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Abstract—We study federated learning (FL), where
power-limited wireless devices utilize their local
datasets to collaboratively train a global model with
the help of a remote parameter server (PS). The PS
has access to the global model and shares it with
the devices for local training using their datasets, and
the devices return the result of their local updates
to the PS to update the global model. The algorithm
continues until the convergence of the global model.
This framework requires downlink transmission from
the PS to the devices and uplink transmission from
the devices to the PS. The goal of this study is to
investigate the impact of the bandwidth-limited shared
wireless medium on the performance of FL with a focus
on the downlink. To this end, the downlink and uplink
channels are modeled as fading broadcast and multiple
access channels, respectively, both with limited band-
width. For downlink transmission, we first introduce
a digital approach, where a quantization technique is
employed at the PS followed by a capacity-achieving
channel code to transmit the global model update over
the wireless broadcast channel at a common rate such
that all the devices can decode it. Next, we propose
analog downlink transmission, where the global model
is broadcast by the PS in an uncoded manner. We
consider analog transmission over the uplink in both
cases, since its superiority over digital transmission
for uplink has been well studied in the literature. We
further analyze the convergence behavior of the pro-
posed analog transmission approach over the downlink
assuming that the uplink transmission is error-free.
Numerical experiments show that the analog downlink
approach provides significant improvement over the
digital one with a more notable improvement when the
data distribution across the devices is not independent
and identically distributed. The experimental results
corroborate the convergence analysis, and show that a
smaller number of local iterations should be used when
the data distribution is more biased, and also when the
devices have a better estimate of the global model in
the analog downlink approach.

Index Terms—Federated learning, noisy downlink,
digital transmission, analog transmission.
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I. Introduction

Wireless devices, such as mobile phones, wearables,
and Internet-of-things (IoT) devices, generate massive
amounts of data. This massive data can be processed to
infer the state of a system, or to anticipate its future states
with applications in autonomous driving, unmanned aerial
vehicles (UAVs), or extended reality (XR) technologies.
Due to the growing storage and computational capabilities
of wireless edge devices, it is increasingly attractive to
store and process the data locally by shifting network
computations to the edge. Also, in contrast to traditional
machine learning (ML) solutions, it is not desirable to
offload such massive amounts of data available at the
wireless edge devices to a cloud server for centralized pro-
cessing due to latency, bandwidth, and power constraints
in wireless networks, as well as privacy concerns of users.
Federated learning (FL) has emerged as an alternative
method enabling ML at the wireless network edge by uti-
lizing wireless edge computational capabilities to process
data locally.
In FL, the goal is to fit a global model to data generated

and stored locally at the wireless devices by exploiting
edge processing capabilities collaboratively with the help
of a remote parameter server (PS) [1]. The PS keeps track
of the global model, which is updated using the local
model updates received from the participating devices,
and shares it with the devices. When FL is employed at
the wireless edge, the PS can be a wireless access point
or a base station, and the communication between the
PS and the devices takes place over the shared wireless
medium with limited energy and bandwidth. There have
been several studies to develop distributed ML techniques
with communication constraints [1]–[11]. However, these
studies focus on limiting the uplink communication from
the devices to the PS by assuming rate-limited error-free
links, and do not take into consideration the physical layer
characteristics of the wireless medium.
Recently there have been efforts to develop a federated

edge learning (FEEL) framework considering the physical
layer aspects of the underlying wireless medium [12].
FL over a power- and bandwidth-limited multiple access
channel (MAC) for the uplink is studied in [13], and
novel digital and analog transmission techniques at the
wireless devices are proposed. While the former employs
gradient sparsification followed by quantization and chan-
nel coding for digital transmission, the latter utilizes the
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superposition property of the underlying wireless MAC,
and introduces a novel bandwidth-efficient transmission
technique employing sparsification and linear projection.
FEEL over a broadband wireless fading MAC is studied
in [14], where the devices have channel state information
(CSI) to perform channel inversion, while [15] proposes
analog transmission over the wireless fading MAC without
any power control. The extension of the approach intro-
duced in [13] to the wireless fading MAC is studied in [16],
[17], which combines the linear projection idea of [13] with
power control. Furthermore, FEEL over wireless networks
with a multi-antenna PS is studied in [18]–[22], where
beamforming techniques are used for efficient gradient
aggregation at the PS. In [23], digital transmission over
a Gaussian MAC from the devices to the PS is consid-
ered with quantization based on the channel qualities,
and [24] studies digital transmission using the over-the-
air aggregation property of the wireless MAC. Various
device scheduling policies are studied for FEEL aiming to
select a subset of the devices sharing the limited wireless
resources efficiently, including frequency of participation in
the training [25], minimizing the training delay [26], link
qualities of the devices [27], energy consumption [28], and
importance of the model update along with the channel
quality [29]. Resource allocation for FEEL is formulated
as an optimization problem to speed up training [30], to
minimize the empirical loss function [31], and to minimize
the total energy consumption [32]. Also, convergence of
FEEL with limited bandwidth from the devices to the PS
is analyzed in [33].

All the aforementioned works assume an error-free PS-
to-device shared link, and availability of an accurate global
model at the devices for local training. In this paper,
we consider a bandwidth-limited wireless fading broadcast
channel from the PS to the devices with limited trans-
mit power at the PS. We introduce digital and analog
transmission approaches over the downlink. In the dig-
ital downlink, the PS employs quantization followed by
channel coding to broadcast the quantized global model
update over the wireless fading broadcast channel, at a
rate targeting the device with the worst channel, so that all
the devices can successfully receive the global model. On
the other hand, with the analog downlink approach, the PS
broadcasts the global model vector in an analog/uncoded
manner over the wireless fading broadcast channel, and
the devices receive different noisy versions of it. We model
the uplink from the devices to the PS, over which the
devices send their model updates, as a bandwidth-limited
fading MAC. We follow the existing works highlighting
the efficiency of the analog transmission over the uplink
fading MAC for FEEL [13], [14], [17], and consider analog
communications. The convergence analysis of the proposed
digital downlink approach is provided in [34]. Here, we
provide the convergence analysis of the analog downlink
approach, where for ease of analysis we assume error-
free uplink transmission and focus on the impact of a
noisy downlink transmission on the convergence behavior.
Our theoretical analysis is complemented with numerical

experiments on the MNIST dataset, which clearly illus-
trate the significant advantages of the analog downlink
approach compared to its digital counterpart. We observe
that the improvement is more significant when the data
is not independent and identically distributed (iid) across
the devices. The performance of both approaches improves
with the number of devices thanks to the additional
power introduced by each device. Our numerical results
corroborate the analytical convergence analysis, showing
that reducing the number of local iterations provides
the best performance when introducing bias in the data
distribution across the devices. Also, both analytical and
experimental results show that, for non-iid data distribu-
tion, the number of local iterations at the devices should
decrease when the transmit power at the PS increases.
Imperfect downlink transmission in FL is also treated in

[35]–[37]. In [35], the shared link from the PS to the devices
is assumed to be rate-limited without taking into account
the physical layer characteristics of the wireless medium;
the PS sends a compressed version of the current global
model to the devices through quantization. The efficiency
of quantizing the global model diminishes significantly
since the peak-to-average ratio of the parameters is high.
Therefore, [36] proposes employing a linear projection
at the PS to first spread the information of the global
model vector more evenly across its dimensions, and the
devices perform the inverse of the linear projection to
estimate the global model vector. Instead, in our proposed
digital downlink approach, the PS broadcasts the quan-
tized global model update, with respect to the last global
model estimate at the devices, and the devices recover an
estimate of the current global model using their knowledge
of the last global model. We highlight that the global
model update has significantly less variability/variance
than the global model itself due to reduced peak-to-
average ratio. Compared to the proposed digital downlink
approach, the approach in [36] requires significantly higher
computation overhead at the PS and the devices due to
the linear projection and its inverse, respectively, and this
overhead grows with the number of model parameters.
Moreover, the results in both [36] and [37] are limited
to simulations, where [37] illustrates the advantages of
analog transmission in the downlink but does not provide
a convergence result. In this paper, we provide an in-
depth analysis of the impact of a noisy downlink on
the performance of FEEL through extensive experimental
results together with theoretical convergence analysis.
Notation: We denote the set of real, natural and complex

numbers by R, N and C, respectively. For i ∈ N, we
let [i] , {1, . . . , i}. We denote a circularly symmetric
complex Gaussian distribution with real and imaginary
components with variance σ/2 by CN (0, σ). For vectors
x and y with the same dimension, x ◦ y returns their
Hadamard/entry-wise product. Also, Re{x} and Im{x}
return entry-wise real and imaginary components of x,
respectively, and (x)−1 represents entry-wise inverse of
vector x. The notation |·| represents the cardinality of
a set, the l2-norm of vector x is denoted by ‖x‖2, and
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〈x,y〉 denotes the inner product of vectors x and y. The
imaginary unit is represented by j, and (a)+ , max{a, 0}.

II. System Model
We consider FEEL, whereM wireless devices collabora-

tively train a model parameter vector θ ∈ Rd with the help
of a remote PS. Devicem has access to Bm local data sam-
ples, the set of which is denoted by Bm, i.e., Bm = |Bm|,
m ∈ [M ], and we define B ,

∑M
m=1Bm. The goal is

to minimize a loss function F (θ) =
∑M
m=1

Bm

B Fm (θ),
where Fm (θ) denotes the local loss function at device m,
Fm (θ) = 1

Bm

∑
u∈Bm

f (θ,u), m ∈ [M ], where f(·, ·) is an
empirical loss function defined by the learning task. Device
m performs multiple iterations of the stochastic gradient
descent (SGD) algorithm based on its local dataset and
the global model shared by the PS to minimize Fm (θ).
FEEL involves iterative communications between the

wireless devices and the PS until the model parameter
vector converges to its optimum, minimizing loss function
F (θ). It consists of downlink and uplink transmissions,
where in the downlink the PS shares the global model
with the devices for local training, and in the uplink the
devices transmit their local model updates to the PS,
which updates the global model accordingly.

During the t-th global iteration, the PS broadcasts the
global model vector, denoted by θ(t), to the devices over
the downlink channel. We model the downlink wireless
channel as a fading broadcast channel, where OFDM with
ndl subchannels is employed. We denote the length-ndl

channel input by xdl(t) ∈ Cndl , and consider a transmit
power constraint P dl at the PS at any global iteration.
The received signal at device m is given by

ydl
m(t) = hdl

m(t) ◦ xdl(t) + zdl
m(t), for m ∈ [M ], (1)

where hdl
m(t) ∈ Cndl is the downlink channel gain vector

from the PS to device m with each entry iid according
to CN (0, σdl), and zdl

m(t) ∈ Cndl is the downlink additive
noise vector at device m with each entry iid according
to CN (0, 1). We assume that device m has channel state
information (CSI) about the downlink channel, and denote
the noisy estimate of the global model parameter vector
θ(t) at device m by θ̂m(t), m ∈ [M ].

Having estimated θ̂m(t), device m, m ∈ [M ], updates
the model by running SGD τ steps locally, for some τ ∈ N.
The i-th SGD step at device m during global iteration t
is given by, for i ∈ [τ ],

θi+1
m (t) = θim(t)− ηim(t)∇Fm

(
θim(t), ξim(t)

)
, (2)

where θ1
m(t) = θ̂m(t), ηim(t) represents the learning rate,

and ∇Fm
(
θim(t), ξim(t)

)
denotes the stochastic gradient

estimate with respect to θim(t) and the local mini-batch
sample ξim(t), chosen uniformly at random from the local
dataset Bm. We highlight that, ∀i ∈ [τ ],∀m ∈ [M ],∀t,

Eξ
[
∇Fm

(
θim(t), ξim(t)

)]
= ∇Fm

(
θim(t)

)
, (3)

where Eξ denotes expectation with respect to the random-
ness of the stochastic gradient function. After performing

the local SGD algorithm, device m aims to transmit the
local model update ∆θm(t) = θτ+1

m (t) − θ1
m(t) to the PS

over the uplink channel, m ∈ [M ].
We model the uplink channel as a fading MAC, where,

similarly to the downlink, OFDM is employed for trans-
mission. We assume nup subchannels are available to
each device in the uplink with transmit power constraint
P up during each global iteration. The length-nup channel
input by device m at the global iteration t is denoted by
xup
m (t) ∈ Cnup , for m ∈ [M ]. The channel output received

at the PS during the global iteration t is given by

yup(t) =
M∑
m=1

hup
m (t) ◦ xup

m (t) + zup(t), (4)

where hup
m (t) ∈ Cnup is the uplink channel gain vector

from device m to the PS with each entry iid according to
CN (0, σup), and zup

m (t) ∈ Cnup is the uplink additive noise
vector at the PS with each entry iid according to CN (0, 1).
We assume that the PS knows all the channel gains, while
each device knows the states of its own subchannels. The
PS’s goal is to recover the average of the local model
updates, 1

M

∑M
m=1 ∆θm(t), whose estimate at the PS is

denoted by ∆̂θ(t), which is then used to update the global
model.
In this paper, we study the impact of noisy down-

link transmission on the performance of FEEL. For this
purpose, we consider digital and analog transmission ap-
proaches over the downlink channel. When performing
digital transmission, we assume that the PS has CSI
about the downlink wireless channels, while for the analog
transmission, no CSI about the downlink channels at the
PS is needed. On the other hand, following the results in
[13], [14], [17], here we only consider analog transmission
over the uplink.

III. Digital Downlink Approach
Here we present digital transmission of the global model

update to the devices.

A. Downlink Channel Capacity
At global iteration t, the PS aims to transmit vector

xdl(t), containing information about the global model vec-
tor θ(t), to all the devices using digital transmission with
power P dl. The PS broadcasts xdl(t) at a “common rate”
such that all the devices can decode it. Here we provide
an upper bound on the maximum common rate of the
downlink, where the CSI is known at both the transmitter
and the receivers. Given an average transmit power P dl,
the maximum common rate of downlink transmission over
ndl parallel Gaussian channels, denoted by Cdl(t), is the
solution of the following optimization problem [38], [39]:

max
Pdl

1 ,...,Pdl
ndl

min
m∈[M ]

ndl∑
i=1

log2
(
1 + P dl

i

∣∣hdl
m,i (t)

∣∣2),
subject to

ndl∑
i=1

P dl
i = P dl. (5)
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The above problem is a convex optimization problem
which can be efficiently solved by the minimax hypoth-
esis testing approach [38]–[40]. Note that this rate would
be achievable by coding across different subchannels for
sufficiently large ndl.

B. Compression Technique
Here we present the compression technique employed by

the PS for digital transmission of the global model update
over the downlink, where we adopt the scheme introduced
in [41] with a slight modification. Assume that vector
x(t) ∈ Rd, whose i-th entry is denoted by xi(t), i ∈ [d], is
to be quantized and transmitted over the downlink. The
PS first sparsifies x(t) by setting all but s entries with the
largest magnitudes to zero, for some integer s ≤ d. We
denote the set of s indices of the resultant sparse vector
with non-zero entries by S(t). We also denote the resultant
vector with dimension s after removing the zeroed entries
due to the sparsification by xs(t), whose i-th entry is
denoted by xs,i(t), for i ∈ [s]. Then, the PS quantizes
the entries of xs(t), and transmits the quantized values
along with their locations in x(t), which are available
in set S(t). We define xmax , maxi∈[s] {|xs,i(t)|} and
xmin , mini∈[s] {|xs,i(t)|}. Given a quantization level q(t),
which will be determined later, we define the compression
technique applied to the i-th entry of xs(t), for i ∈ [s], as

Q (xs,i(t)) , sign (xs,i(t)) ·
(
xmin

+ (xmax − xmin) · ϕ
( |xs,i(t)| − xmin

xmax − xmin
, q(t)

))
, (6a)

where sign (x) returns the sign of real number x, and ϕ(·, ·)
is a quantization function defined in the following. For 0 ≤
x ≤ 1 and some integer q ≥ 1, let l ∈ {0, 1, . . . , q − 1} be
an integer such that x ∈ [l/q, (l + 1)/q). We then define

ϕ (x, q) ,
{
l/q, with probability 1− (xq − l),
(l + 1)/q, with probability xq − l.

(6b)

We denote the compressed version of xi(t) by S (xi(t)),
i ∈ [d], where S (xi(t)) = Q (xi(t)), if i ∈ S(t), and
S (xi(t)) = 0, otherwise, and we represent S (x(t)) =
[S (x1(t)) , . . . , S (xd(t))]T .

With the above compression scheme, the PS transmits

Rdl(t) = 64 + s (1 + log2(q(t) + 1)) + log2

(
d

s

)
bits (7)

over the wireless broadcast channel to each of the
devices, where 64 bits are used to represent the
real numbers xmax and xmin, s bits for presenting
sign (xs,i(t)), ∀i ∈ [s], s log2(q(t) + 1) bits are used
for ϕ ((|xs,i(t)| − xmin) /(xmax − xmin), q), ∀i ∈ [s], and
log2

(
d
s

)
bits represent the indices of x(t) in set S(t). We

set q(t) to the largest integer satisfying Rdl(t) ≤ Cdl(t).

C. Model Update
Here we present the updating rule including broadcast-

ing the global model update from the PS and aggregating

the local model updates from the devices.

Downlink transmission. We highlight that, for the
digital downlink approach, all the devices have the same
estimate of θ(t) during global iteration t, denoted by
θ̂(t), i.e., θ̂m(t) = θ̂(t), ∀m ∈ [M ]. In the downlink, at
global iteration t, the PS wants to broadcast the global
model update θ(t)− θ̂(t− 1) to all the devices. We define
∆̂θ(t − 1) , θ(t) − θ̂(t − 1) ∈ Rd. The PS first quantizes
∆̂θ(t − 1) using the compression technique described in
Section III-B, obtaining S

(
∆̂θ(t−1)

)
= S

(
θ(t)−̂θ(t−1)

)
,

which results in Rdl(t) bits as given in (7). The PS then
broadcasts these bits to all the devices using a capacity-
achieving channel code, where q(t) is set to the largest
integer satisfying Rdl(t) ≤ Cdl(t), where Cdl(t) is given as
the solution of (5). After decoding S

(
θ(t)− θ̂(t−1)

)
, each

device computes θ̂(t) as

θ̂(t) = θ̂(t− 1) + S
(
θ(t)− θ̂(t− 1)

)
, (8)

which is equivalent to θ̂(t) = θ(0)+
∑t
i=1 S

(
θ(i)−̂θ(i−1)

)
,

where we have assumed that θ̂(0) = θ(0). Knowing about
S
(
θ(i) − θ̂(i − 1)

)
, ∀i ∈ [t], the PS can also recover θ̂(t),

which is used at the devices to compute the local updates.

Uplink transmission. We consider analog transmission
of the local model updates over uplink. For ease of pre-
sentation, we assume that nup = d/2, and we will discuss
the generalization of the proposed approach. Device m,
m ∈ [M ], performs τ local SGD steps, where the i-th step
is given by, for i ∈ [τ ],

θi+1
m (t) = θim(t)− ηim(t)∇Fm

(
θim(t), ξim(t)

)
, (9)

where θ1
m(t) = θ̂(t). It then transmits the local model

update ∆θm(t) = θτ+1
m (t) − θ̂(t) in an analog (uncoded)

fashion. We define

∆θm,re(t) , [∆θm,1(t), . . . ,∆θm,d/2(t)]T , (10a)
∆θm,im(t) , [∆θm,d/2+1(t), . . . ,∆θm,d(t)]T , (10b)

where ∆θm,i(t) denotes the i-th entry of ∆θm(t), and we
have ∆θm(t) =

[
∆θm,re(t)T ,∆θm,im(t)T

]T
, for i ∈ [d],

m ∈ [M ]. Device m, m ∈ [M ], transmits

xul
m(t) = αul

m(t) ◦ (∆θm,re(t) + j∆θm,im(t)) , (11)

where αul
m(t) ∈ Cd/2 is the power allocation vector, whose

i-th entry, i ∈ [d/2], is set as αul
m,i(t) = γm(t)

hul
m,i

(t) , if
|hul
m,i(t)| ≥ λthr(t), and αul

m,i(t) = 0, otherwise, for some
γm(t), λthr(t) ∈ R, which are set to satisfy the transmit
power constraint ‖xul

m(t)‖22 ≤ P ul. We assume that device
m first transmits the scaling factor γm(t) to the PS in an
error-free fashion, m ∈ [M ]. The PS receives the following
signal:

yul(t) =
M∑
m=1

αul
m(t)◦

(
∆θm,re(t)+

j∆θm,im(t)
)
◦ hul

m(t) + zul(t), (12)
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Algorithm 1 Digital Downlink Approach

1: Initialize θ(0)
2: for t = 0, . . . , T − 1 do
• Downlink transmission:

3: PS broadcasts S
(
θ(t)− θ̂(t− 1)

)
4: θ̂(t) = θ̂(t− 1) + S

(
θ(t)− θ̂(t− 1)

)
• Uplink transmission:

5: for m = 1, . . . ,M in parallel do
6: xul

m(t) = αul
m(t) ◦ (∆θm,re(t) + j∆θm,im(t))

7: αul
m,i(t) =

{
γm(t)
hul

m,i
(t) , if

∣∣hul
m,i(t)

∣∣ ≥ λthr(t),

0, otherwise
,

for i ∈ [d/2]
8: end for
9: θ(t+ 1) = θ̂(t) + ∆̂θ(t)

10: end for

whose i-th entry, i ∈ [d/2], is given by

yul
i (t) =

∑
m∈Mi(t)

γm(t)
(
∆θm,i(t) + j∆θm,d/2+i(t)

)
+ zul

i (t),

(13)

where Mi(t) ,
{
m ∈ [M ] :

∣∣hul
m,i(t)

∣∣ ≥ λthr(t)
}
. With the

knowledge of the channel state, and consequently Mi(t),
∀i ∈ [d/2], the PS estimates 1

|Mi(t)|
∑
m∈Mi(t) ∆θm,i(t)

and 1
|Mi(t)|

∑
m∈Mi(t) ∆θm,d/2+i(t) with

∆θ̂i(t) =
{

Re{yul
i (t)}

γ̄(t)|Mi(t)| , if |Mi(t)| 6= 0,
0, otherwise,

(14a)

∆θ̂d/2+i(t) =
{

Im{yul
i (t)}

γ̄(t)|Mi(t)| , if |Mi(t)| 6= 0,
0, otherwise,

(14b)

respectively, where γ̄(t) , 1
M

∑M
m=1 γm(t). The estimated

vector ∆̂θ(t) , [∆θ̂1(t), . . . ,∆θ̂d(t)]T is used to update the
global model parameter vector as θ(t+ 1) = θ̂(t) + ∆̂θ(t).
We remark here that for nup < d/2, we carry out the
uplink transmission in dd/(2nup)e time slots, where in each
time slot we perform the above transmission.

Algorithm 1 summarizes the downlink and uplink trans-
missions for the digital downlink approach employing the
compression technique presented in Section III-B.

IV. Analog Downlink Approach
In this section, we propose that the PS broadcasts the

global model parameter vector θ(t) in an analog (uncoded)
manner. For ease of presentation, we consider ndl = d/2,
and we will argue that the proposed approach can be
readily extended to the general case.
Downlink transmission. We define θre(t) ,
[θ1(t), . . . , θd/2(t)]T , and θim(t) , [θd/2+1(t), . . . , θd(t)]T ,

where θ(t) =
[
θre(t)T ,θim(t)T

]T
. At iteration t, the PS

broadcasts xdl(t) = αdl(t) (θre(t) + jθim(t)) in an uncoded
manner, where αdl(t) is set to satisfy ‖xdl(t)‖22 ≤ P dl.
Before broadcasting xdl(t), we assume that the PS shares

αdl(t) with the devices in an error-free fashion. The
received signal at device m, m ∈ [M ], is given by

ydl
m(t) = αdl(t)hdl

m(t) ◦ (θre(t) + jθim(t)) + zdl
m(t). (15)

Device m, m ∈ [M ], performs the following descaling:

ŷdl
m(t) ,

( 1
αdl(t)

)
ydl
m(t) ◦

(
hdl
m(t)

)−1

= θre(t) + jθim(t) +
( 1
αdl(t)

)
zdl
m(t) ◦

(
hdl
m(t)

)−1
, (16)

and uses ŷdl
m(t) to recover the global model parameter

vector θ(t) as

θ̂m(t) ,
[
Re{̂ydl

m(t)}T , Im{̂ydl
m(t)}T

]T
. (17)

We highlight that the proposed approach can be extended
for any number of subchannels ndl through transmission
over different time slots.
Uplink transmission. After recovering θ̂m(t), device
m, m ∈ [M ], performs τ local SGD steps as in (9),
where θ1

m(t) = θ̂m(t). It then transmits the local model
update ∆θm(t) = θτ+1

m (t)− θ̂m(t) in an analog (uncoded)
fashion over the wireless MAC following the same steps
as the one presented in Section III-C, m ∈ [M ]. The
PS recovers ∆̂θ(t), given in (14), and updates the global
model parameter vector as θ(t+ 1) = θ(t) + ∆̂θ(t).

Remark 1. We highlight that with the independent ran-
dom noise added to the model parameter vector in the
downlink at different devices, the analog downlink approach
inherently introduces additional data privacy for FL.

V. Convergence Analysis of Analog Downlink
Approach

Here we analyze the convergence behavior of the analog
downlink approach presented in Section IV. For simplicity
of the analysis, we assume that the device-to-PS transmis-
sion is error-free, and focus on the impact of noisy down-
link transmission on the convergence. We first present the
preliminaries and assumptions, and then the convergence
result for the analog downlink approach for both strongly
convex and non-convex cases.

A. Preliminaries
We define the optimal solution of minimizing F (θ) as

θ∗ , arg min
θ
F (θ), and the minimum loss as F ∗ , F (θ∗).

We also denote the minimum value of Fm(·), the local loss
function at device m, by F ∗m, m ∈ [M ]. We then define
Γ , F ∗ −

∑M
m=1

Bm

B F ∗m, whose magnitude indicates the
bias in the data distribution across devices. We note that
for i.i.d. data distribution, given a large enough number of
local data samples, Γ approaches zero.
According to (16) and (17), we have

θ̂m(t) = θ(t) + z̃dl
m(t), for m ∈ [M ], (18)

where, for ease of analysis, we assume that

E
[∥∥z̃dl

m(t)
∥∥2

2

]
≤ αd

σdlP dl , (19)
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for some α ∈ R, in which case the variance of each entry of
the additive noise z̃dl

m(t) reduces with channel variance σdl

and transmit power P dl. For simplicity of the convergence
analysis, we consider ηim(t) = η(t), ∀m, i. Thus, the i-th
step local SGD at device m is given by, i ∈ [τ ], m ∈ [M ],

θi+1
m (t) = θim(t)− η(t)∇Fm

(
θim(t), ξim(t)

)
, (20)

where θ1
m(t) = θ̂m(t), given in (18). Thus, we have

θτ+1
m (t) = θ1

m(t)− η(t)
τ∑
i=1
∇Fm

(
θim(t), ξim(t)

)
. (21)

Device m transmits the local model update ∆θm(t) =
−η(t)

∑τ
i=1∇Fm

(
θim(t), ξim(t)

)
, m ∈ [M ]. After receiving

the local model updates from all the devices, ∆θm(t),
∀m ∈ [M ], the PS updates the global model parameter
vector as

θ(t+ 1) = θ(t) +
M∑
m=1

Bm
B

∆θm(t)

= θ(t)− η(t)
M∑
m=1

τ∑
i=1

Bm
B
∇Fm

(
θim(t), ξim(t)

)
. (22)

Assumption 1. The loss functions F1, . . . , FM are all L-
smooth; that is, ∀v,w ∈ Rd, ∀m ∈ [M ],

Fm(v)− Fm(w) ≤ 〈v −w,∇Fm(w)〉+ L

2 ‖v −w‖
2
2 .

(23)

Assumption 2. The average of the squared l2-norm of the
stochastic gradients are bounded; that is, ∀i ∈ [τ ], ∀m ∈
[M ], ∀t,

Eξ
[∥∥∇Fm (θim(t), ξim(t)

) ∥∥2
2

]
≤ G2. (24)

Assumption 3. The variance of the stochastic gradients
at each device are bounded as, ∀i ∈ [τ ], ∀m ∈ [M ], ∀t,

Eξ
[∥∥∇Fm (θim(t), ξim(t)

)
−∇Fm

(
θim(t)

) ∥∥2
2

]
≤ γ2

m. (25)

Assumption 4. We assume that, ∀t,
M∑
m=1

Bm
B

E
[∥∥(∇Fm(θ(t) + z̃dl

m(t))−∇Fm(θ(t))
)∥∥2

2

]
≤ βd

σdlP dl , (26)

for some β ∈ R, where the upper bound reduces with the
variance of the downlink channel gains and the downlink
transmit power.

B. Strongly Convex Loss Functions
Here we provide a convergence bound for the analog

downlink approach introduced in Section IV for strongly
convex loss functions assuming that the devices can send
their local model updates accurately. The loss functions
F1, . . . , FM are µ-strongly convex, if ∀v,w ∈ Rd,m ∈ [M ],

Fm(v)− Fm(w) ≥ 〈v −w,∇Fm(w)〉+ µ

2 ‖v −w‖
2
2 .

(27)

Theorem 1. Let 0 < η(t) ≤ min
{

1
L(τ+1) , 1

}
, ∀t. For the

analog downlink approach with strongly convex and smooth
loss functions and error-free uplink, we have

E
[
‖θ(t+ 1)− θ∗‖22

]
≤ V (t)E

[
‖θ(t)− θ∗‖22

]
+ U(t),

(28a)

where

V (t) ,
(
1− µη(t)

(
τ − η(t)(τ − 1)

))
, (28b)

U(t) , τ2η2(t)
M∑
m=1

Bm
B
γ2
m

+ (2 + µ− (µ+ L(τ + 1))η(t))G2 τ(τ − 1)(2τ − 1)
6 η2(t)

+ 2Lτ(τ + 2)Γη2(t) +
( βd

σdlP dl

)
η(t)

+
( αd

σdlP dl

)
(1− µτ(1− η(t))− µη(t))+

η(t), (28c)

and the expectation is with respect to the stochastic gradient
function and the randomness of the wireless channel.

Proof. See Appendix A.

Corollary 1. From the L-smoothness of the function F (·),
after T global iterations of the analog downlink scheme, for
0 < η(t) ≤ min

{
1

L(τ+1) , 1
}
, ∀t, we have

E [F (θ(T ))]− F ∗ ≤ L

2 E
[
‖θ(T )− θ∗‖22

]
≤ L

2
( T−1∏
i=0

V (i)
)
‖θ(0)− θ∗‖22 + L

2

T−1∑
j=0

U(j)
T−1∏
i=j+1

V (i),

(29)

where the last inequality follows from (28a).

Remark 2. We remark that V (t) is a decreasing function
of τ , while U(t) increases with τ . Thus, the impact of τ on
the convergence in the general case is not evident. However,
for a more biased data distribution across devices, which
results in larger Γ andG, the destructive effect of increasing
τ on U(t) becomes more significant, while the reduction in
V (t) is the same as having a less biased data distribution,
where we note that V (t) is not a function of the data
distribution; therefore, for a less diverse data distribution,
where U(t) is less sensitive to any change in τ , designing an
efficient τ is more critical. This corroborates our intuitive
understanding of convergence in this problem, where for
a more biased data distribution, increasing the number of
local iterations excessively leads to more divergent local
updates and makes convergence harder.

Remark 3. The last two terms in U(t),(
αd

σdlPdl

)
(1− µτ(1− η(t))− µη(t))+

η(t) and
(

βd
σdlPdl

)
η(t),

are the results of the noisy downlink transmission.

Lemma 1. Let η(t) = 2
µt+2L(τ+1)+2 , ∀t. After T global

iterations, we have

E [F (θ(T ))]− F ∗ ≤ L

2

( U2T + λ

µT + 2L(τ + 1) + 2

)
, (30a)
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where

λ ,max
{

2(L(τ + 1) + 1) ‖θ(0)− θ∗‖22 ,
4U1

µ
+ 2U2

µ
(L(τ + 1) + 1) + U2

}
, (30b)

U1 ,τ2γ2 + (2 + µ)G2 τ(τ − 1)(2τ − 1)
6 + 2Lτ(τ + 2)Γ,

(30c)

U2 ,
(α+ β)d
σdlP dl . (30d)

Proof. See Appendix B.

Remark 4. We note that U2, which appears multiplied by
T in the numerator of (30a), is due to the noisy downlink,
and is scaled down by the channel variance σdl and transmit
power P dl. Thus, asymptotically when P dl → ∞ and/or
σdl →∞, a convergence rate of the order 1/T is achieved.
Alternatively, by increasing the transmit power with t, a
convergence rate of the order 1/T is guaranteed.

Remark 5. The result in Lemma 1 shows that, in general
the analog approach does not converge to the optimal
solution for the strongly convex loss functions, which is
due to the additive noise of the wireless broadcast channel.
As highlighted in Remark 4, this can be resolved by allow-
ing power allocation over time where the transmit power
increases with t.

C. Non-convex Loss Functions
Here we provide a convergence bound for the proposed

analog approach given smooth and non-convex loss func-
tions. We use a weaker notion of convergence by bound-
ing limT→∞ E

[
‖∇F (θ(T ))‖22

]
[42]. The following theorem

upper bounds 1∑T −1
t=0

η(t)

∑T−1
t=0 η(t)E

[
‖∇F (θ(t))‖22

]
.

Theorem 2. For the analog downlink approach with non-
convex smooth loss functions and error-free uplink, we have

1∑T−1
t=0 η(t)

T−1∑
t=0

η(t)E
[
‖∇F (θ(t))‖22

]
≤ 2(F (θ(0))− F ∗)

τ
∑T−1
t=0 η(t)

+ βdτ

σdlP dl

(
1 +

∑T−1
t=0 η2(t)∑T−1
t=0 η(t)

)
+ L2G2(τ − 1)(2τ − 1)

∑T−1
t=0 (1 + η(t))η2(t)

6
∑T−1
t=0 η(t)

+ LτG2
∑T−1
t=0 η2(t)∑T−1
t=0 η(t)

. (31)

Proof. See Appendix C.

Remark 6. The term βdτ
σdlPdl appears as a result of the

noisy downlink transmission, and is not scaled with time
and may remain as a residue in the upper bound in (31)
as T →∞.

VI. Numerical Experiments
Here we compare the performance of the proposed

digital and analog downlink approaches for image classifi-
cation on the MNIST dataset [43] with 60000 training and

10000 test samples. We train a convolutional neural net-
work (CNN) with 6 layers including two 5×5 convolutional
layers with ReLU activation and the same padding, where
the first and the second layers have 32 and 64 channels,
respectively, each with stride 1, and followed by a 2 × 2
max pooling layer with stride 2. Also, the CNN has a fully
connected layer with 1024 units and ReLU activation with
dropout 0.8 followed by a softmax output layer. We utilize
ADAM optimizer [44] to train the CNN, and consider f
as a cross-entropy loss function.
We consider two scenarios: in the iid data distribution

scenario, we randomly split the 60000 training data sam-
ples toM disjoint subsets, and allocate each subset of data
samples to a different device; while in the non-iid data
distribution scenario, we split the training data samples
with the same label (from the same class) to M/5 disjoint
subsets (assume that M is divisible by 5). We then assign
two subsets of the data samples, each from a different
label/class selected at random, to each device, such that
each subset is assigned to a single device.
We assume ndl = nul = d/2 subchannels, and a

variance of σdl = σul = 1 for the downlink and uplink
channel gains. We set the transmit power at the devices to
P ul = 10, and the threshold on the uplink channel gains
to λthr(t) = 10−4, ∀t. We also set the sparsity level of
the digital downlink approach to s = bd/50c and the size
of the local mini-batch sample for each local iteration to∣∣ξim(t)

∣∣ = 500, ∀i,m, t. We measure the performance as
the accuracy with respect to the test samples, called test
accuracy, versus the global iteration count, t.
We consider the convergence bound for the analog down-

link approach for the strongly convex loss functions pre-
sented in Corollary 1, and we set η(t) = 1

L(τ+1)(10−4t+1) ,
∀t, and consider M = 40 devices. We assume that µ =
0.2, L = 10, ‖θ(0)− θ∗‖22 = 5 × 103, γm = 50, ∀m,
and α = β = 10−2. We also model the iid and non-
iid data distributions by setting (G2,Γ) = (10, 10) and
(G2,Γ) = (100, 100), respectively, where we note that the
non-iid scenario results in higher G and Γ values.
In Fig. 1 we compare the performance of the proposed

digital and analog downlink approaches for both the iid
and non-iid data distribution scenarios. We investigate
the impact of the number of devices on the performance
by considering M ∈ {20, 40}. For the analog downlink
approach, we consider P dl = 102; while for the digital
approach, we consider a significantly higher value for the
downlink transmit power constraint at the PS, P dl = 106,
which is to make sure that q(t) ≥ 1, ∀t. For each exper-
iment, with results illustrated in Fig. 1, we have found
the number of local iterations, τ , which results in the best
accuracy. Despite the significantly lower transmit power
at the PS, we observe that the analog downlink scheme
remarkably outperforms the digital one for both iid and
non-iid scenarios with a notably larger gap between the
two for the non-iid case. It can also be seen that the
accuracy of the analog downlink approach is more stable
than its digital counterpart, and the degradation in the
performance of the analog approach due to the introduced
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Fig. 1: Accuracy of the digital and analog downlink approaches for ndl = nul = d/2, σdl = σul = 1, P ul = 10,
λthr(t) = 10−4, ∀t, s = bd/50c, and

∣∣ξim(t)
∣∣ = 500, ∀i,m, t.
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Fig. 2: Accuracy of analog downlink for the non-iid data distribution with M = 40, ndl = nul = d/2, σdl = σul = 1,
P ul = 10, λthr(t) = 10−4, ∀t, and

∣∣ξim(t)
∣∣ = 500, ∀i,m, t.

bias in the non-iid data distribution is marginal. This
shows that the analog approach is fairly robust against
the heterogeneity of data distribution across devices. We
highlight that with the analog downlink approach the
destructive effect of the devices with relatively bad channel
conditions, and consequently with a noisier/less accurate
estimate of the global model, is alleviated by the devices
with good channel conditions, since devices receive dif-
ferent estimates of the global model vector transmitted
by the PS depending on their channel conditions. On
the other hand, with the digital downlink approach the
common rate at which the global model vector is delivered
to the devices should be adjusted such that all the devices,
including those with relatively bad channel conditions,
can decode it. This limits the capacity of the devices
with good channel conditions, and provides the same copy
of the global model estimate to all the devices whose
rate is adjusted to accommodate even the worst device.
Another reason for the inferiority of the digital downlink
approach is that it requires digitization/quantization of
the model parameter vector to a limited number of bits,

which provides a less accurate estimate of the global model
vector to rely on for local training at the devices than
the noisy estimate received from the analog downlink
transmission. This is due to the limited capacity of the
wireless broadcast channel.
The performance of both digital and analog downlink

approaches improve with M for both iid and non-iid
scenarios. This is mainly due to the uplink transmission.
With more devices, each with its own power budget,
analog transmission over the MAC is more robust against
the noise, which is due to the additive nature of the MAC.
However, the accuracy of the digital downlink approach
is unstable in both iid and non-iid cases. This is due to
the inaccurate model parameter vector estimate at the
devices for the digital downlink approach, which leads to
a more skewed/less similar local updates at the devices
compared to the case of having the actual model parameter
vector at the devices. This deficiency can be clearly seen
for M = 20 in the iid scenario. By relying on the local
updates from fewer devices, the chance of having more
similar local updates (local updates with relatively small
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(b) P dl = 103

Fig. 3: Upper bound on E [F (θ(t))]− F ∗ for the analog downlink approach for the strongly convex case with different
τ values, τ ∈ {1, 3, 4, 5, 7, 10}, considering non-iid data distribution with (G2,Γ) = (100, 100), for η(t) = 1

11L(10−4t+1) ,
∀t, M = 40, µ = 0.2, L = 10, ‖θ(0)− θ∗‖22 = 5× 103, γm = 50, ∀m, and α = β = 10−2.

Euclidean distance) decreases, and it is less likely that the
resultant vector recovered from the output of the MAC
provides a good estimate of the gradient of the actual
model parameter vector. Another interesting observation
is about the best number of local iterations τ for each
experiment. We observe that the best τ value for the
analog downlink approach for M = 40 (M = 20) in the iid
case is the same as that for the digital downlink approach
for M = 40 (M = 20) in the non-iid scenario. The same
observation can be made also for the performance of the
digital downlink approach in the iid case and the analog
downlink approach in the non-iid scenario. The reason for
this opposite behavior is that, in contrast to the digital
downlink approach, with the analog approach the devices
have a relatively good estimate of θ(t). For the analog
downlink approach with sufficiently many devices, i.e.,
M = 40, the best τ value for the iid case is larger than
that for the non-iid case. This is intuitive since increasing
τ excessively for the non-iid case provides biased local
updates at the devices, which is due to the biased local
datasets, with a relatively poor similarity. On the other
hand, the digital downlink approach forM = 40 shows the
opposite behavior, which is due to the relatively inaccurate
estimate of θ(t) at the devices. In this case, for the iid
scenario, in which the local data is homogeneous, the
inaccuracy of the model parameter vector estimate harms
the performance when a relatively large number of local
SGD iterations are performed for bothM values. Whereas,
for M = 40 in the non-iid scenario, a relatively small τ
might not provide reliable local updates, since the local
training dataset is biased and a relatively good estimate
of θ(t) is not available to rely on. On the other hand,
for the digital approach with M = 20, where devices
receive a more accurate estimate of θ(t), due to the higher
achievable common rate, a relatively small τ value provides
a better performance. A similar observation is made for
the analog downlink approach with M = 20 devices in
the iid case, where a relatively small τ , τ = 2, provides
the best performance. This is due to the fact that, having

fewer devices for training, where each device performs
local updates using a homogeneous local dataset and a
distinct noisy version of the global model, the chance of
having the noise in the local updates cancelled out at the
aggregation phase at the PS reduces when a relatively
large τ value is used for local updates. We provide a more
in-depth investigation of the impact of number of local
SGD iterations on the performance of the analog downlink
approach in Figures 2 and 3. We remark here that the
randomness in the experiments also has an impact on the
experimental results presented here.
In Fig. 2 we study the impact of τ on the performance

of the analog downlink approach focusing on the non-iid
data distribution for two different transmit power levels
P dl ∈ {10, 102} at the PS with τ ∈ {1, 3, 4, 5, 7, 10}
and M = 40 devices. We note that with a higher P dl

the devices receive a better/less noisy estimate of θ(t).
Observe that, for a smaller P dl, P dl = 10, τ = 4 provides
the best performance, while for P dl = 102, the best
performance is achieved for τ = 3. Therefore, for the
non-iid scenario, when having a less accurate estimate
of θ(t) at the devices, a larger number of local SGD
iterations should be performed compared to having a more
accurate estimate of θ(t) at the devices. As discussed
for the performance of the digital downlink approach in
Fig. 1, a relatively small τ value might not provide the
most reliable local updates for the non-iid scenario when
a good estimate of θ(t) is not available at the devices. This
observation is corroborated in Fig. 3, which demonstrates
the analytical results on the convergence bound for the
analog downlink approach for the non-iid scenario for
different τ values, τ ∈ {1, 3, 4, 5, 7, 10}, with two P dl

values, P dl ∈ {102, 103}. We observe in this figure that, for
P dl = 102, τ = 4 provides the best performance in terms
of the convergence speed and the final level of the average
loss. On the other hand, for P dl = 103, τ = 3 provides the
lowest average loss, although it has a negligibly smaller
convergence speed compared to τ = 4, 5, 7.
In Fig. 4, we consider the analytical convergence result
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(a) Iid data distribution, (G2, Γ) = (10, 10)
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(b) Non-iid data distribution, (G2, Γ) = (100, 100)

Fig. 4: Upper bound on E [F (θ(t))]− F ∗ for the analog downlink approach for the strongly convex case with different
τ values, τ ∈ {1, 3, 4, 5, 7, 10}, with P dl = 102, for η(t) = 1

11L(10−4t+1) , ∀t, M = 40, µ = 0.2, L = 10, ‖θ(0)− θ∗‖22 =
5× 103, γm = 50, ∀m, and α = β = 10−2.

of the analog downlink approach for the iid and non-iid
scenarios for various τ values, τ ∈ {1, 3, 4, 5, 7, 10}. For the
iid scenario, considering both the convergence bound and
the final average loss, τ = 5 provides the best performance,
although it has a slightly smaller convergence speed com-
pared to τ = 7, 10. On the other hand, we observe that a
smaller τ value, τ = 4, has the best performance in the
non-iid scenario. This result corroborates the observation
made in Fig. 1 for the analog downlink approach with
M = 40 devices, in which a larger τ value should be
used for a less biased data distribution to obtain the best
performance. A relatively large τ for non-iid data results
in a more biased/skewed local updates with less consensus.

These results suggest that a schedule for τ that depends
on the iteration index t might work well in a wide range
of scenarios. Specifically, we observe that starting with a
larger τ and decreasing it as t increases can be a sensible
strategy in general.

VII. Conclusions
We have studied FEEL, where the PS with a limited

power budget transmits the model parameter vector to the
wireless devices over a bandwidth-limited fading broadcast
channel. We have proposed digital and analog transmis-
sion approaches for the PS-to-device transmission. With
the digital approach, the PS quantizes the global model
update with respect to the global model estimate at the
devices, with the knowledge of the highest common rate
sustainable over the downlink broadcast channel. For the
analysis, we have utilized a capacity-achieving channel
code to broadcast the same estimate of the global model
update to all the devices. On the other hand, with the
analog approach, the PS broadcasts the global model
vector in an uncoded manner without employing any
channel code, and the devices receive different estimates
of the global model over independent wireless channels. In
both approaches, the devices perform multiple local SGD
iterations with respect to their global model estimates
utilizing their local datasets. The power-limited wireless

devices then transmit their local model updates to the
PS over a bandwidth-limited fading MAC in an analog
fashion, whose superiority over digital transmission for the
uplink has been shown in the literature [13], [14], [17]. We
have also provided a convergence analysis for the analog
downlink approach to study the impact of imperfect down-
link transmission, leading to noisy estimates of the global
model at the devices, on the performance of FL, where
for the ease of analysis we have assumed that the uplink
transmission is error-free. Numerical experiments on the
MNIST dataset have shown a significant improvement of
the analog downlink approach over its digital counterpart,
where the improvement is more pronounced for the non-
iid data scenario. The analog downlink approach bene-
fits from providing the devices with different estimates
of the global model with the quality of these estimates
depending on their downlink channel conditions, in which
case the destructive effect of the devices with relatively
worse channel conditions, and consequently less accurate
estimates, can be alleviated by the devices with better
channel conditions. However, with the digital downlink
approach, the devices receive the same estimate of the
model parameter vector with a common rate limited by the
capacity of the worst device. Therefore, it is likely that all
the devices perform local SGD iterations using an inaccu-
rate estimate of the global model. Both the experimental
and analytical results have shown that a smaller number
of local SGD iterations should be performed to obtain
the best performance of the analog downlink approach
for non-iid data compared to iid data. Also, for non-iid
data, by increasing the transmit power at the PS, which
leads to a more accurate global model estimate at the
devices, a smaller number of local SGD iterations should
be performed at the devices.
Designing an efficient digital downlink approach with

transmission of different quality model descriptions to the
devices is an interesting direction for future research in this
area. Furthermore, understanding convergence considering
both downlink and uplink transmission over bandwidth-



11

limited channels also calls for more research.

Appendix A
Proof of Theorem 1

The global model parameter vector for the analog down-
link approach is updated as

θ(t+ 1) = θ(t)− η(t)
M∑
m=1

τ∑
i=1

Bm
B
∇Fm

(
θim(t), ξim(t)

)
,

(32)

and we define an auxiliary variable updated as follows:

ω(t+ 1) = θ(t)− η(t)
M∑
m=1

τ∑
i=1

Bm
B
∇Fm

(
θim(t)

)
. (33)

We have

E
[
‖θ(t+ 1)− θ∗‖22

]
= E

[
‖θ(t+ 1)− ω(t+ 1)‖22

]
+ E

[
‖ω(t+ 1)− θ∗‖22

]
+ 2E

[
〈θ(t+ 1)− ω(t+ 1),ω(t+ 1)− θ∗〉

]
, (34)

where

2E
[
〈θ(t+ 1)− ω(t+ 1),ω(t+ 1)− θ∗〉

]
= 2η(t)

M∑
m=1

τ∑
i=1

Bm
B

E
[
〈∇Fm

(
θim(t), ξim(t)

)
−∇Fm

(
θim(t)

)
,ω(t+ 1)− θ∗〉

] (a)= 0, (35)

where (a) follows from (3), and

E
[
‖θ(t+ 1)− ω(t+ 1)‖22

]
= η2(t)

E
[∥∥∥ M∑

m=1

τ∑
i=1

Bm
B

(
∇Fm

(
θim(t), ξim(t)

)
−∇Fm

(
θim(t)

) )∥∥∥2

2

]
(b)

≤ τη2(t)
M∑
m=1

τ∑
i=1

Bm
B

E
[∥∥∥∇Fm (θim(t), ξim(t)

)
−∇Fm

(
θim(t)

) ∥∥∥2

2

] (c)

≤ τ2η2(t)
M∑
m=1

Bm
B
γ2
m, (36)

where (b) follows from the convexity of ‖·‖22, and (c) is due
to Assumption 3. Thus, we have

E
[
‖θ(t+ 1)− θ∗‖22

]
≤τ2η2(t)

M∑
m=1

Bm
B
γ2
m

+ E
[
‖ω(t+ 1)− θ∗‖22

]
. (37)

Next, we bound the last term on the right hand side (RHS)
of (37).

E
[
‖ω(t+ 1)− θ∗‖22

]
= E

[
‖θ(t)− θ∗‖22

]
+ η2(t)E

[∥∥∥ M∑
m=1

τ∑
i=1

Bm
B
∇Fm

(
θim(t)

) ∥∥∥2

2

]
+ 2η(t)E

[
〈θ∗ − θ(t),

M∑
m=1

τ∑
i=1

Bm
B
∇Fm

(
θim(t)

)
〉
]
. (38)

From the convexity of ‖·‖22, it follows that

E
[∥∥∥ M∑

m=1

τ∑
i=1

Bm
B
∇Fm

(
θim(t)

) ∥∥∥2

2

]
≤ τ

M∑
m=1

τ∑
i=1

Bm
B

E
[∥∥∥∇Fm (θim(t)

) ∥∥∥2

2

]
(d)

≤ 2Lτ
M∑
m=1

τ∑
i=1

Bm
B

(
Fm
(
θim(t)

)
− F ∗m

)
, (39)

where (d) follows from L-smoothness of function Fm. For
the last term on the RHS of (38), we have

2η(t)
M∑
m=1

Bm
B

E
[
〈θ∗ − θ(t),

τ∑
i=1
∇Fm

(
θim(t)

)
〉
]

= 2η(t)
M∑
m=1

Bm
B

E
[
〈θ∗ − θ(t),∇Fm

(
θ1
m(t)

)
〉
]

+ 2η(t)
M∑
m=1

Bm
B

E
[
〈θ∗ − θ(t),

τ∑
i=2
∇Fm

(
θim(t)

)
〉
]
. (40)

The first term above is

2η(t)
M∑
m=1

Bm
B

E
[
〈θ∗ − θ(t),∇Fm(θ1

m(t))〉
]

= 2η(t)
M∑
m=1

Bm
B

E
[
〈θ∗ − θ1

m(t),∇Fm(θ1
m(t))〉

]
+ 2η(t)

M∑
m=1

Bm
B

E
[
〈z̃dl
m(t),∇Fm(θ1

m(t))〉
]
, (41)

where it follows from µ-strongly convexity of Fm that

2η(t)
M∑
m=1

Bm
B

E
[
〈θ∗ − θ1

m(t),∇Fm(θ1
m(t))〉

]
≤ 2η(t)

M∑
m=1

Bm
B

(
Fm(θ∗)− Fm(θ1

m(t))

− µ

2 ‖θ(t) + z̃dl
m(t)− θ∗‖22

)
= 2η(t)

M∑
m=1

Bm
B

E
[
Fm(θ∗)− Fm(θ1

m(t))

− µ

2 ‖θ(t)− θ∗‖22 −
µ

2 ‖z̃
dl
m(t)‖22

]
, (42)

and we can rewrite the second term on the RHS of the
inequality in (41) as follows:

2η(t)
∑M

m=1

Bm
B

E[〈z̃dl
m(t),∇Fm(θ1

m(t))−∇Fm(θ(t))〉]
(a)

≤ η(t)
∑M

m=1

Bm
B

E[‖z̃dl
m(t)‖22] + βdη(t)

σdlP dl , (43)

where (a) follows from Assumption 4. Substituting (42)
and (43) into (41) yields

2η(t)
M∑
m=1

Bm
B

E
[
〈θ∗ − θ(t),∇Fm

(
θ1
m(t)

)
〉
]
≤
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− µη(t)‖θ(t)− θ∗‖22 + 2η(t)
(
F ∗ −

M∑
m=1

Bm
B

E
[
Fm(θ1

m(t))
])

+ η(t)(1− µ)E[‖z̃dl
m(t)‖22] + βdη(t)

σdlP dl . (44)

Lemma 2. For 0 < η(t) ≤ 1, ∀t, we have

2η(t)
M∑
m=1

Bm
B

E
[
〈θ∗ − θ(t),

τ∑
i=2
∇Fm

(
θim(t)

)
〉
]

≤ −µη(t)(1− η(t))(τ − 1)E
[
‖θ(t)− θ∗‖22

]
+ 2Lη2(t)

M∑
m=1

τ∑
i=1

Bm
B

(
E[Fm(θim(t))]− F ∗m

)
+ 2η(t)

M∑
m=1

τ∑
i=2

Bm
B

(
Fm(θ∗)− E[Fm(θim(t))]

)
+ (1 + µ(1− η(t)))G2 τ(τ − 1)(2τ − 1)

6 η2(t)

− µη(t)(1− η(t))(τ − 1)
M∑
m=1

Bm
B

E[‖z̃dl
m(t)‖22]. (45)

Proof. See Appendix D.

By substituting (44) and (45) in (40), it follows that

2η(t)
M∑
m=1

Bm
B

E
[
〈θ∗ − θ(t),

τ∑
i=1
∇Fm

(
θim(t)

)
〉
]

≤ −µη(t) (τ − η(t)(τ − 1))E
[
‖θ(t)− θ∗‖22

]
+ (1 + µ(1− η(t)))G2 τ(τ − 1)(2τ − 1)

6 η2(t)

+ 2Lη2(t)
M∑
m=1

τ∑
i=1

Bm
B

(
E
[
Fm(θim(t))

]
− F ∗m

)
+ 2η(t)

M∑
m=1

τ∑
i=1

Bm
B

(
Fm(θ∗)− E

[
Fm(θim(t))

])
+ (1− µτ(1− η(t))− µη(t)) η(t)

M∑
m=1

Bm
B

E[‖z̃dl
m(t)‖22]

+ βd

σdlP dl η(t). (46)

According to (38), (39) and the above inequality, we can
bound E

[
‖θ(t+ 1)− θ∗‖22

]
given in (37) as follows:

E
[
‖θ(t+ 1)− θ∗‖22

]
≤ (1− µη(t) (τ − η(t)(τ − 1)))E

[
‖θ(t)− θ∗‖22

]
+ τ2η2(t)

M∑
m=1

Bm
B
γ2
m

+ (1 + µ(1− η(t)))G2 τ(τ − 1)(2τ − 1)
6 η2(t)

+ 2L(τ + 1)η2(t)
M∑
m=1

τ∑
i=1

Bm
B

(
E
[
Fm(θim(t))

]
− F ∗m

)

+ 2η(t)
M∑
m=1

τ∑
i=1

Bm
B

(
Fm(θ∗)− E

[
Fm(θim(t))

])
+ (1− µτ(1− η(t))− µη(t)) η(t)

M∑
m=1

Bm
B

E[‖z̃dl
m(t)‖22]

+ βd

σdlP dl η(t). (47)

Lemma 3. For 0 < η(t) ≤ 1
L(τ+1) , ∀t, we have

2L(τ + 1)η2(t)
M∑
m=1

τ∑
i=1

Bm
B

(
E[Fm(θim(t))]− F ∗m

)
+ 2η(t)

M∑
m=1

τ∑
i=1

Bm
B

(
Fm(θ∗)− E[Fm(θim(t))]

)
≤ 2Lτ(τ + 2)Γη2(t)

+ (1− L(τ + 1)η(t))G2 τ(τ − 1)(2τ − 1)
6 η2(t). (48)

Proof. See Appendix E.

Theorem 1 is concluded by using (48) and the inequality
in (19) in (47).

Appendix B
Proof of Lemma 1

According to Theorem 1, we have

E
[
‖θ(t+ 1)− θ∗‖22

]
≤(1− µη(t))E

[
‖θ(t)− θ∗‖22

]
+ U1η

2(t) + U2η(t), (49a)

where

U1 ,τ2γ2 + 2Lτ(τ + 2)Γ + (2 + µ)G2 τ(τ − 1)(2τ − 1)
6 ,

(49b)

U2 ,
(α+ β)d
σdlP dl , (49c)

and we have used the fact that A(t) ≤ 1−µη(t) and B(t) ≤
B1η

2(t) +B2η(t). We prove

E
[
‖θ(t)− θ∗‖22

]
≤ U2t+ λ

µt+ 2L(τ + 1) + 2 , (50a)

where

λ , max
{

2(L(τ + 1) + 1) ‖θ(0)− θ∗‖22 ,
4U1

µ
+ 2U2

µ
(L(τ + 1) + 1) + U2

}
, (50b)

through induction using the inequality in (49). It is trivial
to see that the inequality in (50) holds for t = 0. Next,
assuming that the inequality in (50) holds for t, we show
that it also holds for t+ 1. According to (49a), for η(t) =

2
µt+2L(τ+1)+2 , ∀t, we have

E
[
‖θ(t+ 1)− θ∗‖22

]
≤ (1− µη(t))E

[
‖θ(t)− θ∗‖22

]
+ U1η

2(t) + U2η(t)

≤
(

1− 2µ
µt+ 2L(τ + 1) + 2

)( U2t+ λ

µt+ 2L(τ + 1) + 2

)
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+ 4U1 + 2U2(µt+ 2L(τ + 1) + 2)
(µt+ 2L(τ + 1) + 2)2

= (µ(t− 1) + 2L(τ + 1) + 2)(U2(t+ 1) + λ)
(µt+ 2L(τ + 1) + 2)2

− µ(U2t+ λ) + U2(µ(t− 1) + 2L(τ + 1) + 2− 2µ)
(µt+ 2L(τ + 1) + 2)2

+ 4U1 + 2U2(µt+ 2L(τ + 1) + 2)
(µt+ 2L(τ + 1) + 2)2

= (µ(t− 1) + 2L(τ + 1) + 2)(U2(t+ 1) + λ)
(µt+ 2L(τ + 1) + 2)2

+ 4U1 + 2U2(L(τ + 1) + 1) + µU2 − µλ
µt+ 2L(τ + 1) + 2)2

(a)

≤ (µ(t− 1) + 2L(τ + 1) + 2)(U2(t+ 1) + λ)
(µt+ 2L(τ + 1) + 2)2

≤ U2(t+ 1) + λ

µ(t+ 1) + 2L(τ + 1) + 2 , (51)

where (a) follows from the definition of λ. This completes
the proof of Lemma 1.

Appendix C
Proof of Theorem 2

From L-smoothness of loss functions, it follows that

F (θ(t+ 1))− F (θ(t)) ≤〈θ(t+ 1)− θ(t),∇F (θ(t))〉

+ L

2 ‖θ(t+ 1)− θ(t)‖22 . (52)

Next we upper bound the average of the two terms on the
RHS of the above inequality.

Lemma 4. We have

E
[
〈θ(t+ 1)− θ(t),∇F (θ(t))〉

]
≤ βdτ(1 + η(t))η(t)

2σdlP dl

+ L2G2 τ(τ − 1)(2τ − 1)
12 (1 + η(t))η2(t)

− η(t)τ
2 E[‖∇F (θ(t))‖22]. (53)

Proof. See Appendix F.

We have

E
[
‖θ(t+ 1)− θ(t)‖22

]
= η2(t)E

[∥∥∥ M∑
m=1

τ∑
i=1

Bm
B
∇Fm

(
θim(t), ξim(t)

) ∥∥∥2

2

]
(a)

≤ τη2(t)
M∑
m=1

τ∑
i=1

Bm
B

E
[∥∥∇Fm (θim(t), ξim(t)

) ∥∥2
2

]
(b)

≤ τ2G2η2(t), (54)

where (a) and (b) follow from the convexity of ‖·‖22 and
Assumption 2, respectively. By substituting (53) and (54)
into (52), it follows that

η(t)E
[
‖∇F (θ(t))‖22

]
≤ 2E[F (θ(t))− F (θ(t+ 1))]

τ

+ βdτ(1 + η(t)) + LτG2η2(t)η(t)
σdlP dl

+ L2G2 (τ − 1)(2τ − 1)
6 (1 + η(t))η2(t). (55)

It is easy to conclude Theorem 2 from the above inequality.

Appendix D
Proof of Lemma 2

We have

2η(t)
M∑
m=1

Bm
B

E
[
〈θ∗ − θ(t),

τ∑
i=2
∇Fm(θim(t))〉

]
= 2η(t)

M∑
m=1

τ∑
i=2

Bm
B

E
[
〈θ∗ − θim(t),∇Fm(θim(t))〉

]
+ 2η(t)

M∑
m=1

τ∑
i=2

Bm
B

E
[
〈θim(t)− θ(t),∇Fm(θim(t))〉

]
.

(56)

For the first term on the RHS of (56), we have

2η(t)
M∑
m=1

τ∑
i=2

Bm
B

E
[
〈θ∗ − θim(t),∇Fm

(
θim(t)

)
〉
]

(a)

≤ 2η(t)
M∑
m=1

τ∑
i=2

Bm
B

E
[
Fm(θ∗)− Fm(θim(t))

− µ

2 ‖θ
i
m(t)− θ∗‖22

]
= 2η(t)

M∑
m=1

τ∑
i=2

Bm
B

E
[
Fm(θ∗)− Fm(θim(t))

− µ

2 ‖θ
i
m(t)− θ1

m(t)‖22 −
µ

2 ‖θ
1
m(t)− θ∗‖22

− µ〈θim(t)− θ1
m(t),θ1

m(t)− θ∗〉
]

≤ 2η(t)
M∑
m=1

τ∑
i=2

Bm
B

E
[
Fm(θ∗)− Fm(θim(t))

+ µ

2
( 1
η(t) − 1

)
‖θim(t)− θ1

m(t)‖22

− µ

2 (1− η(t))‖θ1
m(t)− θ∗‖22

]
= 2η(t)

M∑
m=1

τ∑
i=2

Bm
B

E
[
Fm(θ∗)− Fm(θim(t))

+ µ

2
( 1
η(t) − 1

)
‖θim(t)− θ1

m(t)‖22

− µ

2 (1− η(t))‖θ(t)− θ∗‖22 −
µ

2 (1− η(t))‖z̃dl
m(t)‖22

]
,

(57)

where (a) follows since function Fm is µ-strongly convex.
The second term on the RHS of the inequality in (56) is
bounded as follows:

2η(t)
M∑
m=1

τ∑
i=2

Bm
B

E
[
〈θim(t)− θ(t),∇Fm(θim(t))〉

]
≤ η(t)

M∑
m=1

τ∑
i=2

Bm
B

E
[ 1
η(t)‖θ

i
m(t)− θ1

m(t)‖22

+ η(t)‖∇Fm(θim(t))‖22
]
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(b)

≤ η(t)
M∑
m=1

τ∑
i=2

Bm
B

E
[ 1
η(t)‖θ

i
m(t)− θ1

m(t)‖22

+ 2Lη(t)(Fm(θim(t))− F ∗m)
]

≤
M∑
m=1

τ∑
i=2

Bm
B

E
[
‖θim(t)− θ1

m(t)‖22
]

+ 2Lη2(t)
M∑
m=1

τ∑
i=1

Bm
B

(E[Fm(θim(t))]− F ∗m), (58)

where (b) follows since function Fm is L-smooth. From
convexity of ‖·‖22, we have
M∑
m=1

τ∑
i=2

Bm
B

E
[∥∥θim(t)− θ1

m(t)
∥∥2

2

]
= η2(t)

M∑
m=1

τ∑
i=2

Bm
B

E
[∥∥ i−1∑

j=1
∇Fm

(
θim(t), ξim(t)

) ∥∥2
2

]
≤ η2(t)

M∑
m=1

τ∑
i=2

Bm
B

(i− 1)
i−1∑
j=1

E
[∥∥∇Fm(θim(t), ξim(t))

∥∥2
2

]
(c)

≤ G2 τ(τ − 1)(2τ − 1)
6 η2(t), (59)

where (c) follows from Assumption 2. Substituting (57)
and (58) in (56), and combining the result with the above
inequality for 0 < η(t) ≤ 1, ∀t, proves Lemma 2.

Appendix E
Proof of Lemma 3

According to the definition of Γ, we have

2L(τ + 1)η2(t)
M∑
m=1

τ∑
i=1

Bm
B

(
E[Fm(θim(t))]− F ∗m

)
+ 2η(t)

M∑
m=1

τ∑
i=1

Bm
B

(
Fm(θ∗)− E[Fm(θim(t))]

)
= 2Lτ(τ + 1)Γη2(t) + 2(1− L(τ + 1)η(t))η(t)

M∑
m=1

τ∑
i=1

Bm
B

(
Fm(θ∗)− E[Fm(θim(t))]

)
. (60)

Next we bound the second term in the above equality
M∑
m=1

τ∑
i=1

Bm
B

(
Fm(θ∗)− E[Fm(θim(t))]

)
= τ(F ∗ − E[F (θ(t))])

+
M∑
m=1

τ∑
i=1

Bm
B

E[Fm(θ(t))− Fm(θim(t))]

(a)

≤ τ(F ∗ − E[F (θ(t))])

+
M∑
m=1

τ∑
i=1

Bm
B

E[〈∇Fm(θ(t)),θ(t)− θim(t)〉]

≤ τ(F ∗ − E[F (θ(t))]) + 1
η(t)‖θ

i
m(t)− θ1

m(t)‖22
]

+ 1
2

M∑
m=1

τ∑
i=1

Bm
B

E
[
η(t)‖∇Fm(θ(t))‖22

(b)

≤ τ(F ∗ − E[F (θ(t))])

+ Lτη(t)
M∑
m=1

Bm
B

(E[Fm(θ(t))]− F ∗m)

+ 1
2η(t)

M∑
m=1

τ∑
i=1

Bm
B

E[‖θim(t)− θ1
m(t)‖22]

= Lτη(t)
(
F ∗ −

M∑
m=1

Bm
B
F ∗m
)

+ τ(1− Lη(t))(F ∗ − F (θ(t)))

+ 1
2η(t)

M∑
m=1

τ∑
i=1

Bm
B

E[‖θim(t)− θ1
m(t)‖22]

(c)

≤ LτΓη(t) +G2 τ(τ − 1)(2τ − 1)
12 η(t), (61)

where (a) and (b) follow from the L-smoothness of func-
tion Fm, and (c) follows from the definition of Γ, η(t) ≤ 1

L ,
∀t, F ∗ ≤ F (θ(t)), and inequality (59). Combining (60) and
(61) for 0 < η(t) ≤ 1

L(τ+1) , ∀t, proves Lemma 3.

Appendix F
Proof of Lemma 4

We have

E
[
〈θ(t+ 1)− θ(t),∇F (θ(t))〉

]
= −η(t)〈

M∑
m=1

τ∑
i=1

Bm
B
∇Fm(θim(t), ξim(t)),∇F (θ(t))〉

(a)= −η(t)〈
M∑
m=1

Bm
B
∇Fm(θ1

m(t)),∇F (θ(t))〉

− η(t)
τ∑
i=2
〈
M∑
m=1

Bm
B
∇Fm(θim(t)),∇F (θ(t))〉, (62)

where (a) follows from (3). The first term on the RHS of
the above equation is bounded as

− η(t)E
[
〈
M∑
m=1

Bm
B
∇Fm(θ1

m(t)),∇F (θ(t))〉
]

= η(t)
2
(
E
[∥∥ M∑

m=1

Bm
B

(
∇Fm(θ1

m(t))−∇Fm (θ(t))
) ∥∥2

2

]
− E

[∥∥ M∑
m=1

Bm
B
∇Fm(θ1

m(t))
∥∥2

2

]
− E[‖∇F (θ(t))‖22]

)
(b)

≤ βdη(t)
2σdlP dl −

η(t)
2 E

[
‖∇F (θ(t))‖22

]
, (63)

where (b) is due to the convexity of ‖·‖22 and Assumption
4. Next we bound the second term on the RHS of (62):

− η(t)
τ∑
i=2

E
[
〈
M∑
m=1

Bm
B
∇Fm

(
θim(t)

)
,∇F (θ(t))〉

]
= η(t)

2

τ∑
i=2

(
E
[∥∥∥ M∑

m=1

Bm
B

(
∇Fm(θim(t))−∇Fm (θ(t))

) ∥∥∥2

2

]
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− E
[∥∥∥ M∑

m=1

Bm
B
∇Fm(θim(t))

∥∥∥2

2

]
− E

[
‖∇F (θ(t))‖22

] )
≤ η(t)

2

τ∑
i=2

E
[∥∥∥ M∑

m=1

Bm
B

(
∇Fm(θim(t))−∇Fm(θ1

m(t))

+∇Fm(θ1
m(t))−∇Fm (θ(t))

)∥∥∥2

2

]
− (τ − 1)η(t)

2 E
[
‖∇F (θ(t))‖22

]
≤
(1 + η(t)

2
) τ∑
i=2

E
[∥∥∥ M∑

m=1

Bm
B

(
∇Fm(θim(t))

−∇Fm(θ1
m(t))

)∥∥∥2

2

]
+
(1 + η(t)

2
)
η(t)

τ∑
i=2

E
[∥∥∥ M∑

m=1

Bm
B

(
∇Fm(θ1

m(t))

−∇Fm(θ(t))
)∥∥∥2

2

]
− (τ − 1)η(t)

2 E
[
‖∇F (θ(t))‖22

]
(c)

≤
(1 + η(t)

2
) τ∑
i=2

M∑
m=1

Bm
B

E
[∥∥∥∇Fm(θim(t))

−∇Fm
(
θ1
m(t)

) ∥∥∥2

2

]
+ βd(τ − 1)(1 + η(t))η(t)

2σdlP dl

− (τ − 1)η(t)
2 E

[
‖∇F (θ(t))‖22

]
(d)

≤
(1 + η(t)

2
)
L2

τ∑
i=2

M∑
m=1

Bm
B

E
[∥∥θim(t)− θ1

m(t)
∥∥2

2

]
+ βd(τ − 1)(1 + η(t))η(t)

2σdlP dl

− (τ − 1)η(t)
2 E

[
‖∇F (θ(t))‖22

]
(e)

≤ L2G2 τ(τ − 1)(2τ − 1)
12 (1 + η(t))η2(t)

+ βd(τ − 1)(1 + η(t))η(t)
2σdlP dl

− (τ − 1)η(t)
2 E

[
‖∇F (θ(t))‖22

]
, (64)

where (c) follows from the convexity of ‖·‖22 and (3), (d) is
due to the L-smoothness of Fm, and (e) follows from (59).
Substituting (63) and (64) into (62) proves Lemma 4.
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