk = uk, V k = vk|H1)

P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE). (101)

Rewriting the summation in (101) as the sum over the types and sequences within a type, we
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obtain

P(D0| ENE)

=
∑

PŨṼ W̃∈
T k(U×V×W)

∑
(uk,vk,wk)
∈TP

ŨṼ W̃

[
P(Uk = uk, V k = vk|H1) P(D0|F)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]
. (102)

Since H1 is the true underlying hypothesis, we have

P(Uk = uk, V k = vk|H1) P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

=

[
k∏
i=1

QUV (ui, vi)

]
P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)

≤

[
k∏
i=1

QUV (ui, vi)

]
1

|TPW̃ |Ũ |
≤ 2−k(H(Ũ Ṽ )+D(PŨṼ ||QUV )+H(W̃ |Ũ)− 1

k
|U||W| log(k+1)), (103)

where PŨ Ṽ W̃ denotes the type of the sequence (uk, vk, wk).

With (89), (95), (96), (98) and (103), we have the necessary machinery to analyze (102). First,

consider that the event ENE ∩ EcCE ∩ EcBE holds. In this case,

P(D0|F22) = P(D0|Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, EcCE, EcBE)

=


1, if Pukwk ∈ T k[UW ]δ

and Pvkwk ∈ T k[VW ]δ̃
,

0, otherwise.

(104)

Thus, the following terms in (102) can be simplified (in the limit δ, δ̃ → 0) as

lim
k→∞

lim
δ,δ̃,δ′→0

∑
PŨṼ W̃∈

T k(U×V×W)

∑
(uk,vk,wk)
∈TP

ŨṼ W̃

[
P(Uk = uk, V k = vk|H1) P(EcCE|F) P(EcBE|F2) P(D0|F22)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

≤ lim
k→∞

lim
δ,δ̃,δ′→0

∑
PŨṼ W̃∈

T k(U×V×W)

∑
(uk,vk,wk)
∈TP

ŨṼ W̃

[
P(Uk = uk, V k = vk|H1) P(D0|F22)
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P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

≤ lim
k→∞

(k + 1)|U||V||W| max
PŨṼ W̃∈

T1(PUW ,PVW )

2kH(Ũ Ṽ W̃ )2−k(H(Ũ Ṽ )+D(PŨṼ ||QUV )+H(W̃ |Ũ)− 1
k
|U||W| log(k+1))

= lim
k→∞

2−kẼ1k . (105)

Here,

Ẽ1k := min
PŨṼ W̃ ∈

T1(PUW ,PVW )

H(Ũ Ṽ ) +D(PŨ Ṽ ||QUV ) +H(W̃ |Ũ)−H(Ũ Ṽ W̃ )

− 1

k
|U||V||W| log(k + 1)− 1

k
|U||W| log(k + 1)

= min
PŨṼ W̃ ∈

T1(PUW ,PVW )

∑
PŨ Ṽ W̃ log

(
PŨ Ṽ
QUV

1

PŨ Ṽ

PŨ
PŨW̃

PŨ Ṽ W̃

)
− o(1)

= min
PŨṼ W̃ ∈ T1(PUW ,PVW )

D(PŨ Ṽ W̃ ||QUVW )− o(1)
(k)−→ E1(PW |U), (106)

and QUVW := QUV PW |U . To obtain (105), we used (103) and (104). This results in the term

E1(PW |U) in (36).

Next, consider the terms corresponding to the event ENE∩EcCE∩EBE in (102). Note that given

the event F21 = {Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, EcCE, EBE} occurs,

Pukwk ∈ T k[UW ]δ
. Also, D0 can happen only if He(w

k|vk) ≥ H(W |V )− γ2(δ̃) for some positive

function γ2(δ̃) ∈ O(δ̃) and Pvk ∈ T k[V ]δ′′′
. Using these facts to simplify the terms corresponding

to the event ENE ∩ EcCE ∩ EBE in (102), we obtain

lim
k→∞

lim
δ′,δ,δ̃→0

∑
PŨṼ W̃∈

T k(U×V×W)

∑
(uk,vk,wk)
∈TP

ŨṼ W̃

[
P(Uk = uk, V k = vk|H1) P(EcCE|F) P(EBE|F2) P(D0|F21)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

≤ lim
k→∞

lim
δ′,δ,δ̃→0

∑
PŨṼ W̃∈

T k(U×V×W)

∑
(uk,vk,wk)
∈TP

ŨṼ W̃

[
P(Uk = uk, V k = vk|H1) P(EBE|F2) P(D0|F21)

P(W k(1) = wk|Uk = uk, V k = vk, J = 1, fB(J) = 1, ENE)
]

≤ lim
k→∞

max
PŨṼ W̃∈

T2(PUW ,PV )

2kH(Ũ Ṽ W̃ )2−k(H(Ũ Ṽ )+D(PŨṼ ||QUV )+H(W̃ |Ũ)+R−I(U ;W |V ))

2(|U||V||W| log(k+1)+|U||W| log(k+1))
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= lim
k→∞

2−kẼ2k , (107)

where,

Ẽ2k := min
PŨṼ W̃∈

T2(PUW ,PV )

H(Ũ Ṽ ) +D(PŨ Ṽ ||QUV ) +H(W̃ |Ũ) +R− I(U ;W |V )

− 1

k
|U||V||W| log(k + 1)− 1

k
|U||W| log(k + 1)

(k)−→ E2(R,PW |U). (108)

Note that EBE occurs only when I(U ;W ) > R.

Next, consider that the event ENE ∩ ECE holds. As in the case above, note that given F1 =

{Uk = uk, V k = vk, J = 1, fB(J) = 1,W k(1) = wk, ENE, ECE}, Pukwk ∈ T k[UW ]δ
and D0

occurs only if Pvk ∈ T k[V ]δ′′′
. Using these facts and eqns. (95), (96) and (89), it can be shown

that the terms corresponding to this event in (102) result in the factor E3(R, τ) given in (38).

Finally, we analyze the case when the event EcNE occurs. Since the encoder declares H1 if

M̂ = 0, it is clear that D0 occurs only when the channel error event ECE happens. Thus, we

have

P(D0| Uk = uk, V k = vk, EcNE) =P(ECE| Uk = uk, V k = vk, EcNE)

P(D0| Uk = uk, V k = vk, EcNE ∩ ECE). (109)

From the coding scheme, it follows that

P(ECE| Uk = uk, V k = vk, EcNE) ≤ 2−kEs(R,τ). (110)

When binning is performed at the encoder, D0 occurs only if there exists a sequence Ŵ k

in the bin M̂ 6= 0 such that (Ŵ k, V k) ∈ T k[WV ]δ̃
. Also, recalling that the encoder sends the

error message M = 0 independent of the source codebook C, it can be shown using standard

arguments that for such vk ∈ T k[V ]δ′′′
,

P(D0| Uk = uk, V k = vk, EcNE ∩ ECE) ≤ 2−k(R−I(U ;W |V )−δ5), (111)

where δ5 = δ1 + δ3 + δ′. Thus, from (109), (110) and (111), we obtain
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lim
δ,δ′,δ̃→0

∑
uk,vk

P(Uk = uk, V k = vk|H1) P(D0| Uk = uk, V k = vk, EcNE ∩ ECE)

≤ 2−kD(PV ||QV ) × 2−kEs(R,τ) × 2−k(R−I(U ;W |V ))). (112)

On the other hand, when binning is not performed, D0 occurs only if (W k(M̂), V k) ∈ T k[WV ]δ̃

and in this case, we obtain

lim
δ,δ′,δ̃→0

∑
uk,vk

P(Uk = uk, V k = vk|H1) P(D0| Uk = uk, V k = vk, EcNE ∩ ECE)

≤ 2−kD(PV ||QV ) × 2−kEs(R,τ) × 2−kI(V ;W ). (113)

This results in the factor E4(R, τ) in (39). Since the T2EE is lower bounded by the minimal

value of the exponent due to the various type 2 error events, this completes the proof of the

theorem.

APPENDIX D

PROOF OF THEOREM 10

We only give a sketch of the proof as the intermediate steps follow similar to that given in

the proof of Theorem 8.

Codebook Generation:

Fix distributions (PW |U , PSX′ , PX|UWS) ∈ Bh and let

P̂UVWSX′XY (PW |U , PSX′ , PX|UWS) = PUV PW |UPSX′ PX|UWS PY |X .

Generate the quantization codebook C = {W n(j), j ∈ [2n(IP̂ (U ;W )+δ′)]}, where each code-

word W n(j) is generated independently according to the distribution
∏n

i=1 P̂W , where P̂W =∑
u∈U PU(u)PW |U(w|u). Also, generate a sequence Sn (for time-sharing) i.i.d. according to the

distribution
∏n

i=1 PS . The realization Sn = sn is revealed to both the encoder and detector.

Encoding: If the observed sequence Un is typical, i.e., Un ∈ T n[U ]δ′′
, the encoder first looks

for a sequence W n(J) such that (Un,W n(J)) ∈ T n
[P̂UW ]δ

, δ > δ′′. If there exists multiple such

codewords, it chooses one among them uniformly at random. The encoder transmits Xn over

the channel, where Xn is generated according to the distribution
∏n

i=1 PX|UWS(xi|ui, wi, si). If
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Un /∈ T k[U ]δ′′
or such an index J does not exist, the encoder generates the channel input X ′n

randomly according to
∏n

i=1 PX′|S(xi|si).

Decoding: The detector first checks if (V n, Sn, Y n) ∈ T n
[P̂V SY ]δ̃

, δ̃ > δ. If the check is

unsuccessful, H1 is declared. Else, searches for a typical sequence Ŵ n = W n(l̂) ∈ T k[W ]δ̂
,

δ̂ = |W|δ in the codebook such that

W n(l̂) = arg min
Wn(l)∈Tn

[P̂W ]
δ̂

He(W
n(l)|V n, Sn, Y n).

If (V n, Sn, Y n, Ŵ n) ∈ T n
[P̂V SYW ]δ̃

, H0 is declared, else H1 is declared.

Analysis of Type 1 error:

A type 1 error occurs only if one of the following events happen.

ẼTE =

{
(Un, V n, Sn) /∈ T n

[P̂UV S ]δ̄
, δ̄ =

δ′′

|V||S|

}
ẼEE =

{
@ j ∈

[
1 : 2n(I(U ;W )+δ′)

]
: (Un,W n(j)) ∈ T n

[P̂UW ]δ

}
ẼME =

{
(V n,W n(J), Sn) /∈ T n

[P̂VWS ]δ̃

}
ẼCE =

{
(V n,W n(J), Sn, Y n) /∈ T n

[P̂VWSY ]δ̃

}
ẼDE =

{
∃ l ∈

[
1 : 2n(I(U ;W )+δ′)

]
, l 6= J, W n(l)) ∈ T n

[P̂W ]δ̂
,

He(W
n(l)|V n, Sn, Y n) ≤ He(W

n(J)|V n, Sn, Y n)

}

By the weak law of large numbers, ẼTE tends to 0 asymptotically with n for any δ̄ > 0. The

covering lemma guarantees that ẼEE ∩ ẼcTE tends to 0 doubly exponentially for δ̄ < δ and δ′

appropriately chosen. Given ẼcEE ∩ ẼcTE holds, it follows from the Markov lemma and the weak

law of large numbers, respectively, that P(ẼME) and P(ẼCE) tends to zero asymptotically for

δ̃ > δ (appropriately chosen). Next, we consider the probability of the event ẼDE . Given that

ẼcCE ∩ ẼcME ∩ ẼcEE ∩ ẼcTE holds, note that limn→∞He(W
n(J)|V n, Sn, Y n) → H(W |V, S, Y ) as

δ̃ → 0. Hence, similar to that shown in Appendix C, it can be shown that

P(ẼDE|ẼcCE ∩ ẼcME ∩ ẼcEE ∩ ẼcTE) ≤ 2−n(IP̂ (W ;Y,V,Q)−IP̂ (U ;W )−δ(n)
6 ).

where δ
(n)
6

(n)−→ 0 as δ̃, δ′ → 0. Hence, if IP̂ (U ;W ) < IP̂ (W ;Y, V,Q), the probability of the

events causing Type 1 error tends to zero asymptotically.
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Analysis of Type 2 error: The analysis of the T2EE is very similar to that of the SHTCC

scheme given in Appendix C. Hence, only a sketch of the proof is provided, with the differences

from the proof of the SHTCC scheme highlighted.

Let E0 be defined as in (76). Then, as in Appendix C, the type 2 error probability can be

written as

β(n, 1, ε)

≤
∑

(un,vn)∈Un×Vn
P(Un = un, V n = vn|H1)

[
P(ẼEE ∩ Ec0 |Un = un, V n = vn)

+ P(D0|Un = un, V n = vn, ẼNE) + P(D0|Un = un, V n = vn, E0)
]
, (114)

where, ẼNE := ẼcEE ∩Ec0 . As before, it is sufficient to restrict the analysis to the events ẼNE and

E0 that dominate the type 2 error. Define the events

ẼT2 =
{
∃ l ∈

[
1 : 2n(I(U ;W )+δ′)

]
, l 6= J, W n(l) ∈ T n

[P̂W ]δ̂
,

(V n,W n(l), Sn, Y n) ∈ T n
[P̂VWSY ]δ̃

}
, (115)

F̃ = {Un = un, V n = vn, J = 1,W n(1) = wn, Sn = sn, Y n = yn, ẼNE}, (116)

F̃1 = {Un = un, V n = vn, J = 1,W n(1) = wn, Sn = sn, Y n = yn, ẼNE, ẼcT2}, (117)

F̃2 = {Un = un, V n = vn, J = 1,W n(1) = wn, Sn = sn, Y n = yn, ẼNE, ẼT2}. (118)

By the symmetry of the codebook generation, encoding and decoding procedure, the term

P(D0|Un = un, V n = vn, J = j, ẼNE) is independent of the value of J . Hence, w.l.o.g.

assuming J = 1, we can write

P(D0| Un = un, V n = vn, ẼNE)

=
2n(I(U ;W )+δ′)∑

j=1

P(J = j| Un = un, V n = vn, ẼNE) P(D0|Un = un, V n = vn, J = 1, ẼNE)

= P(D0|Un = un, V n = vn, J = 1, ẼNE)

=
∑

(wn,sn,yn)
∈ Wn×Sn×Yn

P(W n(1) = wn, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE)

P(D0|Un = un, V n = vn, J = 1,W n(1) = wn, Sn = sn, Y n = yn, ẼNE)
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=
∑

(wn,sn,yn)
∈ Wn×Sn×Yn

P(W n(1) = wn, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE)

P(D0| F̃). (119)

The last term in (119) can be upper bounded using the events in (116)-(118) as follows.

P(D0| F̃) ≤ P(D0| F̃1) + P(ẼT2| F̃) P(D0| F̃2).

We next analyze the R.H.S of (114), which upper bounds the type 2 error β(n, 1, ε), in the

limit n→∞ and δ, δ′, δ̃ → 0. First, note that, Also,

P(D0|F̃1) =


1, if Punwn ∈ T n[P̂UW ]δ

and Pvnwnsnyn ∈ T k[P̂VWSY ]δ̃
,

0, otherwise.

(120)

Hence, the terms corresponding to the event F̃1 in (114) can be upper bounded (in the limit

δ, δ̃ → 0) as

lim
n→∞

lim
δ′,δ,δ̃→0

∑
(un,vn,wn,sn,yn)

∈ Un×Vn×Wn×Sn×Yn

[
P(D0|F̃1) P(Un = un, V n = vn|H1)

P(W n(1) = wn, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE)
]

≤ lim
n→∞

lim
δ′,δ,δ̃→0

∑
PŨṼ W̃ S̃Ỹ ∈

T n(U×V×W×S×Y)

∑
(un,vn,wn,sn,yn)
∈TP

ŨṼ W̃ S̃Ỹ

[
P(D0|F̃1) P(Un = un, V n = vn|H1)

P(Sn = sn, Y n = yn|Un = un, J = 1,W n(1) = wn, ẼNE)

P(W n(1) = wn|Un = un, J = 1, ẼNE)
]

≤ lim
n→∞

lim
δ′,δ,δ̃→0

∑
PŨṼ W̃ S̃Ỹ ∈

T n(U×V×W×S×Y)

∑
(un,vn,wn,sn,yn)
∈TP

ŨṼ W̃ S̃Ỹ

[
P(D0|F̃1)× 2−n(H(Ũ Ṽ )+D(PŨṼ ||QUV ))

2−n(H(W̃ |Ũ)− 1
n
|U||W| log(n+1)) 2−n(H(S̃Ỹ |ŨW̃ )+D(PS̃Ỹ |ŨW̃ ||P̂S P̂Y |UWS |PŨW̃ ))

]
≤ lim

n→∞
max

PŨṼ W̃ S̃Ỹ ∈
T ′1 (P̂UW ,P̂VWSY )

[
2−n(H(Ũ Ṽ )+D(PŨṼ ||QUV )) 2−n(H(W̃ |Ũ)− 1

n
|U||W| log(n+1))

2−n(H(S̃Ỹ |ŨW̃ )+D(PS̃Ỹ |ŨW̃ ||P̂S P̂Y |UWS |PŨW̃ )) × 2n(H(Ũ Ṽ W̃ S̃Ỹ )− 1
n
||U||V||W||S||Y| log(n+1))

]
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= lim
n→∞

2−nE
∗
1n , (121)

where,

E∗1n = min
PŨṼ W̃ S̃Ỹ ∈

T ′1 (P̂UW ,P̂VWSY )

[
H(Ũ Ṽ ) +D(PŨ Ṽ ||QUV ) +H(W̃ |Ũ) +H(S̃Ỹ |ŨW̃ )

+D(PS̃Ỹ |ŨW̃ ||P̂SP̂Y |UWS|PŨW̃ )−H(Ũ Ṽ W̃ S̃Ỹ )− 1

n
(|U||W|+ |U||V||W||S||Y|) log(n+ 1)

]

= min
PŨṼ W̃ S̃Ỹ ∈

T ′1 (P̂UW ,P̂VWSY )

[ ∑
Ũ Ṽ W̃ S̃Ỹ

PŨ Ṽ W̃ S̃Ỹ log

(
1

PŨ Ṽ

PŨ Ṽ
QUV

PŨ
PŨW̃

1

PS̃Ỹ |ŨW̃

PS̃Ỹ |ŨW̃

P̂SY |UW
PŨ Ṽ W̃ S̃Ỹ

)
− o(1)

]

= min
PŨṼ W̃ S̃Ỹ ∈

T ′1 (P̂UW ,P̂VWSY )

[
D(PŨ Ṽ W̃ S̃Ỹ |QUV PW̃ |Ũ P̂SY |UW )− o(1)

]
(n)−→ E ′1(PW |U , PS, PX|UWS). (122)

Here, (122) follows from the fact that PW̃ |Ũ → PW |U given ẼNE , as δ → 0.

Next, consider the terms corresponding to the event F̃2 in (114). Given F̃2, PŨW̃ ∈ T n[UW ]δ
and

D0 occurs only if (V n, Sn, Y n) ∈ T n
[P̂V SY ]δ′′′

, δ′′′ = |W|δ̃, and H(W̃ |Ṽ , S̃, Ỹ ) ≥ HP̂ (W |V, S, Y )−

γ2(δ̃), for some γ2(δ̃) ∈ O(δ̃). Thus, we have,

lim
n→∞

lim
δ′,δ,δ̃→0

∑
(un,vn,wn,sn,yn)

∈ Un×Vn×Wn×Sn×Yn

[
P(D0|F̃2) × P(ẼT2|F̃) × P(Un = un, V n = vn|H1)

P(W n(1) = wn, Sn = sn, Y n = yn|Un = un, V n = vn, J = 1, ẼNE)
]

≤ lim
n→∞

lim
δ′,δ,δ̃→0

∑
PŨṼ W̃ S̃Ỹ ∈

T n(U×V×W×S×Y)

∑
(un,vn,wn,sn,yn)
∈TP

ŨṼ W̃ S̃Ỹ

[
P(D0|F̃2) × P(ẼT2|F̃)

P(Un = un, V n = vn|H1) P(W n(1) = wn|Un = un, J = 1, ẼNE)

P(Sn = sn, Y n = yn|Un = un, J = 1,W n(1) = wn, ẼNE)
]

≤ lim
n→∞

lim
δ′,δ,δ̃→0

∑
PŨṼ W̃ S̃Ỹ ∈

T n(U×V×W×S×Y)

∑
(un,vn,wn,sn,yn)
∈TP

ŨṼ W̃ S̃Ỹ

[
P(D0|F̃2) · 2 · 2−n(IP̂ (W ;V,S,Y )−IP̂ (U ;W )−δ7)

2−n(H(Ũ Ṽ )+D(PŨṼ ||QUV )) 2−n(H(W̃ |Ũ)− 1
n
|U||W| log(n+1))

2−n(H(S̃Ỹ |ŨW̃ )+D(PS̃Ỹ |ŨW̃ ||P̂S P̂Y |UWS |PŨW̃ ))
]

(123)
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≤ lim
n→∞

max
PŨṼ W̃ S̃Ỹ ∈

T ′2 (P̂UW ,P̂VWSY )

[
2−n(H(Ũ Ṽ )+D(PŨṼ ||QUV )) × 2−n(H(W̃ |Ũ)− 1

n
|U||W| log(n+1))

2−n(IP̂ (W ;V,S,Y )−IP̂ (U ;W )−δ7− 1
n)

2−n(H(S̃Ỹ |ŨW̃ )+D(PS̃Ỹ |ŨW̃ ||P̂S P̂Y |UWS |PŨW̃ )) × 2n(H(Ũ Ṽ W̃ S̃Ỹ )− 1
n
||U||V||W||S||Y| log(n+1))

]
= lim

n→∞
2−nE

∗
2n , (124)

where,

E∗2n = min
PŨṼ W̃ S̃Ỹ ∈

T ′2 (P̂UW ,P̂VWSY )

[
D(PŨ Ṽ W̃ S̃Ỹ |QUV PW̃ |Ũ P̂SY |UW ) + IP̂ (W ;V, S, Y )− IP̂ (U ;W )− o(1)

]
(n)−→ E ′2(PW |U , PS, PX|UWS). (125)

In (123), we used the fact that

P(ẼT2|F̃) ≤ 2× 2−n(IP̂ (W ;V,S,Y )−IP̂ (U ;W )−δ7),

which follows from

P (W n(l) = w̃n|F2) ≤ 2 P(W k(l) = w̃k|Un = un, V n = vn, Sn = sn, Y n = yn, ẼNE, ẼT2).

(126)

Eqn. (126) can be proved similar to (94).

Finally, we consider the case when E0 holds.

lim
n→∞

lim
δ,δ′,δ̃→0

∑
un,vn

P(Un = un, V n = vn|H1) P(D0| Un = un, V n = vn, E0)

= lim
n→∞

lim
δ,δ′,δ̃→0

∑
un,vn

P(Un = un, V n = vn|H1)

∑
sn,yn

P(Sn = sn, Y n = yn,D0| Un = un, V n = vn, E0)

= lim
n→∞

lim
δ,δ′,δ̃→0

∑
un,vn

P(Un = un, V n = vn|H1)
[ ∑

sn,yn

P(Sn = sn, Y n = yn| Un = un, V n = vn, E0)

P(D0| Un = un, V n = vn, Sn = sn, Y n = yn, E0)
]

= lim
n→∞

lim
δ,δ′,δ̃→0

∑
un,vn

P(Un = un, V n = vn|H1)
[ ∑

sn,yn

P(Sn = sn, Y n = yn| E0)
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P(D0| V n = vn, Sn = sn, Y n = yn, E0)
]

= lim
n→∞

lim
δ,δ′,δ̃→0

∑
vn,sn,yn

P(V n = vn|H1) P(Sn = sn, Y n = yn| E0)

P(D0| V n = vn, Sn = sn, Y n = yn, E0). (127)

Again, D0 occurs only if there exists a sequence (W n(l), V n, Sn, Y n) ∈ T n
[P̂WV SY ]δ̃

for some

l ∈ [2n(IP̂ (U ;W )+δ′)]. Noting that the quantization codebook is independent of the (V n, Sn, Y n)

given that E0 holds, it can be shown using standard arguments that

P(D0| V n = vn, Sn = sn, Y n = yn, E0) ≤ 2−n(IP̂ (W ;V,S,Y )−IP̂ (U ;W )−δ7). (128)

Also,

P(Sn = sn, Y n = yn| E0) ≤ 2−n(H(S̃Ỹ )+D(PS̃Ỹ ||Q̌SY )). (129)

Hence, using (128) and (129) in (127), we obtain

lim
n→∞

lim
δ,δ′,δ̃→0

∑
vn,sn,yn

P(V n = vn|H1) P(Sn = sn, Y n = yn| E0)

P(D0| V n = vn, Sn = sn, Y n = yn, E0)

≤ lim
n→∞

lim
δ,δ′,δ̃→0

∑
vn,sn,yn

2−n(H(Ṽ )+D(PṼ ||QV )) 2−n(H(S̃Ỹ )+D(PS̃Ỹ ||Q̌SY )) 2−n(IP̂ (W ;V,S,Y )−IP̂ (U ;W )−δ7)

≤ lim
n→∞

(n+ 1)|V||S||Y| max
PṼ S̃Ỹ =P̂V SY

2nH(Ṽ S̃Ỹ ) 2−n(H(Ṽ )+D(PṼ ||QV )) 2−n(H(S̃Ỹ )+D(PS̃Ỹ ||Q̌SY ))

2−n(IP̂ (W ;V,S,Y )−IP̂ (U ;W ))

= lim
n→∞

2−nE
∗
3n ,

where,

E∗3n = min
PṼ S̃Ỹ =P̂V SY

D(PṼ S̃Ỹ ||Q̌V SY ) + IP̂ (W ;V, S, Y )− IP̂ (U ;W ))− |V||S||Y| log(n+ 1)

(n)−→ E ′3(PSX′).

Since the T2EE is lower bounded by the minimal value of the exponent due to the various type

2 error events, this completes the proof of the theorem.
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