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Abstract—We study the image retrieval problem at the wireless
edge, where an edge device captures an image, which is then
used to retrieve similar images from an edge server. These can
be images of the same person or a vehicle taken from other
cameras at different times and locations. Our goal is to maximize
the accuracy of the retrieval task under power and bandwidth
constraints over the wireless link. Due to the stringent delay
constraint of the underlying application, sending the whole image
at a sufficient quality is not possible. To address this problem
we propose two communication schemes, based on digital and
analog communications, respectively. In the digital approach, we
first propose a deep neural network (DNN) for retrieval-oriented
image compression, whose output bit sequence is transmitted
over the channel as reliably as possible using conventional
channel codes. In the analog joint source and channel coding
(JSCC) approach, the feature vectors are directly mapped into
channel symbols. We evaluate both schemes on image based re-
identification (re-ID) tasks under different channel conditions,
including both static and fading channels. We show that the JSCC
scheme significantly increases the end-to-end accuracy, speeds
up the encoding process, and provides graceful degradation
with channel conditions. The proposed architecture is evaluated
through extensive simulations on different datasets and channel
conditions, as well as through ablation studies.

Index Terms—Deep learning, Internet of Things, image re-
trieval, joint source-channel coding, person re-identification.

I. INTRODUCTION

INTERNET of Things (IoT) devices are becoming in-
creasingly widespread. These small specialised computers

are present in offices, streets, and homes. Their main goal
is to continuously sense their environment, and send the
measurements through a wireless channel to an edge server,
which performs data collection and further processing. Typical
approach in most IoT applications is to convey all the measure-
ments from the IoT devices to a central server, where state-
of-the-art machine learning algorithms are used to analyse the
collected data. However, in some applications, the volume of
the measurement data (e.g., images, videos or LIDAR data) is
large, and transmitting it to the server at the required quality
may not be feasible within the limited latency requirements,
e.g., in autonomous driving, surveillance, drones, etc. On the
other hand, as the computational capabilities of IoT devices
advance, they can process the data locally before offloading
it to a server. In some cases the desired inference tasks can
be carried out locally, which is beneficial as the IoT devices
have access to the original data, rather than its quantised
version at the central server, due to the lossy compression
and transmission over the wireless channels.

In this work, we consider machine learning at the wireless
edge. In particular, we focus on the distributed inference at the
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Fig. 1: An illustration of the retrieval problem at the edge.
A CCTV camera takes a picture of a pedestrian or a car,
and processes the image locally to obtain a low-dimensional
signature, which is then sent through a wireless channel to
an edge server that performs identification based on a large
database it has access to.

network edge, with a machine learning algorithm that is trained
centrally, and further deployed on IoT devices to perform
inference over-the-air. One of the machine learning tasks for
which remote inference is essential is retrieval. In autonomous
vehicles, drones, or in surveillance systems, agents try to
identify objects, vehicles, or humans in their environment
through their sensory data. The goal in image retrieval is
to identify a query image of a person or a vehicle recorded
locally by matching with images stored in a large database
(gallery), typically available at the central server (cf. Fig. 1).
We emphasise that the retrieval task cannot be performed
locally at the edge device regardless its computational power,
as the centralised database is available only at the edge server,
hence, some sensory data has to be transmitted to the edge
server.

A trivial approach would be to convey the image to the
central server at the best quality possible where a reconstruc-
tion of the image can be performed then be used for the
retrieval task using a state-of-the-art retrieval algorithm. Note,
however, that a significant part of the image content may not
be relevant for the retrieval task, therefore the original image is
not needed at the server. Indeed, novel approaches to retrieval
employ deep neural networks (DNNs) as feature encoders that
map input images to a low-dimensional feature space, such
that vectors extracted from the same identities are similar,
despite different views or occlusions. Accordingly, we employ
DNNs for extracting features that are then transmitted over the
wireless link.

We propose two approaches to convey the feature vectors to
the edge server. In the conventional “digital” approach, feature
vectors are first compressed, and encoded with a channel code
for reliable transmission. The features that are most relevant
for the retrieval task are extracted and transmitted depending
on the capacity and the reliability of the channel between the
edge device and the server. To improve the efficiency of this
approach, we design a retrieval-oriented image compression
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scheme, which compresses the feature vectors depending on
the available bit budget. This ‘separate’ data compression and
channel transmission scheme assumes reliable communication
over the channel, which is typically difficult to achieve in
practice, especially for short blocklengths considered in this
work, imposed by the strict delay limitations. Alternatively, we
consider a joint source and channel coding (JSCC) approach,
where the feature vectors are directly mapped into channel
input symbols, and the noisy channel output is used by the
server to retrieve the most relevant images, without involving
any explicit channel code. This can be considered as “analog”
communication since the feature vectors are not converted into
bits at any stage. For the JSCC approach, we employ the
novel DeepJSCC architecture [2], [3], which has recently been
introduced for wireless image transmission. Our results show
that the JSCC scheme can outperform the highly optimized
feature compression scheme even if we assume the availability
of capacity-achieving channel codes for the digital scheme.
Our contributions can be summarized as follows:

• We propose a retrieval-oriented image compression
scheme, which combines a retrieval baseline with a fea-
ture encoder, followed by scalar quantization and entropy
coding.

• We propose an autoencoder-based architecture and train-
ing strategy for robust JSCC of feature vectors, gen-
erated by a retrieval baseline, under noisy, fading, and
bandwidth-limited channel conditions.

• We perform extensive evaluations under different signal-
to-noise ratio (SNR) and bandwidth constraints, and show
that the JSCC scheme outperforms the digital approach
even with capacity-achieving channel codes, and its per-
formance exhibits graceful degradation when the test and
training SNRs do not match. The JSCC scheme is shown
to outperform its digital counterpart also over fading
channels, even if we assume the availability of channel
state information for the digital scheme.

• We evaluate the proposed schemes on various surveil-
lance tasks, and show that the performance close to the
noiseless bound can be achieved even under very harsh
SNR and bandwidth constraints, whereas the digital ap-
proach falls short of this performance even with idealistic
capacity-achieving channel codes.

• Our results clearly show that, in general, it is not possi-
ble to separate inference tasks from the communication
scheme, and the end-to-end performance can be im-
proved significantly by designing the communication and
learning algorithms jointly. We provide a comprehensive
analysis of different architectures and training strategies
that lay solid foundations for future research in wireless
edge learning.

In this work we extend our previous approach [1] by
considering different wireless channel models to show the
generalization of our method and we validate the methods
by extensive evaluations on new datasets. We provide a
comparison of different architectures and training methods for
wireless image retrieval. In our digital model we introduce a
new, simpler, but equally effective density model based on a

Gaussian mixture.

II. RELATED WORK

A. Machine Learning at the Wireless Edge

With the increasing computational capabilities of edge de-
vices, many recent studies consider executing machine learn-
ing tasks across edge devices. Many recent studies focus on
the training stage, which is particularly challenging due to
the distributed nature of data available at edge nodes, and the
typically limited communication resources (please see [4]–[9]
and references therein).

Instead, in this work, we focus on the inference phase,
assuming that the training can be run centrally. This approach
requires centralized availability of the training data. Prior
works on distributed inference at the wireless edge have
focused on classification tasks using DNNs. Authors of [10]–
[15] suggest splitting neural network architectures into two
parts to reduce the computational workload at the edge device.
In this work we do not consider computational limitations
of the device, and perform the forward pass over the DNN
locally, at the edge device, which was shown in [15] to reduce
the bandwidth necessary to transmit the information for the
classification task. Digital schemes for distributed inference,
e.g. [11], [13], limit the amount of information (e.g., the
number of bits) that can be conveyed to the edge server,
but ignore the energy and latency cost of communications,
and potential errors that may be introduced. However, in
practice, reliable transmission of the feature vectors, even if
they are highly compressed, requires an accurate estimate of
the channel state at the edge device, and a very reliable error
correction code. However, not only such a separate approach is
suboptimal, but also channel codes introduce significant error
probability at short blocklengths, especially in the absence
of accurate channel state information. Analog schemes based
on JSCC have recently been considered in [12], [14], [15],
and they were shown to outperform separate approaches, but
they focus on the classification task using on low-resolution
images. This significantly reduces the amount of information
to be transmitted, as the task is to distinguish between a
finite set of known classes. In contrast, in the retrieval and
re-identification tasks, we require high resolution images, and
have to cope with unknown set of identities, thus the feature
vectors have to convey significantly more information. Unlike
in the classification, the retrieval task cannot be performed
locally at the edge device due to its limited computational
resources and data transmission to the edge server is needed.

B. Person and Vehicle Retrieval

Person and vehicle retrieval tasks have been extensively
studied [16]–[22]. They share the same motivation to allow
for a better and more reliable recognition of people and
vehicles, mainly targeting surveillance applications. The most
successful recent approaches for image retrieval problems
are based on convolutional neural networks, and recent tech-
niques include part classifiers [16], [17], creating bias-invariant
feature vectors [18], [22], using attention models [20], and
analyzing images at different scales [23], [24]. Despite the
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popularity of triplet loss in both areas [19], [25], designs
based on softmax cross-entropy have also been successfully
implemented [21].

C. Joint Source-Channel Coding (JSCC)

According to Shannon’s separation theorem [26], perform-
ing source and channel coding separately achieves theoretical
optimality guarantees in the asymptotic infinite blocklength
regime. This theorem holds under average power constraint
and a single-letter additive distortion constraint, e.g., average
mean-square error between the samples of the input and output
sequences. However, in practice, we are limited by finite
blocklengths due to complexity and latency constraints; and
JSCC is known to outperform separate schemes in practical
scenarios. Many JSCC schemes have been proposed [2], [27],
[28], but these have not found application in practice as they
are too complex and specific to the underlying source and
channel distributions, or do not provide sufficient improvement
to justify the introduced increase in the system complexity, as
well as the loss of modularity. More recently, JSCC schemes
based on DNNs have been introduced [3], [29]–[31], and are
shown to provide comparable or better performance than state-
of-the-art digital schemes.

JSCC for remote inference problems is much less studied.
Distributed hypothesis testing problem over a noisy commu-
nication channel has been recently introduced in [32] using an
information theoretic formulation and considering the type II
error exponent as the performance measure. It is shown that,
while the optimality of separation holds for the problem of
testing against independence, separation is in general subop-
timal.

III. METHODS

In this work we propose two approaches for performing
retrieval over wireless channels: digital (separate) and JSCC
approaches. In both cases, we consider the transmission of the
feature vectors, which are a low-dimensional representation of
identities of the items to be retrieved e.g., humans, vehicles
(Section III-B), and have to be sent over bandwidth-limited
wireless channels. Due to the channel limitations, features
cannot be transmitted in a lossless fashion, and have to be com-
pressed. The recovered noisy feature vectors at the receiver are
compared to the feature vectors of images previously collected
from other edge cameras, called the gallery, in order to find
the nearest neighbour.

A. Channel Model

We assume that the edge device is connected to the dge
server through an additive white Gaussian noise (AWGN)
channel. We consider static as well as and slow fading channel.

The AWGN channel is characterized as follows: given a
channel input vector x ∈ C�, consisting of � complex channel
input symbols, the output y ∈ C� is given by y = x + z,
where I8 ∼ CN(0, f2) are the independent and identically
distributed (i.i.d.) elements of the noise vector z ∈ C�. An
average power constraint is imposed on the input vectors, such

that 1
�

∑�
8=1 |G8 |2 ≤ % = 1; therefore the received SNR in the

case of a static AWGN channel can be calculated as SNR =

10 log10 ( 1
f2 ).

In the slow fading setting, given the channel input vector
x ∈ C�, the corresponding output vector y ∈ C� is given
by y = ℎx + z, where ℎ ∼ CN(0, �2) and I8 ∼ CN(0, f2)
are drawn from independent zero-mean complex normal dis-
tributions with variances �2 and f2, respectively. We impose
the same average input power constraint of % = 1 as in the
AWGN case. For each transmitted feature vector we use a
single gain ℎ, which characterizes the slow fading behaviour.
The average SNR is evaluated by SNR = 10×log10 (

�2

f2 ), while
for all the experiments shown in this paper we set �2 = 1,
which corresponds to the same average received power as in
the static AWGN channel model.

B. Retrieval Baseline

Following the state-of-the-art retrieval methods [17], [21]
we employ the ResNet-50 network [33], pretrained on Ima-
geNet [34], for feature extraction. This ensures that similar
results can be expected in different setups. In more detail, we
use ResNet-50 with batch normalization (BN) layers applied
after each convolution. As input, we use images resized to a
common 256 × 128 resolution with bicubic interpolation for
person datasets and 128 × 128 resolution for vehicle datasets.
For the last layer we use average pooling across all the
channels, which results in a 2048-dimensional feature vector.
During training we use stochastic gradient descent (SGD) with
a learning rate of 0.01 and a momentum of 0.9. We also
apply !2 regularization, weighted by 5 ·10−4 to the ResNet-50
parameters. We refer to this architecture as the feature encoder.

C. Digital Transmission of Compressed Feature Vectors

This approach is based on the assumption that a certain
number of bits can be reliably conveyed to the edge server
for each image. In practice, however, this is highly chal-
lenging to achieve. Ultra-reliable channel codes require large
blocklengths even in the static AWGN setting, and accurate
channel estimation and feedback in the slow-fading case. In
our simulations, we assume capacity-achieving channel codes,
which will serve as a bound on the performance of practical
digital schemes.

An overview of the proposed digital scheme is shown in
Fig. 2. We first extract features using the retrieval baseline
described in Section III-B as feature encoder. The resulting
feature vector is compressed into as few bits as possible
through lossy compression followed by arithmetic coding.
The compressed bits are then channel coded, with introduced
structured redundancy to combat channel impairments.

The lossy feature compressor consists of a single fully-
connected layer for dimensionality reduction, followed by
quantization. On the receiver side we use the quantized latent
representation as a feature vector, which is passed through a
fully-connected layer for ID classification. Note that the IDs
and their classification are used for calculating the loss during
training only. During retrieval, the IDs are not known and the
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Fig. 2: The digital transmission scheme. Input is transformed into a feature vector, which is compressed using a DNN. At the
receiver, latent representation is classified into IDs to compute the loss during training only. Arithmetic coding is bypassed
during training. Channel coding step is not shown for better readability.

feature vectors are used for nearest neighbour search. This has
been shown to perform well in the re-ID community.

To enable an end-to-end differentiable approach, we utilize
the well-known quantization noise [35] to model the quan-
tization process. Specifically, instead of rounding the latent
representation to the nearest integer, in the training phase
we add the uniform noise to each element of the latent
representation as follows:

&(z) = z + U
(
−1

2
,
1
2

)
, (1)

where &(·) is the approximated quantization operation, z is the
latent representation, and U(·, ·) is the uniform noise vector.
This formulation ensures a good approximation of quantization
during training, whereas we perform rounding to the nearest
integer during inference.

In order to optimize the arithmetic coder, we estimate the
distribution of the quantized outputs. We assume that the
elements @ of vector q = &(z) are i.i.d. with some probability
mass function (PMF) ?(@). To model this PMF, we propose
a simple yet flexible solution using a mixture of Gaussians.
We first approximate ?(@) as a continuous-valued probability
density function ?2 (@) as follows:

?2 (@) =
 ∑
:=1

U:
1

f:
√

2c
4
− 1

2

(
@−`:
f:

)2

, (2)

where  is the number of mixtures, f: are mixture scales,
`: are mean values, and U: are the corresponding mixture
weights. In our experiments we set  = 9, which we empiri-
cally found to perform the best. Then, in order to evaluate our
PMF ?(@) at discrete values @ ∈ Z, we integrate ?2 (@) over[
@ − 1

2 , @ +
1
2
]

to obtain:

?(@) =
∫ @+ 1

2

@− 1
2

?2 (G)3G = �2
(
@ + 1

2

)
− �2

(
@ − 1

2

)
, (3)

where �2 is the cumulative density function of the distribution
?2 (@).

We remark that, here we learn the distribution of the quan-
tized feature vectors, but unlike recent works [36], [37] , we do

not consider adaptive probability model and do not introduce
another neural network to predict parameters {U: , `: , f: } of
the mixture. The reason for that is the proposed simple model
performs sufficiently well, and we want to avoid introducing
any communication overhead by sending additional parameters
per image. Instead, we use the available bandwidth for sending
quantized feature vectors only.

With the model presented above, we can easily estimate the
PMF of the quantized vector q, which can be directly used to
feed the arithmetic coding engine in the test phase, but also to
evaluate the approximated entropy term in our loss function,
which we define as a weighted sum of two objectives:

! = ;24 − _ · log2 ?(q), (4)

where ;24 is the cross-entropy between the predicted class
(identity) and the ground truth for the retrieval task. The
second component of the loss function corresponds to the
Shannon entropy of the quantized vector, representing the
average length of the output of the arithmetic encoder. Such
formulation allows for a smooth transition between the re-
trieval accuracy and number of bits necessary to send the
feature vector in a lossy fashion. Moreover, minimizing the
entropy term is equivalent to maximizing the likelihood of
?(@), which allows a satisfactory fit of our approximated
distribution to a true underlying distribution of the discrete
symbols.

We apply settings discussed in Section III-B to train the
feature encoder, the fully-connected classifier and the density
model. We train the whole network for 20 epochs, reduce the
learning rate to 0.001 and train for further 30 epochs. We
initialize our mixture parameters as follows: U: = 1

 
, `: = 0,

f: = :
2, : = 1, 2, . . .  . To ensure the stability of the training

the weight parameter _8 at epoch 8 is set as:

_8 = min
(
_

8

� − 20
, _

)
, 8 = 1, . . . �, (5)

where � is the total number of epochs.
In the inference phase we use the arithmetic encoding

engine to transmit the information with a channel code.
Note that any channel code can introduce errors, there is



5

Fe
at
ur
e

en
co
de
r

Channel
symbols

Noisy channel
symbols

C
ha
nn

el
en
co
de
r

C
ha
nn

el
de
co
de
r

Feature
vector

Input image

C
ha
nn

el

ID predictionsFu
lly
-C
on

ne
ct
ed

C
la
ss
ifi
er Cross-entropy

loss
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Fig. 4: Proposed encoder and decoder architecture for the
JSCC scheme. At the encoder, dimensionality reduction is
performed by the first fully-connected layer, which is inverted
at the decoder.

therefore an inherent trade-off between the compression rate
and the channel coding rate under a given constraint on
the channel bandwidth, i.e., the number of channel symbols
that can be transmitted to the edge server per image pixel.
Compressing the feature vector further leads to increased
distortion, and hence, reduced retrieval accuracy, but also
allows to introduce more redundancy, and hence, increased
reliability against noise. In general, the optimal compression
and channel coding rates depend on the retrieval accuracy-
compression rate function of the compression scheme and
the error-rate of the channel code. To simplify this task, we
assume capacity-achieving channel codes over the channel and
reliable transmission. This provides an upper bound on the
performance that can be achieved by any digital scheme that
uses the above architecture.

D. JSCC of Feature Vectors

In this section, we propose an alternative JSCC approach,
called JSCC AE, and illustrated in Fig. 3. We use the baseline
feature encoder as before to produce the feature vector for a
given query image. The feature vector is mapped directly to
the channel input symbols via a multi-layer fully-connected
channel encoder (Fig. 4a). We set the dimensionality of the
channel input vector to 2� real symbols, which corresponds
to the available channel bandwidth of � complex values. In
this work we consider small values of � modeling stringent
delay constraints of the underlying surveillance applications.
This low-dimensional representation is normalized to satisfy
the average power constraint of % = 1, and transmitted over
the AWGN channel. The noisy channel output vector at the

receiver is mapped back to the high-dimensional feature space
by a decoder (Fig. 4b). The distance between the query feature
vector and the feature vectors stored in the gallery set is
calculated to find the nearest neighbours.

Our training strategy, which we will refer to as )1,2,3
consists of three steps. In the first step )1, we attach a single
fully-connected layer at the end of the feature encoder that
maps 2048-dimensional feature vectors directly to the class
predictions. We pre-train the feature encoder for 30 epochs
with batch size of 16, using cross-entropy between the class
predictions and the ground truth as the loss function. In the
second step )2, we use the pretrained feature encoder to extract
features from all images in the training dataset. We use these
features as inputs to the proposed autoencoder network. We
train the autoencoder using the !1-loss between the feature
vectors and the vectors reconstructed by the decoder. It is
trained with SGD for 200 epochs with a learning rate 0.1,
reduced to 0.01 after 150 epochs, and momentum of 0.9. We
apply !2 regularizer to the autoencoder model, weighted by
5·10−4. Finally, in the third step )3, we train the whole network
jointly, the autoencoder and the feature encoder, for 30 epochs,
using the cross-entropy loss with a learning rate 0.001, and for
further 10 epochs with a learning rate of 0.0001, applying the
same optimizer and !2 regularization as in the previous two
steps.

Along with )1,2,3 we evaluate three alternative training
strategies. First, corresponds to )3 only and it is an end-to-
end training of the entire network (feature encoder + JSCC
autoencoder + classifier) in a single training step. The second
method, )1,3, consists of the feature encoder pretraining )1,
followed by joint training of the entire network )3. Finally,
)1,3+!1 approach is different from the )1,3 in that it combines
the cross-entropy loss and !1 loss, in the joint training phase.

Note that, we opted for an architecture that employs a
distinct feature encoder and a separate JSCC autoencoder
to transmit the feature vector over the channel. We have
then trained these components in multiple training steps. It
is possible to introduce a simpler architecture with a single
channel encoder at the edge device that maps the query image
to the channel input vector. Thus, no decoding is required
at the receiver, and the retrieval task is directly performed
using the noisy channel symbols. To compare our method to
this straightforward approach, we introduce JSCC FC, which
follows the same structure as in Fig. 3, except that the encoder
is replaced by a single fully-connected layer and the decoder
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is removed. We train the whole network end-to-end for 50
epochs with cross-entropy loss, learning rate of 0.01, reduced
to 0.001 after 30 epochs, and a momentum of 0.9. We also
apply !2 regularization, weighted by 5 · 10−4, to all the
parameters, including ResNet-50, feature encoder and fully-
connected classifier.

IV. RESULTS

In this section we evaluate the performance of the proposed
JSCC AE and JSCC FC architectures, and compare with that
of the digital scheme presented in Section III-C, as well as
the ideal channel scenario with unlimited channel resources,
where full, noiseless feature vectors can be transmitted over
the channel. We first discuss the experimental setup and the
dataset used for the evaluations.

A. Experimental Setup

For the JSCC AE and JSCC FC schemes we vary chan-
nel SNRs for training, between SNRCA08= = −12dB and
SNRCA08= = ∞dB, which corresponds to zero noise power.
Training and test SNRs are the same unless stated otherwise.
In the digital scheme, we experiment with different dimen-
sionality of the latent representation, between 64 and 512,
estimate and minimize its entropy in the training phase by
varying the value of parameter _. In the testing phase we
perform rounding to the nearest integer on each element of the
latent representation and arithmetic coding, which is based on
the probabilistic model learned by the entropy estimator, as
described in Section III-C. This model assigns a probability
estimate to each quantized symbol, which is then passed to
the arithmetic encoder. We note that the proposed digital
scheme is a variable-length encoder. Therefore, for a given
fixed communication rate to the server, one has to determine
the _ coefficient that meets the rate constraint for each image.
Instead, we fix the _ coefficient and calculate the average
number of bits required to encode the latent representations.
We then evaluate the corresponding channel SNR to deliver
these many bits to the receiver, assuming capacity-achieving
channel codes. This is the upper bound on the real performance
as practical codes are far from the capacity bound in the
short blocklength regime. This model may correspond to
sending multiple images together, and hence, the performance
is determined by the average rate across many test images,
rather than their individual rates.

In the case of digital transmission over a fading channel,
we consider two evaluation scenarios. In the first scenario we
assume perfect channel state information available at both the
transmitter and the receiver. Following this assumption, for
each query image and a corresponding random channel gain,
we identify the _ parameter that results in a bit rate that is
as close as possible, but below the corresponding channel
capacity. Then, we find the average accuracy across many
random queries and channel conditions, following the under-
lying fading distribution. In the second scenario, we fix the _
parameter, and for each query image and the corresponding
random channel condition, we compare the required bit rate
of the query image and the channel capacity. If the capacity is

lower than the bit rate required by the compression scheme,
we assume the transmission is failed. We then calculate the
fraction of successful transmissions and multiply it by the
average accuracy of the queries whose compressed feature
vector can be successfully transmitted, for a given _. Note
that, there is a trade-off between the accuracy loss due to
compression and the outage over the channel. The higher _
values results in more compact representations of the feature
vector, and hence less accurate retrieval performance even
if they can be successfully conveyed to the server. Higher
_ values relaxes the compression constraint, but may result
in higher loss over the channel. Note that we report only
the results for the _ values that lead to the highest average
accuracy for each average SNR.

B. Datasets

In order to measure the performance of the retrieval task,
we employ three widely used datasets:

CUHK03 [38] is a benchmark for person retrieval that
contains 14096 images of 1467 identities taken from two
different camera views. The dataset was captured with six
surveillance cameras and each identity within the dataset is
represented by an average of 4.8 images per each of the two
camera views. We use the labeled variant of the dataset, where
each image of the pedestrian was manually cropped by a
human.

Market-1501 [39] contains 32217 images of 1501 pedestri-
ans taken from a total of six cameras in front of a supermarket
at Tsinghua University. Five out of six cameras are high-
resolution cameras and the remaining one is low-resolution.
Training and testing splits proposed by the authors contains
12936 and 19732 images, respectively. 750 identities are
additionally selected as a query set containing 3368 images
(maximum of 6 per person). The dataset is different from
CUHK03 in that it contains junk images capturing only partial
pose and distractors presenting small fragments of pedestrian
appearance or irrelevant objects.

VeRi [40], [41] is a vehicle retrieval dataset. It contains over
50000 images of 776 vehicles captured by 20 cameras within
24 hours over the area of 1km2. Each identity is captured by
2-18 cameras in different viewpoints, occlusions, resolutions,
and lighting conditions. All the images within the dataset are
annotated with attributes, brands and colors, but in this work
we do not utilize this information, and focus on retrieving the
identity only based on the image.

The evaluation measure for all the datasets is the top-1
retrieval accuracy, which calculates the fraction of correct IDs
at the top of the ranked list retrieved for each query.

C. Performance for Different Methods

We plot the accuracy achieved by various schemes as a func-
tion of the test SNR in Fig. 5. For these experiments we use
the bandwidth of 64, which corresponds to the transmission of
64 complex symbols through the channel. One can clearly see
that JSCC AE outperforms the digital scheme in all considered
scenarios. For CUHK03 dataset the digital approach is not
able to recover the noiseless accuracy even at SNR = 15dB,
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Fig. 5: Performance comparison of the proposed three schemes over AWGN and slow fading channels for a range of channel
SNRs and bandwidth � = 64. Our JSCC AE scheme achieves the best retrieval accuracy over the whole range of tested SNRs
and for all three re-ID image retrieval datasets.
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Fig. 6: Accuracy as a function of the channel SNR for different channel bandwidths. Higher bandwidth introduces more
robustness against the channel noise.

whereas the proposed JSCC AE scheme obtains accuracy
close to the ideal channel baseline at around 10dB for the
AWGN channel. JSCC FC follows JSCC AE very closely, but
the increase in the performance provided by the autoencoder
is visible for all the SNRs considered, which proves the
superiority of the proposed architecture in comparison to the
relatively simpler JSCC FC. The lower accuracy of JSCC
FC may stem from the fact that the noise directly affects
the low-dimensional feature vector, while the autoencoder-
based scheme introduces certain level of denoising, which
improves the feature estimates at the receiver. We observe that
the relative performances of the three schemes are similar for
all the datasets considered, while JSCC FC seems to perform
worse for the Car VeRi dataset, and even surpassed by the
digital scheme at SNR = 10dB.

Fading channels introduce additional perturbation to the
channel symbols, reducing the accuracy of all the proposed ap-
proaches. Similarly to the AWGN channel, JSCC AE achieves
the best performance across all three datasets and the average
SNR values considered in this paper. The digital scheme
performs worse when the channel state information is not
available (which is also the case for the JSCC schemes). We
have also included the performance of the digital scheme when
perfect channel state information is available. We observe that
even in this case the proposed JSCC AE scheme outperforms
the digital alternative. JSCC FC closely follows JSCC AE
at the low SNR regime, but its performance saturates to a
level significantly below that of JSCC AE, and even below the
digital scheme for the CUHK03 dataset. This result further val-
idates the denoising interpretation of the autoencoder structure
in JSCC AE, which becomes even more critical in recovering
the noisy feature vector in the presence of channel fading.
Fading not only applies random attenuation to the received
signal strength, but also random rotations in the complex
plain, which makes it very difficult for the receiver to recover
the features for correct retrieval without any channel state

information. We note that while the digital scheme suffers
significant performance loss in the absence of channel state
information, JSCC AE seems to perform reasonably well. We
can argue that the autoencoder learns to mitigate the effect of
random fading despite the lack of explicit pilot signals.

D. Performance for Different Bandwidths

In this experiment we investigate the effect of the channel
bandwidth � on the retrieval performance for the person
retrieval CUHK03 dataset, achieved by the JSCC AE scheme.
We emphasise that the previously considered bandwidth of
� = 64 is extremely limited, corresponding to extremely low-
latency communications, which may be essential for many
surveillance and security applications. The top-1 accuracy as
a function of the channel SNR is plotted in Fig. 6 for different
channel bandwidth values of 64, 128, 256, and 512. It shows
that the accuracy and robustness increases significantly with
the bandwidth, but the relative gain becomes smaller as we
approach the original feature vector dimension.

For the fading channel, it is visible in Fig. 6b that the
proposed scheme is not able to recover the original accuracy
even for a significant bandwidth, and reaches a plateau at
around SNR = 12dB. As pointed out in Section IV-C, this
may stem from the fact that our approach cannot fully cancel
the effect of the variable channel gain. Channel estimation and
feedback techniques can be utilized to mitigate the impact of
random channel fading.

E. Graceful Degradation

In this section we evaluate the behaviour of our models
on the CUHK03 dataset when the training and test SNRs
do not match. In the experiments with the digital scheme,
we assume that capacity-achieving channel codes are in use,
and the quality of the channel is always estimated correctly.
However, in practice, digital approaches suffer from the cliff



9

−6 −3 0 3 6 9 12 15

Channel SNRtest [dB]

0.15

0.20

0.25

0.30

0.35

0.40

0.45

T
op

-1
ac

cu
ra

cy

Ideal channel
SNRtrain =∞dB

SNRtrain = 12dB

SNRtrain = 6dB

SNRtrain = 0dB

SNRtrain = −6dB

(a) AWGN channel

−6 −3 0 3 6 9 12 15

Channel SNRtest [dB]

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

T
op

-1
ac

cu
ra

cy

Ideal channel
SNRtrain =∞dB

SNRtrain = 12dB

SNRtrain = 6dB

SNRtrain = 0dB

SNRtrain = −6dB

(b) Fading channel

Fig. 7: Accuracy achieved by the proposed JSCC AE scheme as a function of SNRC4BC for different SNRCA08= values for � = 64.
JSCC AE achieves graceful degradation with the channel SNR as opposed to the digital scheme, which suffers from the cliff
effect. Models trained at moderate SNRCA08= values achieve relatively good performance for a wide range of test SNRs values.

0 10 20 30 40 50

Epoch

0

1

2

3

4

5

6

7

8

C
ro

ss
-e

n
tr

op
y

lo
ss

T3

T1,3

T1,3 + L1

T1,2,3

Fig. 8: Comparison of different training strategies through the
evolution of the cross-entropy loss in the final, joint training
step. The proposed )1,2,3 is clearly superior to the alternative
approaches.

effect, which results in a sharp decrease in the performance
when the channel condition is worse than the channel state,
for which the channel code is designed. If the code rate is
above the current channel capacity, it is known that true error
probability converges to 1 [42].

On the other hand, unlike digital models, analog transmis-
sion schemes are known to achieve graceful degradation when
we are interested in the end-to-end reconstruction quality [2];
that is the average reconstruction quality smoothly decreases as
the channel conditions become worse. This behaviour is quite
beneficial, since we do not have to train multiple autoencoders,
one for each channel SNR value, or even introduce channel

TABLE I: Comparison of the retrieval performance for
different training strategies.

Method Top-1 accuracy Top-5 accuracy mAP

)3 0.225 0.409 0.195
)1,3 0.312 0.533 0.286

)1,3 + !1 0.317 0.536 0.287
)1,2,3 0.392 0.602 0.351

estimation and feedback feature if the performance does not
critically depend on applying the same training and testing
SNRs. In the previous sections we showed the best possible
accuracy for a specific SNR, which means each data point
corresponds to a model trained specifically for that targer
SNR. In Fig. 7 we show that graceful degradation can be
achieved with the proposed JSCC AE architecture, and it
is not necessary to train a separate model for every SNR
value. Instead, we can take a model trained with a moderate
SNRtrain and apply it to a wide range of SNRtest in the
inference time at the expense of a moderate loss in accuracy.
To the best of our knowledge, this is the first time graceful
degradation is demonstrated for the inference as opposed to
the average reconstruction quality that is typically considered
in the literature.

Note that the approach trained without noise (SNRtrain =

∞dB) is not robust against the channel noise. Therefore,
its accuracy decreases much faster than for the networks
trained under different noise levels, yet it still shows graceful
degradation as the channel noise increases.

F. Training Strategy

In this section we show the superiority of )1,2,3 training
strategy by comparing to the alternative training methods
introduced in Section III-D. Note that, for the fairness of the
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TABLE II: Person retrieval accuracy for the CUHK03 dataset achieved by different models at SNR = 0dB and bandwidth
� = 64.

Model # Encoder layers # Decoder layers Activation MSE Top-1 accuracy Top-5 accuracy mAP

A 3 3 Leaky ReLU 0.204 0.382 0.602 0.354
B 3 2 Leaky ReLU 0.222 0.391 0.597 0.354
C 3 4 Leaky ReLU 0.199 0.390 0.601 0.358
D 2 3 Leaky ReLU 0.202 0.392 0.602 0.359
E 4 3 Leaky ReLU 0.208 0.383 0.598 0.356
E 4 3 PReLU 0.181 0.381 0.587 0.342

comparison, we perform the first step of the training, which is
the feature encoder pretraining, only once for )1,2,3, )1,3, and
)1,3 + !1.

The evolution of the cross-entropy loss over training epochs
of the final joint training phase for different training strategies
is shown in Fig. 8. In the experiment we used the bandwidth
� = 64 and SNR=0dB. The proposed three-step training
allows to achieve much better final performance, as shown in
Table I, where we also shown the top-5 recognition accuracy
i.e., the correct match was listed within the top 5 ranklist
elements, and the mean average precision (mAP), which are
standard evaluation measures for the retrieval tasks. Adding
each training step increases the performance gradually, and
there is a significant difference between )3, and )1,3, as well
as between )1,3 and )1,2,3. Our three-step strategy outperforms
all three alternatives by a large margin as it converges faster
and achieves the smallest loss after the last epoch. As expected,
)3 performs the worse, since it has to learn both the retrieval
and robustness against the noise in a single training step with
randomly initialized weights. Interestingly, the convergence of
the )1,3 + !1 seems to slightly outperform the convergence
of the )1,3, thanks to the additional loss term, which forces
the reconstructed features to be similar to the original ones.
However, while this seems to speed-up the convergence of
the autoencoder network marginally, it does not affect the
final performance. One may argue that our )1,2,3 strategy is
slower compared to the alternatives, nevertheless adding the
autoencoder pretraining phase is negligible in comparison to
the joint training phase (∼ 200s vs. ∼ 1hr).

G. Comparison of Different Models
In this section we present the results of architecture search

for the JSCC autoencoder that resulted in the best performing
model presented in Fig. 4. We considered 5 models designed
as follows: both encoder and the decoder are built of fully-
connected layers, followed by the BN and activation layers.
The only exceptions are the last layers in the encoder and the
decoder which are without BN and activations. The first layer
of the encoder maps 2048-dimensional features to 2� real-
valued symbols, which eventually forms a � complex symbols
transmitted over the channel. Similarly, the last layer of the
decoder maps 2�-dimensional vectors back to the original
2048-dimensional feature space and the remaining FC layers
keep the dimension at 2�. The evaluated architectures and
results are shown in Table II. We select the models by starting
from the baseline (denoted as A) from [1] and then removing
or adding layers from the encoder and the decoder networks
to explore the impact of depth on the overall performance.

For each model we trained the network according to the
three-step strategy described in Section III-D and performed
evaluation on the CUHK03 dataset at SNR = 0dB, � = 64.
We also show the mean squared error between the original
feature vectors and their noisy reconstructions, after JSCC
autoencoder pretraining , which is the second training step.
The results show that the differences between the models
are marginal. Model D, which corresponds to the architecture
presented in Fig. 4 and was used in the rest of the paper,
performs slightly better than the others in terms of final
retrieval performance. This model was selected also due to its
low computational cost, as it consists of only 5 fully-connected
layers in total. We also used PReLU as the activation for the
model variant E, and observed that even though it achieves
better MSE in the second training step, it fails to provide a
good generalization capabilities in the final step, as it overfits
to the data.

V. CONCLUSIONS

In this work, we have introduced the image retrieval prob-
lem over wireless channels in the context of the edge network,
where wireless edge devices send queries of images over
a bandwidth and power limited channel to an edge server
that stores the image database. We first introduced a digital
approach, which is based on a novel retrieval-oriented deep
image compression scheme, and applied it to feature vectors
obtained from the feature encoder. Next, we proposed a JSCC-
based scheme, where feature vectors are directly mapped to
the channel symbols and decoded at the receiver. We showed
the latter approach not only achieves a superior retrieval
accuracy at a target channel SNR, but also provides graceful
degradation with the test SNR when it does not match the
training SNR. We further introduced JSCC FC, which is a
simplified version of the proposed model and showed that
decoding is necessary at the receiver to mitigate the effects
of channel impairments. We also proposed a novel strategy
for training our JSCC scheme, that can be adapted to other
machine learning applications performed over noisy channels.
Our strategy achieves superior performance for training the
JSCC scheme. We have also performed an extensive ablation
study of different architectures and training strategies and
compared the alternatives under various performance measures
for a wide range of different channel conditions. The results
clearly show the superiority of the proposed architecture and
the joint training approach.
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