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ABSTRACT
It is known that deep neural networks, trained for the classification
of non-sensitive target attributes, can reveal sensitive attributes of
their input data through internal representations extracted by the
classifier. We take a step forward and show that deep classifiers
can be trained to secretly encode a sensitive attribute of their input
data into the classifier’s outputs for the target attribute, at inference
time. Our proposed attack works even if users have a full white-
box view of the classifier, can keep all internal representations
hidden, and only release the classifier’s estimations for the target
attribute. We introduce an information-theoretical formulation for
such attacks and present efficient empirical implementations for
training honest-but-curious (HBC) classifiers: classifiers that can be
accurate in predicting their target attribute, but can also exploit their
outputs to secretly encode a sensitive attribute. Our work highlights
a vulnerability that can be exploited by malicious machine learning
service providers to attack their user’s privacy in several seemingly
safe scenarios; such as encrypted inferences, computations at the
edge, or private knowledge distillation. Experimental results on
several attributes in two face-image datasets show that a semi-
trusted server can train classifiers that are not only perfectly honest
but also accurately curious. We conclude by showing the difficulties
in distinguishing between standard and HBC classifiers, discussing
challenges in defending against this vulnerability of deep classifiers,
and enumerating related open directions for future studies.
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• Security and privacy→ Privacy protections; Information-
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1 INTRODUCTION
Machine learning (ML) classifiers, trained on a set of labeled data,
aim to facilitate the estimation of a target label (i.e., attribute) for new
data at inference time; from smile detection for photography [82] to
automated detection of a disease on medical data [12, 19]. However,
in addition to the target attribute that the classifier is trained for,
data might also contain some other sensitive attributes. For example,
there are several attributes that can be inferred from a face image;
such as gender, age, race, emotion, hairstyle, and more [35, 86].
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Figure 1: Let users’ data x (e.g., face image) contain a target
attribute 𝑦 (e.g., Age) and a sensitive attribute 𝑠 (e.g., Race). A
classifier F is provided by a server to estimates 𝑦, and users
only release the classifier’s outputs ŷ. We show that F can
be trained such that ŷ is not only accurate for 𝑦 (honesty),
but can also be used by a secret attack G to infer 𝑠 (curiosity).
We present efficient attacks in two scenarios where either
(1) the raw outputs ŷR, or (2) the soft outputs ŷP are released.

Since ML classifiers, particularly deep neural networks (DNNs), are
becoming increasingly popular, either as cloud-based services or as
part of apps on our personal devices, it is important to be aware of
the type of sensitive attributes that we might reveal through using
these classifiers; especially when a classifier is supposed to only
estimate a specified attribute. For instance, while clinical experts
can barely identify the race of patients from their medical images,
DNNs show considerable performance in detecting race from chest
X-rays and CT scans [3].

In two-party computations, a legitimate party that does not
deviate from its specified protocol but attempts to infer as much
sensitive information as possible from the received data is called a
honest-but-curious (HBC) party [9, 17, 30, 54]. Following convention,
if a classifier’s outputs not only allow to estimate the target attribute,
but also reveal information about other attributes (particularly
those uncorrelated to the target one) we call it an HBC classifier.
In this paper, we show how a semi-trusted server can train an
HBC classifier such that the outputs of the classifier are not only
useful for inferring the target attribute, but can also secretly carry
information about a sensitive attribute of the user’s data that is
unrelated to the target attribute.

Figure 1 shows an overview of the problem. We consider a server
that provides its users access to a classifier trained for a known target
attribute 𝑦. We put no restriction on the input data x or the users’
access to the classifier: users can have control over the classifier
and get a white-box view to it (e.g., when the classifier is deployed
on the users’ devices), or users can perform secure computation on
their data if they have a black-box view (e.g., when the classifier
is hosted in the cloud). Our only assumption is that both the user
and the server can observe the outputs of classifier ŷ. For a 𝑌 -class
classifier, ŷ is a real-valued vector of size𝑌 containing either (1) raw
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scores ŷR ∈ R𝑌 , or (2) soft scores ŷP = softmax(ŷR) ∈ P𝑌 , where
the 𝑖-th soft score is ŷP

𝑖
= 𝑒 ŷ

R
𝑖 /∑𝑌−1𝑗=0 𝑒

ŷR
𝑗 . The server usually uses

some threshold functions to decide 𝑦 as the final predicted class.
In classification tasks, an estimated probability distribution over
possible classes is more useful than just receiving the most probable
class; as it allows the aggregation of outputs provided by multiple
ML services to enhance the ultimate decision. Moreover, collecting
outputs can help a server to monitor and enhance its decisions and
the provided services.

To protect the user’s privacy, it is usually proposed to hide the
data, as well as all the intermediate computations on the data,
and only release the classifier’s outputs; either using secure two-
party computation via cryptography [2, 4, 16] or by restricting the
computations to edge devices [45, 69]. Although these encrypted
or edge solutions hide the input data and the internal features
extracted by the classifier, the outputs are usually released to the
service provider, because the estimation of a target attribute might
not seem sensitive to the user’s privacy and it might be needed
for further services offered to the user. For instance, an insurance
company raised huge ethical concerns, when it announced that its
ML model extracts “non-verbal cues” from videos of users’ faces
to identify fraud [33]. We show that even if the video is processed
locally, or in an encrypted manner, and only a single real-valued
output 𝑦 ∈ [0, 1] is released to the insurance company, as the
probability of fraud, this single output can still be designed to reveal
another sensitive attribute about the user. In our experiments, we
show that a 𝑦 ∈ [0, 1] produced by a smile-detection classifier, as
the probability of “smiling”, can be used to secretly infer whether
that person is “white” or not1.

We first show that in a black-box view, where an arbitrary archi-
tecture can be used for the classifier, the server can obtain the best
achievable trade-off between honesty (i.e., the classification accuracy
for the target attribute) and curiosity (i.e., the classification accuracy
for the sensitive attribute). Specifically, we build a controlled syn-
thetic dataset and show how to create such an HBC classifier via a
weighted mixture of two separately trained classifiers, one for the
target attribute and another for the sensitive attribute (Section 3).
Then, we focus on the more challenging, white-box view where the
server might have some constraints on the chosen model, e.g., the
restriction to not being suspicious, or that the classifier must be
one of the known off-the-shelf models (Section 4). To this end, we
formulate the problem of training an HBC classifier in a general
information-theoretical framework, via the information bottleneck
principle [71], and show the existence of a general attack for en-
coding a desired sensitive data into the output of a classifier. We
propose two practical methods that can be used by a server for
building an HBC classifier, one via the regularization of classifier’s
loss function, and another via training of a parameterized model.

Extensive experiments, using typical DNNs for several tasks
with different attributes defined on two real-world datasets [35, 86],
show that HBC classifiers can mostly achieve honesty very close
to standard classifiers, while also being very successful in their
curiosity (Section 5). We, theoretically and empirically, show that
the entropy of an HBC classifier’s outputs usually tends to be higher

1See Appendix E for more motivational examples of HBC classifiers that can be trained
for other types of users’ data, such as text, motion sensors, and audio.

than the entropy of a standard classifier’s outputs. Moreover, we
explain how a server can improve the honesty of the classifier
by trading some curiosity via adding an entropy minimization
component to parameterized attacks, which in particular, can make
HBC classifiers less suspicious against proactive defenses [28].

Previous works propose several types of attacks to ML mod-
els [10, 44], mostly to DNNs [34], including property inference [43],
membership inference [59, 63], model inversion [15], model extrac-
tion [25, 73], adversarial examples [67], or model poisoning [7, 26].
But these attacks mostly concern the privacy of the training dataset
and, in all these attacks, the ML model is the trusted party, while
users are assumed untrusted. Our work, from a different point of
view, discusses a new threat model, where (the owner of) the ML
model is semi-trusted and might attack the privacy of its users
at inference time. The closest related work is the “overlearning”
concept in [66], where it is shown that internal representations
extracted by DNN layers can reveal sensitive attributes of the input
data that might not even be correlated to the target attribute. The
assumption of [66] is that an adversary observes a subset of internal
representations, while we assume all internal representations to
be hidden and an adversary has access only to the outputs. No-
tably, we show that when users only release the classifier’s outputs,
overlearning is not a major concern as standard classifiers do not
reveal significant information about a sensitive attribute through
their outputs, whereas an HBC classifier can secretly, and almost
perfectly, reveal a sensitive attribute just via classifier’s outputs.

Contributions. In summary, this paper proposes the following
contributions to advance privacy protection in using ML services.

(1) We show that ML services can attack their user’s privacy
even in a highly restricted setting where they can only get access
to the results of an agreed target computation on their users’ data.

(2)We formulate such an attack in a general information-theoretical
formulation and show the efficiency of our attack via several em-
pirical results. Mainly, we show how HBC classifiers can encode a
sensitive attribute of their private input into the classifier’s output,
by exploiting the output’s entropy as a side-channel. Therefore,
HBC classifiers tend to produce higher-entropy outputs than stan-
dard classifiers. However, we also show that the output’s entropy
can be efficiently reduced by trading a small amount of curiosity of
the classifier, thus making it even harder to distinguish standard
and HBC classifiers.

(3) We show an important threat of this vulnerability in a recent
approach where knowledge distillation [22] is used to train a stu-
dent classifier on private unlabeled data via a teacher classifier that
is already trained on a set of labeled data, and show that an HBC
teacher can transfer its curiosity capability to the student classifiers.

(4) We support our findings via several experimental results
on two real-world datasets with different characteristics, as well
as additional analytical results for the setting of training convex
classifiers.

Code and instructions for reproducing the reported results are
available at https://github.com/mmalekzadeh/honest-but-curious-nets.
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2 PROBLEM FORMULATION
Notation. We use lower-case italic, e.g., 𝑥 , for scalar variables;
upper-case italic, e.g., 𝑋 , for scalar constants; lower-case bold, e.g.,
x, for vectors; upper-case blackboard, e.g., X, for sets; calligraphic
font, e.g., X, for functions; subscripts, e.g.,𝑤1, for indexing a vec-
tor; superscripts, e.g., 𝑤1, for distinguishing different instances;
R𝑋 for real-valued vectors of dimension 𝑋 ; and P𝑋 for a proba-
bility simplex of dimension 𝑋 − 1 (that denotes the space of all
probability distributions on a 𝑋 -value random variable). We have
{0, . . . , 𝑋 − 1} ≡ [𝑋 ], and ⌊·⌉ shows rounding to the nearest in-
teger. Logarithms are natural unless written explicitly otherwise.
The standard logistic is 𝜎 (x) = 1/

(
1 + exp(−x)

)
. Given random

variables 𝑎 ∈ [𝑋 ], 𝑏 ∈ [𝑋 ], and 𝑐 ∈ [𝑍 ], the entropy of 𝑎 is
H(𝑎) = −∑𝑋−1𝑖=0 Pr(𝑎 = 𝑖) log Pr(𝑎 = 𝑖), the cross entropy of 𝑏
relative to 𝑎 is H𝑎 (𝑏) = −

∑𝑋−1
𝑖=0 Pr(𝑎 = 𝑖) log Pr(𝑏 = 𝑖), the condi-

tional entropy of 𝑎 given 𝑐 is H(𝑎 |𝑐) = −∑𝑋−1𝑖=0
∑𝑍−1
𝑗=0 Pr(𝑎 = 𝑖, 𝑐 =

𝑗) log
(
Pr(𝑎 = 𝑖, 𝑐 = 𝑗)/Pr(𝑐 = 𝑗)

)
, and the mutual information (MI)

between 𝑎 and 𝑐 is I(𝑎; 𝑐) = H(𝑎) − H(𝑎 |𝑐) [38]. I(C) shows the indi-
cator function that outputs 1 if condition C holds, and 0 otherwise.

Definitions. Let a user own data x ∈ R𝑀 sampled from an
unknown data distribution D. Let x be informative about at least
two latent categorical variables (attributes): 𝑦 ∈ [𝑌 ] as the target
attribute, and 𝑠 ∈ [𝑆] as the sensitive attribute (see Figure 1). Let
a server own a classifier F that takes x and outputs: ŷ = F (x) =
[𝑦0, 𝑦1, . . . , 𝑦𝑌−1], where 𝑦𝑖 estimates 𝑃𝑟 (𝑦 = 𝑖 |x). Let 𝑦 denote
the predicted value for 𝑦 that is decided from ŷ; e.g., based on a
threshold in binary classification or argmax function in multi-class
classification. We assume that x, and all intermediate computations
of F , are hidden and the user only releases ŷ. Let ŝ = G(ŷ) be the
attack on the sensitive attribute 𝑠 that only the server knows about.
Let 𝑠 denote the predicted value for 𝑠 that is decided based on ŝ. In
sum, the following Markov chain holds: (𝑦, 𝑠) → x→ ŷ→ ŝ.

Throughout this paper, we use the following terminology:
1. Honesty. Given a test dataset D𝑡𝑒𝑠𝑡 ∼ D, we define F as a

𝛿𝑦-ℎ𝑜𝑛𝑒𝑠𝑡 classifier if

Pr
(x,𝑦)∼D𝑡𝑒𝑠𝑡 , 𝑦←F(x)

[𝑦 = 𝑦] ≥ 𝛿𝑦,

where 𝛿𝑦 ∈ [0, 1] is known as the classifier’s test accuracy, and we
call it the honesty of F in predicting the target attribute.

2. Curiosity. Given a test dataset D𝑡𝑒𝑠𝑡 ∼ D and an attack G,
we define F as a 𝛿𝑠 -𝑐𝑢𝑟𝑖𝑜𝑢𝑠 classifier if

Pr
(x,𝑠)∼D𝑡𝑒𝑠𝑡 , 𝑠←G

(
F(x)

) [𝑠 = 𝑠] ≥ 𝛿𝑠 ,
where 𝛿𝑠 ∈ [0, 1] is the attack’s success rate on the test set, and we
call it the curiosity of F in predicting the sensitive attribute.

3. Honest-but-Curious (HBC).We define F as a (𝛿𝑦, 𝛿𝑠 )-HBC
classifier if it is both 𝛿𝑦-ℎ𝑜𝑛𝑒𝑠𝑡 and 𝛿𝑠 -𝑐𝑢𝑟𝑖𝑜𝑢𝑠 on the same D𝑡𝑒𝑠𝑡 .

4. Standard Classifier. A classifier F that is trained only for
achieving the best honesty, without any intended curiosity.

5. Black- vs. White-Box. We consider the users’ perspective
to the classifier F at inference time. In a black-box view, a user
observes only the classifier’s outputs and not the classifier’s archi-
tecture and parameters. In a white-box view, a user also has full
access to the classifier’s architecture, parameters, and intermediate
computations.

6. ThreatModel. The semi-trusted server chooses the algorithm
and dataset (D𝑡𝑟𝑎𝑖𝑛 ∼ D) for training F . In a black-box view, the
server has the additional power to choose the architecture of F
(unlike the white-box view). At inference time, a user (who does
not necessarily participate in the training dataset) runs the trained
classifier on her private data once, and only reveals the classifier’s
outputs ŷ = F (x) to the server. We assume no other information
is provided to the server at inference time.

Our Objective. We show how a server can train an HBC classi-
fier to establish efficient honesty-curiosity trade-offs over achievable
(𝛿𝑦, 𝛿𝑠 ) pairs, and analyze the privacy risks, behavior, and charac-
teristics of HBC classifiers compared to standard ones.

3 BLACK-BOX VIEW: A MIXTURE MODEL
To build a better intuition, we first discuss the black-box view where
the server can choose any arbitrary architecture. and we show the
existence of an efficient attack for every task with 𝑆 ≤ 𝑌 .

3.1 A Convex Classifier
We start with a simple logistic regression classifier. Let us consider
the synthetic data distribution depicted in Figure 2, where each
sample x ∈ R2 has two attributes𝑦 ∈ {0, 1} and 𝑠 ∈ {0, 1}. If 𝑠 is cor-
related with the 𝑦, the output of any classifier always reveals some
sensitive information (which we explore it in real-world datasets
in Section 5) . The less 𝑠 is correlated with the 𝑦, the more difficult
it should be for the server to build an HBC classifier. Thus, the data
distribution in Figure 2 is built such that 𝑦 and 𝑠 are independent,
and for each attribute, there is an optimal linear classifier.

It is clear that for this dataset, we can find an optimal logis-
tic regression classifier 𝑦 = 𝜎 (𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏), with parame-
ters [𝑤1,𝑤2, 𝑏], that simulates the decision boundary of 𝑦. Such
a classifier is 𝛿𝑦-ℎ𝑜𝑛𝑒𝑠𝑡 with 𝛿𝑦 = 1, and at the same time it is
𝛿𝑠 -𝑐𝑢𝑟𝑖𝑜𝑢𝑠 with 𝛿𝑠 = 0.5; that means the classifier is honest and
does not leak any sensitive information. The main point is that any
effort for making a curious linear classifier with 𝛿𝑠 > 0.5 will hurt
the honesty by forcing 𝛿𝑦 < 1. On this dataset, it can be shown
that for any logistic regression classifier we have 𝛿𝑦 = 1.5 − 𝛿𝑠 . For
example, the optimal linear classifier for attribute 𝑠 cannot have a
better performance than a random guess on attribute 𝑦.

In Appendix A, we show how a logistic regression classifier can
become HBC with a convex loss function, and analyze the behavior
of such a classifier in detail. Specifically, we show that the trade-
off for a classifier with limited capacity (e.g., logistic regression)
is that: if alongside the target attribute, we also optimize for the
sensitive attribute, we will only ever converge to a neighborhood
of the optimum for the target attribute. We show that the size of
the neighborhood is getting larger by the weight (i.e., importance)
we give to curiosity. While the analysis in Appendix A holds for a
convex setting and are simplistic in nature, it provides intuitions
into the idea that when the attributes 𝑦 and 𝑠 are somehow corre-
lated, the output 𝑦 can better encode both tasks, but when we have
independent attributes, we need classifiers with more capacity to
cover the payoff for not converging to the optimal point of target
attribute.
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Figure 2: A two-attribute two-class data distribution on R2,
where attributes𝑦 and 𝑠 are independent, and classes in each
attribute are linearly separable.

3.2 A Mixture of Two Classifiers
Figure 3 shows how two logistic regression classifiers, each trained
separately for a corresponding attribute, can be combined such
that the final output 𝑦 is a mixture of the predicted values for the
target attribute 𝑦, and the sensitive attribute 𝑠 . There are two ways
to combine 𝑧𝑦 ∈ [0, 1] and 𝑧𝑠 ∈ [0, 1]. Considering multipliers
𝛽𝑦 ∈ [0, 1] and 𝛽𝑠 = 1 − 𝛽𝑦 , one option is the normal mixture,
where 𝑦 = 𝛽𝑦𝑧𝑦 + 𝛽𝑠𝑧𝑠 , and another one is the hardmixture, where
𝑦 = 𝛽𝑦 ⌊𝑧𝑦⌉ + 𝛽𝑠 ⌊𝑧𝑠 ⌉. Since two classifiers are each optimal for the
dataset in Figure 2, 𝑦 in hard mixture can only take four values:

𝑦 =


0 if 𝑦 = 0 & 𝑠 = 0
𝛽𝑠 if 𝑦 = 0 & 𝑠 = 1
𝛽𝑦 if 𝑦 = 1 & 𝑠 = 0
1 if 𝑦 = 1 & 𝑠 = 1.

(1)

By choosing 𝛽𝑦 ≠ 0.5, given a 𝑦, we can accurately estimate both 𝑦
and 𝑠 , which results in a (𝛿𝑦 = 1, 𝛿𝑠 = 1)-HBC classifier. Notice that
the classifier in Figure 3 is not a linear classifier anymore, but its
capacity is just twice the capacity of the logistic regression. Thus,
while keeping the same honesty 𝛿𝑦 = 1, we could improve curiosity
from 𝛿𝑠 = 0.5 to 𝛿𝑠 = 1 just by doubling the classifier’s capacity.

The normal mixture is challenging as the range of possible values
for 𝑦 is [0, 1]. An idea is to define a threshold 𝜏 ′ ∈ [0, 1] and divide
the range of [0, 1] into four sub-ranges such that:

if


𝑦 ∈ [0, 𝜏 ′) then we predict 𝑦 = 0 & 𝑠 = 0
𝑦 ∈ [𝜏 ′, 0.5) then we predict 𝑦 = 0 & 𝑠 = 1
𝑦 ∈ [0.5, 1 − 𝜏 ′) then we predict 𝑦 = 1 & 𝑠 = 0
𝑦 ∈ [1 − 𝜏 ′, 1) then we predict 𝑦 = 1 & 𝑠 = 1.

(2)

As we see in Figure 4, a normal mixture cannot guarantee the
optimal (𝛿𝑦 = 1, 𝛿𝑠 = 1)-HBC that we could obtain via a hard
mixture. Nevertheless, in the following sections, we will show that
the idea of dividing the range [0, 1] into four sub-ranges is still
useful, especially in white-box situations, where a hard mixture
approach is not an option but we can have non-linear classifiers.

Summary. In a black-box view the server can always train two
separate classifiers, each with sufficiently high accuracy, and can
use the hard mixture of two outputs to build the best achievable
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Figure 3: Two logistic regression classifiers, each trained on x
separately: 𝑧𝑦 for𝑦 and 𝑧𝑠 for 𝑠. Classifiers outputs aremixed
with each other such that the final output,𝑦, is a real-valued
scalar informative about both attributes.

Figure 4: Produced 𝑦 in Figure 3 for the dataset in Figure 2,
using 𝛽𝑦 = 0.8 and 𝛽𝑠 = 0.2. (Top) the hard mixture achieves
𝛿𝑦 = 1 and 𝛿𝑠 = 1 (Eq (1)). (Bottom) the normal mixture
achieves 𝛿𝑦 = .99 and 𝛿𝑠 = .95 using 𝜏 ′ = .1 (Eq (2)).

(𝛿𝑦, 𝛿𝑠 )-HBC classifier; no matter what type of classifier is used.
Basically, the server can mostly get the same performance if it could
separately run two classifiers on the data. We emphasize that the
server’s motivation for such a mixture classifier (and not just simply
using two separate classifiers) is that the shape of the classifier’s
output ŷ depends on 𝑌 . Thus, a limitation is that such an attack
works only if 𝑆 ≤ 𝑌 , which in general is not always the case. For
instance, let 𝑌 = 5, 𝑆 = 3, 𝛽𝑦 = 0.8, and 𝛽𝑠 = 0.2. If the hard
outputs for 𝑦 is ⌊z𝑦⌉ = [0, 0, 0, 1, 0] and for 𝑠 is z𝑠 = [0, 1, 0], then
by observing ŷ = [0, 0.2, 0, 0.8, 0], server can estimate both 𝑦 and
𝑠 while looking very honest. But if 𝑆 > 𝑌 , then the server cannot
easily encode the private attribute via a mixture model, because we
assume that the cardinality of the classifier’s output is limited to 𝑌
as it is supposed to look like a standard classifier. Thus, situations
with 𝑆 > 𝑌 are more challenging, particularly when users have a
white-box view and the server is not free to choose any arbitrary
architecture, e.g., it has to train an of-the-shelf classifier. In the
following, we focus on the white-box view in a general setting.

4 WHITE-BOX VIEW: A GENERAL SOLUTION
Theoretically, the classifier’s output ŷ, as a real-valued vector, can
carry an infinite amount of information. Thus, releasing ŷ without
imposing any particular constraint can reveal any private informa-
tion and even can be used to (approximately) reconstruct data x.
One can imagine a hash function that maps each x to a specific
ŷ, and consequently, by observing ŷ, we can reconstruct x [57].
However, the complexity of real-world data, assumptions on the
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required honesty, white-box view, requirement of soft outputs, and
other practical constraints will rule out such trivial solutions. Here,
we discuss the connection between the curiosity of a classifier
and the entropy of its output, and then we formulate the problem
of establishing a desired trade-off for an HBC classifier F and its
corresponding attack G into an information-theoretical framework.

4.1 Curiosity and Entropy
The entropy of a random variable 𝑥 is the expected value of the
information content of that variable; also called self-information:
H(𝑥) = I(𝑥 ;𝑥). When we are looking for target information in the
data, then the presence of other potentially unrelated information
in that data could make the extraction of target information more
challenging. In principle, such unrelated information would act as
noise for our target task. For example, when looking for a target
attribute, a trained DNN classifier takes data x (usually with very
high entropy) and produces a probability distribution over the
possible outcomes ŷ ∈ [𝑌 ] with much lower entropy compared to
x. Although ŷ contains much less information than x in the sense
that it has less entropy, it is considered more informative w.r.t. the
target 𝑦.

On the other hand, there is a relationship between the entropy
of a classifier’s output, H(ŷ) ∈ [0, log(𝑌 )], and the curiosity 𝛿𝑠
of an attack G. The larger H(ŷ), the more information is carried
by ŷ, thus the higher the chance to reveal information unrelated
to the target task. For example, assume that 𝑌 = 4, 𝑦 = 1, and
𝑦 is independent of 𝑠 . In the extreme case when the classifier’s
output is ŷ = [0, 1, 0, 0] (that means H(ŷ) = 0), then ŷ carries no
information about 𝑠 and adding any information about 𝑠 would
require increasing the entropy of the output ŷ.

In supervised learning, the common loss function for training
DNN classifiers is cross entropy: H𝑦 (ŷ) = −

∑𝑌−1
𝑖=0 I(𝑦=𝑖) log𝑦𝑖 ; that

inherently minimizes H(ŷ) during training. However, since data
is usually noisy, we cannot put any upper bound on H𝑦 (ŷ) at in-
ference time. In practice, minimizing H(ŷ), alongside H𝑦 (ŷ), might
help in keeping H(ŷ) low at inference time, which turns out to be
useful for some applications like semi-supervised learning [18].
But there is no guarantee that a classifier will always produce a
minimum- or bounded-entropy output at inference time. This fact
somehow serves as the main motivation of our work for encoding
private attributes of the classifier’s input into the classifier’s output;
explained in the following two attacks.

4.2 Regularized Attack
We first introduce a method, for training any classifier to be HBC, in
situations where sensitive attribute is binary (𝑆 = 2) and the server
only has access to the soft output (ŷ ∈ P𝑌 ); see Figure 1. The idea
is to enforce classifier F to explicitly encode 𝑠 into the entropy of
ŷ by regularizing the loss function on F . In general, there are two
properties of ŷ that one can utilize for creating an HBC classifier:

1. Argmax: as the usual practice, we use the index of the maxi-
mum element in ŷ to predict 𝑦. This helps the classifier to satisfy
the honesty requirement.

2. Entropy: the entropy of ŷ can have at least two states: (i) be
close to the maximum entropy, i.e., H(ŷ) = log𝑌 , or (ii) be close to
the minimum entropy, i.e., H(ŷ) = 0.
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Figure 5: Observing 𝑦 ∈ [0, 1], we can predict 𝑦 = 0 if 𝑦 < .5,
otherwise𝑦 = 1. We train the classifier such that for samples
with 𝑠 = 0, 𝑦 gets close to the borders (0 or 1) depending on
𝑦; otherwise, for 𝑠 = 1, 𝑦 gets far from the borders. Using a
threshold 𝜏 , we predict binary attributes 𝑦 and 𝑠 from 𝑦.

We show that H(ŷ) can be used for predicting a binary 𝑠 , while not
interfering with the argmax(ŷ) that is preserved for𝑦. Without loss
of generality, let us assume 𝑌 = 2. Consider observing 𝑦 ∈ P; that
is equivalent to ŷ = [𝑦0, 𝑦1] ∈ P2, when 𝑦1 ≡ 𝑦 and 𝑦0 = 1 − 𝑦1.
Figure 5 shows how we can use the single real-valued 𝑦 to predict
two attributes. For example, ŷ = [.95, .05] and ŷ = [.75, .25] have
the same argmax but different entropies: 0.29 and 0.81, respectively.

Training. Choosing any arbitrary classifier F , the server can
train F with the following loss function:

L𝑏 = 𝛽𝑦H𝑦 (ŷ) + 𝛽𝑠 (I(𝑠=0) − I(𝑠=1) )H(ŷ) =

𝛽𝑦
(
−
𝑌−1∑
𝑖=0
I(𝑦=𝑖) log𝑦𝑖

)
+ 𝛽𝑠

(
I(𝑠=0) − I(𝑠=1)

) (
−
𝑌−1∑
𝑖=0

𝑦𝑖 log𝑦𝑖
)
,
(3)

where multipliers 𝛽𝑦 and 𝛽𝑠 aim to control the trade-off between
honesty and curiosity. In Eq (3), in the first term, we have the cross-
entropy and in the second term, we have Shannon entropy that
aims to minimize the entropy of ŷ for samples of 𝑠 = 0, while
maximizing the entropy of ŷ for samples of 𝑠 = 1.

Attack. At inference time, when the server observes ŷ, it com-
putes H(ŷ), and using a threshold 𝜏 ∈ [0, 1], estimates 𝑠:

𝑠 = G(ŷ) =
{
0, if H(ŷ) ≤ 𝜏
1, otherwise. (4)

Thus, the attack G is a simple threshold function, and 𝜏 is optimized
using the validation set during training, as we explain in Section 5.

4.3 Parameterized Attack
In this section, we present our general solution that works for 𝑆 ≥ 2,
and for both raw and soft outputs; see Figure 1.

4.3.1 An Information Bottleneck Formulation. Remember theMarkov
chain (𝑦, 𝑠) → x → ŷ → ŝ. We assume that the server is con-
strained to a specific family of classifiers F, e.g., a specific DNN
architecture that has to be as honest as a standard classifier. The
server looks for a F ∗ ∈ F that maps the users’ data x into a vector
ŷ such that ŷ is as informative about both 𝑦 and 𝑠 as possible.

Formally, F ∗ can be defined as the solution of the following
mathematical optimization:

min
(x,𝑦,𝑠)←D, F∈F, ŷ←F(x)

[
I = 𝛽𝑥I(ŷ; x) − 𝛽𝑦I(ŷ;𝑦) − 𝛽𝑠I(ŷ; 𝑠)

]
,

(5)
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where 𝛽𝑥 , 𝛽𝑦 , and 𝛽𝑠 are Lagrange multipliers that allow us to move
along different possible local minimas and all are non-negative real-
valued2. Eq (5) is an extension of the information bottleneck (IB)
formulation [71], where the optimal ŷ, produced by F ∗, is decided
based on its relation to the three variables, x, 𝑦, and 𝑠 . By varying
the 𝛽 multipliers, we can explore the trade-off between compression
at various rates, i.e., by minimizing I(ŷ; x), and the amount of
information we aim to preserve, i.e., by maximizing I(ŷ;𝑦) and
I(ŷ; 𝑠). Particularly for DNNs, it is shown that compression might
help the classifier to achieve better generalization [72].

An Intuition. For better understanding, assume that for 𝛽𝑠 = 0
(i.e., the standard classifiers) the optimal solution F ∗ obtains a spe-
cific value for I = I∗ in Eq (5). Now, assume that the server aims to
find an HBC solution, by setting 𝛽𝑠 > 0. Then, in order to maintain
the same value of I∗ with the same MI for the target attribute
I(ŷ;𝑦), the term I(ŷ; x) must be increased, because I(ŷ; 𝑠) ≥ 0 if
𝛽𝑠 > 0. Since for deterministic classifiers I(ŷ; x) = H(ŷ), we con-
clude that when the server wants to encode information about both
𝑦 and 𝑠 in the output ŷ, then the output’s entropy must be higher
than if it was only encoding information about 𝑦; which shows
that our formulation in Eq (5) is consistent with our motivation
for exploiting the capacity of H(ŷ). In Section 5, we provide more
intuition on this through some experimental results.

4.3.2 Variational Estimation. Now, we analyze a server that is com-
putationally bounded and has only access to a sample of the true
population (i.e., a training dataset D𝑡𝑟𝑎𝑖𝑛) and wants to solve Eq (5)
to create a (near-optimal) HBC classifier F . We have

I = 𝛽𝑥I(ŷ, x) − 𝛽𝑦I(ŷ;𝑦) − 𝛽𝑠I(ŷ; 𝑠) =
𝛽𝑥H(ŷ) − 𝛽𝑥H(ŷ|x) − 𝛽𝑦H(𝑦) + 𝛽𝑦H(𝑦 |ŷ) − 𝛽𝑠H(𝑠) + 𝛽𝑠H(𝑠 |ŷ).

Since for a fixed training dataset H(𝑦) and H(𝑠) are constant during
the optimization and for a deterministic F we have H(ŷ|x) = 0, we
can simplify Eq (5) as

min
(x,𝑦,𝑠)←D, F∈F, ŷ←F(x)

[
H = 𝛽𝑥H(ŷ) +𝛽𝑦H(𝑦 |ŷ) +𝛽𝑠H(𝑠 |ŷ)

]
. (6)

Eq (6) can be interpreted as an optimization problem that aims
to minimize the entropy of ŷ subject to encoding as much infor-
mation as possible about 𝑦 and 𝑠 into ŷ. Thus, the optimization
seeks for a function F ∗ to produce a low-entropy ŷ such that ŷ is
only informative about 𝑦 and 𝑠 and no information about anything
else. Multipliers 𝛽𝑦 and 𝛽𝑠 specify how 𝑦 and 𝑠 can compete with
each other for the remaining capacity in the entropy of ŷ; that is
challenging, particularly, when 𝑦 and 𝑠 are independent.

Different constraints on the server can lead to different optimal
models. As we observed, in a black-box view with 𝑆 ≤ 𝑌 and arbi-
trary F, a solution is achieved by training two separate classifiers
with a cross-entropy loss function and an entropy minimization
regularizer [18]. First, using stochastic gradient decent (SGD), we
train classifier F 𝑦 by setting 𝛽𝑦 = 1 and 𝛽𝑠 = 0 in Eq (6). Second,
we train classifier F 𝑠 by setting 𝛽𝑦 = 0 and 𝛽𝑠 = 1. Finally, we
build F = 𝛽𝑦 ⌊F 𝑦⌉ + 𝛽𝑠 ⌊F 𝑠 ⌉ as the desired HBC classifier for any
choice of 𝛽𝑦 ∈ [0, 1] and 𝛽𝑠 = 1 − 𝛽𝑦 . Notice that the desired value
for 𝛽𝑥 can be chosen through a cross-validation process.

2Mathematically speaking, we only need two Lagrange multipliers as 𝛽𝑦 and 𝛽𝑠 are
dependent. Here we use a redundant multiplier for the ease of presentation.

Thus, let us focus on thewhite-box viewwith a constrained F, e.g.,
where the server is required to train a known off-the-shelf classifier.
Here, we use the cross-entropy loss function for the target attribute
𝑦 and train the classifier F using SGD. However, besides this cross-
entropy loss, we also need to look for another loss function for the
attribute 𝑠 . Thus, we need a method to simulate such a loss function
for 𝑠 .

Let 𝑝𝑠 |ŷ denote the true, but unknown, probability distribution
of 𝑠 given ŷ, and 𝑞𝑠 |ŷ denote an approximation of 𝑝𝑠 |ŷ. Considering
the cross entropy between these two distributions H𝑝𝑠 |ŷ (𝑞𝑠 |ŷ), it is
known [41] that

H(𝑝𝑠 |ŷ) = −
𝑆−1∑
𝑖=0

𝑝𝑠 |ŷ log(𝑝𝑠 |ŷ) ≤ H𝑝𝑠 |ŷ (𝑞𝑠 |ŷ) = −
𝑆−1∑
𝑖=0

𝑝𝑠 |ŷ log(𝑞𝑠 |ŷ) .

(7)
This inequality tell us that the cross entropy between the unknown
distribution, i.e., 𝑝𝑠 |ŷ, and any estimation of it, i.e., 𝑞𝑠 |ŷ, is an upper-
bound on H(𝑝𝑠 |ŷ); and the equality holds when 𝑞𝑠 |ŷ = 𝑝𝑠 |ŷ. Thus,
if we find a useful model for 𝑞𝑠 |ŷ, then the problem of minimizing
H(𝑝𝑠 |ŷ) can be solved through minimization of H𝑝𝑠 |ŷ (𝑞𝑠 |ŷ).

Training. In practice, parameterized models such as neural net-
works, are suitable candidates for 𝑞𝑠 |ŷ [41, 55]. For 𝑁 i.i.d. samples
of pairs

{
(ŷ1, 𝑠1), . . ., (ŷ𝑁 , 𝑠𝑁 )

}
that represent 𝑝𝑠 |ŷ and are gener-

ated via our current classifier F on a dataset D𝑡𝑟𝑎𝑖𝑛 ∼ D, we can
estimate H𝑝𝑠 |ŷ (𝑞𝑠 |ŷ) using the empirical cross-entropy as

Ĥ𝑁𝑝𝑠 |ŷ (𝑞𝑠 |ŷ) = −
1
𝑁

𝑁∑
𝑛=1

𝑆−1∑
𝑖=0
I(𝑠=𝑖) log

(
𝑞𝑠 |ŷ (ŷ𝑛)

)
. (8)

Therefore, after initializing a parameterized model for 𝑞𝑠 |ŷ to esti-
mate H(𝑝𝑠 |ŷ), we run optimization

min
𝑞𝑠 |ŷ

Ĥ𝑁𝑝𝑠 |ŷ (𝑞𝑠 |ŷ), (9)

where we iteratively sample 𝑁 pairs (𝑠𝑖 , ŷ𝑖 ), compute Eq (8), and
update the model 𝑞𝑠 |ŷ; using SGD. The server will use this addi-
tional model 𝑞𝑠 |ŷ for 𝑠 , alongside the cross entropy loss function
for 𝑦, to solve Eq (6) for finding the optimal F . Considering 𝑞𝑠 |ŷ as
the attack G and setting our desired 𝛽 multipliers, the variational
approximation of our general optimization problem in Eq (6) is
written as

min
(x,𝑦,𝑠)←D, F∈F, ŷ←F(x),ŝ=G(ŷ)

[
H = 𝛽𝑥 Ĥ(ŷ)+𝛽𝑦 Ĥ(𝑦 |ŷ)+𝛽𝑠 Ĥ(𝑠 |ŷ)

]
,

(10)
where the joint minimization is performed over both parameter-
ized models F and G. Here, Ĥ(·) and Ĥ(·|·) denote the empirical
entropy and conditional-entropy computed on every sampled batch
of data, respectively. A schematic view of this approach is de-
picted in Figure 6. Using a training dataset (x, 𝑦, 𝑠) ∈ D𝑡𝑟𝑎𝑖𝑛 ∼ D
and in an iterative process, both classifier F , with loss function
LF = 𝛽𝑥 Ĥ(ŷ) + 𝛽𝑦 Ĥ(𝑦 |ŷ) + 𝛽𝑠 Ĥ(𝑠 |ŷ), and attack G, with loss func-
tion LG = Ĥ(𝑠 |ŷ), are simultaneously trained. Algorithm 1, in
Appendix B, shows the details of our proposed training method.

Summary. While our regularized attack (Section 4.2) works by
only modifying the loss function of F , in our parameterized attack
(this section) we not only need to modify the loss function of F but
also to utilize an additional model G (e.g., a multi-layer perception)
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Figure 6: The server iteratively trains the chosen classifier F
and attack G that is a parameterizedmodel. While G is opti-
mized only based on Ĥ(𝑠 |𝑠), classifier F is optimized based on
a weighted combination of Ĥ(ŷ), Ĥ(𝑦 |ŷ) and Ĥ(𝑠 |ŷ) in Eq (10).

to estimate the sensitive attribute. Hence, F can be seen as a model
that aims to perform two roles at the user’s side: (1) as an honest
classifier, to estimate the target attribute, and (2) as a curious encoder
to encode the sensitive attribute. At the server side, G acts as a
decoder for decoding the received output for estimating the sensitive
attribute. Notice that, since the sensitive attribute is a categorical
variable, we cannot directly reconstruct 𝑠 , e.g., using mean squared
error in traditional autoencoders, and we need Equation (9).

5 EVALUATION
We present results in several tasks from two real-world datasets
and discuss the honesty-curiosity trade-off for different attributes.

5.1 Experimental Setup
5.1.1 Settings. Wedefine a task as training a specific classifierF on
a training dataset including samples with two attributes, 𝑦 ∈ [𝑌 ]
and 𝑠 ∈ [𝑆], and evaluating F on a test dataset by measuring
honesty 𝛿𝑦 and curiosity 𝛿𝑠 via the attackG (see Section 2).We have
two types of attacks: (i) regularized, as explained in Section 4.2, and
(ii) parameterized, as explained in Section 4.3. For each task there
are 3 different scenarios: (1) Std: where F is a standard classifier
without intended curiosity, (2) RawHBC: where F is trained to be
HBC and G has access to raw outputs ŷ ∈ R𝑌 , and (3) SoftHBC:
where F is HBC but G has access only to soft outputs ŷ ∈ P𝑌 (see
Figure 1). We run each experiment five times, and report mean and
standard deviation. For each experiment in SoftHBC, 𝜏 ∈ [0, 1] in
Eq (4) is chosen based on the validation set and is used to evaluate
the result on the test set.

5.1.2 CelebA Dataset [35]. This is a dataset including more than
200K celebrity face images, each with 40 binary attributes, e.g., the
‘Smiling’ attribute with values 0:𝑁𝑜𝑛-𝑆𝑚𝑖𝑙𝑒 or 1:𝑆𝑚𝑖𝑙𝑒 . We choose
attributes that are almost balanced, meaning that there are at least
30% and at most 70% samples for that attribute with value 1. Our
chosen attributes are: Attractive, BlackHair, BlondHair, BrownHair,
HeavyMakeup, Male, MouthOpen, Smiling, and WavyHair. CelebA
is already split into separate training, validation, and test sets. We
use the resampled images of size 64 × 64. We elaborate more on
CelebA and show some samples of this dataset in Appendix F.1.

5.1.3 UTKFace Dataset [86]. This is a dataset including 23,705 face
images annotated with attributes of Gender (Male or Female), Race
(White, Black, Asian, Indian, or others), and Age (0-116). We use the
resampled images of size 64 × 64, and randomly split UTKFace into

Figure 7: The ROC curve of (top) a standard classifier and
(bottom) an HBC classifier trained by the regularized attack
in SoftHBC. The target attribute is Gender and the sensitive
attribute is Race (in UTKFace), and (𝛽𝑦, 𝛽𝑠 ) in Eq (3) is (.5, .5).

subsets of sizes 18964 (80%) and 4741 (20%) for training and test sets,
respectively. A subset of 1896 images (10%) from the training set is
randomly chosen as the validation set for training. See Appendix F.2
for the details of tasks we define on UTKFace, and some samples.

5.1.4 Architectures. For F , we use a DNN architecture similar to
the original paper of UTKFace dataset [86] that includes 4 convolu-
tional layers and 2 fully-connected layers with about 250K trainable
parameters. For G, we use a simple 3-layer fully-connected classi-
fier with about 2K to 4K trainable parameters; depending on the
value of𝑌 . The implementation details for F and G are presented in
Appendix G. For all experiments, we use a batch size of 100 images,
and Adam optimizer [29] with learning rate .001. After fixing 𝛽
multipliers, we run training for 50 epochs, and choose models of
the epoch that both F and G achieve the best trade-off for both 𝑦
and 𝑠 (based on 𝛽𝑦 and 𝛽𝑠 ) on the validation set, respectively. That
is, the models that give us the largest 𝛽𝑦𝛿𝑦 + 𝛽𝑠𝛿𝑠 on the validation
set during training. Notice that, the fine-tuning is a task at training
time, and a server with enough data and computational power can
find near-optimal values for (𝛽𝑦, 𝛽𝑠 ), as we do here using the vali-
dation set. In the following, all reported values for honesty 𝛿𝑦 and
curiosity 𝛿𝑠 of HBC classifiers are the accuracy of the final F and G
on the test set. Finally, in all Std settings, values in italic show the
effect of overlearning [66], that is the accuracy of a parameterized
G in inferring a sensitive attribute from a standard classifier.

5.2 UTKFace: Gender vs. Race
As the first result, we present a simple result on UTKFace. We set
Gender as the target attribute 𝑦 and Race (White, Non-White) as
the sensitive attribute 𝑠 . The training set includes 52% Male and
48% Female, where 42% of samples are labeled as White and 58%
as Non-White. Figure 7 shows the ROC curves for this experiment.
For honesty, in the top-left plot, the standard classifier achieves
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Table 1: (A) The characteristics of four attributes vs. Smiling attribute in the training set of CelebA dataset. The honesty (𝛿𝑦)
and curiosity (𝛿𝑠 ) of (B) standard classifiers when releasing either raw or soft outputs, as well as our proposed HBC classifiers
trained for (C) regularized attacks and (D) parameterized attacks. Here, 𝑌 = 𝑆 = 2 and 𝛽𝑥 = 0. Values are in percentage (%).

(A) For each attribute: the empirical joint probability and mutual information (MI) with Smiling, besides accuracy of the standard classifier (𝛿𝑦 )
MouthOpen Male HeavyMakeup WavyHair

Non-Smile Smile sum Non-Smile Smile sum Non-Smile Smile sum Non-Smile Smile sum
0 .386 .122 .508 0 .292 .375 .667 0 .305 .184 .489 0 .322 .166 .488
1 .103 .389 .492 1 .197 .136 .333 1 .226 .28.5 .511 1 .303 .209 .512

sum .489 .510 sum .489 .511 sum .531 .469 sum .625 .375
MI: .231 𝛿𝑦 : 93.42 ± .07 MI: .015 𝛿𝑦 : 97.67 ± .04 MI: .024 𝛿𝑦 : 88.89 ± .19 MI: .003 𝛿𝑦 : 77.29 ± .55
Setting (𝛽𝑦, 𝛽𝑠 ) 𝑠: MouthOpen 𝑠: Male 𝑠: HeavyMakeup 𝑠:WavyHair

𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠

(B) Overlearning [66]

𝑦
:S
m
il
in
g

Std
raw (1., 0.) 92.15 ± .04 79 .56 ± .32 92.15 ± .04 68.20 ± .03 92.15 ± .04 60.96 ± .10 92.15 ± .04 57 .93 ± .21
soft 79 .22 ± .14 68.20 ± .00 60.53 ± .11 57 .90 ± .00

(C) Regularized Attack

SoftHBC
(.7,.3) 91.90 ± .01 84.73 ± .50 91.78 ± .15 90.14 ± .37 92.03 ± .12 80.79 ± .47 92.11 ± .15 68.06 ± .72
(.5, .5) 91.83 ± .13 89.08 ± .04 91.65 ± .10 94.20 ± .18 91.87 ± .03 85.27 ± .15 91.98 ± .18 72.36 ± .83
(.3, .7) 91.75 ± .10 91.22 ± .25 91.60 ± .11 96.02 ± .09 91.58 ± .10 87.09 ± .43 91.73 ± .07 73.52 ± .77

(D) Parameterized Attack
RawHBC (.7,.3) 91.84 ± .07 93.40 ± .09 92.36 ± .02 97.21 ± .10 92.12 ± .09 88.63 ± .04 92.17 ± .04 76.74 ± .37

SoftHBC
(.7,.3) 91.49 ± .44 85.94 ± .76 91.72 ± .17 79.39 ± 2.4 91.84 ± .10 84.45 ± .15 92.12 ± .09 57.90 ± .00
(.5,.5) 90.20 ± 1.1 88.91 ± .83 90.17 ± .66 92.73 ± .76 91.49 ± .11 86.19 ± .18 92.20 ± .12 61.51 ± .77
(.3,.7) 82.55 ± .27 93.15 ± .07 67.65 ± 6.4 97.41 ± .06 70.75 ± 4.3 88.62 ± .52 89.27 ± 1.9 67.57 ± 3.7

0.97 area under the ROC curve (AUC), whereas in the bottom-left
plot the classifier is HBC but it still achieves a considerable 0.94
AUC. For curiosity, the standard classifier in the top-right plot is
not informative about Race and it basically is as good as a random
guess. But, the HBC classifier in the bottom-right can achieve 0.89
AUC on predicting Race via the regularized attack.

5.3 CelebA: Smiling vs. Other Attributes
Here, we consider a smile detection task on CelebA where𝑦 is set to
Smiling and 𝑠 is set to one of MouthOpen, Male, HeavyMakeup, or
WavyHair. To better understand the results, Table 1 (A) shows the
characteristics of these attributes compared to Smiling attribute in
the training dataset. As expected, MouthOpen is the most correlated
one (empirical MI is .231 bits) whileWavyHair is the least correlated
attribute (empirical MI is .003 bits), to Smiling.We also show the test
accuracy of F as a standard classifier trained for each attribute. We
see that Male is the easiest attribute (97% accuracy) andWavyHair is
the most difficult one (77% accuracy). Table 1 (B), (C), and (D) show
how these factors, correlation and easiness, affect the performance
of HBC classifiers: for different attacks and trade-offs based on 𝛽𝑦
and 𝛽𝑠 . Our findings are:

1. The outputs of a standard binary classifier, either raw or soft,
do not reveal information about sensitive attributes more than what
one could already infer from the knowledge about underlying data
distribution. Thus, while overlearning [66] has shown serious prob-
lems when the server observes a subset of internal representations,
here we see that when the server only observes the output of a
binary classifier, then overlearning is not a major problem (we show
this in other settings as well). On the other hand, HBC classifiers can

effectively learn to encode the sensitive attribute in a single-valued
output (that is more restricted than the internal representation).

2. In regularized attacks in Table 1 (B), with a very small loss in 𝛿𝑦
(less than 1%), we can get 𝛿𝑠 very close to the accuracy that we could
have achieved if we could run a separate classifier for the sensitive
attribute. In parameterized attacks, it is easier to encode sensitive
information into the raw output than the soft output. The attacks
in RawHBC are highly successful in curiosity in all four cases in
Table 1 (C), almost without any damage to the honesty. On the other
hand, in SoftHBC it is harder to establish an efficient trade-off be-
tween honesty and curiosity. Since softmax(x) = softmax(x + 𝑎)
for all 𝑎 ∈ R, there are infinitely many vectors in R𝑌 (in RawHBC)
that can be mapped into the same vector in P𝑌 (in SoftHBC). How-
ever, what one can learn about the sensitive attribute in SoftHBC
is still much more than Std. In the following, we will see that when
𝑌 > 2, parameterized attack in SoftHBC is also very successful.

3. The easiness of the sensitive attribute plays an important
role. For example, in face image processing, gender classification
is in general an easier task than detecting heavy makeup (as it
might be easier for human beings as well). Therefore, while MI
between Smiling andHeavyMakeup is larger than Smiling andMale,
the curiosity in inferring Male attribute is more successful than
HeavyMakeup. Moreover, while (due to MI) 𝛿𝑠 of MouthOpen is
about 11% more than Male in Std, in contrast to overlearning attack,
the correlation is not that important in HBC settings compared to
the easiness, as we see that for Male all attacks are as successful
as MouthOpen. For the same reason, for attribute WavyHair it is
more difficult to achieve high curiosity as it is not an easy task.
It is worth noting that, for difficult attributes we may be able to
improve the curiosity by optimizingF for that specific attribute, e.g.,
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Table 2: Results where the target attribute is HairColor and
the sensitive attribute is (A) Male, (B) Smiling, or (C) Attrac-
tive. Here 𝑌=3, 𝑆=2, and 𝛽𝑥=0. Values are in percentage (%).

Setting Attack (𝛽𝑦 , 𝛽𝑠 ) 𝛿𝑦 𝛿𝑠

(A) Male (class distribution 0:66%, 1:34%)
Std raw [66] (1., .0) 92.94 ± .58 75.86 ± .03

RawHBC Parameterized (.7, .3) 92.85 ± .42 97.27 ± .09

SoftHBC

Parameterized
(.7, .3) 92.12 ± .27 94.23 ± 1.4
(.5, .5) 91.98 ± .12 96.87 ± .13
(.3, .7) 67.63 ± .25 97.52 ± .08

Regularized
(.7, .3) 92.79 ± .22 95.11 ± .22
(.5, .5) 92.78 ± .28 96.68 ± .12
(.3, .7) 92.96 ± .33 97.02 ± .04

(B) Smiling (class distribution 0:49%, 1:51%)
Std raw [66] (1., .0) 92.94 ± .58 56.12 ± .21

RawHBC Parameterized (.7, .3) 92.56 ± .46 91.79 ± .12

SoftHBC

Parameterized
(.7, .3) 92.96 ± .44 88.59 ± 1.8
(.5, .5) 91.27 ± .35 89.18 ± .06
(.3, .7) 88.05 ± 1.3 91.07 ± .51

Regularized
(.7, .3) 92.80 ± .28 86.22 ± .38
(.5, .5) 92.52 ± .43 90.67 ± .15
(.3, .7) 92.31 ± .32 91.59 ± .07

(C) Attractive (class distribution 0:40%, 1:60%)
Std raw [66] (1., .0) 92.94 ± .58 60.73 ± .21

RawHBC Parameterized (.7, .3) 92.81 ± .16 76.97 ± .07

SoftHBC

Parameterized
(.7, .3) 93.03 ± .33 71.54 ± .60
(.5, .5) 92.62 ± .64 76.18 ± .12
(.3, .7) 92.66 ± .33 75.57 ± .37

Regularized
(.7, .3) 91.95 ± .35 69.06 ± .39
(.5, .5) 92.33 ± .44 74.38 ± .13
(.3, .7) 91.09 ± .46 75.70 ± .27

through neural architecture search. But for fair comparisons, we use
the same DNN for all experiments and we leave the architectures
optimization for HBC classifiers to future studies.

5.4 CelebA: HairColor vs. Other Attributes
Moving beyond binary classifiers, in Table 2 we present a use-case
of a three-class classifier (Y=3) for the target attribute of HairColor,
where there are 40% samples of BlackHair, 34% BrownHair, and 26%
BlondHair. We consider three sensitive attributes with different
degrees of easiness: (A) Male, (B) Smiling, and (C) Attractive. While
in Std setting, attacks on overlearning [66] are not very successful
(even when releasing the raw outputs), our parameterized attacks,
in RawHBC, are very successful without any meaningful damage
to the honesty of classifier. In SoftHBC, while it is again harder to
train a parameterized attack as successful as RawHBC, we do find
successful trade-offs if we fine-tune (𝛽𝑦, 𝛽𝑠 ); particularly for the
regularized attack.

5.5 UTKFace: Sensitive Attributes with S>2
To evaluate tasks with 𝑆 > 2, we provide results of several exper-
iments performed on UTKFace in Table 3 and Table 4 (also some

complementary results in Appendix C, Table 7, Tables 8, and Ta-
ble 9). In each experiment, we set one of Gender, Age, or Race, as
𝑦 and another one as 𝑠 , and compare the achieved 𝛿𝑦 and 𝛿𝑠 . See
Appendix F.2 for the details of how we created labels for different
values of 𝑌 and 𝑆 . Our findings are:

1. An HBC classifier can be as honest as a standard classifier
while also achieving a considerable curiosity. For all RawHBC cases,
the 𝛿𝑦 of an HBC classifier is very close to 𝛿𝑦 of a corresponding
classifier in Std. Moreover, we see that in some situations, making
a classifier HBC even helps in achieving a better generalization
and consequently getting a slightly better honesty; which is very
important as an HBC classifier can look as honest as possible (we
elaborate more on the cause of this observation in Appendix D).

2.When having access to raw outputs, the attack is highly suc-
cessful in all tasks, and in many cases, we can achieve similar
accuracy to a situation where we could train F for that specific
sensitive attribute. For example, in Table 3 for 𝑆 = 3 and 𝑌 > 2,
we can achieve about 83% curiosity in inferring the Race attribute
from a classifier trained for Age attribute. When looking at Table 8
where Race is the target attribute, we see that the best accuracy a
standard classifier can achieve for Race classification is about 85%.

3. In SoftHBC, it is more challenging to achieve a high curios-
ity via a parameterized attack, unless we sacrifice more honesty.
Particularly for tasks with 𝑆 > 𝑌 , where the sensitive attribute is
more granular than the target attribute. Also, while we observed
successful regularized attacks for SoftHBC in Table 1 (C), regular-
ized attacks cannot be applied to tasks with 𝑆 > 2. Yet, even in this
case of having only access to soft outputs, the curiosity is much
higher than what can be learned from the raw output of a stan-
dard classifier (via overlearning attack). Although the curiosity in
RawHBC is more successful than SoftHBC, the difference between
these two gets smaller as the size of output 𝑌 gets larger.

4. Attacks are highly successful when 𝑆 ≤ 𝑌 , as there is more
capacity in the released output. However, the attack is successful in
scenarios when 𝑆 > 𝑌 as well. The most challenging case is where
𝑌 = 2 and when we only have access to the soft outputs, because in
these tasks we only release one value (i.e., 𝑦1 = 1 − 𝑦2). Moreover,
we see in Table 4 that for SoftHBC with 𝑆 = 𝑌 = 2, regularized
attacks achieve much better trade-offs than parameterized attacks.

5.6 Entropy Minimization with 𝛽𝑥 > 0
We examine the entropy minimization (i.e., compression) of the
classifier’s outputs and its effect on the achieved trade-off for hon-
esty and curiosity. Table 5 compares the results of different values
chosen for 𝛽𝑥 in Eq (10) (see Figure 6). An important observation is
that compression is mostly helpful to the honesty. This is expected,
due to our discussion in Section 4.3, and findings in previous related
works [72, 75]. Moreover, we see that compression is more effective
in improving the honesty of the classifier in situations where we
assign more weight to the curiosity of the classifier.

Although Table 5 shows that large compression hurts curiosity
more, this is another trade-off that a server can utilize to make the
HBC classifier less suspicious. It is important to observe that the
average entropy of the classifier’s output, shown by H̃(ŷ), is directly
related to the curiosity weight 𝛽𝑠 . The more curious a classifier is,
the larger will be the entropy of the output. In Figure 8, we plot
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Table 3: The honesty (𝛿𝑦) and curiosity (𝛿𝑠 ) of an HBC classifier trained via parameterized attack, where the target attribute
(𝑦) is Age and the sensitive attribute (𝑠) is Race. Values are in percentage (%)

𝑆 = 2 𝑆 = 3 𝑆 = 4 𝑆 = 5
(𝛽𝑦, 𝛽𝑠 ) 𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠

𝑌 = 2
NC (1.,0.) 83.03 ± .33 62.44 ± .97 83.03 ± .33 52.34 ± 1.4 83.03 ± .33 45.74 ± .13 83.03 ± .33 44.67 ± .17

RawHBC (.7,.3) 83.60 ± .22 86.77 ± .11 83.22 ± .27 80.06 ± .88 83.10 ± .18 74.12 ± .33 83.07 ± .13 72.52 ± .34

SoftHBC
(.7,.3) 82.87 ± .21 69.89 ± .40 82.88 ± .27 63.28 ± .30 81.67 ± .54 55.01 ± .57 81.94 ± .81 53.84 ± .93
(.5,.5) 68.86 ± .93 84.75 ± 1.1 64.60 ± 1.0 82.88 ± .56 72.28 ± .65 62.87 ± .29 65.71 ± .86 71.54 ± 1.6

𝑌 = 3
NC (1.,0.) 81.09 ± .37 65.99 ± .40 81.09 ± .37 56.37 ± .47 81.09 ± .37 48.28 ± .49 81.09 ± .37 46.67 ± .41

RawHBC (.7,.3) 81.67 ± .33 86.35 ± .65 81.35 ± .28 83.42 ± .29 81.23 ± .29 76.62 ± .56 81.30 ± .28 76.24 ± .59

SoftHBC
(.7,.3) 81.19 ± .02 79.07 ± .15 80.76 ± .36 72.90 ± .23 80.10 ± .32 66.40 ± 1.1 80.29 ± .07 67.74 ± .30
(.5,.5) 78.17 ± .38 86.17 ± .20 69.56 ± .75 80.14 ± .30 69.03 ± .60 76.63 ± .19 68.54 ± .98 76.69 ± .72

𝑌 = 4
NC (1.,0.) 68.59 ± .24 66.93 ± .39 68.59 ± .24 58.02 ± .55 68.59 ± .24 49 .23 ± .53 68.59 ± .24 41.13 ± .15

RawHBC (.7,.3) 68.59 ± .27 86.91 ± .27 68.59 ± .49 84.17 ± .26 68.29 ± .26 79.46 ± .16 68.40 ± .50 78.79 ± .13

SoftHBC
(.7,.3) 68.15 ± .42 78.10 ± .32 67.45 ± .25 74.70 ± .43 66.30 ± .22 69.01 ± 1.3 65.70 ± .51 69.37 ± .28
(.5,.5) 64.48 ± .50 86.68 ± .11 62.69 ± .19 84.11 ± .51 58.95 ± .77 77.48 ± .53 58.19 ± .57 76.89 ± .99

𝑌 = 5
NC (1.,0.) 62.24 ± .61 67 .00 ± .32 62.24 ± .61 58.69 ± .44 67.00 ± .32 50.37 ± .35 67.00 ± .32 49 .22 ± .62

RawHBC (.7,.3) 62.72 ± .20 86.63 ± .05 62.46 ± .49 83.79 ± .16 61.84 ± .77 78.53 ± .80 62.40 ± .31 78.28 ± .20

SoftHBC
(.7,.3) 62.08 ± .14 79.41 ± .75 61.35 ± .58 74.57 ± .91 60.90 ± .39 69.32 ± .49 60.70 ± .52 69.56 ± 1.2
(.5,.5) 58.53 ± .85 86.88 ± .34 56.63 ± .79 84.06 ± .09 53.27 ± .14 77.45 ± .11 54.61 ± .20 77.30 ± 1.0

Table 4: The honesty (𝛿𝑦) and curiosity (𝛿𝑠 ) of an HBC classifier trained via different attacks, where the target attribute (𝑦) is
Race and the sensitive attribute (𝑠) is Gender. Values are in percentage (%).

𝑌 = 2 𝑌 = 3 𝑌 = 4 𝑌 = 5
Setting Attack (𝛽𝑦, 𝛽𝑠 ) 𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠

𝑆 = 2

Std raw [66] (1.,0.) 87.67 ± .49 56.11 ± .44 85.50 ± .13 56.04 ± 2.4 81.15 ± .23 58.91 ± .74 80.69 ± .23 61.06 ± 2.0
RawHBC Parameterized (.7, .3) 88.10 ± .22 89.36 ± .03 85.77 ± .30 89.14 ± .21 82.05 ± .14 89.19 ± .33 81.43 ± .34 89.00 ± .42

SoftHBC

Parameterized (.7, .3) 87.43 ± .09 51.66 ± .00 85.71 ± .16 83.51 ± 1.1 81.10 ± .23 83.60 ± .22 80.46 ± .26 88.46 ± .18
(.5, .5) 83.67 ± .27 80.17 ± 2.1 82.89 ± .59 85.69 ± .54 70.36 ± 1.5 86.05 ± 1.6 77.40 ± .35 88.36 ± .45

Regularized (.7, .3) 87.30 ± .29 75.29 ± .89 84.89 ± .20 77.53 ± .33 80.64 ± .31 76.29 ± .45 80.24 ± .09 78.01 ± .62
(.5, .5) 86.61 ± .15 83.23 ± .27 83.89 ± .44 86.61 ± .61 79.03 ± .21 86.29 ± .32 78.61 ± .65 85.97 ± .28

Table 5: The effect of entropy minimization on the UTKFace dataset for the target attribute Age and the sensitive attribute
Race where 𝑌 = 𝑆 = 3. We also show the average of the entropy of classifier’s output by H̃(ŷ) in bits.

(𝛽𝑦, 𝛽𝑠 ) 𝛽𝑥 = .0 𝛽𝑥 = .2 𝛽𝑥 = .4 𝛽𝑥 = .8
𝛿𝑦 𝛿𝑠 H̃(ŷ) 𝛿𝑦 𝛿𝑠 H̃(ŷ) 𝛿𝑦 𝛿𝑠 H̃(ŷ) 𝛿𝑦 𝛿𝑠 H̃(ŷ)

Std (1., .0) 81.43±.37 58.14±.06 .48±.05 81.04±.09 56.13±.14 .45±.06 80.90±.27 58.60±.07 .40±.05 81.15±.41 55.94±.26 .32±.02

RawHBC
(.7, .3) 81.32±.31 82.97±.27 .63±.05 81.59±.42 82.90±.24 .45±.02 81.62±.37 81.98±.77 .36±.02 81.61±.31 81.40±.41 .28±.03
(.5, .5) 80.23±.42 84.82±.35 .76±.03 80.60±.14 84.60±.32 .54±.03 80.95±.41 83.86±.54 .39±.01 81.26±.22 83.92±.32 .26±.01

SoftHBC
(.7, .3) 81.04±.26 73.34±.29 .72±.02 81.26±.28 69.77±.50 .51±.02 81.01±.55 64.54±2.5 .37±.04 81.01±.46 56.28±.51 .27±.05
(.5, .5) 69.12±.91 80.81±.97 1.05±.01 76.20±.29 76.27±.37 .76±.01 80.13±.15 74.01±.46 .58±.01 80.59±.16 70.28±.15 .33±.02

the histogram of normalized observations of the output’s entropy
for the setting of 𝑌=𝑆=3 for five scenarios in Table 5. We see that
the output of an HBC classifier tends to have larger entropy than a
standard classifier. Moreover, large entropies, i.e., more than 1 bit,
are more common in SoftHBC than RawHBC. A reason for this is
that the capacity of soft outputs is smaller than raw outputs; hence,
the classifier tends to take more advantage of the existing capacity.
Interestingly, when we use the entropy minimization with 𝛽𝑥 > 0,
then we observe that the entropy distribution for an HBC classifier
has a smaller tail (compared to 𝛽𝑥 = 0) and thus can become even
less suspicious than the standard classifier when we release the
raw output. Finally, in releasing the soft outputs, it is a bit more
challenging to keep the average entropy low.

5.7 Pruning HBC Classifiers
As DNN classifiers are mostly overparameterized, a hypothesis
might be that HBC classifiers utilize the extra capacity of DNNs for
extracting patterns that correspond to the sensitive attribute. Thus,
one could say that reducing a DNN’s capacity, using a pruning
technique [21], might make it more difficult for a classifier to be
curious. For example, a user who does not trust a server can take the
classifier F and perform some pruning technique, before making
inferences, hoping that pruning will not damage the honesty but
will reduce curiosity. Figure 9 shows the honesty-curiosity trade-off
for different amounts of pruning. As the pruning technique, we use

10



Figure 8: The normalized density histogram (i.e., number of
observations) of the output entropies of classifier with and
without compression. Here, 𝑦 is Age and 𝑠 is Race with 𝑌 =

𝑆 = 3 on UTKFace. From top to bottom, classifier is trained
(1) standard, (2, 3)RawHBCwherewe release the raw outputs,
and (4, 5) SoftHBC where we release the soft outputs. For (2)
and (4) we set 𝛽𝑥 = .0, and for (3) and (5) we set 𝛽𝑥 = .4.

L1-Unstructured implemented in [56], where parameters with the
lowest L1-norm are set to zero at inference time (i.e., no re-training).

1. Comparing the top plots (where 𝛽𝑥 = 0) with bottom plots
(where 𝛽𝑥 = 0.4) in Figure 9, we see that classifiers without compres-
sion show more tolerance to a large amount of pruning (>60%) than
classifiers with compression. This might be due to the additional
constraint that we put on classifiers with compression.

2. By pruning less than 50% of the parameters, there is no sig-
nificant drop in the honesty in both standard and HBC classifiers.
However, for the curiosity, HBC classifiers show different behaviors
in different settings. When there is no compression (𝛽𝑥 = 0), the cu-
riosity of RawHBC shows faster and much larger drops, compared
to SoftHBC. When there is compression (𝛽𝑥 = 0.4), then drops are
not different across these settings.

3. If we prune more than 50% of the parameters, the drop in accu-
racy for both the target and sensitive attributes are significant. How-
ever, SoftHBC settings interestingly show better performances than
RawHBC, for both target and sensitive attributes. While RawHBC

Table 6: An HBC teacher can train an HBC student via KD.
The target attribute is Smiling in CelebA and the setting is
SoftHBC with (𝛽𝑥 , 𝛽𝑦, 𝛽𝑠 ) = (.0, .5, .5).

Parameterized Rgularized
𝑠 classifier 𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠

Mouth Teacher 90.04 ± .61 89.14 ± .68 91.61 ± .24 89.01 ± .34
Open Student 90.30 ± .47 88.07 ± .65 91.29 ± .11 83.69 ± .38

Male Teacher 90.17 ± .66 92.73 ± .76 91.57 ± .16 94.11 ± .21
Student 90.20 ± .51 91.62 ± .73 91.01 ± .19 85.71 ± .46

Heavy Teacher 90.73 ± 1.1 85.17 ± .97 91.56 ± .21 85.58 ± .27
Makeup Student 91.00 ± .43 82.62 ± .49 91.23 ± .15 81.05 ± .15
Wavy Teacher 91.99 ± .21 61.05 ± 1.8 91.86 ± .08 71.12 ± 1.2
Hair Student 91.78 ± .17 59.72 ± 1.1 91.60 ± .15 68.61 ± .96

has usually shown better performance in previous sections, in this
specific case SoftHBC performs interestingly very well.

In sum, although Figure 9 shows that pruning can damage curios-
ity more than honesty in settings without compression. We cannot
guarantee that pruning at inference time is an effective defense
against HBC models, as adding compression constraint will help
the server to make HBC models more tolerable to pruning, and
with the amount of pruning up to 50% the curiosity remains high.

5.8 Transferring Curiosity via HBC Teachers
Transferring knowledge from a teacher classifier, trained on a large
labeled data, to a student classifier, that has access only to a (small)
unlabeled data, is known as “knowledge distillation” (KD) [20, 22].
Since KD allows to keep sensitive data private, it has found some
applications in privacy-preserving ML [52, 77]. Let us consider
a user that owns a private unlabeled dataset and wants to train
a classifier on this dataset, and a server that provides a teacher
classifier trained on a large labeled dataset. A common technique
in KD is to force the student to mimic the teacher’s behavior by
minimizing the KL-divergence between the teacher’s soft outputs,
ŷ𝑇𝑒𝑎𝑐ℎ𝑒𝑟 , and student’s soft outputs, ŷ𝑆𝑡𝑢𝑑𝑒𝑛𝑡 [22]:

L𝐾𝐿 =

𝑌∑
𝑖=1

ŷ𝑇𝑒𝑎𝑐ℎ𝑒𝑟𝑖 log
(
ŷ𝑇𝑒𝑎𝑐ℎ𝑒𝑟𝑖 /ŷ𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑖

)
. (11)

We show that if the teacher is HBC, then the student trained using
L𝐾𝐿 can also become HBC. We run experiments, similar to Sec-
tion 5.3, by assigning 80% of the training set (with both labels) to
the server, and 20% of the training set (without any labels) to the
user. At the server side, we train an HBC teacher via both regular-
ized and parameterized attacks, and then at the user side, we use
the trained teacher classifier to train a student only via L𝐾𝐿 and
the user’s unlabeled dataset. We also set the student’s DNN to be
half the size of the teacher’s in terms of the number of trainable
parameters in each layer. We set (𝛽𝑦, 𝛽𝑠 ) = (.5, .5) and consider the
SoftHBC setting, because L𝐾𝐿 is based on mimicking the teacher’s
soft outputs.

Table 6 shows that KD works well for the honesty in both cases;
showing that an HBC teacher can look very honest in transferring
knowledge of the target attribute. For the curiosity, the parameter-
ized attacks transfer the knowledge very well and are usually better
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Figure 9: The effect of pruning, with L1 norm, where the classifier F when 𝑦 is Age, 𝑠 Race, and 𝑌 = 𝑆 = 3. (Top-Left) 𝛽𝑥 , 𝛽𝑦, 𝛽𝑠 =
(0, .7, .3). (Top-Right) we set 𝛽𝑥 , 𝛽𝑦, 𝛽𝑠 = (0, .5, .5).(Bottom-Left) 𝛽𝑥 , 𝛽𝑦, 𝛽𝑠 = (.4, .7, .3). (Bottom-Right) we set 𝛽𝑥 , 𝛽𝑦, 𝛽𝑠 = (.4, .5, .5).

than regularized attacks. A reason might be that for regularized
attacks the chosen threshold 𝜏 for the teacher classifier is not the
best choice for replicating the attack in its students. Though, for
WavyHair as an uncorrelated and difficult attribute, the regularized
attack achieves a better result.

Overall, this capability of transferring curiosity shows another
risk of HBC classifiers provided by semi-trusted servers, especially
that such a teacher-student approach has shown successful appli-
cations in semi-supervised learning [24, 58, 68, 84]. We note that
there are several aspects, such as the teacher-student data ratio and
distribution shift, or different choices of the loss function, that may
either improve or mitigate this attack. For example, the entropy
of teacher’s output in KD can be controlled via a “temperature”
parameter 𝑡 inside the softmax, i.e., ŷP

𝑖
= 𝑒 ŷ

R
𝑖
/𝑡/∑𝑌−1𝑗=0 𝑒

ŷR
𝑗
/𝑡 , which

might further affect the achieved honesty-curiosity. We leave fur-
ther investigation into these aspects of KD for future studies.

6 DISCUSSIONS AND RELATEDWORK
We discuss related work and potential proactive defenses against
the vulnerabilities highlighted in this paper.

6.1 Proactive Investigation
The right to information privacy is long known as “the right to select
what personal information about me is known to what people” [81].
The surge of applying ML to (almost) all tasks in our everyday lives
has brought attention to the ethical aspects of ML [27]. To recon-
struct the users’ face images from their recordings of speech [50, 80]

raised the concern of “tying the identity to biology” and categoriz-
ing people into gender or sexual orientation groups that they do
not fit well [23]. The estimation of ethnicity [76] or detecting sexual
orientation [79] from facial images has risen concerns about misus-
ing such ML models by adversaries that seek to determine people
of minority groups. It is shown in [49] that a widely used health-
care model exhibits significant racial bias, causing Black patients
to receive less medical care than others. The costs and potential
risks associated with large-scale language models, such as discrimi-
natory biases, are discussed in [5] and the research community is
encouraged to consider the impacts of the ever-increasing size of
DNNs beyond just the model’s accuracy for a target task.

In this paper, we showed another major concern regarding DNNs
that enables attacks on the users’ privacy; even when users might
think it is safe to only release a very narrow result of their pri-
vate data. An important concern on the potential misuse of ML
models is that unlike the discovery of software vulnerabilities that
can be quickly patched, it is very difficult to propose effective de-
fenses against harmful consequences of ML models [62]. It is sug-
gested [28] that tech regulators should become “proactive”, rather
than being “reactive”, and design controlled, confidential, and auto-
mated experiments with black-box access to ML services. While ser-
vice providers may argue that ML models are proprietary resources,
it is not unreasonable to allow appropriate regulators to have con-
trolled and black-box access for regulatory purposes. For instance, a
regulator can check the curiosity of ML classifiers provided by cloud
APIs via a test set that includes samples with sensitive attributes.
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6.2 Attacks in Machine Learning
MLmodels can leak detailed sensitive information about their train-
ing datasets in both white-box and black-box views [65]. Since
DNNs tend to learn as many features as they can, and some of these
features are inherently useful in inferring more than one attribute,
then DNNs trained for seemingly non-sensitive attributes can im-
plicitly learn other potentially sensitive attributes [15, 66]. While
information-theoretical approaches [46, 51, 78] are proposed for
training DNNs such that they do not leak sensitive attributes, it
is shown that the empirical implementation of these theoretical
approaches cannot effectively eliminate this risk [66]. A technique
based on transfer learning is proposed in [66] to “re-purpose” a
classifier trained for target attribute into a model for classifying
a different attribute. However, the re-purposing of a classifier is
different from building an HBC classifier as the former does not
aim to look honest and the privacy violation is due to the further
use of a classifier for other purposes without the consent of the
training data owner.

In model extraction (a.k.a. model stealing) attack [73], an adver-
sary aims to build a copy of a black-box ML model, without having
any prior knowledge about the model’s parameters or training data
and just by having access to the soft predictions provided by the
model. This attack is evaluated by two objectives [25]: test accuracy,
which measures the correctness of predictions made by the stolen
model, and fidelity, which measures the similarity in predictions
(even if it is wrong) between the stolen and the original model.
Model extraction has shown the richness of a classifier’s output
in reconstructing the classifier itself, but in our work we show
how this richness can be used for encoding sensitive attributes at
inference time.

ML enables unprecedented applications, e.g., automated med-
ical diagnosis [12, 19]. As personal data,e.g., medical images, are
highly sensitive, privacy-preserving learning, such as federated
learning [42], is proposed to train DNN classifiers on distributed
private data [39, 74]. Users who own sensitive data usually par-
ticipate in training a DNN for a specified target task. Although
differential privacy [11] can protect a model from memorizing its
training data [1, 48], the threat model introduced in this paper is
different from the commonly studied setting in property [43], or
membership [59, 63] inference attacks where classifier is trained on
a dataset including multiple users and the server is curious about
inferring a sensitive property about users, or the presence or ab-
sence of a target user in the input dataset. We consider a threat
to the privacy of a single user at inference time when the server
observes only outputs of a pre-trained model.

6.3 Defense Challenges
Our experiments and analyses on the performance and behavior
of HBC classifiers imply challenges in defending against such a
privacy threat. First, we observed that distinguishing HBC models
from standard ones is not trivial, and typical users mostly do not
have the technical and computational power and resources to ex-
amine the ML services before using them. One can suggest adding
random noise to the model’s outputs before sharing them [37], but,
because of corresponding utility losses, users cannot just simply
apply such randomization to every ML model they use. Thus, we

need robust mechanisms to discover HBC models, but also enti-
ties and systems for performing such investigations. Second, for
proactive investigations, we need datasets labeled with multiple
attributes, which are not always possible. Good and sufficient data
is usually in the possession of ML service providers who are actu-
ally the untrusted parties in our setting. Third, users’ data might
include several types of sensitive attributes, and even if we aim
to distinguish HBC models we may not know which attribute an
HBC model is trained for. There might be unrecognized sensitive
attributes included in some of our personal data; for example, it
has recently been shown [3] that DNNs can be trained to predict
race from chest X-rays and CT scans of patients, in a setting where
clinical experts cannot.

We believe our work serves in improving the users’ awareness
about such privacy threats, and invites the community to work
on efficient mechanisms as well as systems for protecting users’
privacy against such an attack.

7 CONCLUSION
We introduced and systematically studied a major vulnerability
in high-capacity ML classifiers that are trained by semi-trusted
ML service providers. We showed that deep classifiers can secretly
encode a sensitive attribute of their private input data into their
public target outputs. Our results show that, even when classifier
outputs are very restricted in their form, they are still rich enough to
carry information about more than one attribute. We translated this
problem into an information-theoretical framework and proposed
empirical methods that can efficiently implement such an attack
to the privacy of users. We analyzed several properties of classifier
outputs and specifically showed that the entropy of the outputs
can represent the curiosity of the model up to a certain extent.
Furthermore, we showed that this capability can even be transferred
to other classifiers that are trained using such an HBC classifier.
Finally, while we showed that even soft outputs of a multi-class
classifier can be exploited for encoding sensitive information, our
results suggest that it is a bit safer for a user to release soft outputs
than raw outputs; without damaging the utility.

Future Work. We suggest the following open directions for
further exploration. First, rigorous techniques that can help in
distinguishing standard and HBC classifiers are needed, which is in
the same direction of research in understanding and interpreting
DNN behaviors [36]. Second, a limitation of our proposed attacks
is that the sensitive attribute has to be known at training time.
We suggest extending the proposed methods, or designing new
methods, for encoding more than one sensitive attribute in the
classifier’s output, which, in general, will be more challenging, but
not impossible. Third, to investigate the implication and effects
of employing an HBC model in collaborative/federated learning
and multi-party ML applications, where some parties might not be
fully trusted. Fourth, it is of interest to understand whether a HBC
classifier reveals more information about its training dataset or less
compared to standard classifiers. As we can imagine a setting where
a user might also be an adversary to the server, this is a challenge
for servers that utilize private data for training HBC classifiers, and
looking into such scenarios will be of interest.
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APPENDIX
A THE CONVEX USE CASE
In this section, we first present an example of an HBC classifier
with a convex loss function, then we analyze the behavior of such
a classifier.

A.1 An Example of Convex Loss
Let x = [𝑥0, 𝑥1, . . . , 𝑥𝑀−1, 1] denote the data sample with target
attribute 𝑦 ∈ {0, 1}, and sensitive attribute 𝑠 ∈ {0, 1}, and for each
𝑖 ∈ [𝑀] we have 𝑥𝑖 ∈ R. Let us consider a binary logistic regression
classifier F that is parameterized by Θ ∈ R𝑀+1:

𝑦 = F (x) = 𝜎 (Θ⊤x) = 1
1 + exp(−Θ⊤x) .

To make F a honest-but-curious classifier, the server can choose
multipliers 𝛽𝑦 ∈ [0, 1] and 𝛽𝑠 ∈ [0, 1] such that 𝛽𝑦 + 𝛽𝑠 = 1 and
build the loss function

LF = 𝛽𝑦L𝑦 + 𝛽𝑠L𝑠

= − 𝛽𝑦
(
𝑦 log𝑦 + (1 − 𝑦) log (1 − 𝑦)

)
− 𝛽𝑠

(
𝑠 log𝑦 + (1 − 𝑠) log(1 − 𝑦)

)
= − (𝛽𝑦𝑦 + 𝛽𝑠𝑠) log𝑦
−
(
𝛽𝑦 (1 − 𝑦) + 𝛽𝑠 (1 − 𝑠)

)
log(1 − 𝑦)

= − (𝛽𝑦𝑦 + 𝛽𝑠𝑠) log𝑦
−
(
(𝛽𝑦 + 𝛽𝑠 ) − (𝛽𝑦𝑦 + 𝛽𝑠𝑠)

)
log(1 − 𝑦)

= − (𝛽𝑦𝑦 + 𝛽𝑠𝑠) log𝑦
−
(
1 − (𝛽𝑦𝑦 + 𝛽𝑠𝑠)

)
log(1 − 𝑦)

= − 𝑧 log𝑦 −
(
1 − 𝑧

)
log(1 − 𝑦)

(12)

where 𝑧 = 𝛽𝑦𝑦 + 𝛽𝑠𝑠 . We know that:
(1) If function A is convex and 𝛼 ≥ 0, then 𝛼A is convex.
(2) If two functions A1 and A2 are convex, then A1 + A2 is

convex.
(3) Functions− log𝑦 = − log

(
𝜎 (Θ⊤x)

)
and− log (1 − 𝑦) = − log

(
1−

𝜎 (Θ⊤x)
)
, are convex w.r.t. the parameters of a logistic re-

gression model [47].
Thus, considering these three facts, LF in Eq (12) is convex.

A.2 Analysis of Convex Loss
Now, we analyze the situations in which loss functions for training
HBC classifiers F , parameterized by Θ, are convex. Let the loss
function for these situations be

LF = 𝛽𝑦L𝑦
(
F (x;Θ), 𝑦

)
+ 𝛽𝑠L𝑠

(
G(F (x;Θ)), 𝑠

)
= 𝛽𝑦L𝑦 (Θ) + 𝛽𝑠L𝑠 (Θ),

where we assume G is a fixed attack, and in the second line we
just simplified the equation to focus on the trainable parameters
Θ. Let Θ𝑦∗ and Θ𝑠∗ denote the optimal parameters that minimize Ly

and Ls, respectively. Assume that, at each iteration 𝑡 of training,
loss functions Ly and Ls are `y- and `s-strongly convex functions
with respect to Θ𝑡 , respectively. Considering the gradient descent
dynamics in continuous time [83],

𝑑Θ𝑡 = −∇ΘLF𝑑𝑡,

we can define the Lyapunov function 𝑉𝑡 = 1
2 | |Θ𝑡 − Θ

𝑦
∗ | |22. Observe

that by strong convexity of Ly, the optimum of this Lyapunov
function is Θ𝑦∗ and it is unique. Now, we can analyze the dynamics
of this Lyapunov function to better understand the convergence of
the gradient descent dynamics when the loss function is set to be
optimizing both for 𝑦 and 𝑠 .

First, let us consider 𝛽𝑠 = 0, then

𝑑𝑉𝑡 = (Θ𝑡 − Θ𝑦∗ )⊤𝑑Θ𝑡 = −(Θ𝑡 − Θ
𝑦
∗ )⊤∇ΘLF𝑑𝑡

= −𝛽𝑦 (Θ𝑡 − Θ𝑦∗ )⊤∇ΘL𝑦 (Θ𝑡 )𝑑𝑡
= −𝛽𝑦 (Θ𝑡 − Θ𝑦∗ )⊤

(
∇ΘLy (Θ𝑡 ) − ∇ΘLy (Θ𝑦∗ )

)
𝑑𝑡

≤ −𝛽𝑦`y | |Θ𝑡 − Θ𝑦∗ | |22𝑑𝑡,

(13)

where in the second line we use the gradient descent dynamics,
in the third line we use the fact that ∇ΘL𝑦 (Θ

𝑦
∗ ) = 0 (remember

that we assume Θ𝑦∗ is the set of parameters that is optimal for Ly),
and in the last line we use the strong convexity of the function. By
integrating both sides of inequality in (13) we obtain

𝑉𝑡 ≤ 𝑒−𝑡𝛽
𝑦`y𝑉0, (14)

so that as 𝑡 increases, we converge closer to the optimum Θ
𝑦
∗ ; that

is a well-known result [83].
Now, we show how the addition of the loss term on the sensitive

attribute, L𝑠 , prevents the convex classifier from fully converging.
Let 𝛽𝑠 > 0, then

𝑑𝑉𝑡 = −(Θ𝑡 − Θ𝑦∗ )⊤∇Θ𝛽𝑦L𝑦 (Θ𝑡 )𝑑𝑡 − 𝛽𝑠 (Θ𝑡 − Θ
𝑦
∗ )⊤∇ΘL𝑠 (Θ𝑡 )𝑑𝑡

≤ −𝛽𝑦`y | |Θ𝑡 − Θ𝑦∗ | |22𝑑𝑡 + 𝛽
𝑠 (L𝑠 (Θ𝑦∗ ) − L𝑠 (Θ𝑡 ))𝑑𝑡,

where we use convexity of L𝑦 and that by convexity3 of L𝑠 it
holds (Θ𝑦∗ −Θ𝑡 )⊤∇ΘL𝑠 (Θ𝑡 ) ≤ L𝑠 (Θ

𝑦
∗ ) − L𝑠 (Θ𝑡 ). Integrating, we

obtain

𝑉𝑡 ≤ 𝑒−𝑡𝛽
𝑦L𝑦 (Θ𝑡 )𝑉0 + 𝛽𝑠

∫ 𝑡

0
𝑒𝛽

𝑠L𝑦 (Θ𝑡 ) (𝑢−𝑡 ) (L𝑠 (Θ𝑦∗ ) − L𝑠 (Θ𝑢 ))𝑑𝑢.
This result shows that exact convergence is only obtained if Θ𝑦∗ =

Θ𝑠∗ since in this case, by the convexity of L𝑠 , the right-most term
would have been upper-bounded by zero as Θ𝑦∗ would have been
the optimizer also for L𝑠 . Otherwise, we only converge to a neigh-
borhood of the optimum Θ

𝑦
∗ , where the size of the neighborhood is

governed by 𝛽𝑠 and the properties of L𝑠 .
As a summary, the trade-off that we face for a classifier with

limited capacity is that: if we also optimize for the sensitive attribute,
we will only ever converge to a neighborhood of the optimum for
the target attribute. While these results hold for a convex setting
and are simplistic in nature, they give us a basic intuition into the
idea that when the attributes 𝑦 and 𝑠 are somehow correlated, the
output 𝑦 can better encode both tasks. This result also gives us the
intuition that when we have uncorrelated attributes, we should need
classifiers with more capacity to cover the payoff for not converging
to the optimal point of target attribute.

B PSEUDOCODE OF PARAMETERIZED
ATTACK

In Algorithm 1 we show the pseudo-code of the training process
we presented in Section 4.3.1.
3In a convex function, for all 𝑥 and 𝑦 we have: 𝑓 (𝑥) ≥ 𝑓 (𝑦) + 𝑓 ′ (𝑦) (𝑥 − 𝑦) .
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Algorithm 1 Training an HBC classifier and its corresponding
attack based on information bottleneck formulation in Section 4.3.1
1: Input: F : the model chosen as the classifier, G: the model cho-

sen as the attack , D𝑡𝑟𝑎𝑖𝑛 : training dataset, (𝛽𝑥 , 𝛽𝑦, 𝛽𝑠 ): trade-
off multipliers, 𝐸: number of training epochs, 𝐾 : batch size.

2: Output: Updated F and G.
3: Random initialization of F and G.
4: for 𝑒 : 1, . . . , 𝐸 do
5: for 𝑏 : 1, . . . , |D𝑡𝑟𝑎𝑖𝑛 |/𝐾 do
6: (X,Y, S) ← a random batch of𝐾 samples (x, 𝑦, 𝑠) ∼ D𝑡𝑟𝑎𝑖𝑛

7: Ŷ = F (X)
8: Ŝ = G(Ŷ)
9: Ĥ(𝑆 |Ŷ) = −∑𝐾

𝑘=1
∑𝑆−1
𝑖=0 I(𝑠𝑘=𝑖)𝑙𝑜𝑔(𝑠𝑘𝑖 )

10: Update G via the gradients of loss function LG = Ĥ(𝑆 |Ŷ)
11: Ŝ = G(Ŷ)
12: Ĥ(𝑆 |Ŷ) = −∑𝐾

𝑘=1
∑𝑆−1
𝑖=0 I(𝑠𝑘=𝑖)𝑙𝑜𝑔(𝑠𝑘𝑖 )

13: Ĥ(𝑌 |Ŷ) = −∑𝐾
𝑘=1

∑𝑌−1
𝑖=0 I(𝑦𝑘=𝑖)𝑙𝑜𝑔(𝑦𝑘𝑖 )

14: Ĥ(Ŷ) = −∑𝐾
𝑘=1

∑𝑌−1
𝑖=0 𝑦

𝑘
𝑖
𝑙𝑜𝑔(𝑦𝑘

𝑖
)

15: UpdateF via the gradients of loss functionLF = 𝛽𝑥 Ĥ(ŷ)+
𝛽𝑦 Ĥ(𝑦 |ŷ) + 𝛽𝑠 Ĥ(𝑠 |ŷ)

16: end for
17: end for

C ADDITIONAL EXPERIMENTAL RESULTS
In Table 7 we investigate the effect of the classifier’s capacity on
its performance and behavior. Results show that both honesty (𝛿𝑦 )
and curiosity (𝛿𝑠 ) decrease by reducing the capacity of classifier in
a similar way. A more interesting observation is that the average of
the outputs’ entropy tends to increase when reducing the classifier’s
capacity, which is due to both having lower honesty and also the
emerged difficulties because of curiosity. This gives us the hint
that by having a higher-capacity classifier, a server cannot only
achieve better honesty-curiosity trade-offs, but also can easier hide
the suspicious behavior of the classifier’s output.

Table 8 and Table 9 show experimental results for settings where
target and sensitive attribute are reversed, compared to Table 3
and Table 4 in Section 5. We can observe similar patterns in these
results as well, confirming our findings explained in Section 5.

D CURIOSITY AND GENERALIZATION
Underlying the capabilities of the HBC classifiers is the ability of
the output ŷ to encode multiple attributes. Such capability also
forms the foundation for representation learning [6], multi-task
learning [14] and disentanglement of factors [40]. It is well-known
that added noise during training, e.g., in the form of Dropout, im-
proves the generalization performance of a model [75]. These obser-
vations coincide with results obtained in [43], where it is shown that
differential privacy is not effective protection against property in-
ference attacks; even more so, noise may improve the performance
by keeping the model from overfitting on the main task.

Information bottleneck (IB) is used for understanding the nature
of intermediate representations produced by the hidden layers of

Table 7: The effect of classifier’s capacity on the UTKFace
dataset for the target attribute Age and the sensitive at-
tribute Race where 𝑌 = 𝑆 = 3. Similar to Table 5, we also
show the average of the entropy of classifier’s output by H̃(ŷ)
in bits. We fix (𝛽𝑥 , 𝛽𝑦, 𝛽𝑠 ) = (.0, .7, .3). Model capacity is der-
ermined in the first column, where a “Layer Size” of A-B-C-
D-E refers to the number of neurons in each layer, respec-
tively (related to the “Output Size” in Table 12). We show re-
sults in two setting: (A) RawHBC and (B) SoftHBC.

Layers’ Size 𝛿𝑦 𝛿𝑠 H̃(ŷ)
(A) RawHBC

128-128-64-64-128 81.17±0.27 83.14±0.48 0.61±0.03
64-64-32-32-64 80.33±0.20 81.52±0.12 0.73±0.03
42-42-21-21-42 78.45±0.79 79.50±0.38 0.86±0.03
32-32-16-16-32 78.05±0.62 77.82±0.33 0.86±0.03
25-25-12-12-25 75.73±0.61 74.96±0.80 1.00±0.11
21-21-10-10-21 74.59±0.97 74.01±0.60 0.98±0.11
18-18-9-9-18 73.94±0.63 71.39±0.72 1.12±0.02
16-16-8-8-16 70.80±0.96 69.75±0.90 1.14±0.06
12-12-6-6-12 64.68±5.02 66.39±2.65 1.31±0.05
10-10-5-5-10 62.17±2.51 63.77±0.87 1.40±0.05
8-8-4-4-8 62.74±2.97 63.20±1.20 1.41±0.03

(B) SoftHBC

128-128-64-64-128 80.66±0.28 73.08±0.63 0.73±0.02
64-64-32-32-64 79.96±0.32 72.67±0.20 0.80±0.03
42-42-21-21-42 79.07±0.40 71.42±0.63 0.83±0.03
32-32-16-16-32 77.29±0.43 69.87±1.04 0.88±0.02
25-25-12-12-25 75.95±0.13 68.30±1.06 0.95±0.02
21-21-10-10-21 75.00±0.68 67.41±1.04 1.00±0.04
18-18-9-9-18 74.22±0.70 66.71±1.25 1.08±0.06
16-16-8-8-16 73.53±0.42 67.89±0.87 1.21±0.05
12-12-6-6-12 70.55±0.48 65.98±0.66 1.26±0.06
10-10-5-5-10 66.46±2.59 63.24±1.17 1.30±0.05
8-8-4-4-8 63.97±1.49 61.72±2.35 1.36±0.05

DNNs during training [60, 64, 72]. In Section 4.3.1, we discussed
that formulation in Eq (5) shows a trade-off: compressing the infor-
mation included in x, while encoding as much information about 𝑦
and 𝑠 as possible into ŷ. In other words, IB states that the optimal
HBC classifier must keep the information in x that is useful for 𝑦
and 𝑠 while compressing other, irrelevant information. On the other
hand, a useful classifier is one that does not overfit on its training
dataset, meaning that the generalization gap4 is small.

One can notice that under sufficient “similarity” between the
target and sensitive attribute, the addition of the sensitive attribute
into the classifier’s optimization objective can even improve the gen-
eralization capabilities for the classification of target attribute [32].
Specifically, the addition of another attribute 𝑠 while training for the
target attribute 𝑦 can reduce the generalization gap as the addition

4The difference between the classifier’s performance on its training data and the
classifier’s performance on unseen test data is called the generalization gap of classifier.
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Table 8: The honesty (𝛿𝑦) and curiosity (𝛿𝑠 ) of an HBC classifier trained via regularized attack, where target attribute (𝑦) is
Race and sensitive attribute (𝑠) is Age. Values are in percentage (%).

𝑆 = 2 𝑆 = 3 𝑆 = 4 𝑆 = 5
𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠

𝑌 = 2
NC (1.,0.) 87.63 ± .19 62.37 ± .41 87.63 ± .19 51.47 ± .28 87.63 ± .19 37 .80 ± .56 87.63 ± .19 32.26 ± .07

RawHBC (.7,.3) 87.70 ± .26 81.42 ± .86 87.82 ± .19 79.58 ± .84 88.17 ± .12 65.67 ± .79 87.94 ± .18 58.15 ± 1.6

SoftHBC
(.7,.3) 87.22 ± .19 67.22 ± .40 87.57 ± .33 54.03 ± .78 87.26 ± .16 40.86 ± .22 87.24 ± .34 36.60 ± 2.5
(.5,.5) 86.58 ± .75 71.78 ± .17 82.97 ± 1.6 65.53 ± 1.0 80.67 ± 1.2 48.44 ± .87 83.41 ± .31 53.96 ± 1.3

𝑌 = 3
NC (1.,0.) 85.42 ± .46 62.25 ± .87 85.42 ± .46 51.97 ± .43 85.42 ± .46 38.09 ± .77 85.42 ± .46 32.34 ± .45

RawHBC (.7,.3) 86.11 ± .42 82.14 ± .35 86.13 ± .31 78.09 ± .88 86.33 ± .08 65.56 ± .94 86.11 ± .34 58.95 ± 1.3

SoftHBC
(.7,.3) 85.25 ± .26 72.47 ± 2.4 85.36 ± .61 64.52 ± 1.0 85.31 ± .38 53.03 ± .90 85.19 ± .10 45.77 ± .51
(.5,.5) 84.12 ± .27 81.16 ± .23 76.85 ± .38 79.74 ± .64 76.00 ± .31 66.05 ± .46 75.37 ± .27 60.10 ± .49

𝑌 = 4
NC (1.,0.) 81.57 ± .33 64.99 ± .70 81.57 ± .33 54.12 ± .58 81.57 ± .33 41.13 ± .15 81.57 ± .33 35.56 ± .47

RawHBC (.7,.3) 81.69 ± .12 81.33 ± .38 81.08 ± .57 77.57 ± .54 81.26 ± .35 64.44 ± .54 81.15 ± .22 58.93 ± .82

SoftHBC
(.7,.3) 81.20 ± .21 75.17 ± .35 81.27 ± .48 69.14 ± .07 81.09 ± .10 55.63 ± .11 81.21 ± .08 51.28 ± .52
(.5,.5) 78.09 ± .12 81.02 ± .58 71.89 ± .27 78.72 ± .39 70.43 ± .61 65.99 ± .75 69.81 ± .45 58.89 ± .37

𝑌 = 5
NC (1.,0.) 80.66 ± .24 66.29 ± .39 80.66 ± .24 56.64 ± .25 80.66 ± .24 44.42 ± .76 80.66 ± .24 38.13 ± .73

RawHBC (.7,.3) 81.05 ± .40 80.93 ± .78 80.78 ± .66 78.48 ± .26 80.00 ± .45 65.16 ± .46 80.87 ± .70 58.71 ± .24

SoftHBC
(.7,.3) 80.94 ± .35 79.59 ± .27 80.59 ± .08 76.57 ± .28 80.37 ± .09 62.76 ± .47 80.52 ± .06 55.75 ± .52
(.5,.5) 80.03 ± .22 81.46 ± .23 72.36 ± .55 78.57 ± .17 70.48 ± 1.6 66.32 ± .41 70.88 ± .66 58.02 ± 1.2

Table 9: Gender and Race. Classification accuracy (%) on UTKFace test set for Race vs. Gender. In each experiment, there are 4
different tasks based on the size 𝑌 and 𝑆 . Empty cells (—) are due to the incapability of regularized attacks for 𝑆 > 2.

𝑆 = 2 𝑆 = 3 𝑆 = 4 𝑆 = 5
Setting Attack (𝛽𝑦, 𝛽𝑠 ) 𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠 𝛿𝑦 𝛿𝑠

𝑌 = 2

Std raw [66] (1., 0.) 90.23 ± .21 58.62 ± 1.2 90.23 ± .21 47 .54 ± 1.1 90.23 ± .21 44.21 ± .43 90.23 ± .21 43.94 ± .04
RawHBC Parameterized (.7, .3) 90.18 ± .11 86.91 ± .32 90.56 ± .23 81.66 ± .24 90.24 ± .09 74.04 ± .48 90.28 ± .35 74.01 ± .89

SoftHBC

Parameterized (.7, .3) 90.59 ± .07 56.21 ± .00 89.92 ± .11 46.26 ± .50 90.37 ± .19 44.31 ± .21 90.14 ± .34 44.93 ± .94
(.5, .5) 89.74 ± .43 61.60 ± 4.1 86.95 ± .66 52.85 ± 2.3 87.69 ± .48 50.57 ± .53 87.57 ± .76 50.88 ± .78
(.3, .7) 79.96 ± .80 81.54 ± .60 72.41 ± .55 77.28 ± .45 72.97 ± 7.3 63.90 ± 2.6 72.97 ± 7.3 63.90 ± 2.6

Regularized
(.7, .3) 90.18 ± .17 73.20 ± .10 — — — — — —
(.5, .5) 89.71 ± .06 82.28 ± .10 — — — — — —
(.3, .7) 87.86 ± .40 84.35 ± .48 — — — — — —

of another attribute can act as a regularizer, which places an induc-
tive bias on the learning of the target attribute and guides the model
towards learning more general and discerning features [8, 85].

Previous work (e.g., Theorem 1 in [75]) has shown that the gener-
alization gap can be upper-bounded by the amount of compression
happening in the classifier, i.e., the mutual information between
the internal representations learned by the classifier and the input
data. Basically, the compression forces the classifier to throw away
information unrelated to the target task (e.g., noises). Moreover,
[32] shows that training a classifier for more than one attribute
can bring a major benefit in situations where the single-attribute
classifier “underperforms” on the target task, e.g., due to the lack of
samples in the training data or the presence of noise. Particularly
this happens when attributes are related—where the relatedness
is measured through the alignment of the input features—and the
data for the second attribute is of good quality [32].

Our observation from Section 5 is that, while properties Age,
Race, and Gender are not necessarily correlated properties, they are
all coarse-grained properties for which understanding of the full
image is required (as opposed to fine-grained properties present
only in part of the image). As observed from the results, in certain

settings, including curiosity in the classifier can improve the per-
formance of the main task. Therefore, because all properties are
sufficiently coarse-grained, learning in a multi-task framework can
keep the network from overfitting details by enforcing it to learn
certain general, coarse-grained features and thus perform better in
the main task.

Putting all together, it can be expected that by training an HBC
classifier, we can not only reduce the generalization gap for the tar-
get attribute, but also compress the learned representations, which
means decrease (or at least not increase) the entropy of the rep-
resentations. Thus, in situations where the curiosity of the classi-
fierimproves generalization, the recognition of an HBC classifier is
even more challenging.

E MORE MOTIVATIONAL EXAMPLES
As some other motivational examples, we can consider:

(1) A sentiment analysis application that can be run on the user’s
browser and, taking a text, it can help the user to estimate how their
textmay sound to the readers: e.g., ŷ = [𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 , 𝑝𝑛𝑒𝑢𝑡𝑟𝑎𝑙 , 𝑝𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ].
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Figure 10: Sample images from CelebA [35]. Columns (from
left to right) show Male, Smiling, Attractive, High Cheek-
bones, and Heavy Makeup attributes. The first and sec-
ond rows show Black Hair with and without the other cor-
responding column’s attribute, respectively. Similarly, the
third and fourth rows Blond Hair, and fifth and sixth rows
Brown Hair attributes.

The server may ask for collecting only outputs, e.g., to improve their
service, but server might try to infer if the text includes specific
sensitive words or if the text falls into a certain category; by making
an HBC sentiment classifier.

(2) An activity recognition app, from an insurance company,
can be run on the user’s smartwatch and analyzing motion data.
This app can provide an output ŷ = [𝑝𝑤𝑎𝑙𝑘 , 𝑝𝑟𝑢𝑛, 𝑝𝑠𝑖𝑡 , 𝑝𝑠𝑙𝑒𝑒𝑝 ]. The
server may ask for only collecting ŷ to offer the user further health
statistics or advice, but it may also try to infer if the user’s body
mass index (BMI) is more than or below a threshold.

(3) Automatic speech recognition (ASR) is the core technology
for all voice assistants, such as Amazon Alexa, Apple Siri, Google
Assistant, Microsoft Cortana, to provide specialized services to
their users, e.g., playing a song, reporting weather condition, or
ordering food. ASR models, at the top, have a softmax layer that es-
timates a probability distribution on a vocabulary with a particular
length, e.g., 26 letters in the English alphabet plus some punctuation
symbols. Service providers usually perform post-processing on the
output of the ASR model, that is the probable letter for each time
frame, to combine them and predict the most probable word and
further the actual sentence uttered by the user. Despite the fact that
they can be asked to run their ASR model at the user’s side, but

Figure 11: Sample images from UTKFace [86]. Each row
shows images labeled with the same Race (White, Black,
Asian, Indian, and others), and each column shows one of
the five Age groups ([0-19,20-26,27-34,35-49, 50-100].

they can argue that the post-processing ASR’s outputs is crucial for
providing a good service, and these outputs are supposed to only
predict what the user is asking for (i.e., the uttered sentence) and
not any other information, e.g., the Age, Gender, or Race of the user.
However, an HBC ASR might secretly violate its user’s privacy.

(4) An EU-funded project [13] designed an app [70] for people
to experience how ML models judge their faces. This app asked
for access to the user’s camera to capture their face image. Then,
pre-trained ML classifiers are being run on the user’s own com-
puter, in the browser. The project promises users that “no personal
data is collected” but at the end, users can voluntarily “share some
anonymized data” [70]. Despite the useful purpose of this app, we
show that even such anonymous collection of the outputs of pre-
trained classifiers can result in some privacy leakage.

F DATASETS
F.1 Details of CelebA Dataset
Figure 10 shows some sample images from CelebA dataset [35].
While CelebA does not have any attributes with a number of classes
more than 2, we utilize three mutually exclusive binary attributes
BlackHair, BlondHair, BrownHair to build a 3-class attribute of
HairColor. This still gives us a dataset of more than 115K images
that fall into one of these categories.

F.2 Details of UTKFace Dataset
Figure 11 shows some sample images from UTKFace dataset [86].
Each image, collected from the Internet, has three attributes: (1) Gen-
der (male or female), (2) Race (White, Black, Asian, Indian, or others),
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Table 12: The implemented model as classifier F .

Layer Type Output Size Number of Parameters

Conv2d(kernel=2, stride=2) 128, 32, 32 1,664
BatchNorm2d 128, 32, 32 256
LeakyReLU(slope=0.01) 128, 32, 32 0
Dropout(p=0.2) 128, 32, 32 0
Conv2d(kernel=2, stride=2) 128, 16, 16 65,664
BatchNorm2d 128, 16, 16 256
LeakyReLU(slope=0.01) 128, 16, 16 0
Dropout(p=0.2) 128, 16, 16 0
Conv2d(kernel=2, stride=2) 64, 8, 8 32,832
BatchNorm2d 64, 8, 8 128
LeakyReLU(slope=0.01) 64, 8, 8 0
Dropout(p=0.2) 64, 8, 8 0
Conv2d(kernel=2, stride=2) 64, 4, 4 16,448
BatchNorm2d 64, 4, 4 128
LeakyReLU(slope=0.01) 64, 4, 4 0
Dropout(p=0.2) 64, 4, 4 0
Linear 128 131,200
LeakyReLU(slope=0.01) 128 0
Dropout(p=0.5) 128 0
Linear Y 128×Y+Y

Table 13: The implemented model as attack G.

Layer Type Output Size Number of Parameters

Linear 20×Y 80×Y
LeakyReLU(slope=0.01) 20×Y 0
Dropout(p=0.25) 20×Y 0
Linear 10×Y 610×Y
LeakyReLU(slope=0.01) 10×Y 0
Dropout(p=0.25) 10×Y 0
Linear S 10×Y×S+S

Table 10: The details of how we assign Age label to each im-
age in UTKFace.

Number of Classes
Label 2 3 4 5 Samples
0 a ≤ 30 a ≤ 20 a ≤ 21 a ≤ 19 4593
1 30 > a 20 < a ≤ 35 21 < a ≤ 29 19 < a ≤ 26 5241
2 35 < a 29 < a ≤ 45 26 < a ≤ 34 4393
3 45 < a 34 < a ≤ 49 4491
4 49 < a 4987

Table 11: The details of how we assign Race label to each
image in UTKFace. W:White, B:Black, A:Asian, I:Indian, or
O:others.

Number of Classes
Label 2 3 4 5 Samples
0 W W W W 10078
1 BAIO A B B 4526
2 BIO I A 3434
3 AO I 3975
4 O 1692

and (3) Age (from 0 to 116). Gender is a binary label and there are
12391 vs. 11314 images with male vs. female labels. Table 10 and
Table 11 show how we assign Age and Race labels to each image in
UTKFace for different number of classes used in our evaluations.
For the Age label we choose categories such that classes become
balanced, in terms of the number of samples. For the Race label,
we are not that free (like Age), thus we choose categories such
that classes do not become highly unbalanced and we try to keep
samples in each class as similar to each other as possible.

G MODEL ARCHITECTURES
For all experiments reported in this paper, we use PyTorch [53] that
is an open-source library for the implementation of deep neural
networks [31, 61]. Table 12 and Table 13 show the details of neural
network architecture that are implemented as classifier F and
attack G (see Figure 6).
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