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Abstract—In this paper, we present a private voting system that
consists of N voters who may vote to one of the K candidates or
vote abstain. Each voter wants to compute the final tally, while
staying private and robust against malicious voters, who try to
gain information about the vote of the other voters beyond the final
result, or send incorrect information to affect the final tally. We
design an information-theoretic voting system that uses verifiable
secret sharing and multi-party computation, which is secure and
private as long as there are up to ⌊N−1

3
⌋ malicious voters.

Index Terms—Private voting, multi-party computation, secret
sharing.

I. INTRODUCTION

Nowadays, with developments in technology, using elec-
tronic voting (e-voting) as an alternative to traditional paper
voting has become common place, which is more efficient
considering time and resources. Thanks to this efficiency, e-
voting is now widely used in many different domains, for
example, in multi-agent planning [1], federated learning [2],
and collaborative filtering [3]. However, due to the lack of
centralized vote collection and counting mechanism, distributed
e-voting algorithms impose additional requirements compared
to conventional paper voting.

The first e-voting protocol was proposed in 1981 by Chaum
[4], which uses some trusted mixers to provide privacy of votes
and digital pseudonym to preserve anonymity. Another tool that
has been used in the e-voting systems is the blind signature
[5]–[7]. The basis of the protocols using blind signature is
that the authority signs the ballots blindly, and then each voter
publishes its ballot through an anonymous channel, and thus,
privacy is preserved. Some of the e-voting protocols use mix-
nets to satisfy privacy [4], [8], [9]. These protocols use shuffle
agents to mix the votes; and therefore, the authority is unable to
find the relationship between the voter and the vote. There are
also e-voting protocols that use the features of homomorphic
encryption, which enables voters to do the computations over
the encrypted data without access to the secret key [10]–
[12]. With the recent interest in blockchain technology, it has
been widely used in e-voting to provide security [13]–[15].
D-DEMOS [16] is another kind of secure e-voting protocol
that is private under decisional Diffie-Hellman assumption that
achieves end-to-end verifiability in the standard model. The
protocol proposed in [17], also relies on the decisional Diffie-
Hellman assumption. In [18], an unconditionally verifiable e-
voting system is proposed, such that privacy is preserved under
the decision linear assumption.

To preserve privacy, traditional e-voting protocols usually
employ a centralized authority to collect the votes, which results
in a single point of failure [4], [19]. Some protocols addressed
this issue by replacing the trusted authority with a set of
distributed authorities, and privacy is preserved if less than or

equal to a certain number of them are malicious [20]–[23].
Many multi-authority e-voting protocols use non-interactive
zero-knowledge proofs (NIZK) to provide verifiability [24]–
[27]. The security of NIZK is based on a common reference
string, which needs a trusted third party, or a random oracle,
which has been shown to be unsound in [18].

Most of these protocols are cryptographic, that is, they
provide privacy and security guarantees against adversaries
with bounded computing power. If sufficient computing power
becomes available in the future, e.g., with quantum computing,
these schemes may be broken. As an alternative, information-
theoretically secure e-voting protocols have been developed
to preserve privacy against adversaries with unbounded com-
plexity. The first such protocols were proposed in [28] and
[29]. Information-theoretic secure voting protocols have also
been presented in [19]–[23]. The scheme in [23] is based on
Shamir secret sharing (SSS) [30], where each node shares its
vote among a number of collection centers and they compute
the sum of their shares in collaboration. This scheme is
vulnerable to attacks by a malicious voter, which can send
an invalid vote to make the final result incorrect, or vote for
multiple candidates. In [19], a secure voting scheme based on
a trusted authority is proposed. However, if this authority is
compromised, the whole algorithm fails. Another information-
theoretic private protocol is proposed in [20], which needs a
trusted third party to distribute private keys between voters
before the execution of the algorithm. The scheme in [21] uses a
simultaneous broadcast channel, but may fail due to a corrupted
participant. A fully private voting system is presented in [22];
however, it cannot tolerate Byzantine nodes.

In this paper, we propose a completely distributed and secure
voting system with information-theoretic privacy guarantees,
which does not rely on a trusted third party, or on pre-shared
common information. We consider a private voting problem
consisting of N authorized voters and K candidates. Each voter
can vote for one of the candidates or abstain. The voters are
interested in computing the final tally in a reliable manner,
through interactions with each other, in the absence of a trusted
authority. We further assume that up to T of the voters can be
malicious; that is they may not follow the prescribed protocol
in order to gain information about the vote of the other voters
beyond the final result or to send incorrect information to affect
the final tally beyond what is possible by their own vote. The
objective is to propose a scheme such that the voters can all
recover the final tally correctly and privately in the presence of
such malicious voters.

To be reliable, secure and practical, the proposed scheme
must satisfy some essential properties listed below:

1) Correctness: All valid votes must be counted correctly



and exactly once while the detected invalid votes should
be ignored, and the final result must be effectively the
real tally of the casted votes. Each voter should be able
to to learn this result at the end of the algorithm.

2) Unconditional privacy: If any subset of T voters col-
lude, they cannot gain any information beyond the result.

3) Verifiability: Each voter should be able to verify that her
vote is counted correctly.

4) Robustness: Any adversarial behavior of at most T of
the voters can be tolerated. No adversarial treatment can
disrupt the voting and any cheating behavior will be
detected or corrected.

5) Non-reusability: Each voter must be able to vote exactly
once, and no voter can vote more than once.

6) Fairness: No one can achieve any information about the
tally result before counting.

To the best of our knowledge, the proposed scheme is the first
information-theoretically private voting system that satisfies
all the above properties without relying on a trusted third
party. One of the main challenges that we are faced in private
voting is verifying the validity of the votes without gaining any
information about it, while the other conditions are satisfied.
To solve this problem, the proposed scheme exploits verifiable
secret sharing (VSS) [31] and multi-party computation (MPC)
[32] schemes. Using VSS enables voters to share their votes
as a secret so that the privacy of their votes is preserved while
the other voters can verify the consistency of the distributed
shares. On the other hand, the MPC scheme is utilized in a
way to make the voters sure that the votes are valid (a valid
vote must correspond to exactly one candidate or abstain) and
counted correctly, while providing robustness against malicious
acts. The proposed voting scheme satisfies the aforementioned
properties as long as N ≥ 3T + 1.

The rest of the paper is organized as follows. In Section II,
we introduce the problem setting. The main result is presented
in Section III. Preliminaries are provided in Section IV. We
illustrate the motivating example in Section V, and the proposed
scheme is presented in Section VI. We conclude the paper in
Section VII.

Notation: In this paper vectors are shown by boldface letters.
We show the element-wise multiplication of two vectors A and
B by A∗B. ek is a vector in Fn whose components are all zero,
except the k-th one that is equal to 1. For each N ∈ N, [N ]
represents the set {1, 2, ..., N} and X[N ] = {X1, X2, . . . , XN}.

Also, for each V ∈ Fn, Sum(V) is is defined as
n∑

i=1

Vi. In

addition, 1n is a vector in Fn whose components are all one
and similarly, 0n is a null vector in Fn.

II. PROBLEM SETTING

The private voting system (PVS) under consideration in this
paper consists of N authorized voters and K candidates, C =
{C1, C2, ..., CK}. Voter n can vote for one of the candidates, or
abstain, which is shown by V(n) ∈ {0, 1}K+1, ∀n ∈ [N ]. V(n)

is a one-hot vector such that if voter n votes for Ck, then V(n)

is equal to ek, and V(n) = eK+1 if voter n votes abstain. There
is no centralized authority to collect or count the votes, and
voting is carried out through pair-wise communications among
the voters who send functions of their votes to the other voters.
The objective is, for each voter to be able to compute the final

result of voting R = [R1, R2, . . . , RK+1]
T , where Rk is the

tally of casted votes corresponding to candidate Ck, ∀k ∈ [K],
and RK+1 shows the number of abstained voters. Also, assume
that up to T of the voters are malicious. The malicious voters
may send incorrect data to the other voters to affect the final
result of voting. Besides, the malicious voters may try to violate
the privacy constraint by acquiring information about the votes
of the other voters. To achieve their goals, the malicious voters
can collude; that is, share their data with each other, or deviate
from the protocol. Note that the voters do not know in advance
which of them are malicious. Therefore, the main challenges
for the voters are to verify the validity of the votes and compute
the final result correctly in the presence of the malicious voters,
while keeping their votes private.

It is assumed that each pair of the voters are connected to
each other with a point-to-point private link. Also, there is an
authenticated broadcast channel among all the voters such that
the identity of the broadcaster is known. All of these links
are assumed to be error-free and secure. The proposed scheme
consists of 3 steps:

1) Sharing: In this step, each voter n ∈ [N ] shares its vote,
i.e., it sends a function of V(n) to all of the other voters.
Let Sn,n′ ≜ Fn,n′(V(n)), ∀n′ ∈ [N ], n ̸= n′, be the set
of messages that voter n′ receives from voter n in this
step, where Fn,n′ : FK+1 → Fp×q , for some p, q ∈ N.
Let us also define Sn ≜ ∪N

n′=1Sn′,n as the set of all
messages voter n receives in this step.

2) Verification: In this step, the voters process their input
messages from the previous step and communicate with
each other to be able to verify the validity of each vote.
A vote is valid if it is compatible with the voting system
being used, e.g., the vote does not contain additional and
surplus entries by the voter or more choice than permitted
(overvoting). In this step, any adversarial behavior should
be detected, corrected, or dropped. Let Mn,n′ be the set
of all messages that voter n′ receives from voter n in
the verification step, ∀n, n′ ∈ [N ], n ̸= n′; and Mn ≜
∪N
n′=1Mn′,n is the set of all messages voter n receives

in this step.
3) Counting: After the verification step, each voter n ∈ [N ],

broadcasts a message Bn to all the other voters.
The six requirements of a secure and private voting system

that were specified in the previous section can be written in a
more mathematical form as follows:

1- Correctness: All valid votes must be counted correctly,
i.e., after the execution of the proposed algorithm, each voter
must have sufficient information to be able to derive the final
result R correctly; that is, H(R|Sn,Mn,B[N ]) = 0,∀n ∈ [N ].
Note that the correctness condition must be satisfied in the
presence of at most T malicious voters.

2- Unconditional privacy: If any arbitrary subset X of
at most T voters collude, they cannot gain any additional
information about the votes of the other voters beyond the tally
result R. It means that, for any X ⊂ [N ], |X | ≤ T, and each
n ∈ [N ]\X , H(V(n)|R,SX ,MX ,B[N ]) = H(V(n)|R).

3- Verifiability: Each voter must be able to verify that his
vote correctly included in the tally result.

4- Robustness: A voter’s vote cannot be changed, duplicated,
or removed by malicious voters. Any adversarial behavior of at
most T of the voters, must be tolerated; that is, no adversarial



behavior should be able to disrupt the voting and any cheating
behavior must be detected or corrected.

5- Non-reusability: Each voter must be able to vote exactly
once, and no voter can vote more than once.

6- Fairness: No voter can gain any information about the
tally result except their own vote before the counting phase,
i.e., H(R|Sn,Mn) = H(R),∀n ∈ [N ].

III. MAIN RESULT

The objective of PVS is to derive the tally result correctly
while guaranteeing privacy, correctness and robustness against
adversaries. We propose a new private voting scheme explained
in Section VI without any third party, which is unconditionally
private, robust against adversarial behavior, and satisfies all of
the conditions in Section II. The main result is stated in the
following theorem.

Theorem 1. Given K candidates and N voters, up to T of
which are malicious. There exists a private voting scheme with-
out a trusted third party that enables unconditionally private
voting, while guaranteeing correctness, robustness, verifiability,
non-reusability, and fairness conditions as defined in Section II,
as long as N ≥ 3T + 1.

Remark 1: The proposed scheme, whose details are pro-
vided in Section VI uses VSS and MPC. VSS enables voters to
share their votes as a secret such that the privacy of the votes
is preserved and the other voters can verify consistency of the
distributed shares. MPC is used in a way to enable each voter
to verify the validity of the votes, while providing robustness
against malicious acts.

Remark 2: The minimum number of voters needed depends
linearly on the number of malicious voters with a coefficient 3.
The upper bound 3T + 1 is a common phenomenon in dis-
tributed computation with malicious nodes. Also, one can see
that the number of candidates K, has no impact on on this
condition.

Remark 3: In the proposed framework, the voters perform
all the computing, and each of them can compute the final
result, i.e., the voting is performed completely among the group
of voters by secure pair-wise links and a public broadcast
channel. Another setting that can be considered for the voting
problem, is that there exist worker nodes and an authority in
addition to the voters. In this formation, the voters only send
their shares and required data to the worker nodes, and they
perform the computing and send the required information to
compute the final result to the authority. As long as a certain
number of the workers collude, the privacy is preserved and
the workers cannot gain any information about the votes of the
voters. Using the received information, the authority can derive
the final tally while gaining no information about the votes
beyond the result. This framework of the voting system can be
handled with a slight modification in our proposed scheme.

IV. PRELIMINARIES

Before describing the achievable scheme, we need some
preliminaries.

A. Polynomial Interpolation and Reed-Solomon Codes

Constructing a polynomial that passes through a given set S
of points is called polynomial interpolation. Lagrange theorem,

stated as Theorem 2 below, is used to identify the minimum-
degree polynomial that goes through the points in S.

Theorem 2 (Lagrange Theorem). Assume that
x1, x2, . . . , xT+1 are distinct elements of F and
y1, y2, . . . , yT+1 are elements of F (not necessarily distinct).
There exists a unique polynomial p(x) of degree at most T ,
such that p(xi) = yi, ∀i ∈ [T + 1].

A natural consequence of Lagrange Theorem is that any
polynomial of degree T can be uniquely represented by T + 1
distinct points that lie on it.

Remark 4: Suppose that x1, x2, . . . , xN are distinct ele-
ments of F and y1, y2, . . . , yN are elements of F (not nec-
essarily distinct). Also, assume that N − E elements of the
set P = {(x1, y1), (x2, y2), . . . , (xN , yN )} lie on a polynomial
p(x) of degree T while the remaining E points, corresponding
to erroneous data, do not lie on p(x). Reed-Solomon decoding
[33] guarantees that p(x) can be reconstructed by using the
points of the set P as long as E ≤ ⌊N−T−1

2 ⌋. As a result, if
the number of errors is less than T , Reed-Solomon decoding
procedure guarantees that polynomial p(x) of degree T can be
reconstructed uniquely by using elements of set P as long as
N ≥ 3T + 1.

B. Verifiable Secret Sharing (VSS)

Assume that a node in a system, called as the dealer wants
to share a secret s ∈ F with other nodes, such that any fewer
than or equal to T colluding nodes cannot gain any information
about s, while any subset of the nodes more than T , can recover
it perfectly. Secret sharing was first introduced by Shamir [30]
and Blakley [34], independently, in 1979. It is a basic tool in
cryptography and has been used in many applications such as e-
voting schemes, crypto-currencies, and access control systems.
In the Shamir secret sharing, the dealer constructs a polynomial
f(x) = s + c1x + c2x

2 + · · · + cTx
T of degree T such

that f(0) is equal to the secret and the other coefficients are
chosen uniformly and randomly from field F. Each participant
n is assigned a distinct and nonzero αn, chosen independently
and uniformly at random from F. The dealer sends f(αn)
to participant n, ∀n ∈ [N ]. One can see that any arbitrary
subset X of at least T + 1 participants can find the secret s in
collaboration with each other, but if the size of X is at most T ,
they cannot gain any information about the secret. It is shown
that this scheme is information-theoretically secure [30]. In this
scheme, we assume that the dealer is trusted and always sends
consistent shares to the other nodes, i.e., it chooses points on
a polynomial of degree T .

On the other hands, the dealer may be malicious and sends
non-consistent shares to the other nodes. In such a case, we
need a mechanism that is able to verify the consistency of the
shares. Chor et al. [31] introduce VSS, which enables nodes to
verify whether their shares are consistent or not. In the context
of Shamir secret sharing, VSS has the following properties:

• If the dealer is malicious, and the shares that it sends to the
other nodes are not consistent, i.e., are not on a polynomial
of specified degree, then the honest nodes in collaboration
with each other will realize that and reject the shares.

• If the dealer is honest, then the malicious node cannot
deceive the honest nodes and convince them that the dealer
is malicious; thus, each honest node accepts its share.



In the original form of VSS [31], to share a secret s ∈ F,
the dealer chooses a bivariate polynomial S(x, y), uniformly
at random from the set of all bivariate polynomials of degree
T , with respect to each of the variables x and y, with co-
efficients from F, subject to S(0, 0) = s. Then, the dealer
sends fn(x) ≜ S(x, αn) and gn(y) ≜ S(αn, y) to node n,
∀n ∈ [N ], for some distinct αn ∈ F. One can see that,
∀n, n′ ∈ [N ], fn(αn′) = gn′(αn). Therefore, the redundancy in
this scheme allows the honest nodes to verify the consistency of
shares through communication with other nodes. For detailed
description of VSS, refer to [35]. By using VSS, in [32], an
information-theoretic secure distributed multiplication protocol
is proposed, called BGW algorithm. This scheme became the
basis of many distributed secure computation algorithms such
as large-scale matrix multiplication [36]–[39].

V. MOTIVATING EXAMPLE

For ease of understanding, we first illustrate the main idea of
the proposed PVS through a simple example. Assume that in
this election each voter n can vote only Yes or No. We denote
the No and Yes votes by 0 and 1, respectively. The vote of
voter n is denoted by V (n) ∈ {0, 1}, and the complement of
V (n) is defined as 1− V (n) and shown by V ′(n). The steps of
the proposed algorithm are as follows.

A. Sharing

In this step, each voter n shares both V (n) and V ′(n) using
the VSS algorithm [31]. In order to do that, voter n constructs
two polynomials F (n)(x) = V (n) + R

(n)
1 x + R

(n)
2 x2 + · · · +

R
(n)
T xT and G(n)(x) = V ′(n)+Z

(n)
1 x+Z

(n)
2 x2+· · ·+Z

(n)
T xT ,

and sends F (n)(αn′) and G(n)(αn′) to voter n′, ∀n, n′ ∈ [N ],
n′ ̸= n, where R

(n)
k and Z

(n)
k are chosen uniformly and

independently at random from field F, ∀k ∈ [T ]. Also,
distinct and non-zero α1, α2, . . . , αN are chosen uniformly and
independently at random from field F and they are known by
all the voters.

If N ≥ 3T + 1, using VSS [31] ensures the voters that
the shared values by voter n are consistent, i.e., they lie on a
polynomial of degree T , otherwise, honest voters can identify
malicious voters who have adversarial behavior and omit them
from the remaining part of the algorithm. It addition, if voter
n is honest, the malicious voters cannot gain any information
about F (n)(0) and G(n)(0) except that one of them is 0 and
the other one is 1, but they cannot understand which is which.

B. Verification

In this step, each voter needs to be assured that F (n)(0) =
V (n) is equal to 1 or 0. In order to do this, we perform 2-phase
verification. In the first phase, called verification of summation,
voters verify whether F (n)(0)+G(n)(0) is equal to 1 or not, and
in the second phase, called verification of product, they verify
whether F (n)(0)G(n)(0) is equal to 0 or not. If both of the
aforementioned conditions are satisfied, then we can conclude
that {F (n)(0), G(n)(0)} = {0, 1}.

1) Verification of summation: Let us define S(n)(x) ≜
F (n)(x) +G(n)(x). In this phase, ∀n, n′ ∈ [N ], each voter n′

broadcasts S(n)(αn′) = F (n)(αn′) + G(n)(αn′). If all of the
voters were honest, after this phase each voter has access to
{S(n)(α1), S

(n)(α2), . . . , S
(n)(αN )}. But, some of the voters

can be malicious and not broadcast correct information. One

can see that deg(S(n)(x)) = T , thus, due to Remark 4, voters
can correct up to ⌊N−T−1

2 ⌋ errors. Since the number of mali-
cious voters is at most T , we need to have ⌊N−T−1

2 ⌋ ≥ T , or
equivalently, N ≥ 3T+1. If N ≥ 3T+1, each voter can recover
the correct set of {S(n)(α1), S

(n)(α2), . . . , S
(n)(αN )}. Thus,

each voter can calculate S(n)(x), and then derive S(n)(0)=
F (n)(0)+G(n)(0), and verify whether F (n)(0)+G(n)(0) is
equal to 1 or not, ∀n ∈ [N ].

2) Verification of product: In this phase, each voter needs to
verify whether F (n)(0)G(n)(0) is 0 or not, ∀n ∈ [N ]. For this
purpose, we use the BGW scheme for the secrets multiplication
as explained in [35]. To be self-contained, the following is a
brief overview of the scheme.

Theorem 3. [35, Subsection 6.6] For an arbitrary pair of
polynomials A(x) and B(x), each of degree T , there exist T
polynomials O1(x), O2(x), . . . , OT (x) of degree T such that

the degree of A(x)B(x)−
T∑

i=1

xiOi(x) is at most T .

According to Theorem 3, each voter n can find
polynomials O

(n)
1 (x), O

(n)
2 (x), . . . , O

(n)
T (x), such that

deg(F (n)(x)G(n)(x)−
T∑

i=1

xiO
(n)
i (x)) ≤ T . Let us define

C(n)(x) ≜ F (n)(x)G(n)(x)−
T∑

i=1

xiO
(n)
i (x). (1)

One can see that C(n)(0) = F (n)(0)G(n)(0). This is due to
the fact that each O

(n)
i (x) is multiplied by xi, i ≥ 1. Thus,

the constant term of F (n)(x)G(n)(x) cannot be affected by
O

(n)
i (x), ∀i ∈ [T ]. Constructing C(n)(x) enables the other

voters to compute the value of F (n)(0)G(n)(0) without violat-
ing the privacy, i.e., malicious voters cannot get any additional
information about the polynomials F (n)(x) and G(n)(x).

After constructing O
(n)
1 (x), O

(n)
2 (x), . . . , O

(n)
T (x), voter n

shares O
(n)
i (x) with all the other voters by using the VSS

algorithm, i.e., it sends O
(n)
i (αn′) to voter n′, ∀n, n′ ∈ [N ],

and ∀i ∈ [T ]. In addition, voter n shares C(n)(x), i.e.,
it sends C(n)(αn′) to voter n′, ∀n, n′ ∈ [N ]. Until now,
voter n′ has the values of C(n)(x), F (n)(x), G(n)(x), O

(n)
i (x)

at point αn′ , ∀n, n′ ∈ [N ] and ∀i ∈ [T ]. Hence, each
voter n′ can directly verify whether (1) holds for αn′

or not. If (1) does not hold for αn′ , voter n′ broad-
casts a Complaint messages. Then the other voters com-
pute the values C(n)(αn′), F (n)(αn′), G(n)(αn′), O

(n)
1 (αn′),

O
(n)
2 (αn′), . . . , O

(n)
T (αn′) in collaboration with each other,

to identify the malicious voter among voter n and voter n′

and omit the malicious one from the remaining part of the
algorithm. Please see [35] for more details.

Then, to verify F (n)(0)G(n)(0) = 0, each voter n′ broadcasts
C(n)(αn′). Hence, each voter has access to the value of C(n)(x)
at more than 3T points. Thus, due to Remark 4, each voter can
compute C(n)(x) and verify if C(n)(0) = F (n)(0)G(n)(0) is
equal to 0 or not, even if the malicious voters send incorrect
data.

C. Counting

Assume that I is the set of all the malicious voters that
are identified by the other voters. So far, each voter n′



has F (n)(αn′), ∀n, n′ ∈ [N ]\I. Also, it is verified that
F (n)(0) ∈ {0, 1}. Let us define F (x) ≜

∑
n∈[N ]\I

F (n)(x).

Each voter n′ computes F (αn′) =
∑

n∈[N ]\I

F (n)(αn′) and

broadcasts the result. Ideally, after this step, each voter has
access to {F (α1), F (α2), . . . , F (αN )}. But, some of the voters
may act maliciously. Since deg(F (x)) = T , by using the
Reed-Solomon decoding procedure, voters can correct up to
⌊N−T−1

2 ⌋ errors. Since the number of malicious voters is at
most T , we need to have ⌊N−T−1

2 ⌋ ≥ T , or equivalently,
N ≥ 3T +1. If N ≥ 3T +1, each voter can recover the correct
set of {F (αi)}i∈[N ]\I , and calculate F (x), and finally derive
F (0) =

∑
n∈[N ]\I

F (n)(0) =
∑

n∈[N ]\I

V (n), which is the total

number of 1 votes casted excluding the votes of the identified
malicious voters in set I .

As described above, as long as N ≥ 3T +1, the correctness
and robustness properties are satisfied and the privacy is assured
thanks to VSS and BGW. Also, each voter can vote once and
all of them are sure that their votes are counted correctly, and
none of them can gain any information about the tally result
before the counting phase. The detailed proofs of these claims
will be provided in the longer version [40].

VI. GENERAL SCENARIO

Consider now an election among K candidates C =
{C1, C2, ..., CK}, where voter n may vote for one of the
candidates or abstain, which is shown by V(n) ∈{0, 1}K+1,
∀n ∈ [N ]. The voters aim to compute the final result R =
[R1, R2, . . . , RK+1]

T , where Rk is the tally of votes casted
for candidate Ck, ∀k ∈ [K], and Rk+1 shows the number of
abstained votes. Also, assume that distinct α1, α2, . . . , αN are
chosen uniformly and independently at random from field F,
which are known by all the voters.

In this section, we follow the same protocol as Section V
with some modifications to handle more candidates.

A. Sharing

In this step, each voter n wants to share its vote V(n), which
is a one-hot vector in {0, 1}K+1. Let us define V′(n) as the
complement of V(n), or equivalently, V′(n) = 1K+1 −V(n),
where 1K+1 ≜ [1, 1, . . . , 1]T .

In this step, each voter n shares both V(n) and V′(n) using
the VSS algorithm [31]. In order to do that, voter n constructs
polynomials F(n)(x) = V(n)+R

(n)
1 x+R

(n)
2 x2+· · ·+R

(n)
T xT

and G(n)(x) = V′(n) + Z
(n)
1 x+ Z

(n)
2 x2 + · · ·+ Z

(n)
T xT , then

sends F(n)(αn′) and G(n)(αn′) to voter n′, ∀n, n′ ∈ [N ],
where R

(n)
j and Z

(n)
j are chosen uniformly and independently

at random from field FK+1, ∀j ∈ [T ].
Using VSS ensures the voters that if N ≥ 3T + 1, shared

values by voter n are consistent, i.e., they lie on a polynomial
of degree T , otherwise, honest voters can identify malicious
voters who have adversarial behavior and omit them from the
remaining part of the algorithm. It must be mentioned that
if voter n is honest, the malicious voters cannot gain any
information about F(n)(0), which is the vote of voter n.

B. Verification

In this step, each voter wants to be assured that V(n) =
F(n)(0) is a one-hot vector. This would then verify that voter
n followed the protocol and voted for exactly one candidate. In
order to do that, we propose a 3-phase verification approach:
1) Verification of summation: All the voters verify whether
V(n) + V′(n) = 1K+1 or not, ∀n ∈ [N ]. 2) Verification of
product: All the voters verify whether V(n) ∗ V′(n) is equal
to 0K+1 or not, ∀n ∈ [N ]. 3) Verification of entities: All the

voters verify whether Sum(V(n)) =

K+1∑
i=1

V
(n)
i = 1, or not.

If the first two conditions are satisfied, then we can conclude
that V(n) ∈ {0, 1}K+1. The last condition makes the other
voters sure that V(n) = [V

(n)
1 , V

(n)
2 , . . . , V

(n)
K+1] is a one-

hot vector. Thus, if all of the aforementioned conditions are
satisfied, then we can conclude that the vote of voter n is valid,
i.e., voter n votes for one candidate, or abstain, ∀n ∈ [N ].

1) Verification of summation: Similar to the verification
of summation phase in Section V, each voter n′ broadcasts
F(n)(αn′) + G(n)(αn′), and finally all the voters can verify
whether F(n)(0)+G(n)(0) is equal to 1K+1 or not, ∀n ∈ [N ].

2) Verification of product: Similar to the verification of
product phase in Section V, the BGW scheme enables the voters
to verify whether F(n)(0)∗G(n)(0) is 0K+1 or not, ∀n ∈ [N ].

3) Verification of entities: Here, the aim is to verify
that Sum(F(n)(0)) = Sum(V(n)) = 1. In order to do that,
∀n, n′ ∈ [N ], each voter n′ broadcasts Sum(F(n)(αn′)).
If all of the voters were honest, after this phase each
voter has access to {Sum(F(n)(α1)),Sum(F(n)(α2)) . . . ,
Sum(F(n)(αN ))}, which indeed lie on a T−degree polynomial
Sum(F(n)(x)). But, some of the voters may act maliciously. As
it is mentioned in Remark 4, voters can correct up to ⌊N−T−1

2 ⌋
errors, or equivalently, if N ≥ 3T +1, each voter can calculate
Sum(F(n)(0)), and then derive Sum(V(n)). As a result, the
other voters can verify that F(n)(0) = V(n) is a one-hot vector.

C. Counting

Let us define F(x) ≜
∑

n∈[N ]\I

F(n)(x). Similar to the

counting step in Section V, each voter n′ computes F(αn′) =∑
n∈[N ]\I

F(n)(αn′) and broadcasts the result. As explained in

Section V, after some computations, each voter can derive
F(0) =

∑
n∈[N ]\I

F(n)(0) =
∑

n∈[N ]\I

V(n), which is equal to our

final result R = [R1, R2, . . . , RK+1]
T without counting the

votes of identified malicious voters in set I .
As described in Section V as long as N ≥ 3T +1, all of the

conditions mentioned in Section II are satisfied.

VII. CONCLUSION

In this paper, we proposed an information-theoretically se-
cure and private voting system that does not relay on a trusted
authority. We exploited MPC and VSS schemes to detect,
correct, or drop malicious voters. We showed that if the total
number of voters is more than the three times of malicious
voters, the system can guarantee that adversarial behavior
cannot compromise the election result.
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