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A Learning Aided Flexible Gradient Descent
Approach to MISO Beamforming
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Abstract—This letter proposes a learning aided gradient de-
scent (LAGD) algorithm to solve the weighted sum rate (WSR)
maximization problem for multiple-input single-output (MISO)
beamforming. The proposed LAGD algorithm directly optimizes
the transmit precoder through implicit gradient descent based it-
erations, at each of which the optimization strategy is determined
by a neural network, and thus, is dynamic and adaptive. At each
instance of the problem, this network is initialized randomly,
and updated throughout the iterative solution process. Therefore,
the LAGD algorithm can be implemented at any signal-to-noise
ratio (SNR) and for arbitrary antenna/user numbers, does not
require labelled data or training prior to deployment. Numerical
results show that the LAGD algorithm can outperform of the
well-known WMMSE algorithm as well as other learning-based
solutions with a modest computational complexity. Our code is
available at https://github.com/XiaGroup/LAGD.

Index Terms—Multi-user MISO downlink, beamforming, im-
plicit gradient descent, unsupervised learning.

I. INTRODUCTION

BEAMFORMING plays an essential role in multi-antenna
cellular networks. A fundamental and widely studied

problem is the downlink beamforming design, where the goal
is to maximize the weighted sum rate (WSR) within a total
power constraint. The WSR maximization problem is non-
convex, and is known to be NP-hard [1], [2]. Popular solution
approaches either adopt convex approximations [3]–[5], or
use alternating minimization (AM) techniques, where each
component problem can be solved in closed form [6]–[10].
Among them, the iterative weighted minimum mean square
error (WMMSE) algorithm [8] is one of the most widely-
implemented approaches balancing a good trade-off between
performance and computational complexity.

In recent years, deep learning aided data-driven solutions
have received significant attention for the solution of the
beamforming problem [11]–[15]. Generic solutions employ a
deep neural network (DNN), known as the black-box model,
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to solve the WSR maximization problem directly through
data-driven optimization. These approaches replace the time-
consuming iterative process by well-trained network models,
which significantly reduce the computational complexity. For
example, Xia et al. [12] trained a DNN by supervised learning,
which estimates the beamforming matrix by taking the channel
gain matrix as the input of the network. These black-box
methods can provide significant benefits in terms of the trade-
off between the performance and computational complexity
depending on the network architecture. However, they have
two main limitations. First, labelled data is generated by the
WMMSE algorithm. Therefore, the performance of these end-
to-end learning solutions is limited by that of the WMMSE
algorithm. Second, the DNN behavior also results in poor
interpretability on algorithmic principles and little availabil-
ity of incorporating expert knowledge, which severely limits
practical applications.

More recently, a model-based learning approach, called
deep unfolding [16]–[19] has achieved significant success in
improving both the performance and the model explainability
of DNN-based solutions. The common idea of deep unfolding
is to map a known iterative algorithm to a DNN, where
each iteration of the original iterative algorithm is represented
by one layer of the network. In this way, the optimization
inspired structure is maintained, and the expert knowledge
can be naturally utilized. The work in [16] proposes a deep-
unfolding method to make the step sizes of the iterative
WMMSE algorithm trainable to obtain an adaptive trade-off
between computational complexity and performance. The un-
folded WMMSE algorithm has made a significant step forward
in model explainability, but the performance of unfolding
methods in [16], [17] are still bounded by the WMMSE
algorithm. In addition, although the well-trained unfolded
network can achieve better efficiency, the generalization ability
is relatively poor. Retraining a new network is necessary
when the application settings, such as the channel signal-to-
noise ratio (SNR), number of users or antennas, vary in real
application scenarios.

In this paper, we propose a learning aided gradient de-
scent (LAGD) algorithm to solve the transmit beamforming
problem in a multi-user mutiple-input single-output (MISO)
communication system. The proposed LAGD algorithm di-
rectly optimizes the transmit precoder, instead of converting
the WSR problem into an AM-based framework, i.e., as in
the WMMSE algorithm. Thus, the matrix inversions, bisection
search on the Lagrange multiplier, or iterations over three sets
of variables are avoided. On the other hand, different from
vanilla gradient-based solutions that follow fixed, explicit, and
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handcrafted algorithmic rules, the LAGD algorithm adopts
an implicit and learned optimization rule through a neural
network, whose parameters are updated by back-propagating
the WSR value. This neural network is updated over the
iterations with the goal of finding a better transmit precoder
to maximize the WSR value. Therefore, the LAGD algorithm
achieves an adaptive and dynamic strategy for solving the
WSR maximization problem at each iteration.

The benefits of the proposed LAGD algorithm include the
practical feasibility, flexibility, and interpretability. First, the
proposed LAGD algorithm is less data-dependent in practical
applications than the existing deep-learning based methods
[12], [16], [20], [21], since the training process is unsuper-
vised, and is essentially embedded with the solution process.
This allows the LAGD algorithm to be implemented directly
on solving beamforming problems without a dedicated training
stage. Therefore, the LAGD algorithm can be used as a feasible
plug-and-play tool for different scenarios, such as different
number of users or antennas, or different signal-to-noise-
ratio (SNR) values. Besides, instead of replacing the whole
gradient descent (GD) iterations by a neural network, the
LAGD algorithm retains the iterative structure, and merely
inserts a neural network-based update rule into the original
GD framework. Hence, the algorithmic principles of the GD
algorithm are retained, while the variable update rule is learned
on-the-go throughout the iterations of the algorithm. We argue
that the proposed approach not only has better explainability,
but also provides more flexibility to incorporate physical
understanding of a specific problem, such as expert knowledge
or various priors. Moreover, the proposed LAGD algorithm
is shown to achieve satisfactory performance even with an
arbitrary lightweight network, for example, a fully-connected
neural network (FNN) with only one hidden layer of 10 units.
Therefore, the overall computational complexity of the LAGD
algorithm is quite low, and it is easy to implement in prac-
tice. We demonstrate through simulations that, unlike other
learning-based solutions, the LAGD algorithm can outperform
WMMSE even with a simple shallow network.

II. PROBLEM FORMULATION

We consider a multi-user MISO downlink channel. The
transmitter has M antennas and serves N single-antenna users.
The signal received at the ith user is given by

yi = hH
i vixi +

N∑
j=1,j ̸=i

hH
i vjxj + ni, (1)

where xi ∼ CN (0, 1) denotes the independent data symbols
for the ith user, vi ∈ CM is the transmit precoder vector of the
ith user, hi ∼ CN (0, IM ) is the channel vector of the ith user,
and ni ∼ CN (0, σ2) denotes the independent additive white
Gaussian noise with power σ2. We assume that the channel
gain vectors h1, ...,hN are known at the transmitter and the
receivers. The signal-to-interference-plus-noise-ratio (SINR) at
the ith user is given by

SINRi =
|hH

i vi|2∑N
j=1,j ̸=i|hH

i vj |2 + σ2
. (2)

The beamforming problem is formulated as the maximization
of the WSR subject to a total transmit power constraint, as
follows

max
V

F (V ) ≜
N∑
i=1

αi log2(1 + SINRi)

s.t. Tr(V V H) ≤ P,

(3)

where αi is the weight of the ith user (assumed to be given), P
is the maximum total transmit power, V ≜ [v1,v2 . . .vN ]T ,
is the matrix of beamforming vectors, and Tr(·) denotes the
trace operator.

Problem (3) is known to be non-convex and NP-hard [1],
but we can employ a generic GD based solution, in which the
variable Vk is optimized in an iterative fashion. The update
rule at the kth iteration can be written as

Vk+1 = Vk − γk · g(∇Vk
F (Vk)), (4)

where ∇Vk
F (Vk) is the gradient of the WSR with respect

to current beamforming matrix, g(·) denotes a hand-crafted
variable update function, and γk represents the step size at the
kth iteration. However, the GD based solution that follows
the iterations in (4) can be stuck at saddle points or bad local
optima, where the gradient vanishes, i.e., ∇Vk

F (Vk) = 0.
Therefore, the WSR problem is typically solved either by
using convex approximation, or in an AM-based framework,
such as the WMMSE algorithm [8]. The WMMSE algorithm
first converts the original WSR maximization problem (3) into
an equivalent weighted sum mean square error minimization
problem:

min
u,w,V

N∑
i=1

αi(wiei − log2 wi)

s.t. Tr(V V H) ≤ P,

(5)

where ei is the mean-square error given by ei ≜ |uih
H
i vi −

1|2+
(∑N

j ̸=i,j=1 |uih
H
i vj |2

)
+σ2|ui|2, ui denotes the receiver

gain, wi is the user weight, u = [u1, . . . , uN ]T , w =
[w1, . . . , wN ]T . This problem is convex in each individual
variable, and the WMMSE algorithm iteratively minimizes
the objective function with respect to each individual variable
by solving these convex optimization problems. However, due
to the intrinsic non-convexity of the problem, the AM-based
solution can get trapped at bad local optima even though each
partial optimization of the individual variables can be solved
in closed form.

III. PROPOSED LAGD METHOD

We propose the LAGD algorithm that can learn an adaptive
and dynamic iterative updating strategy for optimizing the
transmit precoder matrix. At each iteration of the LAGD algo-
rithm, the procoder matrix V is updated by a parameterized
update function, whose parameters are also updated at each
iteration. Specifically, the manually designed variable update
function g(·) in (4) is replaced by a neural network-based
update rule Gθk

(·), where θk represents the parameters of the
network Gθk

(·) at the kth step. At the kth iteration, the input
to Gθk

(·) is the gradient ∇Vk
(F (Vk)), which then outputs the
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term to update the transmit percoder Vk. The formulation can
be expressed as

Vk+1 = Vk + Gθk
(∇Vk

F (Vk)). (6)

In LAGD algorithm, the variable optimization strategy is
determined by the network parameters θk, which are also
updated at each iteration by back-propagating the WSR value.
We would like to emphasize that the network parameters θk
are not trained in advance using a dataset, but instead, they are
updated during the iterations of the optimization problem (5).
Accordingly, each update of θk parameters can be interpreted
as training while solving, where each previous instance of the
problem corresponds to a single training sample. Essentially,
the LAGD algorithm can be used in a plug-and-play fashion,
and no training dataset is required. The updated network
parameters tend to optimize the transmit precoder dynamically
over iterations with the goal of maximizing the WSR value.
The parameters of the neural network, θk, are updated by the
Adam [22] optimizer:

θk+1 = θk + α ·Adam(∇θk
F (Vk+1)), (7)

where α denotes the learning rate.
To satisfy the total power constraint Tr(V V H) ≤ P , the

transmit precoder matrix V is projected at each step by

Ω(V ) =

{
V , if Tr(V V H) ≤ P,

V
||V ||F

√
P , otherwise. (8)

The general structure of the proposed LAGD algorithm is
presented in Algorithm 1.

In summary, the LAGD algorithm establishes a trainable
variable update function Gθk

(·) to replace the manually de-
signed vanilla function g(·) in (4). Mathematically, at the kth

iteration, the neural network-based learned update rule Gθk
(·)

takes the gradient ∇Vk
F (Vk) as input and predicts the next

update term of the transmit precoder. The parameters θk of
the update rule Gθk

(·) are also updated over the iterations in
order to find a better update function for solving the WSR
maximization problem. In this way, the algorithmic principles
of the original GD-based iterative solution are retained, while
the update strategy is endowed with further adaptability and
learnability.

The LAGD algorithm is a novel methodology for solving
the non-convex WSR maximization problem. In contrast to the
vanilla GD algorithm, LAGD seeks to optimize the transmit
precoder in a less greedy and more dynamic manner at each
iteration, while still identifying the update direction and step
size following the same GD principles. This provides the
LAGD the capacity to circumvent bad local optima and saddle
points on the geometry of the objective function surface.
Note that, thanks to the neural network-based Gθk

(·) in (6),
non-zero update terms are possible even when the gradient
vanishes, i.e., ∇VF (V ) = 0 [23]. Compared to unfolding
based solutions, the LAGD algorithm also makes a step
forward in terms of the interpretability and generalization
capabilities. Instead of mapping the iterative algorithm into
an end-to-end network model through deep unfolding, LAGD
tries to learn only the function-level behavior. Consequently,
the iterative variable update process is explainable, and is easy

Algorithm 1: The whole structure of the proposed
LAGD algorithm for the WSR maximization problem

1 Given: F (V ), number of users N , number of
antennas M , and channel gains h1, ...,hN .

2 Initialize: V0, θ0.
3 for k← 0, 1, . . ., K do
4 ∆V = Gθk

(∇Vk
F (Vk))

5 Vk+1 = Vk +∆V
6 Vk+1 = Ω(Vk+1)
7 ∆θ = α ·Adam(∇θk

F (Vk+1))
8 θk+1 = θk +∆θ
9 end

10 Output: VK , F (VK)

to incorporate expert knowledge and prior information based
on physical principles of the problem.

Next, we highlight the main advantages of the proposed
LAGD algorithm:

• Superior performance compared to existing alternatives,
including both conventional optimization approaches and
the more recent learning-based solutions.

• Reduced computational complexity compared to alterna-
tive methods thanks to the sufficiency of a lightweight
network architecture. The memory cost and computa-
tional complexity is consequently highly reduced com-
pared to other DNN-based methods.

• Thanks to the unsupervised learning while solving ap-
proach and the lightweight network structure, the pro-
posed LAGD algorithm can be used in a plug-and-play
fashion in practical applications.

IV. SIMULATION RESULTS

In this section, the performance of the proposed LAGD
algorithm is evaluated and compared with other alternatives
through simulations. The LAGD algorithm is implemented in
Python 3.6.13 with Pytorch 1.7.0. The WMMSE algorithm
is also implemented in Python 3.6.8 with Tensorflow 1.13.1
for comparison. We assume all the users share the same
priority, i.e., αi = 1, ∀i, while the generalization to non-
uniform weights is trivial. The learning rate of the Adam [22]
optimizer for the network-based update rule is set to 10−4.
While the reported results are obtained by averaging of 1000
realizations of the channel matrix H generated independently
and identically distributed (i.i.d.) from a complex standard
Gaussian distribution, i.e., Rayleigh fading, the proposed
LAGD algorithm can be used in any channel distribution.

The WMMSE algorithm is applied as the baseline, follow-
ing the steps in [16]. We set the maximum number of iterations
of WMMSE to 50 (this is set to 6 in previous works) and that
of LAGD is set to 500. We randomly initialize the algorithm
for 10 times and pick the best results for both LAGD and
WMMSE as to limit the negative impact of extremely poor
initializations.

In Fig. 1(a), we evaluate the performance of the LAGD
algorithm for different neural network architectures, and com-
pare with the standard GD and Adam [22] (one of the
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(a) WSR vs. SNR (b) Variance of WSR values

Fig. 1. LAGD with three network types. Compared with WMMSE and
gradient-based conventional GD and Adam schemes. (N = M = 4).

most widely-implemented GD-based algorithms) approaches
and the WMMSE performance. Three generic network ar-
chitectures, FNN, long-short-term-memory (LSTM) and con-
volutional neural network (CNN) are evaluated for Gθk

(·).
Specifically, the LSTM network and the FNN contain 2 hidden
layers with 40 units in each, while the CNN has 2 convolution
layers with one kernel of 3 × 3 in each layer. The results in
Fig. 1(a) show that all these three networks achieve similar per-
formances, and significantly surpass the WMMSE algorithm
in the high SNR regime of SNR=20-35dB. It can also be
noted that the ordinary GD based solutions achieve comparable
performance to WMMSE and LAGD when SNR=5-20dB. We
argue that the non-convexity of the WSR problem grows with
SNR. Since the behavior is closer to a convex function in
the low SNR regime, both WMMSE and conventional GD-
based solutions perform reasonably well. However, as the SNR
increases, the WMMSE algorithm and ordinary GD-based
solutions can be stuck at saddle points or local optima more
easily. From the superior performance of LAGD in the high
SNR regime, we can conclude that its flexible and adaptive
update rule allows it to avoid local optima or saddle points.

While the results in Fig. 1(a) are averaged over the channel
distribution, in Fig. 1(b), we further present the variance of the
obtained WSR results for the LAGD and WMMSE algorithms
over an SNR range from 10dB to 40dB. The red rectangles
depict the variances of the LAGD results while the blue ones
refer to the results from the WMMSE algorithm. The number
of users and antennas are set to 4, and an LSTM network is
used to model function G(·). It is apparent from this figure that
the LAGD algorithm also has a smaller variance particularly in
the high SNR regime. This is yet another evidence that LAGD
can avoid local optima that the WMMSE may get stuck in
certain channel realizations.

Further simulation results are presented in Fig. 2 to demon-
strate the generalization capability of the LAGD algorithm
when used in different system setups including different com-
binations of the number of users/antennas and SNR values.
The number of users N varies from 2 to 8, while the trans-
mitter has M = 8 antennas. As before, we consider an SNR
range of 10-40dB. We would like to emphasize that, in contrast
to the existing deep learning approaches, the LAGD algorithm
can be directly implemented in any scenario in a plug-and-play
fashion without any prior training procedure when the setting
is changed. It can be seen that the WSR values obtained from

TABLE I
COMPARISON OF COMPUTATIONAL REQUIREMENTS

Methods Training Test Complexity Model Size

LAGD algorithm % O(KMN) ∼ 101

BNN method [12] ✓ O(NM2 +M3) ∼ 103

Deep Learning Method [13] ✓ O(NM2 +M3) ∼ 103

Deep unfolding WMMSE [16] ✓ O(LKM2) ∼ 101

Adam [22]/ GD % O(KMN) %
WMMSE [8] % O(KM3) %

the LAGD algorithm with three different network architectures
show similar behavior to the results presented in Fig. 1(a);
while the performance improvement is marginal in the low
SNR regime, LAGD surpasses WMMSE significantly in the
high SNR regime in all the cases. In general, we observe that
the improvement with respect to WMMSE increases with the
number of users. This also shows that as the non-convexity
of the WSR maximization problem grows with the number
of users, the LAGD algorithm becomes even more effective
compared to the fixed AM-based strategy of the WMMSE
algorithm. The single most striking observation to emerge
from the results in Fig. 2 is that the FNN architecture reaches
a superior performance as the non-convexity of the problem
increases, that is when the SNR and the number of users
are high. This motivated us to further test the impact of the
architecture on the performance.

In Fig. 3(a) and 3(b), the performance of the LAGD-FNN
with different numbers of layers and units are compared. We
observe that the performance quickly saturates with respect to
the number of hidden units. While it can improve by carefully
choosing the number of layers, the variations are marginal. We
conclude that the LAGD algorithm does not require a finely-
designed DNN architecture to achieve its excellent perfor-
mance. Using a single-layer FNN to model Gθk

(·) dispenses
with the cost of network design, and the number of parameters
that need to be updated at each iteration is much smaller
compared to the existing DNN-based approaches.

Finally, we compute the complexity of various approaches
in Table I, where K denotes the number of iterations of the
algorithm, while L is the number of inner iterations in each
iteration of the algorithm [16]. It can be seen that the LAGD
has comparable computational complexity with the GD-based
algorithm, while dramatically saving overall computational
complexity due to the lack of a training stage. When compared
with the WMMSE algorithm, the computational complexity is
also significantly lower, as matrix inversion, bisection search
for the Lagrange multiplier, and iterations over three variables
in the WMMSE algorithm are avoided.

V. CONCLUSION

The proposed LAGD algorithm optimizes the transmit pre-
coder directly based on a neural network-based GD approach.
It retains the algorithmic principles of GD optimization while
the performance is significantly improved thanks to the more
flexible and adaptive update rule. Another important benefit
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Fig. 2. LAGD and WMMSE performance for different number of users and SNR values.

(a) (b)

Fig. 3. In (a), WSR obtained with a single hidden layer consisting of different
number of units. In (b), WSR obtained with different number of hidden layers
and 20 units in each layer. (M = N = 4, SNR= 30dB)

of the proposed LAGD algorithm is that it is unsupervised;
and hence, does not require solutions with an alternative
method as training data, and is realized with a simple shallow
network. The training-free implementation allows it to be used
in a plug-and-play manner in different scenarios without any
additional cost on model training. Through simulations, we
have discovered that the higher the complexity and the non-
convexity of the underlying scenario, i.e., higher SNR or more
users, the superior the performance improvement obtained by
the LAGD algorithm compared to WMMSE. In the future,
we will prove the convergence of the algorithm and explore
the application of the LAGD algorithm in more challenging
scenarios involving channel uncertainties and multiple receive
antennas.
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