
1

Coded Computation across Shared Heterogeneous
Workers with Communication Delay

Yuxuan Sun, Member, IEEE, Fan Zhang, Junlin Zhao, Member, IEEE,
Sheng Zhou, Member, IEEE, Zhisheng Niu, Fellow, IEEE, Deniz Gündüz, Fellow, IEEE

Abstract—Distributed computing enables large-scale compu-
tation tasks to be processed by multiple workers in parallel.
However, the randomness of communication and computation
delays across the workers causes the straggler effect, which may
degrade the delay performance. Coded computation helps to
mitigate the straggler effect, but the amount of redundant load
and task assignment to the workers should be carefully opti-
mized. In this work, we consider a multi-master heterogeneous-
worker distributed computing scenario, where multiple matrix
multiplication tasks are encoded and allocated to the workers
with different computing capabilities. The goal is to minimize
the communication plus computation delay of all the tasks.
We propose joint worker assignment, resource allocation and
load allocation algorithms under both dedicated and fractional
worker assignment policies, where each worker can process
the encoded tasks from either a single master or multiple
masters, respectively. Then, the non-convex delay minimization
problem is solved by employing the Markov’s inequality-based
approximation, Karush-Kuhn-Tucker conditions, and successive
convex approximation methods. Through extensive simulations,
we show that the proposed algorithms can reduce the task
completion delay compared to the benchmarks.

Index Terms—Coded computation, communication delay,
Markov’s inequality, convex optimization, successive convex ap-
proximation.

I. INTRODUCTION

With the fast development of artificial intelligence tech-
nologies and the explosion of data, computation tasks for
the training and inference of machine learning (ML) models
are becoming increasingly complex and demanding, which
are almost impossible to be realized on a single machine.
Distributed computing frameworks have been developed to

Y. Sun, F. Zhang, S. Zhou and Z. Niu are with the Beijing Na-
tional Research Center for Information Science and Technology, Depart-
ment of Electronic Engineering, Tsinghua University, Beijing 100084,
China (e-mail: sunyuxuan@tsinghua.edu.cn, zhang-f17@tsinghua.org.cn,
sheng.zhou@tsinghua.edu.cn, niuzhs@tsinghua.edu.cn).

J. Zhao is with the Chinese University of Hong Kong (Shenzhen), Shenzhen
518172, China (e-mail: zhaojunlin@cuhk.edu.cn).

D. Gündüz is with the Department of Electrical and Electronic Engineering,
Imperial College London, SW7 2BT, UK, and the Department of Engineering
Enzo Ferrari, University of Modena and Reggio Emilia (UNIMORE), Modena,
Italy (e-mail: d.gunduz@imperial.ac.uk).

Y. Sun, F. Zhang, S. Zhou and Z. Niu are sponsored in part by the
National Key R&D Program of China No. 2020YFB1806605, by the National
Natural Science Foundation of China (No. 62022049, No. 61871254), by the
China Postdoctoral Science Foundation No. 2020M680558, and Hitachi Ltd.
(Corresponding author: Sheng Zhou)

D. Gündüz received funding from the European Research Council (ERC)
under Starting Grant BEACON (grant No. 677854), and UK EPSRC
(EP/T023600/1) under the CHIST-ERA program (CHISTERA-18-SDCDN-
001).

Part of this work has been presented in IEEE GLOBECOM 2019 [1].

parallelize these computations [2], [3], where a centralized
master node takes charge of task partition, data dissemination,
and result collection, and distributed computing nodes, called
workers, process partial computation tasks in parallel.

While parallel processing across multiple workers speeds
up computation, the overall delay depends critically on the
slowest worker. According to the experiments on the com-
mercial Amazon elastic compute cloud (EC2) platform, some
workers might experience much longer computation and com-
munication delays than the average [4]–[6]. This fact is
mainly due to the randomness of the system, e.g., time-
varying stochastic workloads of the workers, or the traffic
over the communication network connecting the workers to the
master. Such randomness leads to the so-called straggler effect,
which substantially increases the overall computation delay
and becomes a major bottleneck in distributed computing.

The key idea to mitigate the straggler effect is to add redun-
dancy to the computation tasks, so that the computation result
does not rely on receiving results from all the workers. State-
of-the-art approaches mainly include redundant scheduling of
computation tasks [7]–[9], and various coding schemes [10],
such as maximum distance separable (MDS) coding [4]–[6],
[11]–[13], gradient coding [14]–[16], and polynomial coded
computation [17], [18]. Among them, the easiest policy is to
replicate each task to multiple workers upon its arrival, and the
optimal number of replicas can be derived under exponential
[7] or general service time distributions [8]. The orders of
partitioned tasks at different workers are designed in [9], and
the impact of redundancy on the task completion delay under
different scheduling orders is characterized.

Compared with simple task replication, coding can further
improve the efficiency of computation. MDS coding schemes
under different system settings have been widely investigated
for matrix multiplication, which is the most common type
of computation task in the distributed computing system.
With N homogeneous workers, it is proved in [4] that MDS
coding can reduce the computation delay by O(logN) com-
pared to uncoded computation. Considering that workers have
heterogeneous computation capabilities, the load allocation
algorithms are proposed in [5] and [12] for a single-task
scenario, both with asymptotic optimality. Based on [5], an
online, recursive load allocation algorithm is further proposed
in [13] for the random task arrival case, where cancellation
is enabled to clear the unfinished parts of each task upon its
completion, so as to avoid unnecessary computations.

Although stragglers are slower than the average computation
speed, it is still possible for them to provide partial results.



2

This can be achieved by the hierarchical coded computation
framework [6], or multi-message communications [18]–[21].
Specifically, in the hierarchical framework, the coded task
at each worker is partitioned into multiple layers. Stragglers
are able to finish the lower layer sub-tasks and thus the
coding redundancy in the lower layers can be reduced to
improve system efficiency [6]. Multiple messages that include
partial computation result are allowed to transmit from each
worker to the master at each time slot, and thus stragglers
can contribute a few messages, not none, to the system
[19]. Multi-message communication may introduce additional
transmission overhead, and the corresponding trade-off of
communication and computation delay is investigated in [20].
Bivariate polynomial coding is introduced in [18], and is
shown to reduce the average computation delay with respect
to univariate polynomial alternatives. Such method is further
combined with the concept of age of information for timely
distributed computing in [21]. Besides straggler mitigation,
coding techniques can also reduce the communication load
between workers, preserve the security and privacy of data in a
distributed computing or federated learning system, maximize
the number of tasks completed before the deadline to improve
the timely computation throughput, etc. [10].

With the development of edge computing [22] and edge
intelligence [23], distributed coded computing is also playing
an important role at the edge of the wireless network. Edge
devices such as mobile phones, cars, unmanned aerial vehicles
(UAVs) can act as masters and offload their tasks to multiple
edge computing servers (workers) for coded computing [24]–
[27]. On the other hand, many edge devices are equipped
with powerful computing capabilities, and thus may also
act as workers to provide opportunistic computing services
[28], or participate in coded federated learning [29]. In this
context, communication delay through wireless links may be
stochastic and non-negligible, and the computation capabilities
of such edge devices and servers are highly heterogeneous
and time-varying. Moreover, multiple masters may need to
share workers, requiring worker assignment and task allocation
algorithms.

Considering the communication cost in a wireless network,
a scalable coded distributed computing framework is proposed
in [30], where the communication load does not scale with
the number of workers. In a homogeneous-worker scenario,
the impact of packet erasure channel on the delay of tasks
is analyzed in [31], [32]. Under heterogeneous settings, fixed
transmission rate is considered in [33], and the load allocation
of MDS-coded tasks is optimized. A cooperative transmission
scheme for coded matrix multiplication is proposed in [24]
to reduce the inter-cell interference, while a joint coding
and node scheduling algorithm is proposed in [25] based on
reinforcement learning. Based on the double auction theory,
a resource allocation scheme is proposed for the vehicles to
offload their coded computing tasks in [26]. Considering a
UAV-assisted edge computing system, a two-phase stochastic
coded offloading scheme is proposed in [27] to minimize the
energy consumption of UAVs and the network cost.

In this work, we mainly focus on a multi-master
heterogeneous-worker coded distributed computing scenario,

and take into account both the communication and computa-
tion delay. Multiple matrix multiplication tasks generated by
the masters are encoded with MDS codes and allocated to
workers for parallel processing, with random communication
and computation delays. The goal is to jointly design worker
assignment and load allocation algorithms to minimize the
completion delay of all the tasks. The main contributions of
this work are summarized as follows:

1) We consider both dedicated and fractional worker as-
signment policies, where each worker can process the en-
coded tasks of either a single master or multiple masters,
respectively. Considering the randomness of communication
and computation delays, we formulate a unified delay mini-
mization problem for the joint allocation of computing power,
communication bandwidth and task load.

2) For dedicated worker assignment, we obtain a
non-convex mixed-integer non-linear programming problem
(MINLP). The load allocation problem is solved first by
deriving a convex approximation problem with Markov’s in-
equality. Worker assignment is then transformed to a max-min
allocation problem, which is NP-hard and solved with greedy
heuristics. A successive convex approximation (SCA) based
algorithm is proposed to further enhance the load allocation.

3) For fractional worker assignment, the optimization prob-
lem is non-convex. We again use Markov’s inequality to
simplify the problem, and transform the fractional worker
assignment and resource allocation problem to max-min allo-
cation by deriving its optimality condition. A greedy algorithm
is proposed accordingly.

4) Simulations under various settings verify the feasibility
of the proposed Markov’s inequality based approximation,
and show the significant delay reduction of the proposed
algorithms over benchmarks. In particular, when using Ama-
zon EC2 for delay evaluation, about 82% and 30% delay
reductions are achieved by the proposed algorithms compared
to the uncoded and coded benchmarks, respectively.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and formulate the problem. In
Section III, we propose load allocation and worker assignment
algorithms under the dedicated case. In Section IV, we further
consider the fractional assignment case. Simulation results are
shown in Section V, and conclusions are given in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a distributed computing
system with M master nodes and N worker nodes, denoted by
M = {1, 2, ...,M} and N = {1, 2, ..., N}, respectively. Each
master m has a matrix-vector multiplication task, denoted by
Amxm, where Am ∈ RLm×Sm , xm ∈ RSm×1, and Lm, Sm
are positive integers. Each task can be partitioned and allocated
to a subset of workers and processed by them in parallel. Local
computation at the master is also available, and thus the set of
nodes that can serve master m is defined as N ′ , N ∪ {0},
where index 0 represents local processing.

To reduce the straggler effect brought by the randomness
of communication and computation, we introduce redundancy
to each task through MDS coded computation. Specifically,



3

Fig. 1. Illustration of a distributed computing system with multiple master and worker nodes.

each master encodes matrix Am in units of rows to get its
coded version Ãm ∈ RL̃m×Sm , where L̃m ≥ Lm denotes the
number of coded rows. Then, the coded matrix Ãm is divided
into N + 1 disjoint sub-matrices Ãm,0, Ãm,1, . . ., Ãm,N ,
where Ãm,n has lm,n ∈ N rows, i.e., Ãm,n ∈ Rlm,n×Sm .
Note that, lm,n = 0 indicates no assignment from master m
to worker n. Also note that, Am may represent a training
dataset or an inference model, which is available in advance.
Accordingly, it would be possible to encode sufficient number
of rows to satisfy

∑
n∈N ′ lm,n ≤ L̃m, and thus the encoding

delay is neglected in our model.
Let Ωm , {n|n ∈ N , lm,n > 0} be the set of workers to

serve master m. After task encoding and assignment, each
master m transmits Ãm,n and xm to worker n ∈ Ωm
through their communication channel. We assume that the
channel of each worker is orthogonal with that of others, and
each worker can allocate its channel bandwidth to multiple
masters and communicate with them simultaneously. This
assumption is suitable for many realistic scenarios, e.g., the
communication link is wired, or each worker is a base station
with orthogonal wireless bandwidth. Each worker n calculates
the multiplication of Ãm,n and xm, and transmits back the
result. Finally, master m can recover the result of the original
task Amxm upon receiving the inner products of any Lm out
of L̃m coded rows of Ãm and vector xm.

A. Worker Assignment Policy

We consider two worker assignment policies in this work:
1) Dedicated worker assignment: Each worker only serves a

single master. For ∀n ∈ N ,m ∈M, let km,n ∈ {0, 1} be the
worker assignment indicator, where km,n = 1 if worker n is
assigned a coded task by master m, and km,n = 0 otherwise.
We have

∑M
m=1 km,n ≤ 1,∀n ∈ N .

2) Fractional worker assignment: We allow each worker
to serve multiple masters simultaneously through processor
sharing. Let km,n ∈ [0, 1] be the fraction of computing power
of worker n allocated to master m, with

∑M
m=1 km,n ≤

1,∀n ∈ N . Define bm,n ∈ [0, 1] as the fraction of bandwidth
allocated to the link between master m and worker n, with∑M
m=1 bm,n ≤ 1,∀n ∈ N .
We assume that a master is always dedicated, i.e., it only

computes local task but not helping others. Therefore, for
∀m ∈ M, we have km,0 = 1 and bm,0 = 1. Also note that,

for dedicated worker assignment, the bandwidth allocation
variable bm,n is binary, with bm,n = km,n.

B. Communication and Computation Delays

We consider the delay of transmitting Ãm,n from master m
to worker n, and ignore the transmission delays of xm and
the computation results. This is because the size of Ãm,n is
typically much larger than that of xm and the result vector.
Moreover, as xm is shared among multiple workers that serve
master m, xm can be transmitted in a more efficient way, such
as broadcast or multicast.

Define the average communication delay to transmit a single
coded row from master m to worker n using the whole
bandwidth as 1

γm,n
. Then, the average communication delay

of transmitting Ãm,n using bm,n of the bandwidth, denoted
by T [tr]

m,n, is given by E[T [tr]
m,n] =

lm,n
bm,nγm,n

. A commonly used
distribution for T [tr]

m,n is the exponential distribution [31], [32],
[34], [35], with cumulative distribution function (CDF):

P
[
T [tr]
m,n(lm,n, bm,n; γm,n) ≤ t

]
= 1− e−

bm,nγm,n
lm,n

t
,

t ≥ 0,∀n ∈ N ,∀m ∈M. (1)

At each master, local processing does not need communi-
cation, and thus T [tr]

m,0 = 0, ∀m. Note that our proposed
Algorithms 1, 2, and 4 only require the average delay as input,
while the assumption on the exponential communication delay
can be further exploited to enhance the load allocation, as
shown in Algorithm 3.

Following the literature [4]–[6], [13], [33], the delay of
computing the inner product of one coded row of Ãm and
vector xm at worker n or master m (n = 0) is modeled by
a shifted exponential distribution, with shift parameter am,n
and rate parameter um,n. For ∀n ∈ N ′, ∀m ∈M, define the
total computation delay of Ãm,nxm as T [cp]

m,n, with CDF

P
[
T [cp]
m,n(lm,n, km,n; am,n, um,n) ≤ t

]
=

 1− e−
km,num,n

lm,n

(
t− am,nlm,nkm,n

)
, t ≥ am,nlm,n

km,n
,

0, otherwise.
(2)

Let Tm,n , T [tr]
m,n + T [cp]

m,n be the total communication plus
computation delay of the task assigned from master m to
worker n, where T [tr]

m,n and T [cp]
m,n are two independent random



4

variables. Then, if bm,nγm,n 6= km,num,n and t ≥ am,nlm,n
km,n

,
the CDF of Tm,n is given as follows:

P[Tm,n ≤ t]=1− bm,nγm,ne
− km,num,nlm,n

(
t− am,nlm,nkm,n

)
bm,nγm,n − km,num,n

+
km,num,ne

− bm,nγm,nlm,n

(
t− am,nlm,nkm,n

)
bm,nγm,n − km,num,n

. (3)

If bm,nγm,n = km,num,n and t≥ am,nlm,n
km,n

, the CDF of Tm,n
is

P [Tm,n ≤ t] = 1−[
1+
km,num,n
lm,n

(
t− am,nlm,n

km,n

)]
e
−km,num,nlm,n

(
t− am,nlm,nkm,n

)
. (4)

Otherwise, if t < am,nlm,n
km,n

, P [Tm,n ≤ t] = 0.

For local computation, we have Tm,0 = T [cp]
m,0, ∀m. When

t ≥ am,0lm,0, the CDF is given by

P [Tm,0 ≤ t] = 1− e−
um,0
lm,0

(t−am,0lm,0)
, t ≥ am,0lm,0, (5)

otherwise, P [Tm,0 ≤ t] = 0.

C. Problem Formulation

Our objective is to design a centralized policy to minimize
the task completion delay. A central controller collects the
statistical information of computation and communication
capabilities, am,n, um,n and γm,n, from the masters and
workers, and then jointly optimizes the allocation of task
load l , {lm,n|n ∈ N ′,m ∈ M}, computing power
k , {km,n|n ∈ N ,m ∈ M}, and communication bandwidth
b , {bm,n|n ∈ N ,m ∈ M}. As the communication and
computation delays are random, we aim to minimize the delay
t, upon which the probability that all the masters can recover
their computations is higher than a given threshold ρs. The
optimization problem is formulated as:

P1 : min
{l,k,b,t}

t (6a)

s.t. P [Xm(t) ≥ Lm] ≥ ρs, ∀m ∈M, (6b)
M∑
m=1

km,n ≤ 1,

M∑
m=1

bm,n ≤ 1,∀n ∈ N , (6c)

km,n ∈ K, bm,n ∈ K,∀m ∈M,∀n ∈ N , (6d)
lm,n ∈ N, ∀m ∈M, ∀n ∈ N ′. (6e)

In constraint (6b), Xm(t) is defined as the number of com-
putation results that can be received by the master m until
time t, where a unit result refers to the inner product of one
coded row of Ãm and vector xm. Constraint (6b) guarantees
that each task can be recovered with probability ρs. Equation
(6c) is the resource allocation constraint of each worker. In
constraint (6d), we have K = {0, 1} for dedicated worker
assignment, while K = [0, 1] for fractional worker assign-
ment. In constraint (6e), N represents the set of non-negative
integers.

Since workers have heterogeneous computing and com-
munication capabilities, their loads lm,n will be different in

general. To derive P [Xm(t) ≥ Lm], we need to find all the
combinations of {lm,n, n ∈ N ′} that satisfy Xm(t) ≥ Lm,
and further derive their joint probability distributions, which
is intractable. As a result, problem P1 is hard to solve.

We thus consider an approximation of P1, where the
probability constraint (6b) is substituted by an expectation
constraint, shown as follows:

P2 : min
{l, k, b, t}

t (7a)

s.t. E[Xm(t)] ≥ Lm, ∀m ∈M, (7b)
lm,n ≥ 0, ∀m ∈M, ∀n ∈ N , (7c)
Constraints (6c), (6d).

Constraint (7b) states that master m is expected to receive
sufficient computation results to recover Amxm until time t.
Similar approximation approach is also used in [5], [13], [33],
and the performance gap under a single master case can be
bounded [5]. As Am is with high dimension and thus the
non-zero lm,n are typically large, we further relax lm,n ∈ N
to lm,n ≥ 0 in (7c), and ignore the rounding error in the
following.

To simplify the system workflow as well as the theoretical
analysis, we assume that each encoded task Ãm,nxm, either
being processed locally or allocated to a worker, is processed
as a whole without any further partition. Accordingly, each
master can only receive lm,n computation results from node
n ∈ N ′ upon the completion. As computations on workers are
independent, E[Xm(t)] can be written as follows:

E[Xm(t)] =

N∑
n=0

E
[
lm,nI{Tm,n≤t}

]
=

N∑
n=0

lm,nP [Tm,n ≤ t] ,

where I{x} denotes the indicator function with I{x} = 1
if event x is true, and I{x} = 0 otherwise. For n ∈ N ,
P [Tm,n ≤ t] is given in (3) or (4), and for n = 0, P [Tm,n ≤ t]
is given in (5).

In the following two sections, we design solutions to P2 un-
der dedicated and fractional worker assignments, respectively.
We will further show in Section V that a good solution to P2
can also achieve low delay under the constraints of P1.

III. DEDICATED WORKER ASSIGNMENT

In this section, we solve problem P2 under the dedicated
worker assignment policy, where K = {0, 1} and bm,n =
km,n. Accordingly, problem P2 is a non-convex MINLP,
which is very challenging to solve in general.

We decouple the binary worker assignment variable k and
the continuous load allocation variable l to seek a solution.
First, given any worker assignment decision, the load alloca-
tion problem is still non-convex. We use Markov’s inequality
to provide a convex approximation to the non-convex con-
straint, and derive the optimal load allocation for this sub-
problem. We also show that, when either the computation or
communication delay plays a leading role, the original load
allocation problem is convex, and the optimal solution can
be derived. Then, based on the optimal load allocation, we
transform the worker assignment problem into a max-min
allocation problem, which is still NP-hard and thus solved



5

with greedy heuristics. Finally, after optimizing the worker
assignment, we further provide an enhanced load allocation
algorithm by solving the original non-convex problem with
the SCA method.

A. Load Allocation for the General Case

Given the set of workers Ωm = {n|km,n = 1, n ∈ N} that
serve master m, the optimal load allocation problem aims to
minimize the task completion delay tm for each master m:

P3 : min
{lm, tm}

tm (8a)

s.t. E[Xm(tm)] ≥ Lm, (8b)
lm,n ≥ 0, ∀n ∈ Ω′m, (8c)

where Ω′m , Ωm ∪ {0} includes the master m itself, and
lm = {lm,n|n ∈ Ω′m} denotes the load allocation vector.
For n ∈ Ωm, the CDF of the total delay Tm,n under
dedicated assignment can be obtained by letting km,n = 1
and bm,n = 1 in (3) and (4). Accordingly, E[Xm(tm)] =∑
n∈Ω′m

lm,nP [Tm,n ≤ tm] is a non-convex function, making
problem P3 hard to solve.

We provide an approximation to E[Xm(tm)] based on
Markov’s inequality, i.e., for n ∈ Ωm,

P[Tm,n≥ tm]≤ E[Tm,n]

tm
=
lm,n
tm

(
1

γm,n
+

1

um,n
+am,n

)
. (9)

At the master, P [Tm,0 ≥ tm] ≤ lm,0
tm

(
1

um,0
+ am,0

)
. Let

θm,n ,
1

γm,n
+

1

um,n
+ am,n, θm,0 ,

1

um,0
+ am,0. (10)

Then we have

E[Xm(tm)] =
∑
n∈Ω′m

lm,nP [Tm,n ≤ tm]

≥
∑
n∈Ω′m

lm,n

(
1− θm,nlm,n

tm

)
. (11)

Substituting inequality (11) into (8b), we obtain a tighter
constraint, and an approximation to P3 is given by

P4 : min
{lm,tm}

tm (12a)

s.t.
∑
n∈Ω′m

lm,n

(
1− θm,nlm,n

tm

)
≥ Lm, (12b)

lm,n ≥ 0, ∀n ∈ Ω′m. (12c)

Problem P4 is a convex optimization problem, and the
optimal solution is given as follows.

Theorem 1. For a given subset of workers Ωm that serves
a master m ∈ M, the optimal load allocation l∗m and the
corresponding task completion delay t∗m to P4 are

l∗m,n =
Lm

θm,n
∑
n∈Ω′m

1
2θm,n

, n ∈ Ω′m, (13a)

t∗m =
Lm∑

n∈Ω′m

1
4θm,n

. (13b)

Proof. See Appendix A.

As shown in (10), θm,n represents the expected total delay
for worker n to handle a unit coded task of master m, and thus

1
θm,n

indicates the average communication plus computation
rate. As shown in Theorem 1, the optimal load allocated
to each worker n is proportional to 1

θm,n
, while inversely

proportional to the overall communication plus computation
rates of workers.

B. Load Allocation for the Computation Delay Dominant Case

When computation delay is much larger than the com-
munication delay, we ignore the latter and get Tm,n =
T [cp]
m,n,∀n ∈ N ′. The CDF of Tm,n is given in (2). It is easy

to see that the optimal solution of P3 must satisfy t∗m >
max{n∈Ω′m}{am,nl

∗
m,n}. In fact, if there is a worker n0 ∈ Ω′m

such that t∗m ≤ am,n0
lm,n0

, then lm,n0
P [Tm,n0

≤ t∗m] = 0,
meaning that the master m cannot expect to obtain the com-
putation results from worker n0. By reducing lm,n0 to satisfy
t∗m > am,n0 lm,n0 , constraint (8b) can be strictly satisfied, and
thus t∗m can be further reduced.

Based on this observation, constraint (8b) of P3 can be
written as

E[Xm(tm)] =
∑
n∈Ω′m

lm,nP [Tm,n ≤ tm]

=
∑
n∈Ω′m

lm,n

(
1− e−

um,n
lm,n

(tm−am,nlm,n)
)
. (14)

The following theorem provides the optimal solution to P3.

Theorem 2. When computation delay dominates the total
delay, P3 is a convex optimization problem, and the optimal
load allocation l∗m and task completion delay t∗m are

l∗m,n =
Lm

φm,n
∑
n∈Ω′m

um,n
1+um,nφm,n

, n ∈ Ω′m, (15a)

t∗m =
Lm∑

n∈Ω′m

um,n
1+um,nφm,n

, (15b)

where φm,n , 1
um,n

[
−W−1(−e−um,nam,n−1)− 1

]
, and

W−1(x) denotes the lower branch of Lambert W function,
with x ≤ −1 and W−1(xex) = x.

Proof. See Appendix B.

Similar results can be derived for the communication delay
dominant case, by substituting um,n with γm,n and letting
am,n = 0.

C. Dedicated Worker Assignment Algorithms

In this subsection, we design worker assignment algorithms,
aiming to assign workers to masters in a balanced manner and
minimize the completion delay of the slowest task.

According to Theorem 1, the minimum task completion
delay that can be achieved under a given subset of workers is

t∗m =
Lm∑

n∈Ω′m

1
4θm,n

=
Lm

1
4θm,0

+
∑N
n=1

km,n
4θm,n

, (16)

where we recall that km,n ∈ {0, 1} is the worker assignment
indicator.



6

From P2, the objective of worker assignment is
mink maxm∈M t∗m. As t∗m > 0,∀m, the objective is equiv-
alent to maxk minm∈M

1
t∗m

. Let vm,n , 1
4Lmθm,n

,∀m ∈
M,∀n ∈ N ′, and thus

1

t∗m
=

1

Lm

[
1

4θm,0
+

N∑
n=1

km,n
4θm,n

]
=vm,0+

N∑
n=1

km,nvm,n. (17)

The worker assignment problem can be transformed into the
following form:

P5 : min
k

max
m∈M

vm,0 +

N∑
n=1

km,nvm,n (18a)

s.t.
M∑
m=1

km,n ≤ 1, ∀n ∈ N , (18b)

km,n ∈ {0, 1}, ∀m ∈M, ∀n ∈ N . (18c)

Note that, for the computation delay dominant case, we only
need to set vm,n =

um,n
Lm(1+um,nφm,n) , while the rest of the

derivation still holds.
Problem P5 is called max-min allocation problem, which

is proposed for the fair assignment of items [36], [37]. In the
original max-min allocation problem, each of the N items has
a unique value for an agent, and can be assigned to one of the
M agents. The objective is to assign all the items to the agents
as fairly as possible, by maximizing the minimum total value
of agents. In P5, each worker n is an item with value vm,n
for master m, and each master corresponds to an agent. The
max-min allocation problem can be reduced to the partitioning
problem [38], when considering only 2 agents and assuming
that each item has the same value for each agent. Since the
partitioning problem is NP-complete, the max-min allocation
problem is NP-hard.

Although some polynomial-time algorithms have been pro-
posed for the max-min allocation problem with worst-case
performance guarantee [36], [37], they are very complex
and difficult to implement. Instead, we propose two greedy
algorithms in the following.

Inspired by [39], an iterated greedy algorithm is proposed,
as shown in Algorithm 1. In the initialization phase, we assign
each worker to the master with highest vm,n, in order to
maximize the contribution of workers. Then, we iterate among
the insertion, interchange, and exploration phases, until the
termination condition is met. To be specific, in the insertion
phase, each worker is re-assigned to a master m2 with the
minimum sum value Vm2

if the minimum sum value of
the masters is improved. In the interchange phase, any two
workers exchange the masters they are serving, if the minimum
sum values of both masters, and the total value of the workers
are improved. In the exploration phase, a subset of workers are
randomly removed from the current assignment, and allocated
to the masters in a greedy manner. If the number of iterations
reaches a preset maximum value, or the minimum sum value
of the masters does not improve any more, the iteration is
terminated. Note that, the final output is the worker assignment
after the interchange phase. With totally J iterations, the
complexity of the algorithm is O(JN(N +M)).

Algorithm 1 Iterated Greedy Algorithm for Dedicated Worker
Assignment

1: Input: Let vm,n = 1
4Lmθm,n

,∀m,n, Vm = vm,0,∀m and
Ωm = ∅,∀m.

2: for n = 1, ..., N do . Initialization
3: Find m∗ = arg maxm∈M vm,n, and update Vm∗ =
Vm∗ + vm∗,n, Ωm∗ = Ωm∗ ∪ {n}.

4: end for
5: while termination condition is not satisfied do . Main

iteration
6: for n = 1, ..., N do . Insertion
7: Let m1 be master that worker n is serving, and
m2 = arg minm∈M/{m1} Vm.

8: V ′m1
= Vm1

− vm1,n, V ′m2
= Vm2

+ vm2,n, and
V ′m = Vm,∀m ∈M/{m1,m2}.

9: if minm∈M V ′m > minm∈M Vm then
10: Ωm1

= Ωm1
− {n}, Ωm2

= Ωm2
+ {n}.

11: end if
12: end for
13: for n1, n2 = 1, ...N , and n1 6= n2 do . Interchange
14: Masters m1,m2 served by workers n1, n2, V ′m1

=
Vm1
−vm1,n1

+vm1,n2
, and V ′m2

= Vm2
−vm2,n2

+vm2,n1
.

15: if m1 6= m2, vm1,n1
+ vm2,n2

< vm1,n2
+ vm2,n1

,
V ′m1

> Vmin, and V ′m2
> Vmin then

16: Ωm1 = Ωm1 − {n1} + {n2}, Ωm2 = Ωm2 −
{n2}+ {n1}.

17: end if
18: end for
19: Randomly remove some workers in Ns ∈ N , and

update Vm accordingly. . Exploration
20: while Ns 6= ∅ do
21: Find {m∗, n∗} = arg maxm∈M,n∈Ns vm,n.
22: Update Vm∗ = Vm∗+vm∗,n∗ , Ωm∗ = Ωm∗∪{n∗},
Ns = Ns − {n∗}.

23: end while
24: end while

Algorithm 2 Simple Greedy Algorithm for Dedicated Worker
Assignment

1: Input: N0 = {1, 2, ..., N}, vm,n = 1
4Lmθm,n

,∀m,n,
Vm = vm,0,∀m, and Ωm = ∅,∀m.

2: while N0 6= ∅ do
3: Find m∗ = arg minm∈M Vm.
4: Find n∗ = arg maxn∈N0

vm∗,n.
5: Vm∗ = Vm∗ + vm∗,n∗ .
6: Ωm = Ωm ∪ {n∗}, N0 = N0 − {n∗}.
7: end while

As shown in Algorithm 2, we also propose a simple greedy
algorithm that does not require iterations for performance
improvement, inspired by the largest-value-first algorithm [40].
The initial value of each master is related to its local com-
putation capability, given by Vm = vm,0. During the main
loop, we select a master m whose current sum value is the
minimum, and allocate an available worker n with highest
vm,n for master m. The algorithm terminates when all the



7

workers are allocated. The complexity of the Algorithm 2 is
O(N2), which is lower than that of Algorithm 1.

D. SCA-Enhanced Load Allocation

The main purpose of using Markov’s inequality for load
allocation in the general case is to derive Theorem 1, and
provide an explicit form for the worker assignment problem
to enable the derivation of an assignment policy. However,
since Markov’s inequality is only a bound, the derived solution
is not exact. We now return to the original load allocation
problem P3 to further improve the performance. Note that, for
the computation delay dominant case, problem P3 is convex
and the load allocation derived in Theorem 2 is optimal.
Accordingly, no further improvement is required.

Observe that the non-convex constraint (8b) in P3 has a
structure of the difference of convex functions, we implement
the SCA method to further optimize the load allocation.
Specifically, when γm,n 6= um,n,

E[Xm(tm)] =
∑
n∈Ω′m

lm,nP [Tm,n ≤ tm]

= lm,0

[
1− e−

um,0
lm,0

(tm−am,0lm,0)
]

+
∑
n∈Ωm

lm,n

[
1−

γm,ne
−um,nlm,n

(t−am,nlm,n)−um,ne
− γm,nlm,n

(t−am,nlm,n)

γm,n − um,n

]
. (19)

Let wm , {lm, tm}. Without loss of generality, we assume
γm,n > um,n, and let

h+
m,n(wm) ,

γm,nlm,ne
−um,nlm,n

(t−am,nlm,n)

γm,n − um,n
,

h−m,n(wm) ,
um,nlm,ne

− γm,nlm,n
(t−am,nlm,n)

γm,n − um,n
.

Otherwise, we can exchange h+
m,n(wm) with h−m,n(wm),

and the following solution still works. Let hm,0(wm) ,

−lm,0
[
1− e−

um,0
lm,0

(tm−am,0lm,0)
]

. From Appendix B, we

know that hm,0(wm), h+
m,n(wm), and h−m,n(wm) are all

convex functions. Accordingly,

Lm − E[Xm(tm)] = Lm −
∑
n∈Ωm

lm,n + hm,0(wm)

+
∑
n∈Ωm

(
h+
m,n(wm)− h−m,n(wm)

)
, (20)

that is, Lm − E[Xm(tm)] can be decomposed into the differ-
ence of convex functions.

For any given point z, a convex upper bound of h+
m,n(w)−

h−m,n(w) can be obtained by linearizing h−m,n(w):

h+
m,n(w)− h−m,n(w)

≤ h+
m,n(w)− h−m,n(z)−∇wh

−
m,n(z)T (w − z). (21)

Let h̃m,n(w, z) , h+
m,n(w)− h−m,n(z)−∇wh

−
m,n(z)T (w −

z). A convex approximation problem to P3 under point z,

Algorithm 3 SCA-Enhanced Load Allocation Algorithm
1: Input: Given master m and its worker assignment Ωm,

find a feasible point z0 of P3, and set γ0 = 1, r = 0,
α ∈ (0, 1).

2: while zr is not a stationary solution do
3: Solve the optimal solution wr to the optimization

problem P(zr).
4: zr+1 = zr + γr(wr − zr).
5: γr+1 = γr(1− αγr), r ← r + 1.
6: end while

denoted by P(z), is given by

P(z) : min
{wm}

tm (22a)

s.t. hm,0(wm)+
∑
n∈Ωm

h̃m,n(wm, z)≤
∑
n∈Ωm

lm,n−Lm,

(22b)
lm,n ≥ 0, ∀n ∈ Ω′m. (22c)

Based on the SCA method proposed in [41], we develop
an SCA-enhanced load allocation algorithm, as shown in
Algorithm 3. For each master m and the corresponding worker
assignment Ωm by Algorithm 1 or 2, the SCA algorithm starts
from a feasible point of z0 of P3. Note that, the Markov’s
inequality provides a tighter approximation to constraint (8b),
and thus Theorem 1 directly provides z0. Then, we iteratively
solve convex optimization problems P(zr) until convergence,
where in the r-th iteration, zr is updated according to Line
4 using step-size γr. According to [41], we update γr with a
decreasing ratio α ∈ (0, 1), so as to guarantee the convergence
to a local optimum.

As a summary, we would like to provide the following
remarks.

Remark 1. Assumptions on certain delay distributions: The
Markov’s inequality based approximate load allocation and
the corresponding worker assignment algorithms, introduced
in Section III-A and Section III-C, do not rely on the com-
munication and computation delay distributions. The proposed
solution can be applied to any delay distributions with broad
adaptivity, as long as their mean values are known. The
assumption of exponential distributions further provide an
explicit CDF of the total delay, which is exploited by the SCA
method to further enhance the load allocation policy.

Remark 2. Iterated matrix multiplication: Distributed matrix-
vector multiplication is often needed for the training of
large ML models, where matrix Am corresponds to the data
and vector xm to the model [4], [19]. Using a common
training algorithm such as distributed gradient descent, the
coded data is transmitted to the workers at the beginning,
while multiple iterations of computations are required with
the updated model vector. In this scenario, we can use the
result of the computation-delay dominant case for worker
assignment and load allocation, or modify the communication
delay distribution of xm by removing the load variable lm,n.



8

IV. FRACTIONAL WORKER ASSIGNMENT

While dedicated worker assignment only needs a simple
communication connection topology between masters and
workers, it may lead to an unbalanced worker assignment,
particularly when a few workers are much more powerful
than the others, or the number of workers is relatively small.
Therefore, in this section, we further consider fractional
worker assignment, by allowing each worker to serve multiple
masters simultaneously. In this case, we have K = [0, 1],
km,n, bm,n ∈ K, ∀m,n, and the CDF of the total delay Tm,n is
given in (3) and (4). Accordingly, problem P2 is a non-convex
optimization problem, which is difficult to solve directly.

Similarly to Section III, we use Markov’s inequality to
derive an approximation to problem P2, and further simplify
the resultant optimization problem by analyzing its optimality
condition. We show that the joint bandwidth and computing
power allocation under fractional assignment can also be
transformed to a max-min allocation problem, and propose
a greedy algorithm based on Algorithms 1 and 2.

A. Markov’s Inequality based Approximation and its Optimal-
ity Condition

Using the Markov’s inequality, ∀m ∈M and ∀n ∈ N with
bm,n 6= 0 and km,n 6= 0,

P [Tm,n ≤ t] = 1− P [Tm,n ≥ t] ≥ 1− E[Tm,n]

t

= 1− lm,n
t

(
1

bm,nγm,n
+

1

km,num,n
+
am,n
km,n

)
. (23)

In the fractional assignment case, the expected total delay
for worker n ∈ N to handle a unit coded task of master
m ∈M is given by

θm,n=

{
1

bm,nγm,n
+ 1
km,num,n

+
am,n
km,n

, km,n, bm,n>0,

∞, km,n = 0 or bm,n = 0.
(24)

For local computation at each master m, we still have θm,0 =
1

um,0
+ am,0. Considering the inherent feature of the system,

km,n, bm,n and lm,n are either all non-zero or all zero.
Substituting (23) into (8b), an approximation to problem P2

under the fractional worker assignment policy is given by

P6: min
{l, k, b, t}

t (25a)

s.t. Lm−
N∑
n=0

lm,n

(
1− lm,nθm,n

t

)
≤0,∀m, (25b)

M∑
m=1

km,n ≤ 1,

M∑
m=1

bm,n ≤ 1, ∀n, (25c)

km,n, bm,n ∈ [0, 1], lm,n ≥ 0, ∀m,n. (25d)

Compared to P4, problem P6 needs to jointly optimize
load allocation l and the resource allocation k and b, which
is still non-convex. In the following theorem, we derive the
KKT optimality condition for P6.

Algorithm 4 Greedy Algorithm for Fractional Worker Assign-
ment

1: Input: Get an initial dedicated worker assignment ac-
cording to Algorithm 1 or 2. Let bm,n = km,n,∀m,n.
Initialize θm,n according to (24), and let Vm =

1
Lm

∑N
n=0

1
4θm,n

,∀m.
2: while maxm Vm > minm Vm do
3: m1 = arg maxVm, m2 = arg minVm, Ntmp =
{n|km1,n > 0, km2,n = 0}.

4: Calculate θ′m2,n = 1
bm1,n

γm2,n
+ 1

km1,n
um2,n

+
am2,n

km1,n
,

∀n ∈ Ntmp.
5: Find worker n1 = arg maxn∈Ntmp

1
θ′m2,n

with maxi-
mum performance gain for master m2.

6: if Vm1
− 1

4θm1,n1
Lm1

≤ Vm2 + 1
4θ′m2,n1

Lm2
then

7: Find km1,n1 , bm1,n1 , km2,n1 , bm2,n1 , such that
Vm1

= Vm2
.

8: else
9: Assign all the resource of worker n1 for master m1

to master m2, i.e., let km2,n1
= km1,n1

, bm2,n1
= bm1,n1

,
and then let km1,n1 = 0, bm1,n1 = 0.

10: end if
11: Update θm1,n1

, θm2,n1
, Vm1

, Vm2
accordingly.

12: end while

Theorem 3. Given any resource allocation km,n and bm,n,
the optimal load allocation l∗m,n to problem P6 that minimizes
delay t∗ must satisfy the following condition:

l∗m,n =
t∗

2θm,n
, n ∈ N ′, (26)

where θm,n is derived from (24) according to km,n and bm,n.

Proof. See Appendix C.

B. Fractional Worker Assignment Algorithm

According to Theorem 3, without loss of optimality in
problem P6, constraint (25b) can be transformed to

Lm −
N∑
n=0

t

2θm,n

(
1− t

2θm,n
· θm,n

t

)
≤0, (27)

which is equivalent to

Lm −
N∑
n=0

t

4θm,n
≤ 0, ∀m. (28)

Therefore, problem P6 can be transformed to:

P7 : max
{k, b}

min
m∈M

1

Lm

N∑
n=0

1

4θm,n
(29a)

s.t. constraints (25c), (25d). (29b)

We can see that P7 is very similar to the max-min alloca-
tion problem P5 under dedicated worker assignment, except
that θm,n can further change with respect to the computing
power allocation km,n ∈ [0, 1] and communication bandwidth
allocation bm,n ∈ [0, 1]. Therefore, we adopt the dedicated
assignment as an initialization, and iteratively balance the



9

Master 1 Master 2
0

1

2

3

4

T
as

k
 c

o
m

p
le

ti
o

n
 d

el
ay

 (
s)

Exact (Theorem 2)

Approx (Theorem 1)

Approx, enhanced

(a) Average task completion delay.

0 5 10 15

Task completion delay (s)

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y

Exact (Theorem 2)

Approx (Theorem 1)

Approx, enhanced

(b) CDF of task completion delay.

Fig. 2. Validation of the Markov’s inequality based approximation in the 2-
master, 5-worker case.

resource allocation between the master m1 = arg maxVm
with maximum sum value and master m2 = arg minVm with
minimum sum value. To balance their sum values, we select
a worker n1 that serves m1 but not m2 for the moment, with
maximum potential performance gain for m2, as shown in
Lines 3-5. Then, part or all of the computing power and
communication bandwidth of worker n1 are re-assigned to
master m2, as shown in Lines 6-10. Note that, in practice, we
may not want to make the topology of masters and workers too
complicated. In that case, we can limit the maximum number
of masters each worker can serve in Algorithm 4.

We also remark that, by substituting γm,n, um,n and am,n
in (19) with bm,nγm,n, km,num,n and am,n

km,n
, respectively,

the SCA-enhanced load allocation (Algorithm 3) can also be
implemented for the fractional worker assignment problem
after Algorithm 4.

Remark 3. Extensions to other coding schemes: While the
algorithms above are designed for the MDS coding scheme,
we remark here that the proposed solution can be extended
to other polynomial coding schemes, such as Lagrange coded
computing [17]. Given a coding scheme, we need to specify
the computation and communication rate parameters am,n,
um,n and γm,n for a unit encoded task, and the condition
to decode the original task. Based on the recovery condition,
we may need to modify constraint (6b) in P1 for other coding
schemes, while the main idea of the solution remains the same.

Master 1 Master 2 Master 3 Master 4
0

0.05

0.1

0.15

0.2

0.25

T
as

k
 c

o
m

p
le

ti
o

n
 d

el
ay

 (
s)

Exact (Theorem 2)

Approx (Theorem 1)

Approx, enhanced

(a) Average task completion delay.

0.1 0.15 0.2 0.25 0.3

Task completion delay (s)

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y

Exact (Theorem 2)

Approx (Theorem 1)

Approx, enhanced

(b) CDF of task completion delay.

Fig. 3. Validation of the Markov’s inequality based approximation in the 4-
master, 50-worker case.

V. SIMULATION RESULTS

In this section, we show the simulation results of the
proposed algorithms under various settings. We first verify
the feasibility of the Markov’s inequality based approxima-
tion, and then evaluate the task completion delay of the
proposed algorithms and benchmarks. Finally, we sample the
task completion delay from commercial compute platform
Amazon EC2, and use the measured data to further validate
the proposed algorithms.

A. Validation of Markov’s Inequality based Approximation

We first show in Fig. 2 and Fig. 3 that, the task completion
delay achieved by solving the Markov’s inequality based
approximation problem is similar to the original problem.
To achieve this verification, we consider the computation
delay dominant case, where the optimal load allocation to the
original problem P3 (‘Exact’) can be derived from Theorem
2, and the approximate load allocation (‘Approx’) is derived
from Theorem 1. Based on the two load allocation results,
iterated greedy algorithm, i.e., Algorithm 1, is adopted to
assign the workers in a dedicated manner. Corresponding to
the SCA-enhanced load allocation in Section III-D, we further
use Theorem 2 to improve the performance after obtaining the
worker assignment based on the approximate load allocation,
labeled as ‘Approx, enhanced’.

We consider two scenarios with different scales. In the
small-scale scenario, there are M = 2 masters and N =
5 workers. For each worker, the shift parameter am,n
of the computation delay distribution is randomly selected



10

Master 1 Master 2
0

1

2

3

4

5

6

T
as

k
 c

o
m

p
le

ti
o

n
 d

el
ay

 (
s)

Uncoded

Coded, uniform

Dedi, iter

Dedi, iter, SCA

Dedi, simple

Dedi, simple, SCA

Frac

Frac, SCA

Brute-force

(a) M = 2 masters, N = 5 workers.

(b) M = 4 masters, N = 50 workers.

Fig. 4. Average task completion delay of the proposed algorithms and
benchmarks.

from {0.2, 0.25, 0.3} ms, while for each master, am,0 ∈
{0.4, 0.5} ms. The rate parameter is um,n = 1

am,n
,∀m,n,

and the load of the original task is set to Lm = 104,∀m
[5]. In the large-scale scenario, there are M = 4 masters and
N = 50 workers. Parameter am,n is randomly chosen from
[0.05, 0.5] ms, while um,n and Lm remain the same. After
deriving the load allocation and worker assignment from the
corresponding theorems and algorithms, we run Monte Carlo
realizations for 106 times and present the average value and
the CDF of the empirical task completion delay.

Fig. 2 and Fig. 3 show the validation results under the
small-scale and large-scale scenarios, respectively. In each
histogram, the first M groups of bars show the average task
completion delay of each master under different solutions.
The last group of bars show the average delay of all the
tasks, which is what we aim to minimize in P2, obtained by
taking the maximum delay among M masters in each Monte
Carlo realization and then taking the average. Overall, the gap
between the Markov’s inequality based approximate solution
and the optimal solution is acceptable, while the enhanced
approximate solution has almost the same performance as the
optimal one, in terms of both the average and the CDF of
task completion delay under both scenarios. We can also see
from Fig. 2(a) that, the approximate solution can achieve even
lower average delay when the number of workers is small. This
is because, the approximate problem P4 provides a tighter
constraint and thus increases the redundancy of load, making
the system more robust to stragglers in some cases.

B. Performance of the Proposed Dedicated and Fractional
Worker Assignment Algorithms

Now we take the communication delay into account and
evaluate the proposed algorithms. The simulation settings for
both small-scale and large-scale scenarios remain the same
as the previous subsection, while the communication rate
parameter of each worker is set to γm,n = 2um,n,∀m,n.
For the SCA algorithm, the step-size decreasing ratio is set

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

Task completion delay (s)

0.8

0.85

0.9

0.95

1

P
ro

b
ab

il
it

y

Brute-force

Dedi, iter

Dedi, iter, SCA

Frac

Frac, SCA

Coded, uniform

(a) M = 2 masters, N = 5 workers.

0.6 0.7 0.8 0.9 1 1.1 1.2

Task completion delay (s)

0.8

0.85

0.9

0.95

1

P
ro

b
ab

il
it

y

Dedi, iter

Dedi, iter, SCA

Frac

Frac, SCA

Coded, uniform

(b) M = 4 masters, N = 50 workers.

Fig. 5. CDF of the task completion delay of the proposed algorithms and
benchmarks.

to α = 0.995. We compare the delay performance of the
proposed algorithms with the following benchmarks:

1) Uncoded computation with uniform worker assignment:
Each master is assigned an equal number of N

M workers, and
Am is equally partitioned into N

M sub-matrices without coding.
2) Coded computation with uniform worker assignment:

Each master is assigned an equal number of N
M workers, and

the load allocation is given by Theorem 2. This benchmark
can be regarded as the scheme presented in [5], where only
the computation delay is considered under a single master
scenario.

3) Brute-force search for optimal fractional worker assign-
ment: The optimal benchmark is obtained by traversing all
possible km,n and bm,n at a step-size of 0.01. SCA-enhanced
load allocation is further implemented after getting the optimal
fractional worker assignment. Note that, as the brute-force
search is with extremely high complexity, we can only provide
this result in the small-scale scenario.

The average task completion delay in the two scenarios are
shown in Fig. 4. We use ‘Dedi, iter’, ‘Dedi, simple’ and ‘Frac’
to represent the worker assignment results from Algorithms
1, 2 and 4, respectively. The legend with ‘SCA’ indicates
that SCA-enhanced load allocation is further implemented. As
shown in Fig. 4(a), in the small-scale scenario, our proposed
algorithms outperform the uncoded and coded benchmarks
by balancing the worker assignment, while the fractional
assignment is slightly better than the dedicated one. With
SCA enhancement, the average delay can be decreased by
8.85% under dedicated worker assignment, while the delay
can be substantially decreased by 17.1% with fractional as-
signment. We can also see that, the delay performance of
the SCA-enhanced fractional assignment is close-to-optimal.
As shown in Fig. 4(b), in the large-scale scenario, iterated
greedy algorithm can seek a better assignment compared to the
simple greedy algorithm under the dedicated case. On the other
hand, fractional assignment achieves the same performance
as iterated greedy, since dedicated algorithm can already
balance the worker assignment when the number of workers



11

0.1 0.2 0.5 1 2 5 10
0

2

4

6

8

10

12

T
as

k
 c

o
m

p
le

ti
o

n
 d

el
ay

 (
s)

Uncoded

Coded, uniform

Dedi, iter

Frac

0.5 1 2 5

0.25

0.3

0.35

0.4

(a) Average task completion delay.

0.1 0.2 0.5 1 2 5 10
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

L
o

ca
l 

p
ro

ce
ss

in
g

 l
o

ad
 r

at
io

Uncoded

Coded, uniform

Dedi, iter

Frac

(b) The ratio of local processing load to total load.

Fig. 6. Performance evaluation under different communication rates in the
4-master, 50-worker case.

is large. Compared to the uncoded and coded benchmarks,
up to 79% and 30% delay reduction can be achieved by the
proposed algorithm, respectively. With SCA-enhancement, the
delay performance can be further decreased by over 4.4%.
However, the SCA algorithm is highly complex in the large-
scale scenario. In practice, we should take into account the
delay due to the SCA algorithm, and use it only when the
delay reduction of tasks is significantly greater than the delay
of running the SCA algorithm.

In order to observe the delay performance of the initial
optimization problem P1, and justify the approximation in
P2, we further plot the CDF of the task completion delay in
Fig. 5. The CDF shows the tail distribution of the task com-
pletion delay, and can reflect the robustness of the distributed
computing system. Moreover, given the probability threshold
ρs, we can obtain the corresponding delay from the x-axis of
the CDF, such that constraint (6b) is satisfied. As shown in
Fig. 5(b), given ρs = 0.95, the delays achieved by the SCA-
enhanced dedicated assignment, dedicated assignment and the
coded benchmark are 0.658s, 0.694s and 0.957s, respectively.
That is, over 30% delay reduction can be achieved by the
proposed algorithm compared to the coded benchmark. We can
also see that, a good solution to the approximation problem
P2 also leads to a good delay performance for the original
problem P1 in general, and thus solving P2 is reasonable.

The impact of communication rate on the average task
completion delay and the load allocation is investigated in
Fig. 6, by varying γm,n

um,n
while fixing um,n. As shown in Fig.

6(a), when γm,n
um,n

is small, the communication rate between

0 1 2 3 4 5 6 7

Delay (s) 10
-3

0

0.5

1

P
ro

b
a
b
ili

ty

Measured data

Fitted curve

(a) t2.micro instance.

0 0.002 0.004 0.006 0.008 0.01 0.012

Delay (s)

0

0.5

1

P
ro

b
a
b
ili

ty

Measured data

Fitted curve

(b) c5.large instance.

Fig. 7. The cumulative frequency distribution of the measured delay and its
fitted curve based on shifted exponential distribution, on different types of
Amazon EC2 instances.

Master 1 Master 2 Master 3 Master 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
as

k
 c

o
m

p
le

ti
o

n
 d

el
ay

 (
s)

Uncoded

Coded, uniform

Dedi, iter

Dedi, simple

Frac

Fig. 8. Average task completion delay under the 4-master, 50-worker case.

each master and worker is low, and thus the average task
completion delay is high. Meanwhile, the proposed dedicated
and fractional worker assignment algorithms always achieve
significantly lower delay compared to the benchmarks. Fig.
6(b) plots the ratio of load allocated to the master itself
to the total load, i.e., lm,0∑

n∈N′ lm,n
. As the two benchmarks

do not take the communication delay into account, the ratio
remains the same over different communication rates. With the
proposed algorithms, this ratio decreases as γm,n

um,n
increases,

since more computation load is allocated to the workers when
communication is faster.

C. Delay Sampling on Amazon EC2 Instances and the Cor-
responding Algorithm Evaluation

We further evaluate the delay performance of the proposed
algorithms based on measured computation delays on the
commercial compute platform Amazon EC2. We sample the
computation delay on two types of Amazon EC2 instances
called t2.micro and c5.large, in order to simulate a hetero-
geneous scenario. A 106-dimension vector multiplication task
is generated, where each element is a float-number uniformly
distributed within [0, 1]. For each instance, we feed this vector
multiplication task for 106 times, and record the computation
delay of each realization. We plot the cumulative frequency
distribution of the sampled computation delay in Fig. 7, and
then fit the data with shifted exponential distribution. For the
t2.micro instance, the shift parameter is a = 1.36 ms, and
the rate parameter is u = 4.976 ms−1. For c5.large instance,



12

a = 0.97 ms and u = 19.29 ms−1. We can see that, in
terms of the computation capability, the c5.large instance is
more powerful than the t2.micro instance, and the fitting of
the shifted exponential distribution is accurate.

Finally, we use the measured data to evaluate the proposed
algorithms. We consider a computation delay dominant sce-
nario with 4 masters and 50 workers. All the masters and
40 workers are considered as t2.micro instances, while the
remaining 10 workers are c5.large instances. We use the fitted
distribution for load allocation and worker assignment, and
then use the measured data to simulate the average task com-
pletion delay with the Monte Carlo method. As shown in Fig.
8, the proposed dedicated and fractional worker assignment
algorithms still outperform the uncoded and coded bench-
marks, with up to 82% and 30% delay reductions, respectively.
Comparing the two dedicated assignment algorithms, the it-
erated greedy algorithm achieves a much lower delay under
this practical scenario. Meanwhile, fractional assignment can
slightly decrease the average task completion delay compared
with the iterated dedicated assignment.

Summarizing all the simulation results, we remark that,
in the small-scale scenario where the number of master and
worker nodes is small, SCA-enhanced fractional assignment is
the best algorithm with great advantage over other alternatives.
On the other hand, in the large-scale scenario, dedicated
assignment by the iterated greedy algorithm is satisfactory
when considering the delay performance together with the
complexity of the algorithm and the network topology.

VI. CONCLUSIONS

We have investigated a joint worker assignment, resource
allocation, and load allocation problem in an MDS-coded
distributed computing scenario with multiple masters and het-
erogeneous workers, aiming to minimize the communication
and computation delay of tasks. Dedicated and fractional
worker assignment and load allocation algorithms have been
proposed, employing Markov’s inequality-based approxima-
tion, Karush-Kuhn-Tucker conditions, and SCA techniques for
the analysis and optimization of these algorithms. Simulations
under various settings have shown that the proposed algorithms
can significantly reduce the task completion delay compared to
the benchmark algorithms, while the SCA-enhanced fractional
assignment algorithm can achieve close-to-optimal delay per-
formance when the number of master and worker nodes is
small. Considering measured data on Amazon EC2 platform
for delay evaluation, we have shown that about 82% and 30%
delay reductions can be achieved by the proposed algorithms
compared to the uncoded and coded benchmarks, respectively.
We have observed that SCA-enhanced fractional assignment
significantly outperforms the other proposed algorithms under
small-scale scenarios. Meanwhile, the dedicated policy with
iterated greedy assignment can be a practical alternative for
large-scale scenarios, when the delay performance, resultant
communication network topology, and algorithm complexity
are jointly taken into account.

As future directions, multi-message communication
schemes [20] as well as the costs of encoding and decoding

can be further incorporated into the current optimization
framework.

APPENDIX A
PROOF OF THEOREM 1

For x > 0, y > 0, f(x, y) = x2

y is convex. Therefore,
problem P4 is a convex optimization problem. The Lagrangian
of P4 is given by

L(lm, tm, λm)= tm+λm

Lm− ∑
n∈Ω′m

(
lm,n−

θm,nl
2
m,n

tm

) ,
where λm ≥ 0 is the Lagrange multiplier associated with
(12b).

The partial derivatives of L(lm, tm, λm) can be derived as

∂L
∂lm,n

= −λm + λmθm,n
2lm,n
tm

, (30a)

∂L
∂tm

= 1− λm
∑
n∈Ω′m

θm,nl
2
m,n

t2m
. (30b)

The Karush-Kuhn-Tucker (KKT) conditions are written as
follows:

∂L
∂l∗m,n

= 0, ∀n ∈ Ω′m,
∂L
∂t∗m

= 0, (31a)

λ∗m

Lm − ∑
n∈Ω′m

(
l∗m,n −

θm,nl
∗
m,n

2

t∗m

) = 0, (31b)

λ∗m ≥ 0, l∗m,n ≥ 0. (31c)

By solving the KKT conditions, we get the optimal load
allocation and task completion delay to P4, as shown in
Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

When the computation delay dominates the total delay, the
optimization problem P3 is given by

P3(1) : min
{lm, tm}

tm

s.t. Lm≤
∑
n∈Ω′m

lm,n

(
1−e−

um,n
lm,n

(tm−am,nlm,n)
)
,

lm,n ≥ 0, ∀n ∈ Ω′m.

We first prove that P3(1) is a convex optimization problem.
Let f(x, t) = −x

(
1− e−ux (t−ax)

)
, with variables x > 0,

t ≥ ax, and parameters u > 0, a > 0. The Hessian matrix of
f(x, t) is:

H =

[
∂2f
∂x2

∂2f
∂x∂t

∂2f
∂t∂x

∂2f
∂t2

]
= e−

u
x (t−ax)

[
u2t2

x3 −u
2t
x2

−u
2t
x2

u2

x

]
. (33)

The eigenvalues of H are 0 and u2(x2+t2)
x3 > 0. Thus H � 0,

and f(x, t) is convex. As the summation of convex functions
are still convex, (33) is convex. Therefore, P3(1) is convex.



13

The Lagrangian is given by

L(lm, tm, λm) = tm + λm (Lm − E[Xm(tm)])

= tm+λm

Lm−∑
n∈Ω′m

lm,n

(
1− e−

um,n
lm,n

(tm−am,nlm,n)
) . (34)

The partial derivatives of L can be derived as

∂L
∂lm,n

=λm

[(
1 +

um,ntm
lm,n

)
e
−um,nlm,n

(tm−am,nlm,n)−1

]
,

(35a)
∂L
∂tm

= 1− λm
∑
n∈Ω′m

um,ne
−um,nlm,n

(tm−am,nlm,n)
. (35b)

The optimal solution (l∗m, t
∗
m, λ

∗
m) needs to satisfy the

following KKT conditions

∂L
∂l∗m,n

= 0, ∀n ∈ Ω′m,
∂L
∂t∗m

= 0, (36a)

λ∗m

Lm−∑
n∈Ω′m

l∗m,n

(
1−e−

um,n
l∗m,n

(t∗m−am,nl
∗
m,n)
)=0, (36b)

λ∗m ≥ 0, l∗m,n ≥ 0. (36c)

By jointly considering (35b) and (36a), we get λ∗m > 0.
Substituting ∂L

∂l∗m,n
= 0 with (35a) yields

(
1 +

t∗mum,n
l∗m,n

)
e
um,n

(
am,n−

t∗m
l∗m,n

)
− 1 = 0,

−
(

1 +
t∗mum,n
l∗m,n

)
e
−
(

1+
t∗mum,n
l∗m,n

)
= −e−um,nam,n−1,

Let W−1(x) be the lower branch of Lambert W function,
where x ≤ −1 and W−1(xex) = x. Then we have

t∗m
l∗m,n

=
−W−1(−e−um,nam,n−1)− 1

um,n
, φm,n. (37)

Substituting (36b) with (37):

Lm −
∑
n∈Ωm

t∗m
φm,n

(
1− 1

1 + um,nφm,n

)
= 0. (38)

Then, t∗m and l∗m,n can be derived, as shown in Theorem 2.

APPENDIX C
PROOF OF THEOREM 3

Given any k and b, the Lagrangian of P6 is given by

L(l, t, λm)

= t+ λm

[
Lm −

∑
n∈N ′

(
lm,n −

θm,nl
2
m,n

t

)]
,∀m. (39)

For the non-convex optimization problem, the optimal so-
lution {l∗, t∗} must satisfy the KKT conditions. By solving

∂L
∂l∗m,n

= −λ∗m + λ∗mθm,n
2l∗m,n
t∗

= 0,

∂L
∂t∗

= 1− λ∗m
∑
n∈N ′

θm,n(l∗m,n)2

(t∗)2
= 0,

λ∗m

[
Lm −

∑
n∈N ′

(
l∗m,n −

θm,n(l∗m,n)2

t∗

)]
= 0,

λ∗m ≥ 0, l∗m,n ≥ 0, (40a)

we derive the optimality condition, as shown in Theorem 3.

REFERENCES

[1] Y. Sun, J. Zhao, S. Zhou, and D. Gunduz, “Heterogeneous coded
computation across heterogeneous workers,” in Proc. IEEE Global
Commun. Conf., Waikoloa, HI, USA, Dec. 2019.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp.107-
113, Jan. 2008.

[3] J. Dean, et al. “Large scale distributed deep networks,” in Proc.
Advances in Neural Information Processing Systems (NIPS), Dec. 2012.

[4] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514-1529, Mar. 2018.

[5] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” IEEE Trans. Inform. Theory,
vol. 65, no. 7, pp. 4227-4242, July 2019.

[6] N. Ferdinand and S. C. Draper, “Hierarchical coded computation,” in
Proc. IEEE Int. Symp. on Inform. Theory (ISIT), Vail, CO, USA, Jun.
2018, pp. 1620-1624.

[7] K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, M. Velednitsky, and
S. Zbarsky, “Redundancy-d: The power of d choices for redundancy,”
Operations Research, vol. 65, no. 4, pp. 1078-1094, Apr. 2017.

[8] G. Joshi, E. Soljanin, and G. Wornell, “Efficient redundancy techniques
for latency reduction in cloud systems,” ACM Trans. Modeling Perform.
Eval. Comput. Syst. (TOMPECS) vol. 2, no. 2, pp. 1-30, Apr. 2017.

[9] M. Mohammodi Amiri and D. Gunduz, “Computation scheduling for
distributed machine learning with straggling workers,” IEEE Trans.
Signal Process., vol. 67, no. 24, pp. 6270-6284, Dec. 2019.

[10] J. S. Ng, W. Y. B. Lim, N. C. Luong, Z. Xiong, A. Asheralieva, D.
Niyato, C. Leung, and C. Miao, “A comprehensive survey on coded
distributed computing: Fundamentals, challenges, and networking ap-
plications,” IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1800-1837,
thirdquarter 2021.

[11] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” IEEE
Global Commun. Conf. Workshop, Washington, DC, USA, Dec. 2016.

[12] D. Kim, H. Park, and J. K. Choi, “Optimal load allocation for
coded distributed computation in heterogeneous clusters,” IEEE Trans.
Commun., vol. 69, no. 1, pp. 44-58, Jan. 2021.

[13] F. Zhang, Y. Sun, and S. Zhou, “Coded computation over heterogeneous
workers with random task arrivals,” IEEE Commun. Lett., vol. 25, no.
7, pp. 2338-2342, July 2021.

[14] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. Int. Conf.
on Machine Learning, Sydney, Australia, Aug. 2017, pp. 3368-3376.

[15] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. A. Avestimehr, “Tree
gradient coding,” in Proc. IEEE Int. Symp. on Inform. Theory (ISIT),
Paris, France, July 2019.

[16] R. Bitar, M. Wootters, and S. El Rouayheb, “Stochastic gradient coding
for straggler mitigation in distributed learning,” IEEE J. Sel. Areas
Commun., vol. 1, no. 1, pp. 277-291, May 2020.

[17] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A.
Avestimehr, “Lagrange coded computing: Optimal design for resiliency,
security, and privacy,” Proc. 22rd Int. Conf. on Artificial Intelligence
and Statistics, PMLR, vol. 89, pp. 1215-1225, Apr. 2019.

[18] B. Hasircioglu, J. Gomez-Vilardebo and D. Gunduz, “Bivariate poly-
nomial coding for efficient distributed matrix multiplication,” IEEE J.
Sel. Areas Inform. Theory, early access, Aug. 2021.

[19] E. Ozfatura, D. Gunduz, and S. Ulukus, “Speeding up distributed
gradient descent by utilizing non-persistent stragglers,” in Proc. IEEE
Int. Symp. on Inform. Theory (ISIT), Paris, France, July 2019.



14

[20] E. Ozfatura, S. Ulukus, and D. Gunduz, “Straggler-aware distributed
learning: Communication-computation latency trade-off,” Entropy,
22(5):544, May 2020.

[21] B. Buyukates and S. Ulukus, “Timely distributed computation with
stragglers,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5273-5282, Sept.
2020.

[22] Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tut., vol. 19, no. 4, pp. 2322-2358, Fourthquarter
2017.

[23] J. Park et al., “Wireless network intelligence at the edge,”Proc. IEEE,
vol. 107, no. 11, pp. 2204-2239, Nov. 2019.

[24] K. Li, M. Tao, J. Zhang and O. Simeone, “Coded computing and
cooperative transmission for wireless distributed matrix multiplication,”
IEEE Trans. Commun., vol. 69, no. 4, pp. 2224-2239, Apr. 2021.

[25] N. Van Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz,
“Joint coding and scheduling optimization for distributed learning over
wireless edge networks,” IEEE J. Sel. Areas Commun., vol. 40, no. 2,
pp. 484-498, Feb. 2022.

[26] J. S. Ng, W. Y. B. Lim, Z. Xiong, D. Niyato, C. Leung and C. Miao, “A
double auction mechanism for resource allocation in coded vehicular
edge computing,” in IEEE Trans. Veh. Technol., vol. 71, no. 2, pp.
1832-1845, Feb. 2022.

[27] W. C. Ng, W. Y. B. Lim, Z. Xiong, D. Niyato, Z. Han and D. I.
Kim, “Stochastic coded offloading scheme for unmanned aerial vehicle-
assisted edge computing,” in IEEE Internet Things J., early access, Feb.
2022.

[28] S. Zhou, Y. Sun, Z. Jiang and Z. Niu, “Exploiting moving intelligence:
Delay-optimized computation offloading in vehicular fog networks,”
IEEE Commun. Mag., vol. 57, no. 5, pp. 49-55, May 2019.

[29] S. Prakash, et al., “Coded computing for low-latency federated learning
over wireless edge networks,” IEEE J. Sel. Areas Commun., vol. 39,
no. 1, pp. 233-250, Jan. 2021.

[30] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable
framework for wireless distributed computing,” IEEE/ACM Trans.
Netw., vol. 25, no. 5, pp. 2643–2654, May 2017.

[31] D. -J. Han, J. -Y. Sohn, and J. Moon, “Coded distributed computing
over packet erasure channels,” in Proc. IEEE Int. Symp. on Inform.
Theory (ISIT), Paris, France, July 2019.

[32] D. -J. Han, J. -Y. Sohn and J. Moon, “Coded wireless distributed
computing with packet losses and retransmissions,” in IEEE Trans.
Wireless Commun., vol. 20, no. 12, pp. 8204-8217, Dec. 2021.

[33] F. Wu and L. Chen, “Latency optimization for coded computation
straggled by wireless transmission,” IEEE Wireless Commun. Lett., vol.
9, no. 7, pp. 1124-1128, July 2020.

[34] F. P. Kelly, Reversibility and Stochastic Networks. Cambridge Univer-
sity Press, 2011.

[35] T. Zhao, S. Zhou, X. Guo and Z. Niu, “Tasks scheduling and resource
allocation in heterogeneous cloud for delay-bounded mobile edge
computing,” in Proc. IEEE Int. Conf. Commun. (ICC), Paris, France,
May 2017.

[36] D. Chakrabarty, J. Chuzhoy, and S. Khanna, “On allocating goods to
maximize fairness,” 50th Annual IEEE Symposium on Foundations of
Computer Science, Atlanta, GA, USA, Oct. 2009, pp. 107-116.

[37] A. Asadpour, and A. Saberi, “An approximation algorithm for max-
min fair allocation of indivisible goods,” SIAM J. Algebraic Discrete
Methods, vol. 39, no. 7, pp. 2970-2989, May 2010.

[38] B. Hayes, “Computing science: The easiest hard problem,” American
Scientist, vol. 90, no. 2, pp. 113-117, Apr. 2002.

[39] L. Fanjul-Peyro, R. Ruiz, “Iterated greedy local search methods for un-
related parallel machine scheduling,” European Journal of Operational
Research, vol. 207, no. 1, pp. 55-69, Nov. 2010.

[40] B. Deuermeyer, D. Friesen, and M. Langston, “Scheduling to maximize
the minimum processor finish time in a multiprocessor system,” SIAM
J. Algebraic Discrete Methods, vol. 3, no. 2, pp. 190-196, Jun. 1982.

[41] G. Scutari, F. Facchinei, and L. Lampariello, “Parallel and distributed
methods for constrained nonconvex optimization -part I: theory,” IEEE
Trans. Signal Process., vol. 65, no. 8, pp. 1929-1944, Apr. 2017.


