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Abstract—We consider a remote contextual multi-armed ban-
dit (CMAB) problem, in which the decision-maker observes the
context and the reward, but must communicate the actions to be
taken by the agents over a rate-limited communication channel.
This can model, for example, a personalized ad placement
application, where the content owner observes the individual
visitors to its website, and hence has the context information,
but must convey the ads that must be shown to each visitor
to a separate entity that manages the marketing content. In
this remote CMAB (R-CMAB) problem, the constraint on the
communication rate between the decision-maker and the agents
imposes a trade-off between the number of bits sent per agent
and the acquired average reward. We are particularly interested
in characterizing the rate required to achieve sub-linear regret.
Consequently, this can be considered as a policy compression
problem, where the distortion metric is induced by the learning
objectives. We first study the fundamental information theoretic
limits of this problem by letting the number of agents go to
infinity, and study the regret achieved when Thompson sampling
strategy is adopted. In particular, we identify two distinct
rate regions resulting in linear and sub-linear regret behavior,
respectively. Then, we provide upper bounds for the achievable
regret when the decision-maker can reliably transmit the policy
without distortion.

Index Terms—Multi-Armed Bandit, Rate-Distortion Theory,
Regret Bound.

I. INTRODUCTION

In the last few years, synergies between machine learning
(ML) and communication networks have attracted a lot of
interest in the research community, thanks to the fruitful
interplay of the two fields in emerging applications, from
Internet of Things (IoT) to autonomous vehicles, and other
edge services. In most of these applications, both the generated
data and the processing power are distributed across a network
of physically distant devices, thus a reliable communication
infrastructure is pivotal to run ML algorithms that can leverage
the collected distributed knowledge [1], [2]. To this end, many
recent works have tried to redesign networks and to efficiently
represent information to support distributed ML applications,
where the activities of data collection, processing, learning and
inference are performed in different geographical locations;
and therefore, the corresponding learning algorithms must take
into account limited communication, memory, and processing
resources, while addressing privacy issues.

In contrast to our desire to gather more data and intelligence,
available communication resources (bandwidth and power, in
particular) are highly limited, and must be shared among
many different devices and applications. This requires the

design of highly communication-efficient distributed learning
algorithms. Information theory, and in particular rate-distortion
theory, have laid the fundamental limits of efficient data
compression, with the aim to reconstruct the source signal with
the highest fidelity [3]. However, in the aforementioned appli-
cations, the goal is often not to reconstruct the source signal,
but to make inferences based on it. This requires task-oriented
compression, filtering out the unnecessary information for the
target application, and thus decreasing the number of bits that
have to be transmitted over the communication channels. This
approach should target the questions of what is the most useful
information that has to be sent, and how to represent it, in
order to meet the application requirements while consuming
the minimum amount of network resources [4], [5].

Our goal in this paper is to theoretically investigate a
contextual multi-armed bandit (CMAB) problem, in which
the context information is available to a remote decision-
maker, whereas the actions are taken by a remote entity, called
the controller, controlling a multitude of agents, each with
an independent context realization. We can assume that a
limited communication link is available between the decision-
maker and the controller at each round to communicate the
intended actions. The controller must decide on the action to
be taken by each agent based on the message received over the
channel, while the decision-maker observes the rewards at each
round, and updates its policy accordingly. This framework is
described in Fig. 1.

This scenario can model, for example, a personalized ad
placement application, where the content owner observes the
individual visitors to its website, and hence has the context in-
formation, but must convey the ads that must be shown to each
visitor to a separate entity that manages the marketing content.
This will require communicating hundreds or thousands of ads
to be placed at each round, chosen from a large set of possible
ads, within the resource and delay constraints of the underlying
communication channel, which is quantified as the number
of bits available per agent, i.e., per visitor. Other practical
examples include the training of a single policy with N parallel
agents, speeding up convergence while collecting more data
per unit time [6]. In this case a server, i.e., the decision-maker,
stores a centralized policy that is updated at every round, while
N parallel environment instances run locally at each agent.
The link between the server and the parallel agents is the one
analyzed in this work, whereas possible constraints on the state
observation process will be considered in future work.



II. RELATED WORK

Given the amount of data that is generated by machines,
sensors and mobile devices, the design of distributed learning
algorithms is a hot topic in the ML literature. These algorithms
often impose communication constraints among agents, requir-
ing the design of methods to allow efficient representation of
messages to be exchanged. While rate-distortion theory deals
with efficient lossy transmission of signals [3], in ML appli-
cations we typically do not need to reconstruct the underlying
signal, but wish to make some inference based on it. These
applications can be modeled through distributed hypothesis
testing [7]–[9] and estimation [10], [11] problems under rate
constraints.

There is a growing literature on multi-agent reinforcement
learning (RL) with communication links [12]–[15]. These
papers consider a multi-agent partially observable Markov
decision process (POMDP), where the agents collaborate to
resolve a specific task. In addition to the usual reward signals,
agents can also benefit from the available communication links
to better cooperate and coordinate their actions. It is shown
that communication can help overcome the inherent non-
stationarity of the multi-agent environment. Our problem can
be considered as a special case of this general RL formulation,
where the state (context) at each time is independent of the past
states and actions. Moreover, we focus on a particular setting
in which the communication is one-way, from the decision-
maker that observes the context and the reward, towards the
controller that takes the actions. This formulation is different
from the existing results in the literature involving multi-agent
multi-armed bandit (MAB). In [16], each agent can pull an arm
and communicate with others. They do not consider the con-
textual case, and focus on a particular communication scheme,
where each agent shares the index of the best arm according
to its own experience. Another related formulation is proposed
in [17], where a pool of agents collaborate to solve a common
MAB problem with a rate-constrained communication channel
from the agents to the server. In this case, agents observe
their rewards and upload them to the server, which in turn
updates the policy used to instruct them. In [18], the authors
consider a partially observable CMAB scenario, where the
agent has only partial information about the context. However,
this paper does not consider any communication constraint,
and the partial/noisy view of the context is generated by nature.
Differently from the existing literature, our goal is to identify
the fundamental information theoretic limits of learning with
communication constraints in this particular scenario.

III. PROBLEM FORMULATION

A. The Contextual Multi-Armed Bandit (CMAB) Problem

We consider N agents, which experience independent re-
alizations of the same CMAB problem. The CMAB is a
sequential decision game in which the environment imposes
a probability distribution PS over a set of contexts, or states,
S, which is finite in our case. The game proceeds in rounds,
and at each round h = 1, . . . ,H , a realization of the state
snh ∈ S is sampled from distribution PS for each agent n ∈

N = {1, . . . , N}, independently across time and agents. The
decision-maker observes the states {snh}

N
n=1, and chooses an

action (or arm) anh ∈ A = {1, . . . ,K}, for each agent, where
K is the total number of available actions, with probability
πh(anh|snh). Once the actions have been taken, the environ-
ment returns rewards for all the agents following independent
realizations of the same reward process, rnh = r(snh, a

n
h) ∼

PR(r|snh, anh), ∀n ∈ N , which depends on the state and the
action of the corresponding agent. The policy πh(anh|snh) used
to sample the actions is a mapping πh : Hh−1×S → ∆K . The
set Hh−1 contains all possible observations of the decision-
maker, and H(h − 1) ∈ Hh−1 represents the knowledge
accumulated by all the agents up to round h−1, i.e., H(h− 1)
=
((
s11, a

1
1, r

1
1

)
, . . . ,

(
sNh−1, a

N
h−1, r

N
h−1
))
∈ H(h−1). The set

∆K is the K-dimensional simplex, containing all possible
distributions over the set of actions. Based on the history of
rewards up to round h−1, the decision-maker can optimize its
policy to minimize the Bayesian system regret, that is defined
as

BR(H,π) = E

[
H∑
h=1

∑
n∈N

µ(snh, a
∗(snh))− µ(snh, a

n
h)

]
, (1)

where anh is the action taken by agent n at round h using
policy πh(a|s), which does not depend on n, i.e., the decision-
maker adopts the same policy for all the agents, µ(s, a) =
E [r(s, a)] is the average reward of action a in state s, and
a∗(s) = arg maxa∈A µ(s, a) is the optimal action for state
s, i.e., the action with the highest expected reward, which
is unknown at the beginning. The expectation is taken with
respect to the state, action, and problem instance distributions.

B. Remote CMAB

In our scenario, the process of observing the system states
is spatially separated from the process of taking actions.
The environment states, {snh}

N
n=1, are observed by a central

entity, i.e., the decision-maker, that has to communicate to the
controller over a rate-limited communication channel, at each
round h, the information about the actions {anh}

N
n=1 the agents

should take. Consequently, the problem is to communicate
the action distribution, i.e., the policy πh(a|s), which depends
on the specific state realizations, to the controller within the
available communication resources.

Specifically, the decision-maker employs a function f (N)
h :

Hh−1×SN → {1, 2, . . . , B} to map the observed history and
the N states at time h to a message index to be transmitted
over the channel. The controller, on the other hand, employs
a function g

(N)
h : {1, 2, . . . , B} → AN to map the received

message to a set of actions for the agents. In general, both
functions f (N)

h and g(N)
h can be stochastic. The Bayesian regret

achieved by sequences
{
f
(N)
h , g

(N)
h

}H
h=1

is given by

BR(H, (f, g)) =

E

[
H∑
h=1

∑
n∈N

r(snh, a
∗(snh)− r(snh, gnh(mh))

]
,

(2)



Fig. 1: The R-CMAB problem with a rate-limited communi-
cation channel.

where gnh(mh) is the action taken by agent n based on message
mh = f

(N)
h

(
H(h− 1), sNh

)
transmitted in round h, and sNh ∈

SN is the vector containing the states of all the agents. We say
that, for a given problem with N agents, a rate R is achievable

if there exist functions
{
f
(N)
h , g

(N)
h

}H
h=1

as defined above with

rate 1
N log2B ≤ R and regret

lim
H→∞

BR
(
H,
{
f
(N)
h , g

(N)
h

})
H

= 0, (3)

i.e., sub-linear in rounds.
If a rate R ≥ logK is available, then the intended action

for each agent can be easily conveyed to the controller, and
a policy πh that achieves sub-linear regret in the classical
problem can achieve the same regret in the remote version
(Thm. IV.6). However, in general, it may not be possible to
convey the decision-maker’s policy perfectly to the controller,
and it is not clear whether distorted versions of the policy π
can obtain sub-linear regret. If this is the case, it would be
possible to reduce the necessary communication rate, while
still solving the underlying learning problem, by compressing
the policy π.

IV. SOLUTION

We first split the problem of learning a policy π at the
decision-maker, and of characterizing the required rate to
convey it, when a fixed distortion between π and the policy
adopted by the agents Q is allowed. We then study the prob-
lem exploiting Thompson sampling (TS), which is a popular
strategy to efficiently solve MAB problems, and characterize
the required asymptotic rate to solve the problem. We also
provide an upper bound on the Bayesian system regret when
the TS policy can be perfectly conveyed to the controller.

A. The Asymptotic Policy Rate
We model the environment as a discrete memoryless source

(DMS), which generates at each round states from a finite
alphabet S with probability PS , emitting sequences of N
symbols sN = (s1, . . . , sN ), one per agent. We then denote
with Q̂sN (s) the empirical probability of state s ∈ S in sN .
We also consider the sequence of actions aN , and denote with
Q̂sNaN (s, a) the empirical joint probability of the pair (s, a)
in ((s1, a1), . . . , (sN , aN )). The whole picture can be seen in
Fig. 1, where the actions taken by the agents are denoted by
â to indicate that they can differ from a dictated by policy π.
We assume that the distribution PS is known (or accurately
estimated).

The decision-maker can observe the realization sN of the
contexts, and its task is to transmit an index m ∈ {1, . . . , B}
over the channel so that the controller can generate from m
the actions aN , where Q̂sNaN is as close to PSA(s, a) =
PS(s)π(a|s) as possible, where closeness is defined in terms
of a distortion measure E[d(Q̂SNAN , PSA)], which in general
is not an average of a per-letter distortion measure. The
problem is a compression task in which the decision-maker has
knowledge of the states sN , and wants to transmit a conditional
probability distribution πA|S to the agents, consuming the
minimum amount of bits, in such a way that the empirical
distribution Q̂sNaN is close to the joint distribution PSA
induced by the policy. For a distortion function d(QSA, PSA)
that is 1) nonnegative, 2) upper bounded by a constant Dmax,
3) continuous in QSA, and 4) convex in QSA, in [19]
the authors provide the rate-distortion function R(D), i.e.,
the minimum rate R = log2 B

N bits per symbol such that
E[d(Q̂SNAN , PSA)] ≤ D, in the limit when N is arbitrarily
large.

Theorem IV.1 ( [19], Theorem 1). The rate-distortion function
for the problem of communicating policies is

R(D) = min
QA|S :d(QSA,PSA)≤D

I(S;A) (4)

assuming the set of QA|S satisfying d(QSA, PSA) ≤ D is not
empty.

Here QSA = PSQA|S is the joint probability induced by
the environment distribution PS and by policy QA|S , which
depends on the information sent by the decision-maker. As we
can see from Eq. (4), in the asymptotic limit of N agents, the
problem admits a single-letter solution, which also serves as
a lower bound on the finite agent scenario. When imposing
D = 0, the needed rate is the mutual information between
the states and actions, which are related by the policy π.
Furthermore, if we allow D > 0, Eq. (4) characterizes the
minimum rate needed to convey the actions to the controller.
However, finding a closed form solution for the rate-distortion
function is not a trivial task in general.

B. Thompson Sampling (TS)

In the proposed solution, the decision-maker adopts the TS
strategy [20] to learn a policy. The reason why TS is adopted
is because, among the state-of-the-art MAB solutions, it relies
on posterior sampling [21], that can be exploited within one
round to sample different actions in parallel across the N
agents. If upper confidence bound (UCB)-based algorithms are
used, they should be adapted to perform exploration within one
round, given that the policy is deterministic. Consequently, the
action probability distribution induced by TS is exploited in
the R-CMAB problem to perform exploration in parallel, and
to further compress the original policy using Eq. (4).

In particular, the decision-maker implements one TS in-
stance for each state s ∈ S. Indeed, in our general formulation,
there is no known structure between the states and rewards
to be exploited. Consequently, the decision-maker maintains
estimates of the distributions ps,ah (µ) of the mean reward



µ(s, a) ∈ R, ∀s ∈ S, ∀a ∈ A. To take a decision in round h
and state sh, the decision-maker samples µ̂h(sh, a) ∼ psh,ah ,
∀a ∈ A, and takes the action a∗ = arg maxa∈A{µ̂h(sh, a)}.
This procedure is repeated for each agent n ∈ N . After
receiving the rewards {rnh}

N
n=1, the decision-maker can update

its belief on µ(s, a), i.e., the probabilities ps,ah (µ), in order
to minimize the regret. We notice that this strategy induces
a probability distribution πh(a|s) over the actions that is
πh(a|s) =

∫
D p

s,a
h (µ)

∏K
j=1,j 6=a P

s,j
h (µ)dµ, where P s,jh (µ) is

the cumulative distribution function (CDF) of µ(s, j), and
the random variables µ(s, a) are considered independently
distributed.

However, in our scenario, the constraint on the rate imposed
by the communication channel can make it infeasible for
the controller to sample the actions directly from the true
distribution πh(a|s). The agents have to use a proxy Qh(a|s),
which is the one obtained from the message received over the
channel. This problem is similar to approximate TS, where
a proxy distribution is used to sample the actions, or the
reward means, given that the true one is too complex to sample
from. In that case, the bottleneck is due to the complexity of
sampling from the true mean reward distribution, whereas in
this work it is imposed by the limited-rate communication
channel.

C. Asymptotic Limit for the Achievable Rate

We adopt Assumption 1 in [22], that considers rewards to
be distributed following canonical exponential families, and
the priors used by TS to be bounded away from zero ∀(s, a).

In the following, we provide the minimum rate needed to
achieve sub-linear regret in all the states, s ∈ S, exploiting the
TS scheme explained above. We define H(A∗) as the entropy
of the optimal arm, which we assume unique, or uniquely
determined within a set of optimal arms, and computed based
on the marginal π∗(a) =

∑
s PS(s)π∗(a|s), where π∗ is the

optimal policy, and we prove that it is the minimum rate
required.

We will use the following result from [23].

Theorem IV.2 ( [23], Theorem 2). Suppose that the TS policy
π(a|s) achieves sub-linear regret in each state s ∈ S, then

lim
h→∞

πh(a∗(s)|s) = 1 a.s. (5)

where
a∗(s) = arg max

a∈A
µ(s, a).

We now provide the following lemma.

Lemma IV.3. Assuming that Thompson Sampling policy
πh(a|s) achieves sub-linear Bayesian system regret, then

lim
h→∞

Iπh
(S;A) = lim

h→∞
Hπh

(A) = H(A∗). (6)

Sketch of the Proof. The proof follows from Theorem IV.2,
whose consequence is that, in the limit, the entropy of the
TS policy conditioned on state s is zero. By using this with
the definition of the rate provided in Eq. (4), it is possible to
conclude the proof.

Theorem IV.2 and Lemma IV.3 are useful to prove the
following results. Here the available rate R is considered fixed
in all rounds h = {1, . . . ,H}.

Lemma IV.4. If R < H(A∗), then it is not possible to convey
a policy Q(a|s) that achieves sub-linear Bayesian system
regret.

Sketch of the Proof. If R < H(A∗), from Eq. (4), the policy
Q conveyed to the controller will always have non-zero
distortion d(QSA, π

∗
SA) = D > 0 with respect to π∗. If we

take, for example, the total variation as the distortion measure,
in each round h, Q would sample a sub-optimal arm with
constant probability of at least D. Consequently, sub-linear
regret cannot be achieved.

The following Lemma provides the achievability part.

Lemma IV.5. If R > H(A∗), then achieving sub-linear regret
is possible in all states s ∈ S, as N →∞.

Sketch of the Proof. The intuition is that, even though during
training the required rate Rh to convey the current policy
may exceed R, exploration is never penalized (actually it
is enforced by the system). Consequently, TS will converge
to the optimal policy [24], that can be eventually perfectly
transmitted to the controller, given that R > H(A∗), which
is the rate required in the limit as N → ∞. This, together
with the fact that TS achieves sub-linear regret in this parallel
multi-agent version of the problem (Theorem IV.6), concludes
the proof.

The consequence of Lemma IV.5 is that, even if the exact TS
policy πh cannot be transmitted ∀h, as long as R > H(A∗), it
is still possible to achieve sub-linear regret. According to the
definition in Eq. (3), this implies that, as N → ∞, any rate
R > H(A∗) is achievable, while any rate R < H(A∗) is not
achievable.

D. Regret of the Optimal Policy

In this section, we present both finite-time and asymptotic
upper bounds on the regret obtained by the TS strategy, when
the policy πh can be perfectly transmitted at each round
h. We further provide the per-agent regret, defined as the
one obtained by a single agent. However, to fairly compare
the obtained regret with TS applied to the standard CMAB
problem, we write it as a function of the virtual time-steps
t ∈ {1, . . . , T}, with T = NH , i.e., it represents the total
number of interactions the system has with the environment
through the agents. Indeed, the problem is mathematically
equivalent to a single-agent CMAB, in which the parallel in-
teractions of the N agents are mapped onto a one-dimensional
time line, with the additional constraint that the policy π can
be updated only every N time-steps, i.e., at time-steps t = Nh.

Theorem IV.6 (Bayesian System Regret). The Bayesian sys-
tem regret of TS is upper bounded by

BR(π, T ) ≤ 2K|S|N + 4
√

(2 + 6 log T )KN |S|T , (7)



and the asymptotic regret is

BR(π, T ) ∈ O
(√

KT |S| log T
)
. (8)

Sketch of the Proof. The proof follows similar arguments to
those in [21], Section 6, with the difference that during each
round h, the policy adopted by the N parallel agents is not
sequentially optimized, but can be updated only at the end
of the round. Consequently, a penalty of

√
N appears on the

upper bound of finite-time regret, as when T is small, playing
with a sub-optimal policy N times in parallel amplifies the
regret. The result follows from bounding the gap between the
counter of the number of times a particular action has been
sampled until t, and the counter at the end of the previous
round, which is the value used to update the policy, and to
construct the confidence bounds [21]. In the asymptotic case,
i.e., T >> N , this effect vanishes, as the gap is almost N .

Theorem IV.7 (Bayesian Agent Regret). The Bayesian per-
agent regret of TS is upper bounded by

BR(π, T ) ≤ 2K|S|+ 4

√
(2 + 6 log T )K|S|T

N
, (9)

and the asymptotic regret is

BR(π, T ) ∈ O
(

1

N

√
KT |S| log T

)
. (10)

Sketch of the Proof. The proof relies on Theorem IV.6, and
on the observation that the per-agent regret is equal to
BR(π,H, n) = BR(π,H)

N , due to the symmetry of the problem.
Indeed, each agent interacts with an independent and identi-
cally distributed (i.i.d.) copy of the environment and, at each
round h, adopts the policy πh(a|s) known by the decision-
maker, and equal for all the agents n ∈ N .

V. NUMERICAL RESULTS

In this experiment we analyze the asymptotic rate required
by the TS policy to be conveyed, that serves as a lower bound
for practical scenarios with finite N , in three different envi-
ronments. In all the scenarios, there are 16 actions per state,
and 16 states that are sampled uniformly by the environment.
The first one is called 16 Groups, and the reward behind arm
aj in state si is a Bernoulli random variable with parameter
µ(si, aj) = 0.8 if i = j, whereas µ(si, aj) ∼ Unif[0,0.75]
if i 6= j, with i, j ∈ {0, . . . , 15}. The best action is thus
strongly correlated with the state, and a sufficiently high rate
is required to sample from the optimal policy π∗. In the
second experiment, the setting is similar to the one presented
above, but µ(si, aj) = 0.8 if b j2c = i, and sampled uniformly
in [0, 0.75] otherwise. Consequently, the best actions can be
grouped into 8 different classes. This scenario is indicated as
the 8 Groups experiment. The same procedure is applied to
generate the last environment, except that the best responses
are grouped into just 2 different classes.

Fig. 2 shows the theoretical rate needed to convey the
TS policy in the three described scenarios, as a function
of the number of rounds. It is possible to observe that the
policy rates are converging to 4, 3, 1 bits, respectively, which
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Fig. 2: Asymptotic rate needed to reliably transmit the
decision-maker’s policy. Curves are average values ±σ, com-
puted over 5 independent runs per scenario.

are the mutual information values between the states and
optimal actions, i.e., the entropy of uniform distributions over
the problem classes. We can also notice that, during the
exploration phase at the beginning of the training process,
very limited information has to be sent, whereas the required
rate gradually increases as the decision-maker learns to map
states to optimal responses. Interestingly in the 2 Groups case,
we can observe that during the training phase the algorithm
requires a rate Rπ > H(A∗) to convey the policy π with
zero error, before converging to the optimal π∗. However,
by Lemma IV.5, we know we could potentially restrict the
available rate to H(A∗), and communicate the compressed
policy during those rounds in which Rπ > H(A∗), while still
achieving sub-linear regret.

VI. CONCLUSION

We have introduced and studied the R-CMAB problem, in
which an intelligent entity, i.e., the decision-maker, observes
the contexts of N parallel CMAB processes, and has to decide
on the actions depending on the current contexts and the past
actions and rewards. However, the actions are implemented by
a controller that is connected to the decision-maker through a
communication link. First, we cast the problem into the proper
information-theoretic framework, and provided the needed rate
to convey a policy, when admitting a maximum distortion
between a compressed policy adopted by the controller and
the one of the decision-maker. We then analyzed the problem
when the TS algorithm is used, and characterized the minimum
achievable rate to obtain sub-linear regret. In the end, we pro-
vided finite-time and asymptotic upper bounds on the system
regret, when the policy can be conveyed to the controller.
Ongoing work includes the formulation of the problem with
specific distortion functions, which can be derived from the
underlying learning objectives, and an analysis of the behavior
when non-zero distortion is allowed.

VII. ACKNOWLEDGMENTS

This work was supported by the European Research Council
(ERC) Starting Grant BEACON (grant agreement no. 677854).



REFERENCES

[1] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” Proceedings of the IEEE, vol. 107, no. 11, pp.
2204–2239, Nov. 2019.
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cations: A joint learning and communication framework for multi-agent
reinforcement learning over noisy channels,” IEEE Journal on Selected
Areas in Communications, vol. 39, no. 8, pp. 2590–2603, Aug. 2021.

[6] A. V. Clemente, H. N. Castejón, and A. Chandra, “Efficient Parallel
Methods for Deep Reinforcement Learning,” ArXiv e-prints, May 2017.

[7] T. Berger, “Decentralized estimation and decision theory,” in IEEE 7th.
Spring Workshop on Inf. Theory, Mt. Kisco, NY, Sep. 1979.

[8] R. Ahlswede and I. Csiszár, “Hypothesis testing with communication
constraints,” IEEE Transactions on Information Theory, vol. 32, no. 4,
pp. 533–542, Jul. 1986.
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