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Abstract—With the large number of antennas and subcarriers the
overhead due to pilot transmission for channel estimation can be
prohibitive in wideband massive multiple-input multiple-output (MIMO)
systems. This can degrade the overall spectral efficiency significantly,
and as a result, curtail the potential benefits of massive MIMO. In this
paper, we propose a neural network (NN)-based joint pilot design and
downlink channel estimation scheme for frequency division duplex (FDD)
MIMO orthogonal frequency division multiplex (OFDM) systems. The
proposed NN architecture uses fully connected layers for frequency-
aware pilot design, and outperforms linear minimum mean square
error (LMMSE) estimation by exploiting inherent correlations in MIMO
channel matrices utilizing convolutional NN layers. Our proposed NN
architecture uses a non-local attention module to learn longer range
correlations in the channel matrix to further improve the channel
estimation performance.We also propose an effective pilot reduction
technique by gradually pruning less significant neurons from the dense
NN layers during training. This constitutes a novel application of NN
pruning to reduce the pilot transmission overhead. Our pruning-based
pilot reduction technique reduces the overhead by allocating pilots
across subcarriers non-uniformly and exploiting the inter-frequency
and inter-antenna correlations in the channel matrix efficiently through
convolutional layers and attention module.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems are con-
sidered as the main enabler of 5G and future wireless networks thanks
to their ability to serve a large number of users simultaneously,
achieving impressive levels of spectral efficiency. A base station
(BS) with a massive number of antennas relies on accurate downlink
channel state information (CSI) to achieve the promised performance
gains. Therefore, massive MIMO systems are more amenable to time
division duplex (TDD) operation, which, thanks to the reciprocity
of the uplink and downlink channels, does not require downlink
channel estimation at the users. FDD operation is more desirable due
its improved coverage and reduced interference; however, channel
reciprocity does not hold in FDD. In FDD MIMO, the BS broadcasts
downlink pilot signals, the users estimate the channel from the
received pilots and transmit the CSI feedback to the BS. The resulting
overhead becomes significant due to the large number of antennas
and users; and hence, efficient pilot design and channel estimation
are crucial to reduce the overhead.

In massive MIMO systems where the pilot length is typically much
smaller than the number of antennas, channel estimation becomes
severely underdetermined. Hence, simple least squares (LS) or linear
minimum mean square error (LMMSE) channel estimation and
orthogonal FFT pilots perform poorly. To estimate the channel more
efficiently and reduce the pilot overhead, many previous works take
a model-based estimation approach assuming sparse [1]–[5] or low-
rank [6], [7] models on the channel matrix and utilize compressive
sensing (CS)-based reconstruction techniques to estimate the channel
or design improved pilot sequences. CS-based approaches rely on
sparse or low-rank properties of the channel, and do not take into
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account the inherent statistical correlations and structures beyond
sparse or low-rank patterns. Moreover, CS-based reconstruction
techniques employ computationally demanding iterative algorithms,
which imposes an additional burden on the users.

More recently, deep learning (DL)-based approaches have been
used for massive MIMO CSI acquisition and showed significant
improvements in comparison with their counterparts based on sparsity
and compressive sensing (refer to [8], [9], and references therein).
In these works, neural network (NN) architectures are trained over
large CSI datasets to learn complex distributions, structures, and
correlations, and exploit them for data-driven pilot design [10],
channel estimation [11]–[15], compression [16]–[21] and feedback
[22], [23]. Many of these works focus on a single task and propose
a NN architecture to achieve optimized performance for it. While
designing a single NN architecture to simultaneously handle all
or several of these tasks is desirable for an end-to-end optimized
performance, the resulting NN may be more complex, and require a
longer training process. In this paper, we consider joint pilot design
and channel estimation for downlink FDD massive MIMO systems.

In [11], [24], the authors proposed a convolutional neural network
(CNN)-based structure for massive MIMO channel estimation. Their
proposed architecture outperforms non-ideal LMMSE-based channel
estimation (where the required covariance matrices are estimated
from a coarse initial estimate of the channel at the receiver) and
approach ideal LMMSE (with perfect knowledge of the covariance
matrices assumed at the receiver). In [10], the authors use dense layers
(which represent the pilots) followed by subsequent convolutional
layers for joint pilot design and channel estimation. However, they
design the same pilots for all subcarriers, which not only neglects
frequency specific features in the CSI, but also results in a large
PAPR, which is practically undesirable.

In this paper, we propose a NN-based scheme consisting of
convolutional and dense layers for downlink pilot design and channel
estimation in FDD massive MIMO-OFDM systems. Our proposed
NN-based scheme exploits frequency-specific features in a data-
driven manner for more efficient pilot design and channel estimation.
The specific contributions of this paper can be summarized as follows:
• We propose a NN architecture which learns MIMO channel

statistics over a dataset during training and exploits it to jointly
design pilots and estimate the channel without requiring co-
variance matrices or other prior statistical assumptions on the
channel matrix. By joint optimization of the pilot signals and
the channel estimator, our proposed NN structure improves the
normalized mean square error (NMSE) in comparison with [11],
[24], which uses simple FFT pilots with NN-based channel
estimation.

• Our proposed NN architecture uses dense layers to design
frequency-aware pilot signals followed by convolutional layers
to learn the inherent correlations in the MIMO-OFDM channel,
and to exploit them for efficient channel estimation. We also use
a non-local attention module, which enables the NN to learn and
exploit longer range correlations in the channel matrix.
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• Our proposed frequency-aware NN-based pilot design scheme
outperforms the simple frequency-independent pilot scheme
used in [10] by a large margin. This is due to the fact that
our NN-based structure learns frequency-specific features of the
channel matrices over the training dataset and exploits them
to optimize pilots over different frequencies in a data-driven
manner. Frequency-aware pilot design also enables us to allocate
pilots non-uniformly over different subcarriers by our proposed
pilot reduction technique based on NN pruning.

• We propose a pilot reduction technique based on NN pruning,
which effectively reduces the pilot overhead by allocating pilots
across subcarriers non-uniformly; fewer pilots are transmitted on
subcarriers that can be satisfactorily reconstructed by the subse-
quent convolutional layers utilizing inter-frequency correlations.
According to the simulation results, this scheme effectively
improves the estimation NMSE for the same amount of time-
frequency resources allocated uniformly over subcarriers for
pilot transmission.

• We show by extensive simulations that our proposed scheme
significantly outperforms the ideal LMMSE channel estimation
as well as the recent works in [10], [11], [24]. We provide an
ablation study to investigate the performance of NN-based pilot
design and channel estimation separately.

The rest of this paper is organized as follows. In Section II, we
present the system model. In Section III we present the proposed NN
architecture for joint pilot design and channel estimation. In Section
IV we present our pilot reduction scheme by NN pruning. Section V
provides the simulation results, and Section VI concludes the paper.

II. SYSTEM MODEL

We consider an FDD massive MIMO system, where a BS with N
antennas serves a single-antenna user utilizing orthogonal frequency
division multiplexing (OFDM) over M subcarriers. We denote the
downlink channel by H = [h1,h2, . . . ,hM ] ∈ CN×M , where hm ∈
CN is the channel gain vector over subcarrier m, for m = 1, . . . ,M .
We assume that the BS is equipped with a uniform linear array (ULA)
with response vector:

a(φ) =
1
√
N

[1, e−j
2πd
λ

sinφ, · · · , e−j
2πd
λ

(N−1) sinφ]T ,

where φ is the angle of departure (AoD), and d and λ denote the
distance between adjacent antennas and carrier wavelength, respec-
tively. The channel gain is a summation of multipath components
[25] given by

hm =

√
N

P

P∑
p=1

αpe
−j2πτpfs mM a(φ), (1)

where P is the number of multipath components, fs is the sampling
rate, τp is the delay, and αp is the propagation gain of the pth path.
According to Eq. (1), entries of the channel matrix H are correlated
for nearby sub-carriers and antennas due to similar propagation paths,
gains, and AoDs/AoAs. There also exist inherent characteristics in
MIMO environments due to specific user distributions, scattering
parameters, geometry, etc., that cause common structures among
MIMO channel matrices.

Fig. 1 depicts the time-frequency resource grid structure, where we
use a pilot block of size L×M (denoted by the black slots in Fig.
1) to estimate the channel over a time-frequency grid of size T ×M
and L ≤ T . The coherence time of the channel is assumed much
larger than T such that the channel can be assumed constant with
time over the whole grid. The signal received on the (i, j)’th grid
location is given by yij = xTijhj+nij at time slot i and subcarrier j,
where xij ∈ CN denotes the vector of downlink transmitted signal
and hm ∈ CN is the channel vector over the j’th subcarrier.

Fig. 1: The time-frequency resource grid structure.

Denoting downlink pilot signals transmitted by the BS over the
mth subcarrier by Pm ∈ CL×N , where L is the pilot length, the
received signal at the user is given by

ym = Pmhm + nm, (2)

where nm ∼ CN (0, σ2) is the complex additive Gaussian noise
over the mth subcarrier, which is independent across subcarriers
and time slots. A large pilot length L is infeasible not only because
it increases the training overhead and computational complexity for
channel estimation, but also because L should be much smaller than
the channel coherence interval. Hence, in massive MIMO systems,
where N is excessively large, the pilot length L is typically much
smaller than the number of antennas N and Eq. (2) is severely
underdetermined. In this work we propose a NN architecture to
jointly design the optimum pilot signals P1, . . . ,Pm ∈ CL×N and
to estimate the downlink channel matrix H from the signals received
over all subcarriers, i.e., Y = [y1,y2, . . . ,yM ]T ∈ CM×L.

Conventional channel estimation techniques are typically based
on LMMSE estimation method, where the pilot signals are orthog-
onal discrete cosine transform (DFT) basis vectors or Zadoff-Chu
sequences. The LMMSE channel estimate is given by ĥMMSE

m =
E[hm] + RhmymR−1

ymym(ym − E[ym]), where E[hm] and E[ym]
are the corresponding expected values, and Rhmym and Rymym

are the covariance matrices over the m’th subcarrier. LMMSE is
based on Gaussian channel assumption and requires the knowledge
of the covariance matrices. In practical scenarios, the covariance
matrices need to be empirically estimated over a dataset, which
imposes additional computational load to the LMMSE technique. On
the other hand, the simple choice of orthonormal DFT or Zadoff-
Chu pilot signals regardless of the specific medium characteristics,
e.g., scatterer positions, environment geometry, carrier frequencies,
etc., is sub-optimal as will be discussed further in the next section.
Our proposed approach utilizes a NN architecture for data-driven
channel estimation and frequency-aware pilot design. The NN learns
the required statistics over the dataset during training and leverages
it for efficient channel estimation and pilot design; thereby reducing
the pilot overhead.

III. NN-BASED PILOT DESIGN AND CHANNEL ESTIMATION

Fig. 2 depicts our proposed NN architecture for data-driven
channel estimation and frequency-aware pilot design, where double
channel inputs and outputs represent real and imaginary parts of
the corresponding channel matrices. The network is composed of
M fully connected branches, one for each subcarrier, followed by
3 convolutional layers, and is trained in an end-to-end fashion to
minimize the mean square error (MSE). Each branch is composed of
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Fig. 2: Block diagram of the proposed scheme.

2 dense layers, a reduction and an expansion layer denoted by FCr
and FCe, respectively.

The input CSI matrix H is first divided into its subcarrier compo-
nents h1,h2, . . . ,hM , where hm is input to the m’th fully connected
branch. The reduction layer in each branch models downlink pilot
transmission over that subcarrier, which is followed by downlink
additive Gaussian noise according to ym = FCrm(hm; Pm)+nm =
Pmhm + nm. Hence, the weight parameters trained for FCrm
correspond to the pilots to be transmitted over the m’th subcarrier,
denoted by P∗m. Note that the dense layers FCr1, . . . ,FCrM are
used without bias or activations here, as they imitate the actual pilot
transmission process, which is a simple matrix multiplication. A total
power constraint on the pilot block is enforced by normalization,
i.e.
∑M
m=1 ‖Pm‖2 = 1. Here, we implement complex-valued fully

connected layers, i.e., we use

(
<(ym)
=(ym)

)
=

(
<(Pm) −=(Pm)
=(Pm) <(Pm)

)(
<(hm)
=(hm)

)
+

(
<(nm)
=(nm)

)
, (3)

where <(Pm) and =(Pm) represent real and imaginary parts of the
pilots, respectively, and are trainable NN parameters. Hence, each
fully connected layer has 2LN real-valued trainable parameters.

The expansion layer in the m’th branch gives a coarse initial
estimate of the channel at the m’th subcarrier according to h̃m =
FCem(ym; Qm,bm) = Qmym + bm, where the expansion layer
is also implemented as a complex-valued fully connected layer,
similarly to (3).This initial estimate imitates the familiar LMMSE
estimate ĥMMSE

m = E[hm] + RhmymR−1
ymym(ym−E[ym]), which

is the best linear estimator that minimizes E‖hm − ĥm‖22, and the
NN learns the linear weights Qm and bm to minimize the empirical
average MSE given by 1/K

∑K
k=1 ‖h

(k)
m − ĥ

(k)
m ‖22, where K is the

size of the dataset.
We subsequently apply convolutional layers on these initial esti-

mates to further improve the estimation accuracy by exploiting the
inherent correlations within the channel matrix across subcarriers as
well as antennas. This is motivated by our previous observations
showing strong local correlations in MIMO channel matrices, which
also explains the significant success of convolutional NNs in efficient
MIMO CSI reduction and feedback in previous works [20], [23], [26].

To this end, we concatenate initial estimates from the dense branches
to get H̃ = [h̃1, . . . , h̃M ], which is then input to the convolutional
layers, as shown in Fig. 2. The convolutional layers implement
real-valued convolution kernels and treat the complex output of the
expansion layers as a two-dimensional input by concatenating its real
and imaginary parts along the channel dimension.

In Fig. 2, “Conv|128| 5×5|ReLU|Same” represents a convolutional
layer with 128 kernels of size 5 × 5 with rectified linear (ReLU)
activation and “Same” padding technique. “| − −|” means that the
last layer has no activation. The final estimate is given by Ĥ =
CONV(H̃; Θ), where CONV and Θ denote the convolutional layers
and their corresponding set of parameters.

The convolutional layers learn and exploit local correlations to
improve the estimation accuracy. As we will see in section V, local
correlations account for a significant improvement in the reconstruc-
tion NMSE in comparison with simple LMMSE. However, we see
that there still exists long range correlations in the channel matrix.
In order to exploit long range correlations in an efficient manner,
we have added a non-local attention module [27], [28]. We later
show through simulations that the non-local attention module further
improves the NMSE, specifically when fewer pilots are used and at
lower downlink SNRs.

Eq. (4) provides the general input-output relation for non-local
attention:

gi =
1

π(f)

∑
∀j

φ(fi, fj)ψ(fj), (4)

in which i is the spacetime index of an output position whose
response is to be computed, j is the index that enumerates all
possible positions, f is the input, and g is the output of the same
size as f . A pairwise function φ computes a scalar representing the
relationship between i and all j. The unary function ψ computes
a representation of the input signal at position j. The response
is normalized by a factor π(f). We tried various popular choices
for π(·), φ(·) and ψ(·) functions (refer to [28] for further de-
tails), and we found that the best performing ones in our problem
are φ(fi, fj) = exp ([Wφ1 fi]

T [Wφ2 fj ]), ψ(fj) = Wψfj , and
π(f) =

∑
∀j φ(fi, fj), where Ws are trainable weight matrices. Fig.

3 provides the block diagram for our non-local attention module,
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Fig. 3: Block diagram of the non-local attention module.

where 1× 1 convolutions implement W weight multiplications, and
“Softmax” activation implements the exponential function. Refer to
[28] for more details on attention modules.

Finally, the network is trained to minimize the end-to-end empirical
MSE cost given by

C(H; {Pi}Mi=1, {Qi}Mi=1,Θ) =
1

K

K∑
k=1

MSE(H(k), Ĥ(k)) (5)

=
1

K

K∑
k=1

‖H(k) − CONV(H̃(k); Θ)‖22,

where H(k) denotes the k’th sample channel in the training dataset
and K is the dataset size. Minimizing (5) end-to-end, we obtain all
the network parameters including the pilot signals P1, . . . ,PM .

Remark 1: In comparison with the simple LMMSE estimator,
our proposed NN-based approach is data-driven; in the sense that,
it does not make any prior assumption on the channel statistics, but
rather learns it from the dataset during training. Although LMMSE is
optimum when channel and noise distributions are jointly Gaussian,
the general MMSE estimate Ĥ = E[H|Y] has no closed-form ex-
pression for arbitrary channel distributions. Our proposed NN-based
channel estimator is trained to minimize the empirical MSE, and
hence, gives a tractable approximation of the general MMSE estimate
regardless of the channel distribution. Moreover, our proposed NN
architecture uses convolutional layers to exploit inter-frequency and
inter-antenna correlations to improve the estimation performance. We
later show through simulations that the proposed NN-based approach
outperforms LMMSE channel estimation. The improvement is more
significant for shorter pilot lengths and lower SNR values.

Remark 2: There has been a prior line of research to analytically
design optimum pilot signals for downlink FDD MIMO systems
[29]–[31]. When the channel distribution is assumed to be Gaussian,
the resulting MSE of the LMMSE estimator has a closed-form
expression. The authors in [30] use steepest descent optimization
to design pilots that minimize the resulting MSE. This approach
again relies on the Gaussian channel assumption. If this assumption is
slightly generalized to a Gaussian mixture distribution, then closed-
form expressions are available only for upper and lower bounds on the
MSE [31]. The authors in [31] use steepest descent to design pilots
that maximize the mutual information between the received noisy
pilots and the channel, i.e., I(Y; H). Our NN approach, however,
jointly designs channel estimator and pilot signals to minimize the
end-to-end estimation error while avoiding computational difficulties.

Remark 3: The authors in [11], [24] utilize a CNN-based archi-
tecture for MIMO channel estimation, but they use simple FFT pilot
signals. In this paper, we add the fully connected reduction layers
to the CNN architecture to jointly optimize pilots and estimate the
channel. We show later in the ablation study that the designed pilot
signals significantly improve the performance. They also use the CNN
structure to improve the NMSE of an initial LS estimate. We observed
in simulations that replacing the initial LS estimate with the fully
connected expansion layers lets the network to automatically learn
the initial estimate and improves the end-to-end reconstruction MSE.
Although the approach proposed in [24] and [11] outperforms non-
ideal LMMSE (where the covariance matrices are estimated from
a coarse initial LS estimate at the user), it still performs worse
than the ideal LMMSE. We later show through simulations that our
proposed NN-based approach outperforms ideal LMMSE (where the
covariance matrices are estimated over the dataset). The improvement
is more significant for shorter pilot lengths and lower SNR values.

Remark 4: The authors in [10] use a similar NN structure, but
they utilize the same pilot signals over all the subcarriers. However,
we observe different channel statistics over different subcarriers,
which suggests that using the same pilots over all the subcarri-
ers is sub-optimal. In this work, we use a frequency-aware pilot
design approach, which utilizes different fully connected branches
over different subcarriers to design pilots. We later show through
simulations that our frequency-aware approach improves the MSE
by a considerable margin. It also allows us to non-uniformly allocate
pilots to different subcarriers by our proposed NN pruning technique,
presented in the next section, which further reduces the MSE with
the same pilot overhead.

IV. PILOT ALLOCATION BY NN PRUNING

In FDD operation mode of massive MIMO systems, downlink pilot
transmission consumes a significant amount of radio resources, which
in turn results in a significant loss of spectral efficiency. While the NN
architecture proposed in the previous section significantly improves
the end-to-end channel estimation performance by exploiting inherent
correlations in the channel matrix using convolutional layers and
designing pilot signals in a frequency-aware manner using the fully
connected branches, our goal in this section is to further reduce
the pilot overhead. To achieve this, we propose an efficient pilot
allocation technique by pruning the least significant neurons from
the fully connected layers in the proposed NN architecture. The
reduction layer in the m’th fully connected branch consists of L
neurons each of which corresponds to a single pilot transmission
according to ỹm = FCrm(hm; Pm) = Pmhm, and occupies one
time-frequency resource over the downlink channel. We denote the
pilot matrix by Ỹ = [ỹ1, ỹ2, . . . , ỹM ], which represents a total
of L × M time-frequency resources allocated to downlink pilot
transmission during each coherence interval of the channel. Our idea
is to gradually prune least sigificant neurons from the fully connected
reduction layers FCr1, . . . ,FCrM during training to reduce the pilot
overhead by saving the corresponding time-frequency resources for
data transmission, while causing the least possible degradation to
the reconstruction MSE. This approach enables non-uniform pilot
allocation and the transmission of fewer number of pilots over
subcarriers that can be satisfactorily reconstructed by the subsequent
convolutional layers utilizing inter-frequency correlations.

Consequently, we formulate the design and optimization of the
pilots as a NN pruning problem, where the goal is to simplify a large
NN by pruning some weights/neurons from it without significantly
degrading the performance [32], [33]. We highlight here that pruning
of NNs is typically employed to reduce the computation and memory
complexity of NNs, where as in our case, pruning the fully-connected
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TABLE I: Comparison of the NMSE (dB) values achieved by the proposed NN-based channel estimation scheme and the LMMSE technique
for the indoor scenario (N = 32,M = 256).

SNR = −5dB SNR = 0dB SNR = 5dB SNR = 10dB SNR = 15dB SNR = 20dB

L = 16
NN+Attention -14.32 -17.61 -20.58 -22.88 -23.65 -23.93

NN -13.40 -16.87 -19.95 -22.46 -23.40 -23.75
FC Subnet -8.08 -11.39 -15.00 -18.21 -21.45 -23.03
LMMSE -8.10 -11.47 -15.00 -18.27 -21.49 -23.06

L = 12
NN+Attention -11.33 -13.61 -14.83 -15.35 -16.22 -16.79

NN -8.39 -11.53 -13.35 -14.41 -15.52 -16.40
FC Subnet -4.75 -8.00 -11.07 -13.10 -13.94 -14.80
LMMSE -4.82 -8.08 -11.17 -13.15 -13.96 -14.82

L = 8
NN+Attention -13.23 -13.96 -14.41 -14.66 -14.82 -15.04

NN -7.99 -11.03 -12.10 -12.87 -13.55 -14.05
FC Subnet -3.75 -6.98 -8.95 -10.11 -11.09 -11.80
LMMSE -3.87 -7.05 -9.01 -10.15 -11.11 -11.82

reduction layers translates into reducing the pilot signals. Different
works have heuristically proposed various saliency metrics to decide
which connections/neurons can be pruned from a large NN without
significantly degrading its performance. Saliency metrics heuristically
approximate the relative importance of different weights or sets of
weights in the NN. One of the most widespread used metrics is the
l1-norm of the weights [34], which leads to the magnitude-based
pruning scheme [32]. This is motivated by the heuristic that the larger
the weight value, the more likely the weight is to be contributing
to the result. Other saliency metrics include average ratio of zero
activations [35], the Fisher information [36], and 1st order Taylor
expansions [37], or a composition of various metrics [38].

Inspired by [32], we take an l1-regularized magnitude-based prun-
ing approach by introducing two modifications to the training process.
Note that the (i, j)’th pilot signal is given by

[Ỹ]ij = [ỹj ]i = [FCrj (hj ; Pj)]i = [Pjhj ]i =

N∑
n=1

[Pj ]in[hj ]n, (6)

where [.]ij represents the (i, j)’th element of a matrix. We define
matrix Φ, where [Φ]ij =

∑N
n=1 ‖[Pj ]in‖2. Our idea is to prune

neurons with the smallest sum squared weight connections (i.e., the
smallest [Φ]ij) from the network. With this in mind, we make the
following modifications to the training process:

Sparsity promoting regularization: We add a second term to our
cost function to push [Φ]ij elements towards zero. In particular,
we add the l1-norm of the Φ matrix to the cost function with
a regularization parameter λ, which controls the trade-off between
sparsity and the MSE according to

Cprun(H; {Pi}Mi=1, {Qi}Mi=1,Θ) =
1

K

K∑
k=1

MSE(H(k), Ĥ(k)) + λ‖Φ‖1

(7)

=
1

K

K∑
k=1

‖H(k) − Ĥ(k)‖22

+ λ
∑
i

∑
j

|
N∑
n=1

‖[Pj ]in‖2|,

where λ is determined through numerical search until a desired
sparsity level is achieved. Denoting our target sparsity level by S,
which represents the percentage of the pruned neurons, a larger λ is
required for larger S values.

Magnitude-based pruning: Define a pilot allocation mask M ∈
[0, 1]L×M , in which the zeros represent the pruned pilots. Pruning
is performed by element-wise multiplication of the pruning mask
with the received pilot matrix during each optimization step, i.e.,

Y = M� Ỹ +N. We initialize M to an all-one state and gradually
update it during training according to a pruning schedule to achieve
the final allocation mask M∗. Our target sparsity S represents the
ratio of zeros in the final mask M∗ over its size, L × M . As
our regularization term gradually pushes more and more of the
[Φ]ij values towards zero along the training steps, [M]ij values
corresponding to the smallest [Φ]ij’s can be zeroed out. We use a
linear pruning schedule where we apply 10 balanced updates on M
during training, each of which prunes another S/10 of the pilots. It is
important to train for a sufficient number of steps after each update
of the pruning mask to allow the network to converge to the new
optimum before the next pruning update.

Although the choice of the saliency metric has been mostly
heuristic in the literature, we do have some intuition to support our
magnitude-based approach for the specific channel estimation task.
Utilizing Eq. (8), the pilot power received on the (i, j)’th resource
grid is bounded by

‖[Ỹ]ij‖2 = ‖
N∑
n=1

[Pj ]in[hj ]n‖2 ≤ (

N∑
n=1

‖[Pj ]in‖2)(

N∑
n=1

‖[hj ]n‖2)

(8)

= [Φ]ij(

N∑
n=1

‖[hj ]n‖2).

Denoting the received pilot SNR on the (i, j)’th resource grid by ρij ,
we get ρij = ‖[Ỹ]ij‖2/σ2

n ≤ [Φ]ij(
∑N
n=1 ‖[hj ]n‖

2/σ2
n). Hence,

the pilots located on grid locations with the smallest sum squared
weight connections (i.e. the smallest [Φ]ij) are received at lower
SNRs and hence contribute the least to the NMSE performance
achieved by the NN.

V. SIMULATION RESULTS

We have generated the datasets for training and testing using
the COST 2100 channel model [39], which is a geometry-based
stochastic channel model that reproduce the stochastic properties of
MIMO channels over time, frequency and space. COST 2100 is
a cluster-level model, and generates channel realizations that hold
statistical consistency of the large scale channel parameters. We have
considered an indoor picocellular scenario at 5.3 GHz and an outdoor
rural scenario at 330 MHz band. The BS is equipped with a ULA
of dipole antennas positioned at the center of a 20m × 20m and
400m × 400m square area for the indoor and outdoor scenarios,
respectively. Note that we have presented the results for the outdoor
scenario in Subsection V.B, but as the simulations revealed very
similar results and conclusions for both the indoor and outdoor
scenarios, we have included the results only for the indoor scenario
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TABLE II: Comparison of the NMSE (dB) values achieved by the proposed NN-based channel estimation scheme and the LMMSE technique
for the outdoor scenario (N = 32,M = 256).

SNR = −5dB SNR = 0dB SNR = 5dB SNR = 10dB SNR = 15dB SNR = 20dB

L = 16
NN+Attention -16.84 -18.82 -20.37 -20.83 -21.34 -21.55

NN -15.31 -17.89 -19.68 -20.36 -20.84 -21.14
LMMSE -7.82 -11.92 -15.75 -18.91 -19.67 -20.47

L = 12
NN+Attention -10.04 -11.05 -11.83 -12.64 -13.25 -13.82

NN -8.37 -9.99 -11.41 -12.25 -12.98 -13.61
LMMSE -3.76 -7.20 -10.33 -11.38 -12.15 -12.89

L = 8
NN+Attention -7.37 -7.76 -8.06 -8.37 -8.57 -8.76

NN -4.91 -6.29 -7.34 -7.68 -7.92 -8.07
LMMSE -1.88 -3.51 -4.96 -6.39 -6.67 -6.89
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Fig. 4: NMSE (dB) vs. downlink SNR for the indoor scenario, N =
32,M = 256.

in the subsequent subsections to avoid tedious discussions of similar
results.

The user is placed within the square area uniformly at random. All
other parameters follow the default settings in [39]. Train and test
datasets include 80000 and 20000 channel realizations, respectively,
with M = 256 and N = 32. We train all NNs up to 110000 steps
with a batch size of 100 utilizing the Adam optimizer [40]. We use
the normalized MSE (NMSE) as the performance measure, defined
by

NMSE ,
E{‖H− Ĥ‖22}

E{‖H‖22}
. (9)

A. NN vs. LMMSE performance

Table I and Fig. 4 compare the NMSE values achieved by the
proposed NN-based channel estimation technique with those achieved
by LMMSE for the indoor scenario at different pilot length and
SNR values. We note that we have used the pilot signals optimized
by the fully connected reduction layers for the LMMSE approach
here. For LMMSE, we first estimate the channel covariance matrix
over the training dataset utilizing the maximum likelihood (ML)
covariance estimation for Gaussian vectors [41], and then use it
to get the LMMSE channel estimate. Note that we have assumed
that the user has perfect knowledge of these estimated covariance
matrices. In practice, the user may need to estimate the covariance
matrix from a coarse initial LS estimate of the channel [11], which
degrades the LMMSE performance. Hence, the curves in Fig. 4
provide a lower bound on the performance of LMMSE as we have
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Fig. 5: NMSE (dB) comparisons for the indoor vs. outdoor scenarios,
L = 8, N = 32,M = 256.

used covariance matrices estimated over the original training dataset.
Table I also presents the contribution of each subnetwork of the
proposed architecture towards the final NMSE value. In this table,
we report the NMSE values for NN-based channel estimation with
and without the attention module, denoted by “NN+Attention” and
“NN”, respectively. “FC subnet” corresponds to the NMSE obtained
when only the fully connected layers are used for NMSE evaluations.

According to Fig. 4, the NN-based approach outperforms LMMSE
for all SNR and pilot lengths. The proposed NN-based approach even
without the attention module outperforms LMMSE, and the attention
module further improves the performance specifically at low SNR
regimes. For example, at a downlink SNR=-5dB, the “NN+Attention”
scheme improves the reconstruction NMSE by 9.36dB , 6.51dB,
and 6.22dB in comparison with LMMSE for L = 8, 12 and 16,
respectively. For a target NMSE of ∼ −15dB at a downlink SNR
of 5dB, our proposed NN+Attention approach reduces the required
pilot length from 16 to 8 in comparison with LMMSE, resulting in
a 50% reduction in the pilot overhead.

Finally, comparing the “LMMSE” and “FC Subnet” results in
Table I shows that the FC subnetwork achieves almost the same
NMSE performance as the LMMSE estimate. We have also observed
that the parameters learned by the FC layers, are very close to
the LMMSE estimator, i.e., Qm ∼ RhmymR−1

ymym and bm ∼
E[hm]−RhmymR−1

ymymE[ym], which shows that the initial estimate
at the output of the FC expansion layers (i.e., H̃) imitates the LMMSE
estimate.



7

TABLE III: Comparison of the NMSE (dB) achieved using same pilots (SP) over all subcarriers [10] and the proposed frequency-aware pilot
design scheme (DP) for the indoor scenario at N = 32,M = 256.

SNR = −5dB SNR = 0dB SNR = 5dB SNR = 10dB SNR = 15dB SNR = 20dB

L = 16
DP+Attention -14.32 -17.61 -20.58 -22.88 -23.65 -23.93

DP -13.40 -16.87 -19.95 -22.46 -23.40 -23.75
SP -11.84 -15.07 -18.08 -20.58 -22.34 -23.25

L = 12
DP+Attention -11.33 -13.61 -14.83 -15.35 -16.22 -16.79

DP -8.39 -11.53 -13.35 -14.41 -15.52 -16.40
SP -7.92 -10.92 -11.74 -12.91 -13.30 -13.94

L = 8
DP+Attention -13.23 -13.96 -14.41 -14.66 -14.82 -15.04

DP -7.99 -11.03 -12.10 -12.87 -13.55 -14.05
SP -7.74 -9.38 -10.69 -12.12 -12.99 -13.42
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Fig. 6: Comparison between the NMSE (dB) values achieved using same pilots (SP) over all subcarriers [10] and the proposed frequency-aware
pilot design scheme (DP) for N = 32,M = 256, (a) L = 16, (b) L = 12.

B. Impact of the scattering environment

Table II provides the reconstruction NMSEs for the outdoor sce-
nario at different pilot length and SNR values. Note that we have used
the pilot signals optimized by the fully connected reduction layers for
the LMMSE approach here. Fig. 5 compares the NMSE values for the
indoor and outdoor scenarios when L = 8, N = 32,M = 256. This
figure shows a more significant performance improvement achieved
by the NN-based approach for the outdoor scenario in comparison
with LMMSE. According to Tables I and II, the “NN+Attention”
approach improves the reconstruction NMSE by 5.49dB and 9.36dB
in comparison with LMMSE for the outdoor and indoor scenarios,
respectively at L = 8, N = 32,M = 256.

C. Frequency-aware pilot design

Unlike in [10], which optimizes the same pilots over all subcarriers,
our proposed NN architecture utilizes M parallel fully connected
branches to design different pilots over the subcarriers. This helps to
improve the NMSE performance by allowing the NN to learn and
exploit specific subcarrier statistics and structures in a frequency-
aware manner. Table III provides a comparison between our proposed
frequency-aware pilot design scheme with the approach proposed in
[10], where the same pilots are used over different subcarriers. The
acronyms “SP” and “DP” in this table represent “same pilots” and
“different pilots” approaches, respectively.

According to Table III, the proposed frequency-aware approach
improves the performance significantly even without the attention
module, e.g., for a target NMSE of −12.9dB at a downlink SNR of

10dB, the “DP” approach reduces the required pilot length from 12
to 8 in comparison with “SP”, which is a 33.3% reduction in the
pilot overhead. The improvements are even more significant when
the attention module is introduced to the proposed frequency-aware
approach, e.g. for a downlink SNR of −5dB, the “DP+attention”
approach reduces the required pilot length from 16 to 8 in com-
parison with “SP” and the reconstruction NMSE by 1.39dB. Fig. 6
compares the NMSE curves versus downlink SNR for “SP”, “DP”
and “DP+Attention” schemes for (a) L = 16 and (b) L = 12. This
figure also shows a considerable NMSE improvement by the proposed
“DP+Attention” scheme in comparison with the “SP” approach
proposed in [10].

D. Impact of channel SNR

Fig. 7 studies the performance of the NN-based+Attention scheme
when there is a mismatch between the training and test SNRs. This
figure plots the NMSE versus test SNR curves for networks trained
with each specific SNR value. We see that the NMSE degrades
when the test SNR falls below the SNR value used for training.
On the other hand, for a network trained with a lower SNR value,
the performance saturates when test SNR improves above the training
SNR. The grey curve represents the performance of a NN trained over
a dataset with sample SNRs picked uniformly at random from the
interval [−5, 10]dB. As observed in this figure, such a NN performs
satisfactorily over the whole SNR range.
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TABLE IV: Ablation results of NMSE (dB) for L = 16, N = 32,M = 256.

SNR = −5dB SNR = 0dB SNR = 5dB SNR = 10dB SNR = 15dB SNR = 20dB
Proposed (NN+NN+Attention) -14.32 -17.61 -20.58 -22.88 -23.65 -23.93

NN+LMMSE -8.10 -11.47 -15.00 -18.27 -21.49 -23.06
FFT+NN+Attention -7.74 -10.87 -13.79 -15.02 -15.99 -16.48

FFT+LMMSE -0.86 -0.92 -1.19 -1.77 -2.77 -4.17
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Fig. 7: NMSE (dB) vs. test SNR for networks trained at different
SNR values with L = 16, N = 32,M = 256.

E. Ablation study

To study the improvements by each component of the proposed
NN architecture, we provide ablation results in Table IV and Fig. 8.
We compare 4 different schemes as below:
• Our proposed scheme, in which both the pilot design and

channel estimation are handled by the NN including the attention
module. This scheme is denoted by “NN+NN+Attention” in the
table.

• A scheme, which uses LMMSE for channel estimation while
the pilots are designed using a NN. In this case we take
the received pilot vectors ym = P∗mhm + nm from the
fully connected branches and apply ideal LMMSE (utilizing
covariances estimated over the dataset) on it, where P∗m denotes
the pilots optimized by the NN. This scheme is denoted by
“NN+LMMSE” in the table.

• A scheme that employs the “NN+Attention” for channel es-
timation, but simple FFT pilots are used as proposed in [24]
and [11]. Note that, in this scheme, we train the NN+Attention
module replacing Pm’s with a submatrix of DFT. This scheme
is denoted by “FFT+NN+Attention” in the table.

• The conventional scheme using FFT pilots and LMMSE estima-
tion. This scheme is denoted by “FFT+LMMSE” in the table.

According to Table IV and Fig. 8, the proposed fully NN-based
scheme outperforms significantly all the three schemes with the
NN-based pilot design leading to a remarkable improvement in
the reconstruction NMSE. The conventional FFT+LMMSE scheme
performs poorly at all channel SNRs as channel estimation is severely
underdetermind for N = 32 and L = 16.

F. Comparison with extended LMMSE

We showed in the previous subsections that the proposed NN-based
channel estimator outperforms the conventional LMMSE estimate
by exploiting the inter-frequency correlations in the MIMO channel
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Fig. 8: Ablation results of NMSE (dB) for L = 16, N = 32,M =
256.

matrix. In particular, convolutional layers learn and exploit local
correlations to improve the estimation accuracy. Local correlations
account for a significant performance improvement in the reconstruc-
tion NMSE in comparison with simple LMMSE. However, we see
that there still exist long range correlations in the channel matrix that
are exploited by the proposed attention modules to further improve
the reconstruction accuracy.

Note that one can similarly use an extended LMMSE approach
which exploits all the inter-frequency and inter-antenna correlations
in the channel matrix assuming a Gaussian channel model. This
approach is computationally prohibitive as it requires an accurate
estimate of a large covariance matrix of size NM×NM and becomes
infeasible in wideband massive MIMO systems where both N and M
are significantly larger. Hence, in practical scenarios, the subcarrier-
wise LMMSE estimate, which exploits inter-antenna correlations in
each subcarrier is used, and hence, this subcarrier-wise LMMSE
estimate has been used for comparisons in previous subsections as
well as previous works [11], [24].

However, to understand the full potential of the proposed datat-
driven approach, in this subsection, we compare the performance of
our proposed NN-based approach with the extended LMMSE bound.
We are specifically interested in understanding the significance of
long range correlations, and how well our proposed NN+Attention
approach can learn and exploit these correlations. For the extended
LMMSE we estimate the required covariance matrix over the training
dataset utilizing the optimum estimator [41]. Hence, the number of
real-valued trainable parameters for the extended LMMSE equals
2N2M2 + 2NM + 1, where 2N2M2 of the parameters account
for the covariance matrix elements, 2NM account for the expected
channel values and 1 is for the noise variance.

Table VI provides the number of trainable parameters for several
channel estimators considered in this paper. Note that the number
of parameters for the convolutional layers and the attention module
is independent of the dimensions of the channel matrix. This is very
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TABLE V: NMSE comparisons at SNR = −5dB and L = 16, N = 32,M = 256.

DP+Attention DP SP LMMSE Extended LMMSE
|D| = 10K -14.28 -13.41 -11.85 -8.10 -12.14
|D| = 20K -14.26 -13.38 -11.80 -8.10 -13.45
|D| = 40K -14.30 -13.43 -11.88 -8.08 -13.94
|D| = 80K -14.32 -13.40 -11.84 -8.10 -14.55
# Parameters 333K 267K 5.7K 541K 134M

TABLE VI: Parameter complexity of various channel estimators.

Number of trainable parameters
DP+Attention 2LNM + C1 + C2

DP 2LNM + C1

SP 2LN + C1

LMMSE 2N2M + 2NM + 1
Extended LMMSE 2N2M2 + 2NM + 1

TABLE VII: FLOPs for various channel estimators.

FLOPs
DP+Attention O(LNM) +O(NMρ2st) +O(N2M2q)

DP O(LNM) +O(NMρ2st)
SP O(LNM) +O(NMρ2st)

LMMSE O(LNM)
Extended LMMSE O(N2M2)

favorable as these modules can be used in wide-band massive MIMO
systems without increasing the parameter complexity, while the
model complexity increases with N2 and M2 for extended LMMSE
and becomes infeasible in wideband massive MIMO scenarios. The
number of trainable parameters for the convolutional layers (denoted
by C1) and the attention module (denoted by C2) for our proposed
architectures in Fig. 2 and 3 are given by:

C1 = 128(5× 5 + 1) + 128(3× 3 + 1) + 2(3× 3 + 1) = 4628, (10)
C2 = 4× 128(128× 1× 1 + 1) = 66048.

Table V presents the reconstruction NMSE for various channel
estimator when trained on datasets of various sizes. Note that we
originally trained all NNs on a dataset of size |D| = 80K, which
includes 80K random realizations of the MIMO-OFDM channel
matrices. In this table, we evaluate the performance of various channel
estimators when less data is available for training. According to
Table V, although the extended LMMSE slightly outperforms the
NN-based approach when a large dataset is available to estimate
the covariance matrix, its performance degrades significantly when
less data is available for training. This is due to the fact that the
extended LMMSE approach requires estimating a large covariance
matrix with 134M trainable parameters and when less data is available
for training, estimates of these parameters become less accurate
leading to a significant performance loss. The performance of all the
other approaches remains almost the same for smaller dataset sizes.

Table V shows that the proposed NN-based approach with an
attention module outperforms extended LMMSE when less data is
available for training. Even when trained with 80K samples, the
proposed NN+Attention approach achieves a reconstruction NMSE
very close to the extended LMMSE while reducing the parameter
complexity by a factor of 134M

333K
∼ 400, learning to exploit the most

significant long range correlations in the channel matrix.

G. Computational complexity

Our proposed NN-based channel estimation method is trained
offline. The training complexity of various methods is compared
in terms of the number of trainable parameters for them. In Table

VI, we compared the number of real-valued trainable parameters
for various methods in terms of the L,N and M values. Table VI
includes a numerical comparison for L = 16, N = 32,M = 256
and shows that the proposed NN+Attention approach achieves a
reconstruction NMSE very close to the extended LMMSE while
reducing its parameter complexity by a factor of 134M

333K
∼ 400. Offline

training of our proposed NN+attention channel estimation approach
for L = 16, N = 32 and M = 256 up to 110000 steps takes 2 hours
on a NVIDIA GEFORCE RTX 2080 Ti GPU.

After the network is trained, it is deployed for channel estimation.
The computational complexity of various methods during deployment
is compared in terms of the number of floating point operations
(FLOPs) required for channel estimation in each method. The com-
putational complexity for the forward path of our proposed NN-
based scheme includes the number of FLOPs executed in the fully
connected expansion layers, the convolutional layers and the attention
module. The number of FLOPS executed for the fully connected
expansion layers is O(LNM). The number of FLOPs required for
each convolutional layer is O(NMρ2st), where s and t are the
number of input and output channels for the layer (e.g., s = t = 128
here) and ρ2 is the kernel size (e.g. ρ2 = 5× 5, 3× 3, etc.). Finally
the number of FLOPs required for the matrix multiplications in the
attention module is O(N2M2q), where q is the number of output
channels in convolutions (we used q = 128 in simulations). Table
VII compares the number of FLOPs required for various channel
estimation techniques in terms of the channel dimensions N,M and
L. According to this table, the “NN+attention” and extended LMMSE
methods require the same order of FLOPs while without the attention
module, the NN-based method significantly reduces the number of
FLOPs required.

H. Pilot pruning

Table VIII provides a summary of the results obtained by our
proposed pilot pruning scheme. In particular, we present the NMSE
as a function of the sparsity level for different pilot lengths when
SNR=10dB, N = 32 and M = 256. The numbers in parentheses
show the λ values used to achieve the sparsity level in each simulation
according to Eq. (7). We observe that the same λ value performs
fairly well for a number of settings, e.g., we get good results with
λ = 10−6 for all S ≤ 50% for L = 8 and 12. We observed that a
well-performing λ value can always be found by trying only a few
negative exponents of 10, i.e., {10−3, 10−4, 10−5, 10−6}.

According to Table VIII, the NMSE value degrades slowly as we
increase the sparsity; and hence, the proposed pruning scheme can be
used to efficiently reduce the pilot overhead without significantly de-
grading the channel estimation accuracy. For example, when L = 12,
our pilot pruning scheme can save up to 25% of the time-frequency
resources while degrading the NMSE by only 1.07dB. Note that
the number of time-frequency resources occupied by pilots is the
same for L = 16, S = 25% and L = 12, S = 0%, while the
corresponding NMSE values are −19.43dB and −15.35dB for these
two settings, respectively. Hence, our proposed pruning scheme can
efficiently allocate pilots non-uniformly along subcarriers to improve
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TABLE VIII: NMSE (dB) performance achieved for different sparsity levels by the pruning-based pilot reduction technique at SNR=10dB,
N = 32,M = 256. Values of λ (in Eq. (7)) to achieve the specified sparsity level are given in parentheses.

S = 0% S = 5% S = 10% S = 15% S = 20% S = 25%
L = 16 −22.88 −21.13 (10−6) −20.11 (10−5) −19.85 (10−5) −19.57 (10−5) −19.43 (10−5)

L = 12 (10−6) -15.35 -14.59 -14.64 -14.39 -14.36 -14.28
L = 8 (10−6) -14.66 -14.23 -13.78 -13.66 -13.55 -13.34

TABLE IX: Pilot allocation performance by NN pruning at SNR=10dB, N = 32,M = 256.

Pilot Scheme A B C D E
NMSE (dB) −12.18 −12.24 −13.34 (10−6) −11.96 −14.41 (10−6)

SER 1.21× 10−2 1.19× 10−2 1.02× 10−2 1.25× 10−2 8.9× 10−3

Fig. 9: Illustration of the pilot allocation masks compared in Table IX. White dots represent pilots and the black dots represent time-
frequency resources saved for data transmission. (a) Periodic removal of pilots with L = 8, S = 25%, (b) NN optimized pilot pruning with
L = 8, S = 25%, (c) Periodic removal of pilots with L = 12, S = 50%, (d) NN optimized pilot pruning with L = 12, S = 50%.

the performance while using the same number of time-frequency
resources.

To elaborate further, we compare the following five settings in
Table IX, all of which use 6 × 256 = 1536 time-frequency pilot
resources to estimate the channel over a 70× 256 resource grid:

-Pilot scheme A: A rectangular pilot block of size 6× 256 is used
for pilot transmission according to the frame structure depicted in
Fig. 1.

-Pilot scheme B: In this scheme, one out of every 4 pilots is omitted
periodically from a 8×256 rectangular block of pilots and saved for
data transmission. Note that, we still use proposed NN scheme for
pilot optimization and channel estimation, but without pruning. Fig.
9a depicts the pilot mask for scheme B.

-Pilot scheme C: In this scheme, we employ the proposed pruning-

based pilot allocation scheme with L = 8 and S = 25%. Fig. 9b
depicts the pilot mask optimized by our proposed method for this
scheme.

-Pilot scheme D: In this scheme one out of every 2 pilots is omitted
periodically from a 12×256 rectangular block of pilots. Similarly to
scheme B, we keep the pilot allocation mask M fixed during training.
Fig. 9c depicts the pilot mask for scheme D.

-Pilot scheme E: In this scheme, we employ our proposed pruning-
based pilot allocation scheme with L = 12, and S = 50%. Fig. 9d
depicts the pilot mask obtimized by our proposed method for this
scheme.

Table IX shows considerable improvement by the proposed
pruning-based pilot allocation scheme in comparison with periodic
and rectangular allocations. For example, by starting from a pilot
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block of 12× 256 and pruning 50% of the pilots with our proposed
scheme, we can improve the NMSE by 2.23dB in comparison with
a 6× 256 pilot block, which has the same pilot overhead. It should
be noted that, L = 12 slightly increases the estimation delay at the
receiver as the user cannot estimate the channel until all 12 resource
blocks are received over the sub-carriers.

Table IX shows that when a fixed budget of time-frequency
resources is available for pilot transmission, starting from a larger L
value and pruning the network down to the available resource budget
results in an improved NMSE performance. The NN achieves this by
allocating less pilots to those sub-carriers which can be interpolated
with sufficient accuracy by the NN exploiting the statistical CSI
correlations, while allocating more pilots to other subcarriers. Fig. 9
depicts the allocation masks resulting from the proposed pilot pruning
scheme for L = 8, S = 25% (Fig. 9b) and L = 12, S = 50%
(Fig. 9d), where the white dots represent the time-frequency resources
devoted to pilots, while the black dots represent those saved for data
transmission. As observed in this figure, more resources can be saved
for data over transmission subcarriers in the ranges (30-110) and
(150-230) in the setting considered.

In Table IX, we also compare the symbol error rate (SER) values
for 4-QAM modulation over a 70× 256 time-frequency grid, where
the channel is estimated using the five different pilot allocation
schemes. We note that we use both the pruned and the data-
dedicated time-frequency resources for 4-QAM transmission. For
each allocation scheme, we estimate the channel with the trained
NN, and use a zero-forcing equalizer over the resource grid, and
the maximum likelihood (ML) detector to demodulate the received
signal. We report the resulting SER over 108 random symbols. The
downlink SNR is 10dB and N = 32,M = 256. Table IX shows
that the proposed NN-based pilot pruning scheme improves the SER
while using the same number of time-frequency resources for pilot
transmission; that is, the channel resources saved from the pilot block
by the proposed pruning approach can be used for reliable data
transmission while reducing the SER.

VI. CONCLUSION

We have proposed a NN-based joint downlink pilot design and
channel estimation scheme for FDD massive MIMO-OFDM systems.
Our proposed network utilizes dense layers to design pilot signals in
a frequency-aware structure followed by convolutional layers which
utilize inherent correlations in the channel matrix to provide an
accurate channel estimate in an efficient manner. We have also
employed an attention module to exploit long-range correlations in
the channel matrix, which cannot be inferred by the conventional
convolutional layers.We also proposed an effective pilot reduction
technique by gradually pruning less significant neurons from the
dense layers to reduce the pilot overhead and to save time-frequency
resources for data transmission. Our proposed NN-based pilot design
and channel estimation scheme outperforms LMMSE estimation.
Moreover, our pruning-based pilot reduction technique effectively
reduces the pilot overhead by allocating pilots across subcarriers non-
uniformly; allowing less pilot transmissions on subcarriers that can
be satisfactorily reconstructed by the subsequent convolutional layers
exploiting inter-frequency correlations.
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