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Abstract—We address the smart meter (SM) privacy problem
by considering the availability of a renewable energy source
(RES) and a battery which can be exploited by a consumer to
partially hide the consumption pattern from the utility provider
(UP). Privacy is measured by the mutual information rate
between the consumer’s energy consumption and the renewable
energy generation process, and the energy received from the grid,
where the latter is known by the UP through the SM readings,
and the former two are to be kept private. By expressing the
information leakage as an additive quantity, we cast the problem
as a stochastic control problem, and formulate the corresponding
Bellman equations.

I. INTRODUCTION

An essential component of a smart grid is the smart meter
(SM), a device that records minutely the electricity consump-
tion of a household. The adoption of SMs is a key advantage
for both utility providers (UPs), who would be able to better
monitor the consumption and trade energy with users, and the
distribution system operators, who would better manage and
run the network. The adoption of SMs is also favourable for
consumers, since it allows a time-of-usage pricing with the
consequent possibility to reduce electricity costs by choosing
less expensive time slots for power-consuming appliances.

However, the high resolution of the data collected by the
SMs also makes it possible to infer a consumer’s energy
consumption load profile, i.e., the time series of energy usage
collected with regularity from a household. These profiles are
extremely valuable, since it is possible to extrapolate sensitive
information from them, such as users’ habits and presence at
home, illnesses or disabilities, the equipments being used, and
even which TV channel is being watched [1].

Approaches to address SM privacy in the literature can be
broadly classified into two groups: those that modify the SM
readings before being sent to the UP, and those that modify
the actual user energy demand. In the first group, obfuscation
[2], anonymization [3] and aggregation techniques [4] are
included. Regarding the second approach, user consumption
can be filtered through a storage device, as described in [5],
[6], [7], [8] and [9], or also by including an alternative energy
source, e.g., a renewable energy source (RES), as in [10], [11]
and [12]. In particular, in [8], privacy is evaluated through
a Bayesian detection setting and the problem is formulated
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Figure 1. System model. Xt, Yt, Et and Bt are the user energy demand,
the output load, the amount of renewable energy obtained from a renewable
energy source, and the state of the battery at time t, respectively. The dashed
line highlights the meter readings being reported to the UP.

as a Markov decision process (MDP). The smart grid state
estimation problem is addressed in [13] and the trade-off
between differential privacy and the mean distortion of the
state estimate is studied. Despite all these efforts, SM privacy
is an area of ongoing active research, and wide consensus is
still to be reached even on fundamental questions, such as how
to measure privacy.

In this paper, we study the SM privacy problem in the
presence of a RES together with a rechargeable energy storage
device, i.e., a battery. We adopt an information theoretic
approach, by minimizing the mutual information between the
input load and the renewable energy process, and the output
load of the system. Our main contribution here is to cast this
problem as an MDP, by finding an additive formulation for
the information leakage. We note that a similar approach has
been followed in [9], where a battery has been considered.
Here, we also consider the presence of a RES to further
hide user’s consumption. Finally, the corresponding dynamic
program (DP) is formulated, which can be solved numerically
in order to identify the optimal energy management policy.

The remainder of this paper is organized as follows. In
Section II the system model is introduced. In Section III it
is assumed that the UP does not know the realizations of the
renewable energy process, whereas in Section IV it does. For
both cases, the information leakage minimization problem can
be cast as an MDP. Conclusions are drawn in Section V.

II. SYSTEM MODEL

We consider the discrete time system depicted in Figure
1. The input load Xt ∈ X is the energy requested by
the user in time slot t, where X = {0, 1, . . . Xmax}. The



output load Yt ∈ Y is the energy received from the UP,
where Y = {0, 1, . . . , Ymax}. We assume {Xt}∞t=1 to be a
first-order time-homogeneous Markov chain with transition
probability qX , whose initial state X1 is distributed according
to pX1

. In time slot t, Et ∈ E = {0, 1, . . . Emax} units of
energy are generated by the RES, which becomes available
at the beginning of time slot t. {Et}∞t=1 is also a first-order
time-homogeneous Markov chain with transition probability
qE and initial state E1, distributed according to pE1 . We
further assume the availability of a battery of capacity Bmax,
whose state of charge at the beginning of time slot t is
Bt ∈ {0, 1, . . . Bmax}. The initial state of the battery B1

has distribution pB1
. We assume that all the involved random

processes are defined over finite alphabets and that there is
a minimum unit of energy such that all the aforementioned
quantities are integer multiples of this unit. Moreover, we
assume Ymax ≥ Xmax +Bmax.

In our model, user demands have to be satisfied at all times:

Bt + Et + Yt ≥ Xt, ∀t. (1)

We do not allow intentional energy waste, or selling energy
back to the grid; that is, we impose

0 ≤ Yt ≤
[
Bmax +Xt −Bt − Et

]+
, ∀t, (2)

where [a]+ = a if a > 0, and 0 otherwise. Similarly, we do
not allow wasting of renewable energy when the battery is not
full. These actions could provide additional privacy to the user,
albeit at a significantly higher energy cost. However, energy
can still be wasted inevitably, for example, when the battery
is full and the input load is smaller than the generated energy.
The battery state is updated as

Bt+1 = min
{
Bt + Et −Xt, Bmax

}
+ Yt, ∀t. (3)

Let Wt , Bt + Et − Xt. The feasible set for Yt, given
Wt = wt, is given by

Ȳ(wt) ,
{
yt ∈ Y : [−wt]+ ≤ yt ≤

[
Bmax − wt

]+}
.

An energy management policy f = (f1, f2, . . .) decides
on the amount of energy to request from the UP at each
time t, given the previous values of input load Xt, renewable
energy Et, battery state Bt, and output load Y t−1. We
consider randomized policies, that is, each ft is a conditional
probability ft(yt|xt, et, bt, yt−1), with f ∈ F .

Our goal is to minimize the leakage to the UP of information
about user’s energy consumption as well as the amount of
energy generated by the RES. Accordingly, the information
leakage rate induced by policy f over n time slots is

I(n, f) ,
1

n
If (Xn, En, B1;Y n). (4)

Thus, our optimization problem can be written as

I(n) , inf
f∈F

1

n
If (Xn, En, B1;Y n), (5)

where the minimization is over all the feasible policies

f ∈ F . Note that, in the above form, this is an ex-
tremely complex optimization problem as we need to specify
p(Yt|Xt, Et, B1, Y

t−1) for every t, and every possible real-
ization (Xt, Et, B1, Y

t−1) = (xt, et, b1, y
t−1).

In the following, we identify two different scenarios based
on the information available at the UP regarding the renewable
energy process. For both scenarios, we will rewrite (5) in an
additive form, which consequently can be formulated as a DP.
Given qX , qE , pX1

, pE1
and pB1

, our goal is to find an optimal
battery charging policy f = (f1, f2, . . .) ∈ F that solves (5),
for both finite and infinite horizon settings.

III. RENEWABLE ENERGY NOT KNOWN BY THE UP
In this section En is treated as a random sequence whose

realizations are known causally only to the user. This scenario
may occur if, for example, En originates from light, vibration,
thermal, or biological sources, which could be extremely
difficult, if not impossible, for the UP to track.

A. Additive Formulation for the Information Leakage Rate
To formulate the problem as an MDP we need to write

the cost function, i.e., the leakage rate, in an additive form.
Specifically, we aim at a formulation in which, conditioned
on Y t−1, the output load at time t, Yt, leaks information only
on Xt, Et and Bt, but not on their past values. This will be
achieved by restricting the set of possible policies to a smaller
set F ′ ⊆ F , where each f ′ ∈ F ′ is a conditional probability
of the form f ′t(yt|xt, et, bt, yt−1), i.e.,

f ′t : X × E × B × Yt−1 → Y, ∀t.

The joint measure induced by f ′ is

pf
′
(Xn = xn, En = en, Bn = bn, Y n = yn)

= pX1
(x1)pE1

(e1)pB1
(b1)f ′1(y1|x1, e1, b1)

×
n∏
t=2

[
1bt

{
min{bt−1 + et−1 − xt−1, Bmax}+ yt−1

}
×qX(xt|xt−1)qE(et|et−1)f ′t(yt|xt, et, bt, yt−1)

]
,

where 1 is the indicator function, i.e., 1bt{a} = 1 if bt = a,
and 0 otherwise. bt ∈ {0, . . . , Bmax} holds since Yt ∈ Ȳ(wt).

The next theorem, whose proof is omitted due to space lim-
itations, states that this restriction is without loss of optimality.

Theorem 1. There is no loss of optimality in focusing only
on charging strategies f ′ ∈ F ′, where F ′ ⊆ F . Moreover,
the minimum information leakage rate can be written in the
following additive form

I(n) = inf
f ′∈F ′

1

n

n∑
t=1

If
′
(Xt, Et, Bt;Yt|Y t−1). (6)

It is possible to generalize Theorem 1 to the scenario in
which X and E are Markov chains with order higher than 1,
i.e., pXt|Xt−1 = pXt|Xt−1

t−m
and pEt|Et−1 = pEt|Et−1

t−l
. If new

policies f ′′ ∈ F ′′ are defined such that

f ′′t : Xm × E l × B × Yt−1 → Y, ∀t, (7)



where F ′′ ⊆ F , then the following corollary holds.

Corollary 1. Let X and E be Markov chains of order m
and l, respectively. There is no loss of optimality in focusing
only on charging strategies f ′′ ∈ F ′′, and for those strategies
the minimum information leakage rate can be written in the
following additive form

I(n) = inf
f ′′∈F ′′

1

n

n∑
t=1

If
′′
(Xt

t−m+1, E
t
t−l+1, Bt;Yt|Y t−1).

B. MDP Formulation

Our next goal is to cast the problem as a stochastic control
problem, which can be formulated as a DP. For this, we
need to specify the state space, the control actions and the
instantaneous cost corresponding to state-action pairs. The per-
step cost in (6) depends on past observations yt−1, which
could be considered as the state of the DP at time t. However,
this would mean a state space growing with time. To avoid
this, we follow the approach of [14] and [9], and introduce a
belief state, which can be shown to replace the yt−1 sequence.

The state of the DP at time t is considered to be the
causal posterior probability distribution over the triplet St ,
(Xt, Et, Bt), given the knowledge of past outputs Y t−1:

βt(st) ,

{
p(s1), if t = 1,

p(st|yt−1), otherwise.
(8)

βt(st) can be considered as the belief that the UP has about
st at time t, given its past observations Y t−1.

The control action Ut ∈ U is the conditional probabil-
ity ut(yt|st). A randomized history-dependent policy π =
{π1, π2, . . .} chooses control action at time t via ut = πt(h),
where h represents the history available to the controller. Thus,
the time ordering of the events is S1, U1, Y1, S2, U2, Y2, . . ..

Without loss of optimality, we can focus on randomized
Markov policies that depend only on the current state βt, i.e.,
πt(βt) = πt(h). This holds for both finite and infinite horizon
problems under mild assumptions [15]. Policy π induces the
following joint measure:

pπ(Xn = xn, En = en, Bn = bn, Y n = yn)

=pX1(x1)pE1(e1)pB1(b1)u1(y1|x1, e1, b1)

×
n∏
t=2

[
1bt

{
min{bt−1 + et−1 − xt−1, Bmax}+ yt−1

}
×qX(xt|xt−1)qE(et|et−1)ut(yt|xt, et, bt)

]
.

The state can be updated recursively, i.e., βt+1 = φ(βt, ut)

βt+1(st+1) = p(st+1|yt),
=
∑
st

p(st, st+1|yt),

=
∑
st

p(st, st+1, yt|yt−1)

p(yt|yt−1)
,

(a)
=

∑
st
p(st|yt−1)p(yt|st, yt−1)p(st+1|st, yt)∑

st,st+1
p(st|yt−1)p(yt|st, yt−1)p(st+1|st, yt)

,

(b)
=

∑
st
βt(st)ut(yt|st)qX(xt+1|xt)qE(et+1|et)∑

st,st+1
βt(st)ut(yt|st)qX(xt+1|xt)qE(et+1|et)

×
1bt+1

{
min{bt + et − xt, Bmax}+ yt

}
1bt+1

{
min{bt + et − xt, Bmax}+ yt

} , (9)

where (a) follows from Bayes rule and the Markov chain
Y t−1 → (St, Yt) → St+1; and (b) is due to the definitions
of βt and ut.

Given Y t−1 = yt−1, the per-step cost of taking action ut
when st = (xt, et, bt) is

gt(xt, et, bt, ut, y
t) , log

ut(yt|xt, et, bt)
p(yt|yt−1)

. (10)

It is possible to show that this new formulation is equivalent
to the original problem, by considering the average n-horizon
cost and the knowledge of yt−1 as in I(n, f ′)

I(n, π) =
1

n
Eπ
[ n∑
t=1

gt(xt, et, bt, ut, y
t)

]
,

=
1

n

n∑
t=1

∑
st∈S,yt∈Yt

p(st, yt|yt−1) log
ut(yt|st)
p(yt|yt−1)

,

= I(n, f ′), (11)

where we remind that ut is also a function of yt−1, since
ut = πt(βt). Given a policy π, βt and ut are determined by
yt−1. The average information leakage at time t is

Eπ
[
gt(Xt, Et, Bt, Ut, Y

t)
]

=I(Xt, Et, Bt;Yt|Y t−1 = yt−1),

=
∑

xt∈X ,et∈E
bt∈B,yt∈Yt

p(xt, et, bt|yt−1)p(yt|xt, et, bt, yt−1)

× log
ut(yt|xt, et, bt)
p(yt|yt−1)

,

=
∑

st∈S,yt∈Y
βt(st)ut(yt|st) log

ut(yt|st)∑
s̃t∈S βt(s̃t)ut(yt|s̃t)

,

=I(Xt, Et, Bt;Yt|βt, ut), (12)

where the last step confirms that Y t−1 → (βt, ut) →
(Xt, Et, Bt, Yt) is a Markov chain.

The following lemma summarizes the results of this section.

Lemma 1. Without loss of optimality, the SM privacy problem
(5) for the scenario in which the UP does not know the
realizations of the renewable energy process can be modeled
as an MDP, such that

1) the state at time t is given by (8),
2) the action at time t is specified by ut(yt|xt, bt, et),
3) and the instantaneous cost is given by (12).

In order to formulate the Bellman equations, it is convenient



to first define an operator T for the DP as follows

(TJ)(β) = g(s, π(β), β) +
∑

s∈S,y∈Y
β(s)u(y|s)J(φ(β, u)),

for β ∈ B̄, where J : B̄ → R is the value function.
For the finite horizon setting, let Jt denote the value function

at time t ≤ n, with Jn+1 = 0. For t ≤ n, we have

Jt(β) = inf
u∈U

[TJt+1](β). (13)

The minimization problem is solved by going backwards in
time from t = n to t = 1 in order to find the optimal policy
π∗ = (π∗1 , π

∗
2 , . . . , π

∗
n) that minimizes (13) for every t.

In the infinite horizon scenario, since the total information
leakage over an infinite number of stages is generally infinite,
we minimize the average information leakage per stage, i.e.,

J(β0) = lim
n→∞

1

n
Eπ
[ n−1∑
t=0

gt(st, πt(βt), βt)

]
. (14)

The solution for the infinite horizon problem can be deter-
mined as the solution to the following Bellman equation

λ+ J(β) = inf
u∈U

[TJ ](β), (15)

where λ ∈ R is the optimal average information leakage,
and the vector J(β) is the relative or differential privacy
leakage, i.e., the difference of the expected leakage to reach
a conventional state and the cost that would be incurred if
the cost per stage was equal to λ for all states. Via efficient
dynamic programming algorithms, e.g., value iteration and
policy iteration [15], (15) can be solved and an optimal
stationary policy π∗ = (π∗, π∗, . . . , π∗) can be found.

Proposition 1. The value functions {Jt}nt=1 are concave.

Concave value functions allow the use of convex optimiza-
tion algorithms. Finally, the following corollary generalizes
our result to an input load and a RES with larger memory.

Corollary 2. Let X and E be Markov chains of order m and
l, respectively. Let St , (Xt

t−m+1, E
t
t−l+1, Bt). The previous

steps follow also for this scenario, where
1) the state is βt(st) , p(st|yt−1),
2) the action is ut(yt|st),
3) and the cost is gt(st, ut, yt) , log ut(yt|st)

p(yt|yt−1) .

IV. RENEWABLE ENERGY KNOWN BY THE UP
Here we assume that the UP knows the realizations of the

renewable energy process En, as shown in Figure 2. This
scenario can occur if we consider solar energy as the RES, and
the UP can accurately estimate the renewable energy produced
from its own observations in nearby locations, weather forecast
of the area, and the specifications of the solar panel.

The goal is to find a battery charging policy f ∈ F that
minimizes the following information leakage rate

I(n, f) =
1

n
I(Xn, En, B1;Y n|En),

=
1

n
I(Xn, B1;Y n|En), (16)

Figure 2. System model. In this scenario, information about the realizations
of the renewable energy process is available to the UP.

where the charging policy at time t is

ft : X t × Et × Bt × Yt−1 → Y, ∀t.

A. Additive Formulation for the Information Leakage Rate

Similarly to Section III, we want to express the problem in
an additive form. We define policies f ′t(yt|xt, et, bt, yt−1) as

f ′t : X × Et × B × Yt−1 → Y, ∀t, (17)

and state the following theorem.

Theorem 2. There is no loss of optimality in focusing only
on charging strategies f ′ ∈ F ′, where F ′ ⊆ F . Moreover,
the minimum information leakage rate can be written in the
following additive form

I(n) = inf
f ′∈F ′

1

n

n∑
t=1

If
′
(Xt, Bt;Et, Yt|Et−1, Y t−1). (18)

The proof follows similar steps to that of Theorem 1.
For the setting in which X and E are Markov processes of

order m and l, respectively, we define policies f ′′ such that

f ′′t : Xm × Et × B × Yt−1 → Y, ∀t. (19)

Then the following corollary holds.

Corollary 3. Let X and E be Markov chains of order m
and l, respectively. There is no loss of optimality in focusing
only on charging strategies f ′′ ∈ F ′′, and for those strategies
the minimum information leakage rate can be written in the
following additive form

I(n) = inf
f ′′∈F ′′

1

n

n∑
t=1

If
′′
(Xt

t−m+1, Bt;Et, Yt|Y t−1, Et−1).

B. MDP Formulation

As in Section III-B we specify the state space, control
actions and the instantaneous cost. The state of the DP at time t
is considered to be the causal posterior probability distribution
over St , (Xt, Bt), given the knowledge of Y t−1 and Et−1:

βt(st) ,

{
p(s1), if t = 1,

p(st|yt−1, et−1), otherwise.
(20)

βt(st) has again the interpretation of belief that the UP has
about st at time t, given (Y t−1, Et−1).



The action Ut ∈ U is the conditional probability
ut(yt|st, et) given by ut = πt(h). As before, we consider
without loss of optimality Markov policies π = {π1, π2, . . .}
that depend only on the current state βt, i.e., πt(βt) = πt(h).
As in (9), β is updated recursively, i.e., βt+1 = φ′(βt, ut). et
is not in the belief as the UP has perfect knowledge about it.

We follow steps similar to those of Section III-B, and define
the cost of taking action ut when st = (xt, bt) as

gt(xt, e
t, bt, ut, y

t) , log
qE(et|et−1)ut(yt|xt, et, bt)

p(yt, et|yt−1, et−1)
. (21)

By considering the average n-horizon cost, it is possible to
show that this formulation is equivalent to the original problem

I (n, π) =
1

n
Eπ
[ n∑
t=1

gt(xt, e
t, bt, ut, y

t)

]
,

=
1

n

n∑
t=1

∑
st∈S

yt∈Yt,et∈Et

p(st, et, yt|yt−1, et−1)gt(st, e
t, ut, y

t),

=I(n, f ′), (22)

where ut is also a function of (yt−1, et−1) since ut = πt(βt).
Given a policy π, βt and ut are determined by (yt−1, et−1).
Then, it is possible to write

Eπ
[
gt(Xt, E

t, Bt, Ut, Y
t)
]

=I(Xt, Bt;Et, Yt|Y t−1 = yt−1, Et−1 = et−1),

=
∑

xt∈X ,et∈Et
bt∈B,yt∈Yt

p(xt, et, bt|yt−1, et−1)p(yt|xt, bt, et, yt−1)

× log
qE(et|et−1)ut(yt|xt, et, bt)

p(yt, et|yt−1, et−1)
,

=
∑

st∈S,yt∈Y
et∈E

βt(st)qE(et|et−1)ut(yt|st, et)

× log
qE(et|et−1)ut(yt|st, et)∑

s̃t∈S βt(s̃t)qE(et|et−1)ut(yt|s̃t, et)
,

=I(Xt, Bt;Et, Yt|βt, qE , ut), (23)

where the last step confirms that (Y t−1, Et−1) →
(βt, qE , ut)→ (Xt, Et, Bt, Yt) is a Markov chain.

The following lemma summarizes the results of this section.

Lemma 2. Without loss of optimality, the SM privacy problem
(5) for the scenario in which the UP knows the realizations
of the process En can be modeled as an MDP, such that

1) the state at time t is given by (20),
2) the action at time t is specified by ut(yt|xt, et, bt),
3) and the instantaneous cost is given by (23).

Bellman equations for the finite and infinite horizon prob-
lems can be obtained as in Section III, with the consequent
changes in the formulations of β, u and π.

A final corollary, counterpart of Corollary 2, holds.

Corollary 4. Let X and E be Markov chains of order m
and l, respectively, St , (Xt

t−m+1, Bt), and qlE the l-th order

transition probability. The previous passages follow also for
this scenario, where

1) the state is βt(st) , p(st|yt−1, et−1),
2) the action is ut(yt|st, et),

3) the cost is gt(st, ut, yt, et) , log
qlE(et|et−1

t−l )ut(yt|st,et)
p(yt,et|yt−1,et−1) .

V. CONCLUSIONS

We have studied the information leakage rate in an SM
system by considering the availability of a RES and a finite ca-
pacity battery at the consumer side. The minimum information
leakage rate has been characterized for both the scenario in
which the UP does not know the realizations of the renewable
energy process, and the scenario in which the UP knows
them. For both scenarios, we have formulated the minimum
information leakage rate as an additive cost function, and cast
the problem as an MDP, thereby finding the expressions for the
corresponding Bellman equations. The optimal leakage rate for
a given scenario can be obtained by discretizing the continuous
belief state and applying dynamic programming techniques.
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