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Abstract

We present a new theoretical and computational framework for modelling electro-chemo-mechanical fracture. The model
ombines a phase field description of fracture with a fully coupled characterisation of electrolyte behaviour, surface chemical
eactions and stress-assisted diffusion. Importantly, a new physics-based formulation is presented to describe electrolyte-
ontaining phase field cracks, appropriately capturing the sensitivity of electrochemical transport and reaction kinetics to the
rack opening height. Unlike other existing methods, this approach is shown to accurately capture the results obtained with
iscrete fracture simulations. The potential of the electro-chemo-mechanical model presented is demonstrated by particularising
t to the analysis of hydrogen embrittlement in metallic samples exposed to aqueous electrolytes. The finite element
mplementation takes as nodal degrees-of-freedom the electrolyte potential, the concentrations of relevant ionic species, the
urface coverage, the concentration of diluted species, the displacement field and the phase field order parameter. Particular
ttention is devoted to improve stability and efficiency, resulting in the development of strategies for avoiding ill-constrained
egrees of freedom and lumped integration schemes that eliminate numerical oscillations. The numerical experiments conducted
howcase the ability of the model to deliver assumptions-free predictions for systems involving both free-flowing and crack-
ontained electrolytes. The results obtained highlight the role of electrolyte behaviour in driving the cracking process, evidencing
he limitations of existing models.

2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Many problems of technological significance are driven by the coupling between electrochemistry and mechanics.
n stress corrosion cracking, cracks nucleate and grow through a combination of mechanical loads and corrosion
eactions [1–5]. In the context of Li-Ion batteries, the development of cracks due to chemical strains results in
egradation of battery performance and capacity [6–9]. In metals exposed to hydrogen-containing environments, one
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observes a remarkable reduction in ductility and fracture resistance as a result of hydrogen ingress and the associated
embrittlement [10]. These sets of problem are characterised by their strongly coupled nature. Take for example the
case of metal embrittlement due to hydrogen uptake from aqueous electrolytes. The failure load is governed by
the local magnitude of the mechanical fields and of the concentration of hydrogen dissolved in the metal, which
are themselves coupled (e.g., hydrogen accumulates in regions of high hydrostatic stress) and dependent on the
geometry of the crack. Moreover, hydrogen ingress into the metal is governed by the near-surface stress state, the
electrochemical reaction rates at the electrolyte–metal interface, and the electrochemical behaviour of the electrolyte,
with all of these items being dependent on the defect geometry while at the same time influencing the defect
morphology evolution. For example, the defect dimensions (e.g., crack opening height) will have a major influence
on the local chemistry and electrolyte behaviour, which in turn will affect hydrogen uptake. Thus, predicting electro-
chemo-mechanical fracture phenomena requires developing models capable of resolving all the coupled physical
processes taking place.

In this work, we present a new phase field-based model for electro-chemo-mechanical fracture that incorporates
all the relevant physical stages. Namely, our theoretical and computational framework handles: (i) the electrochem-
ical behaviour of electrolytes, predicting electrolyte potential distribution and the transport of ionic species due
to diffusion and migration; (ii) the chemical reactions occurring at the electrolyte–electrode interface, with the
associated kinetic effects and their dependence on electrolyte and surface conditions; (iii) the ingress of diluted
species into the material and its diffusion within the solid; (iv) the deformation of the solid, and its coupling with
the bulk transport of diluted species; (v) the nucleation and growth of cracks, which can be facilitated by the presence
of dilute species; and (vi) a suitable treatment of electrolytes within cracks and other occluded environments.
Importantly, computational procedures that can significantly facilitate numerical convergence and stability are also
presented. The framework and associated computational schemes are universal but, for demonstration purposes,
constitutive choices are made that particularise the model to the simulation of hydrogen embrittlement in metals
exposed to aqueous electrolytes. Chemo-mechanical models exist that can predict the transport of dissolved hydrogen
within a metal, resolving the interplay between mechanical fields and hydrogen diffusion [11–14]. However, these
models adopt as boundary condition a constant hydrogen concentration (or chemical potential) at the metal surface,
an approach that requires making strong assumptions about the electrolyte conditions, and that has been shown
to deliver highly inaccurate predictions [15]. More comprehensive, electro-chemo-mechanical models have been
recently proposed that attempt at resolving the kinetics of the hydrogen evolution reaction and accurately predict
hydrogen ingress by computationally resolving the electrolyte behaviour [15,16]. However, these models only deal
with stationary defects. Several methodologies exist to handle propagating cracks and these have been adopted in
the hydrogen embrittlement community. Cohesive zone modelling schemes [17–19] and phase field fracture models
[20–22] have been especially popular. The latter are particularly promising due to their additional modelling
capabilities; by indicating the presence of fractured surfaces through an indicator function, the crack path is
represented as an additional field, greatly increasing the flexibility and simplicity of the computations [23–25].
As a result, this approach has gained notable popularity since its development, and has been applied to a large
range of materials and damage phenomena such as ductile fracture [26–28], metallic fatigue [29–32], functionally
graded materials [33,34], composites [35–37], shape memory alloys [38,39], and iceberg calving [40,41]. While
phase field fracture modelling has been widely embraced in the hydrogen embrittlement community (see, e.g.
[42–47] and Refs. therein), all studies to date require a priori knowledge of the hydrogen surface concentration for
a given environment. The development of a fully coupled electro-chemo-mechanical framework would eliminate
assumptions and deliver predictions purely as a function of the environment, the material and the loading conditions.
However, this requires tackling multiple computational challenges.

When developing a fully predictive framework for electro-chemo-mechanical fracture, one aspect that requires
careful consideration is the treatment of the aqueous electrolyte solution inside of cracked domains. For example,
electrolytes acidify in occluded geometries such as pits and cracks, where pH values can change by 80% depending
on the defect geometry, which significantly enhances hydrogen uptake [48,49]. The need to accurately estimate
crack openings poses a challenge for smeared modelling approaches such as phase field fracture as the crack is not
explicitly represented. Here, one can take inspiration from the work conducted on the area of hydraulic fracture.
While the highly conductive fractures assumption is occasionally used when simulating pressurised cracks [50,51],
a more common strategy is to base the diffusivity of the fluid on the opening of the cracks, prescribing fluid

fluxes based on simplified relations [52–55]. These formulations reconstruct the crack opening height to impose a
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Fig. 1. Overview of the coupled electro-chemo-mechanical system, consisting of a metal undergoing deformation, hydrogen absorption and
cracking, and an electrolyte containing several ionic species with their movement allowing for electric currents.

physically realistic fluid flow profile, and thereby increase the accuracy of the overall simulations. While not directly
applicable to electrochemical transport within cracks, the manner in which the coupling between the displacement
of the solid material and the state of the fluid within cracks is introduced could act as a basis to develop a
rigorous scheme for electro-chemo-mechanical simulations. Here, we present a physics-based approach that enables
connecting the crack height with the electrolyte behaviour. Other computational aspects, such as the use of a lumped
integration scheme for improving stabilisation and robustness, are also discussed.

The remainder of this paper is arranged as follows. First, in Section 2, we present our electro-chemo-mechanical
ramework encompassing electrolyte behaviour, surface chemical reactions, hydrogen uptake and diffusion in the
etal, mechanical deformation, and a phase field description of fracture with a suitable electrolyte-crack treatment.
here, we also introduce our new physics-based approach for describing electrolytes contained within phase field
racks. Then, in Section 3, we describe the numerical implementation of our theory, emphasising the handling of
he couplings, convergence criteria, the strategies adopted for the prevention of ill-constrained degrees-of-freedom,
nd the lumped integration scheme adopted to improve numerical stabilisation. The results obtained are given in
ection 4. First, we examine the abilities of our new physics-based formulation for handling electrolytes within phase
eld cracks, comparing it with existing approaches [50] and with discrete fracture simulations. Then, fully coupled
lectro-chemo-mechanical predictions are obtained for boundary value problems of particular interest, showcasing
he ability of the model to capture fracture phenomena involving free-flowing and crack-contained electrolytes.
inally, concluding remarks end the paper in Section 5.

. A theory for electro-chemo-mechanical fracture

A domain Ω is considered, consisting of a metal domain Ωs, and an electrolyte domain Ωe, as shown in Fig. 1.
racks are present in the metal domain, with the electrolyte contained within these cracks included as an ad-
oc formulation that builds upon the definition of a domain Ω f for the crack-electrolyte region. The displacement

field in the solid is denoted by u. Within the metal, hydrogen is dissolved at the interstitial lattice sites, with the
interstitial lattice hydrogen concentration given by CL. The presence of fractures is described using a phase field
order parameter φ, with φ = 0 denoting intact material points and φ = 1 a locally fully fractured state. The state
of the electrolyte in the Ωf and Ωe domains is described by the variables ϕ and Cπ , which respectively denote the
electric potential of the electrolyte and the concentrations of ionic species π = H+,OH−,Fe2+,FeOH+,Na+,Cl−.
These species are chosen as representative of a conductive electrolyte (e.g., sea water). Finally, the hydrogen
coverage of the metal–electrolyte interface is given by θads. Thus, the behaviour of the electro-chemo-mechanical
system is described by means of 12 field quantities, which are coupled together through physical phenomena; their
governing equations and associated couplings are provided below.

We proceed to describe the governing equations describing behaviour in the solid domain (Section 2.1) and the
electrolyte domain (Section 2.2). In addition, the treatment of the electrolyte contained within cracks is extensively

discussed in Section 2.3, presenting our approach to consistently handle this important aspect of the model.
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2.1. Solid domain

The solid domain consists of a metal deforming under the small strain assumption, such that the strain tensor ε

is given by,

ε =
1
2

(
∇

T u + ∇u
)

(1)

The solid can contain or develop cracks and, accordingly, the total potential energy of the solid includes stored
nd fracture energy contributions, such that

Π =

∫
Ωs

ψ dΩs +

∫
Γd

Gc dΓd (2)

here ψ is the stored (elastic) strain energy density and Gc denotes the critical energy release rate or material
oughness, which is dependent on the lattice hydrogen concentration; Gc(CL). To describe the evolution of cracks, we
dopt a smeared representation based on phase field fracture formulations [23,56]. Accordingly, a damage function
(φ) is defined to capture the degradation of the material and the fracture energy is regularised using a so-called
rack density function, which is a function of the phase field and its gradient, γ (φ,∇φ). Thus, a quantity □ is
istributed over a region within Ωs, such that∫

Γd

□ dΓd =

∫
Ωs

γ (φ,∇φ)□ dΩs where γ (φ,∇φ) =
1
2ℓ
φ2

+
ℓ

2
|∇φ|

2 (3)

with the length scale ℓ controlling the width of this region. Using this distribution function, a regularised form
of Eq. (2) can be written as:

Π =

∫
Ωs

d(φ)ψ0 + γ (φ,∇φ)Gc(CL) dΩs (4)

which is then used to obtain the strong forms of momentum balance and fracture evolution of the metal as:

0 = ∇ ·
∂Π

∂ε
= ∇ · (d(φ)D : ε) (5)

0 = ∇ ·
∂Π

∂∇φ
+
∂Π

∂φ
= Gc(CL)

(
1
ℓ
φ − ℓ∇2φ

)
+
∂d(φ)
∂φ

ψ0 (6)

which assumes the non-fractured metal to behave as a linear-elastic solid with stiffness tensor D. To enforce the
irreversibility of the phase field parameter, a history variable H is introduced [57], transforming Eq. (6) into:

φ

ℓ
− ℓ∇2φ = −

∂d(φ)
∂φ

H where H =
ψ0

Gc(CL)
, Ḣ >= 0 (7)

Since the fracture energy is a function of the lattice concentration, it is included inside the definition of the history
variable to prevent the phase field variable from decreasing when the lattice hydrogen concentration decreases.
Throughout this work, a quadratic degradation function will be used, such that

d(φ) = k0 + (1 − k0)(1 − φ)2 (8)

where k0 = 10−10 is a residual stiffness, introduced to prevent the mechanical sub-problem from becoming ill-
posed. Following Martı́nez-Pañeda et al. [20], the degradation of the material toughness with increasing hydrogen
concentration is defined as,

Gc(CL) = Gc0

(
1 − χ

CL/NL

CL/NL + exp(−∆gb/RT )

)
(9)

where Gc0 is the material toughness in the absence of hydrogen, ∆gb is the binding energy of the critical interfaces,
χ is the hydrogen degradation factor, NL is the concentration of interstitial lattice sites, R is the gas constant, and
T is the temperature.

It remains to describe the stress-assisted diffusion of hydrogen within the bulk metal. To this end, a dissolved
hydrogen chemical potential is defined as,

µ = µ0 + RT ln
(

θL
)

− V HσH (10)

1 − θL

4
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where µ0 is the reference chemical potential, θL = CL/NL is the occupancy of interstitial lattice sites, V H is the
partial molar volume of hydrogen, and σH is the hydrostatic stress, which is defined as a function of the Cauchy
stress tensor as σH = tr(d(φ)σ 0)/3. Dissolved hydrogen atoms can diffuse freely through the crystal lattice or be
sequestered at microstructural trap sites such as carbides, grain boundaries or dislocations [58,59]. Accordingly, a
concentration of hydrogen in trap sites is defined as CT, such that the total concentration equals C = CL + CT.
Considering that a metal can contain multiple trap types, the mass balance is given by,

0 = ĊL +

∑
traps

ĊT + ∇ · jL (11)

where a diffusive flux jL = −DLCL/RT ∇µ is considered. Assuming equilibrium between the hydrogen in trapping
sites and in interstitial sites, these two concentrations are related through [60,61]:

CT

NT
=

CL
NL

exp (∆gT/RT )

1 +
CL
NL

exp (∆gT/RT )
(12)

with trapping site concentration NT, and binding energy of the trapping site ∆gT. Substituting the chemical potential,
Eq. (10), and the relation between lattice and trapped hydrogen, Eq. (12), into the mass balance equation Eq. (11),
results in

0 =

(
1 +

∂ĊT

∂ĊL

)
ĊL − ∇ ·

DLCL

RT
∇µ

=

(
1 +

NT/NL exp (∆gb/RT )

(CL/NL + exp (∆gb/RT ))2

)
ĊL − ∇ ·

(
DL

1 − CL/NL
∇CL

)
+ ∇ ·

(
DLCLV H

RT
∇σH

) (13)

where DL is the lattice diffusion coefficient. For simplicity, we consider only one type of trapping site — grain
boundaries, with binding energy ∆gT = ∆gb, which are also taken to be the critical interface governing the fracture
resistance of the material, Eq. (9).

2.2. Electrolyte domain

Let us now consider the equations describing the behaviour of electrolytes. The ions within the electrolyte are
conserved using the Nernst–Planck mass balance:

0 = Ċπ − ∇ · (Dπ∇Cπ )−
zπ F
RT

∇ · (DπCπ∇ϕ)+ Rπ (14)

sing the Faraday constant F and volume reaction rate Rπ . This describes the transport of each of the π ions with
iffusion coefficient Dπ , driven by gradients in the concentration, and for ions with charge zπ by gradients in electric

potential ϕ within the electrolyte. In addition, the conservation of electric current through the electroneutrality
condition is used to provide the π + 1 equation needed [62]:

0 =

∑
π

zπCπ (15)

For the reactions within the electrolyte, we include the water auto-ionisation reaction:

H2O
kw
−⇀↽−
k′

w

H+
+ OH− (16)

with reaction rates:

RH+,w = ROH− = kwCH2O − k ′

wCH+COH− = keq
(
Kw − CH+COH−

)
(17)

and the hydrolysis of the metal ions:

Fe2+
+ H2O

kfe
−⇀↽−
k′

fe

FeOH+
+ H+ (18)

FeOH+
+ H O

kfeoh
−−⇀ Fe(OH) + H+ (19)
2 2

5
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w

with reaction rates:

RFe2+ = −kfeCFe2+ + k ′

feCFeOH+CH+ (20)

RFeOH+ = kfeCFe2+ − CFeOH+ (kfeoh + k ′

feCH+ ) (21)

RH+,fe = kfeCFe2+ − CFeOH+ (k ′

feCH+ − kfeoh) (22)

These reactions use forward and backward reaction constants k and k ′, with the hydrolysis reactions assumed to
occur slowly, while the auto-ionisation reaction is assumed to always be in equilibrium. This equilibrium is enforced
in Eq. (17) by using the equilibrium constant Kw = kwCH2O/k ′

w = 10−8 mol2/m6 and by adopting a sufficiently
high penalty-like reaction constant keq.

The reactions between the metal surface and the electrolyte are given through the hydrogen evolution reaction
(composed of the Volmer, Tafel, Heyrovsky, and absorption reaction steps) and the corrosion reaction [15,63]:

Volmer (acid): H+
+ M + e−

kVa
−⇀↽−
k′

Va

MHads (23)

Heyrovsky (acid): H+
+ e−

+ MHads
kHa
−−⇀↽−−
k′

Ha

M + H2 (24)

Volmer (base): H2O + M + e−
kVb
−−⇀↽−−
k′

Vb

MHads + OH− (25)

Heyrovsky (base): H2O + e−
+ MHads

kHb
−−⇀↽−−
k′

Hb

M + H2 + OH− (26)

Tafel: 2MHads
kT
−⇀↽−
k′

T

2M + H2 (27)

Absorption: MHads
kA
−⇀↽−
k′

A

MHabs (28)

Corrosion: Fe2+
+ 2e−

kc
−⇀↽−
k′

c

Fe (29)

ith their respective forward and backward reaction rates given by:

Forward Backward

Volmer (acid): νVa = kVaCH+ (1 − θads) exp
(

−αVa
ηF
RT

)
ν ′

Va = k ′

Vaθads exp
(

(1 − αVa)
ηF
RT

)
(30)

Heyrovsky (acid): νHa = kHaCH+θads exp
(

−αHa
ηF
RT

)
ν ′

Ha = k ′

Ha(1 − θads)pH2

× exp
(

(1 − αHa)
ηF
RT

)
(31)

Volmer (base): νVb = kVb(1 − θads) exp
(

−αVb
ηF
RT

)
ν ′

Vb = k ′

VbCOH−θads exp
(

(1 − αVb)
ηF
RT

)
(32)

Heyrovsky (base): νHb = kHbθads exp
(

−αHb
ηF
RT

)
ν ′

Hb = k ′

Hb(1 − θads)pH2COH−

× exp
(

(1 − αHb)
ηF
RT

)
(33)

Tafel: νT = kT |θads| θads ν ′

T = k ′

T(1 − θads)pH2 (34)

Absorption: νA = kA(NL − CL)θads ν ′

A = k ′

ACL(1 − θads) (35)

Corrosion: νc = kcCFe2+ exp
(

−αc
ηF

)
ν ′

c = k ′

c exp
(

(1 − αc)
ηF

)
(36)
RT RT
6
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These rates use reaction rate constants k and k ′, charge transfer coefficients α, and the electric overpotential η,
which is defined as the difference between the potential jump and the equilibrium potential of the specific reaction,
η = Em − ϕ − Eeq,H (using the imposed metal potential Em, and either the equilibrium potential at reference
conditions for the hydrogen reaction, Eeq,H or the corrosion reaction Eeq,Fe). Finally, to conserve the hydrogen
between the electrolyte and the metal, the mass balance of the surface adsorbed hydrogen is used:

Nadsθ̇ads − (νVa − ν ′

Va) + νHa + 2νT + (νA − ν ′

A) − (νVb − ν ′

Vb) + νHb = 0 (37)

nd at the metal–electrolyte interface, the H+, OH−, Fe2+ fluxes are prescribed on the electrolyte and the lattice
ydrogen flux on the metal:

νH+ = −(νVa − ν ′

Va) − νHa (38)

νOH− = νVb − ν ′

Vb + νHb (39)

νFe2+ = ν ′

c − νc (40)

νL = νA − ν ′

A (41)

The governing equations described in this subsection assume that the electrolyte is a well-defined and separate
hase relative to the metal, and thus refer to the electrolyte domain Ωe. However, for the crack-contained electrolyte,

represented via Ωf in Fig. 1 this is not the case. This will be addressed in the next subsection.

2.3. Treatment of electrolyte within cracks

In a smeared approach like the electro-chemo-mechanical phase field framework presented here, the metal and
the electrolyte coexist when φ > 0. This requires establishing relationships between the metal and the electrolyte
as a function of the phase field, so as to capture the influence of cracking on electrolyte transport and reactions. A
particularly popular approach in this regard is the distributed diffusion model developed by Wu and De Lorenzis [50],
which captures the enhanced electrolyte transport through cracks by enhancing diffusivity in φ > 0 regions. Here,
we present a new approach, henceforth referred to as the physics-based model, which is able to capture sensitivity
o the crack height and naturally establishes a link with the discrete problem without any additional parameters.
oth models are described and compared below.

Common to both the distributed diffusion and physics-based models is the fact that the electrolyte-specific
ariables can become active in regions of Ωs, depending on the evolution of the phase field. These electrolyte-
pecific variables are thus numerically considered in the entire domain, as is common in phase field approaches,
ut they only have physical meaning in material points experiencing damage, φ > 0, where micro- and macro-cracks
hat can contain the electrolyte are present.

.3.1. Distributed diffusion model
The distributed diffusion model by Wu and De Lorenzis [50] captures the enhanced transport of ions through

racks by defining an effective diffusion coefficient tensor that has two main components;

Deff,π = Dπ,1 p(1 − φ)m
+ Dπ,2φ

m (42)

he first term accounts for the characteristics of diffusion in porous materials, through a factor p and Dπ,1 = Dπ,1 I .
In the materials of relevance for this study (metals), p = 0. The second term accounts for the anisotropy in diffusivity
that results from the presence of cracks. This is accomplished through the definition of a parameter m, to be fitted to
experiments, and sufficiently large values of the diffusion coefficient matrix Dπ,2. For the capacity term, it is often
assumed to be independent of the fracture state when the material is porous [50]. However, since we are considering
a non-porous material, we elect to distribute the capacity term consistently with the diffusion term. This results in
the following weak form formulation of the mass balance given in Eq. (14):

0 =

∫
Ωs

φmĊπδC −∇ ·
(
φm Dπ,2∇Cπ

)
δC −

zπ F
RT

∇ ·
(

Dπ,2Cπφ
m
∇ϕ

)
δC +RπφmδC dΩs+

∫
Γ±

d

νπδC dΓ±

d (43)

Finally, distributing the surface-based reactions through the interface distribution function γ (Eq. (3)) transforms
the last term of Eq. (43) into a domain-wide integral:∫

±

νπδC dΓ±

d =

∫
2γ νπδC dΩs (44)
Γd Ωs

7
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Fig. 2. Different domains and representations used in the derivation of the physics-based model: (a) fictitious electrolyte domain Ωf, (b)
discrete discontinuity representation in the domain Ω , and (c) phase field representation in the domain Ω .

where the factor 2 is introduced to account for the fact that the two fracture surfaces react with the electrolyte.
From Eqs. (43) and (44), the strong form for the mass balance distributed over the domain Ωs is extracted as:

0 = φmĊπ − ∇ ·
(
φm Dπ,2∇Cπ

)
−

zπ F
RT

∇ ·
(

Dπ,2Cπφ
m
∇ϕ

)
+ ϕm Rπ +

(
1
ℓ
φ2

+ ℓ |∇φ|
2
)
νπ (45)

One thing to note here is that this equation becomes trivial for the case of a non-fractured domain where φ = 0,
resulting in the local solution for the concentration becoming undefined. This will be discussed in Section 3.4. In
a similar manner, the weak form for the electroneutrality condition, Eq. (15), is obtained as:

0 = φm
∑
π

zπCπ (46)

Together, Eq. (45) and (46) describe the behaviour of the electrolyte potential and ion concentrations within the
domain.

2.3.2. Physics-based model
We have built our physics-based model by considering a fictitious domain Ωf, which represents the electrolyte

contained within a fracture with opening height h, as shown in Fig. 2(a). In this fictitious domain, the weak form
of the Nernst–Planck mass balance, Eq. (14), is given as:

0 =

∫
Ωf

ĊπδC − ∇ · (Dπ∇Cπ ) δC −
zπ F
RT

∇ · (DπCπ∇ϕ) δC + RπδC dΩf +

∫
Γ±

d

νπδC dΓ±

d (47)

e assume long and thin cracks, as it is commonly the case in corrosive and hydrogen-containing environments,
llowing the integrals over domain Ω f to be transferred to the discrete discontinuity description of domain Ω
Fig. 2(b)) through:∫

Ωf

□ dΩf =

∫
Γd

h□ dΓd ,

∫
Ωf

∇ · □ dΩf =

∫
Γd

∂

∂s
(h□) dΓd and

∫
Γ±

d

□ dΓ±

d =

∫
Γd

2□ dΓd (48)

sing the fracture opening height h. This allows the weak form for the electrolyte to be defined solely on the discrete
iscontinuity as:

0 =

∫
Γd

hĊπδC −
∂

∂s

(
h Dπ

∂Cπ

∂s

)
δC −

zπ F
RT

∂

∂s

(
h DπCπ

∂ϕ

∂s

)
δC + h RπδC + 2νπδC dΓd (49)

here the terms containing gradients are transformed into unidirectional derivatives along the discontinuity due to
he assumption of negligible changes in the direction normal to it. Finally, since the complete weak form is defined
8
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on the fracture face, the phase field distribution function from Eq. (3) can be used to distribute the weak form over
the complete domain Ω , resulting in:

0 =

∫
Ωs

γ hĊπδC − ∇ · (γ h Dπ∇Cπ ) δC −
zπ F
RT

∇ · (γ h DπCπ∇ϕ) δC + hγ RπδC + 2γ νπδC dΩs (50)

where the assumption of a constant field normal to the fracture is included in the diffusivity matrix Dπ . This is
achieved by constructing the diffusivity in crack-aligned coordinates (using a rotation matrix R) as:

RDπRT
=

[
Dπ 0
0 D∞/h

]
(51)

which assigns the diffusivity of the ionic species Dπ to the direction tangential to the crack, while notably enhancing
diffusion in the normal direction. As this high diffusivity gets multiplied by γ h, it disappears when the metal is
not cracked (where γ h = 0), while it is constant (and independent of the crack opening height) when the metal
is cracked, enforcing negligible concentration gradients normal to the crack. As a result, the concentration within
the phase field description will approximate a one-dimensional diffusion along the crack path, consistent with the
description of the Nernst–Planck equations for narrow cracks.

Based on Eq. (50), the mass balance for the ion species within the electrolyte is given in its strong form as:

0 = γ hĊπ − ∇ · (γ h Dπ∇Cπ )−
zπ F
RT

∇ · (γ h DπCπ∇ϕ)+ hγ Rπ + 2γ νπ (52)

Accordingly, the electroneutrality condition reads:

0 = γ h
∑
π

zπCπ (53)

While the expression for the surface adsorbed hydrogen mass balance, Eq. (37), is reformulated to

2γ
(
Nadsθ̇ads − (νVa − ν ′

Va) + νHa + 2νT + (νA − ν ′

A) − (νVb − ν ′

Vb) + νHb
)

= 0 (54)

ere, one should note that while the surface θads is defined in the entire domain, consistent with a phase field
escription, it only becomes physically meaningful at the electrolyte–metal interface. Thus, when no surfaces are
resent, the surface coverage is kept at zero, with the method used to enforce this being described in Section 3.4.

.3.3. Estimating the opening heights
The model described in the previous section requires the crack opening height h. This opening height is obtained

ased on the phase field and displacements following the procedure from [55,64]. That is, for every integration point,
surface normal vector is computed as

n =
∇φ

|∇φ|
(55)

hich produces a vector normal to the phase field representation of the crack. Using this vector, a line is constructed
hich crosses the full width of the phase field zone and passes through the integration point currently being

onsidered, as shown in Fig. 3. For the current integration point being considered, the crack opening height is
hen obtained by integrating along this line as:

h =

∫
u · ∇φ dn (56)

In order to calculate these integrals, the displacements and phase field gradients are first calculated at all
ntegration points within the domain. This integration point data is then combined to create scattered interpolation
unctions [65,66], which given the coordinates of an arbitrary point within the domain return the displacements and
radients based on linear interpolation between the closest integration points. Using these interpolation functions, the
ntegral from Eq. (56) is evaluated using numerical integration, obtaining the opening height in the current integration
oint. This integration is then repeated for all integration points within the complete domain, and opening heights are
ecalculated each time the staggered solution scheme begins solving for the chemical sub-problem (see Algorithm
). It should be noted that, as the phase field gradients are discontinuous between neighbouring elements, the use
f scattered interpolants to calculate this opening height is not exact, as opposed to directly evaluating the gradients
9
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u
s

Fig. 3. Schematic overview of the lines normal to the crack used to determine the crack opening height for three integration points, which
are indicated by red crosses.

at required locations using the finite element shape functions. However, this method does allow for unstructured
meshes and three-dimensional cases to easily be considered, without the need for computationally costly element
searches during the integration step.

2.3.4. Model comparison
Comparing the distributed diffusion model, Eqs. (45) and (46), with the physics-based model, Eqs. (52) and (54),

shows that both can be cast into the following general form:

0 = βcĊπ − ∇ ·
(

RT βd RDπ∇Cπ

)
−

zπ F
RT

∇ ·
(

RT βd RDπCπ∇ϕ
)
+ βc Rπ + βsνπ (57)

0 = βc

∑
π

zπCπ (58)

0 = βs
(
Nadsθ̇ads − (νVa − ν ′

Va) + νHa + 2νT + (νA − ν ′

A) − (νVb − ν ′

Vb) + νHb
)

(59)

sing the rotation matrix R to align the diffusion within the fracture to its orientation. The capacity, diffusion, and
urface distributors are accordingly defined as:

Distributed diffusion Physics − based

βc = φm βc = h
(

1
2ℓ
φ2

+
ℓ

2
|∇φ|

2
)

(60)

βd =

[
φm Dπ,2/Dπ 0

0 0

]
βd =

(
1
2ℓ
φ2

+
ℓ

2
|∇φ|

2
)[

h 0
0 D∞

]
(61)

βs =
1
ℓ
φ2

+ ℓ |∇φ|
2 βs =

1
ℓ
φ2

+ ℓ |∇φ|
2 (62)

The main differences between both models can be readily seen upon inspection of Eqs. (60)–(62). First, the
distributed diffusion model requires calibration of two additional parameters: the exponential factor m and the
enhanced diffusion within the fracture Dπ,2. These would be expected to have a sensitivity to the crack opening
height h. In contrast, the description of diffusion in the direction tangential to the crack does not depend on any
empirical parameters and naturally incorporates the role of h. In this regard, it should be noted that the focus
on the physics-based model is not to accurately describe the kinetics of fluid flow within a propagating crack
but to accurately capture electrolyte behaviour and its sensitivity to the crack geometry, as crack growth can be
10
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Algorithm 1 Overview of solution method

1: Start of time increment
2: while not converged do
3: Solve Eq. (7) to update ϕ
4: Solve Eq. (5) to update u
5: Update h using Eq. (56)
6: while CL, Cπ , φ, θ are not converged do
7: Solve Eqs. (13) and (57)–(59) to update CL, Cπ , φ, θ
8: Calculate energy based residual for CL, Cπ , φ, θ
9: end while

10: Calculate energy based residual for u and ϕ
11: end while
12: Go to next time increment

highly sensitive to the electrochemical conditions that arise in occluded geometries such as cracks. A second main
difference between the two models lies in their description of the transport in the direction normal to the fracture,
with the distributed diffusion model assuming that the presence of cracks does not contribute to this transport, while
one of the assumptions of the physics-based model is the absence of any gradients normal to the fracture, which is
enforced by assigning a large value to D∞.

. Numerical implementation

The governing equations, Eqs. (5), (7), (13) and (57)–(59), are solved using the finite element method. The
ystem of equations is solved in an iteratively staggered manner. First, a solution for the phase field is obtained by
olving Eq. (7). Next, the displacements are updated by solving Eq. (5). Then, a Newton–Raphson solver is used
o iteratively solve Eqs. (13) and (57)–(59) in a concurrent fashion, so as to update the electrolyte potential, the
oncentrations of ionic species, the surface coverage, and the hydrogen lattice concentration. Once all the fields
ave been updated, the convergence of the total system of equations is evaluated, with global iterations taking place
ntil convergence is reached. The solution process is summarised in Algorithm 1. By using this staggered scheme,
e avoid the well-known convergence difficulties that arise when simultaneously solving for the phase field and
isplacement [57]. Additionally, the non-local mapping for the fracture height, Eq. (56), only needs to be conducted
nce per electro-chemical solution step since the displacements and phase field parameter are constant during its
olution process.

.1. Spatial and temporal discretisation

The temporal discretisation of the governing equations is performed using a backward Euler scheme. For the
patial discretisation, quadratic elements are used to discretise the degrees of freedom as:

u =

∑
Nel

u uel φ =

∑
Nel
φϕ

el CL =

∑
Nel

L Cel
L

ϕ =

∑
Nel
ϕφ

el θads =

∑
Nel
θ θ

el Cπ =

∑
Nel

CCel
π

(63)

ne thing to note about the use of these quadratic elements is the requirement in Eq. (13) of second-order derivatives
o calculate the hydrostatic stress gradient. These gradients are poorly defined using quadratic C0 inter-element
ontinuous shape functions. While this could be resolved using elements with a higher inter-element continuity, for
nstance using NURBS [67,68], T-splines [69–71], or Hermitian polynomials [72,73], no issues were encountered

uring simulations provided a sufficiently fine mesh was used to discretise the displacement. As phase field methods

11
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already impose requirements on the maximum element size, the meshes adopted were sufficiently fine to accurately
characterise the hydrostatic stress gradients.

3.2. Residuals and stiffness matrices

We proceed to formulate the residuals and stiffness matrices for each of the governing fields and associated
balance equations.

3.2.1. Phase field evolution sub-problem
The first step of the staggered solution scheme is solving the phase field evolution, Eq. (7). This equation is

given in discretised weak form as:

ft+∆t
φ =

∫
Ωs

1
ℓ

NT
φNφϕ

t+∆t
+ ℓ

(
∇Nφ

)T
∇Nφϕ

t+∆t
− 2 (1 − k0)NT

φ

(
1 − Nφϕ

t+∆t)Ht+∆t dΩs

−

∫
Γ

ℓNT
φ∇Nφϕ

t+∆t
· n dΓ

(64)

here the last term, the boundary condition ∇φ · n, is set equal to zero hereafter. The discretised history variable
s defined as:

Ht+∆t
= max

⎛⎜⎜⎝Ht ,

1
2 ut+∆t T BT

u DBuut+∆t

Gc0

(
1 − χ

NLCt+∆t
L /NL

NLCt+∆t
L /NL+exp(−∆gb/RT )

)
⎞⎟⎟⎠ (65)

hich uses the displacement to strain mapping matrix ε = Buu and the plane-strain linear-elastic stiffness matrix
D. This also approximates the irreversibility condition through enforcing an increasing value for this history
arameter. Since the force vector depends linearly on the phase field parameter, it is directly solved through
t+∆t

= −K−1
φφ fφ + ϕt , using the tangent matrix:

Kφφ =

∫
Ωs

1
ℓ

NT
φNφ + ℓ

(
∇Nφ

)T
∇Nφ + 2 (1 − k0)Ht+∆t NT

φNφ dΩs (66)

.2.2. Momentum balance sub-problem
The second step is solving for the displacements through the momentum balance from Eq. (5). The discretised

eak form is given by:

fu =

∫
Ωs

(
k0 + (1 − k0)

(
1 − Nφϕ

t+∆t)2
)

BT
u DBuut+∆t dΩs

−

∫
Γ

(
k0 + (1 − k0)

(
1 − Nφϕ

t+∆t)2
)

NT
u τ ext dΓ

(67)

ince this equation is linear with regards to the nodal displacements u, it is directly resolved through ut+∆t
=

K−1
uu fu + ut , using the tangent matrix:

K uu =

∫
Ωs

(
k0 + (1 − k0)

(
1 − Nφϕ

t+∆t)2
)

BT
u DBu dΩs (68)

ince the phase field is resolved first, and its updated value is used to compute the displacements, this step provides
tresses and displacements that are compatible with the current state of the phase field. This is in contrast to a
cheme where the displacements are determined first, and then used to update the phase field variable. As the
lectrochemical system resolved during the next step is strongly dependent on the hydrostatic stress gradient and
he displacement field (via the crack opening height), this solution sequence was seen to be beneficial for the overall
onvergence.
12
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3.2.3. Electrochemical sub-problem
The last solution step resolves the electrochemical sub-problem. This is defined through the discretised weak

form of the interstitial lattice hydrogen mass balance, Eq. (13), given by:

ft+∆t
L =

∫
Ωs

1
∆t

(
1 +

NT/NL exp(−∆gb/RT )(
NLCt+∆t

L /NL + exp(−∆gb/RT )
)2

)
NT

L NL
(
Ct+∆t

L − Ct
L

)
dΩs

+

∫
Ωs

DL

1 − NLCt+∆t
L

(∇NL)
T

∇NLCt+∆t
L −

DLV H

RT
(∇NL)

T NLCt+∆t
L B∗

uut+∆t dΩs

−

∫
Γ

NT
L Jext dΓ +

∑
ndss

Lss2
(
νA − ν ′

A

)
+

∑
ndsΓ

Leint
(
νA − ν ′

A

)
(69)

sing the displacement to gradient of hydrostatic stress mapping matrix ∇σh = B∗

uu. A lumped integration scheme
s used for the last term, the reaction rates of the absorption reaction [74]. More details relating to this lumped
cheme, its impact on stability and its interaction with the distribution functions for the crack-contained electrolyte
re given in Section 3.3.

In addition to the interstitial lattice hydrogen mass balance, the surface adsorbed hydrogen mass balance, Eq.
59), ionic species mass balances, Eq. (57), and the electroneutrality condition, Eq. (58), are also resolved within
his solution step. The weak form of this surface mass balance is given by:

ft+∆t
θ =

∫
Ωf

2
βs Nads

∆t
NT
θ Nθ

(
θt+∆t

− θt) dΩf +

∫
Γ

Nads

∆t
NT
θ Nθ

(
θt+∆t

− θt) dΓ

−

∑
ndss

2Lss
(
νVa − ν ′

Va − νHa − 2νT − νA + ν ′

A + νVb − ν ′

Vb − νHb
)

−

∑
ndsΓ

2Leint
(
νVa − ν ′

Va − νHa − 2νT − νA + ν ′

A + νVb − ν ′

Vb − νHb
)

(70)

here the lumped integration is performed over the nodes within the solid domain, ndss, and over the nodes at the
etal–electrolyte interface, ndsΓ . The ion concentration mass balances are given by:

ft+∆t
cπ =

∫
Ωs

βcNT
CNC

(
Ct+∆t
π − Ct

π

)
+ Dπ (∇NC)

T RT βd R∇NCCt+∆t
π dΩs

+

∫
Ωs

zπ F Dπ

RT
(∇NC)

T RT βd RNCCt+∆t
π ∇Nϕφ

t+∆t dΩs

+

∫
Ωe

NT
CNC

(
Ct+∆t
π − Ct

π

)
+ Dπ (∇NC)

T
∇NCCt+∆t

π dΩe

+

∫
Ωe

zπ F Dπ

RT
(∇NC)

T NCCt+∆t
π ∇Nϕφ

t+∆t dΩe

+

∫
Γ

Jext,π dΓ +

∑
ndss

Lsv Rπ + 2Lssνπ +

∑
ndse

Lev Rπ +

∑
ndsΓ

Leintνπ

(71)

nd the electroneutrality condition is given by:

ft+∆t
ϕ =

∫
Ωs

∑
π

βczπNT
φNCCt+∆t

π dΩs +

∫
Ωe

∑
π

zπNT
φNCCt+∆t

π dΩe (72)

Since this system of equations is nonlinear, a Newton–Raphson scheme is used within this step to solve Eqs.
69)–(72) concurrently. This scheme is defined as:⎡⎢⎢⎣

K LL K Lθ 0 0
K θL K θθ K θC K θϕ

0 K Cθ K CC K Cϕ

⎤⎥⎥⎦
⎡⎢⎢⎣

dCL
dθ

dCπ

⎤⎥⎥⎦ = −

⎡⎢⎢⎣
ft+∆t
L

ft+∆t
θ

ft+∆t
cπ
t+∆t

⎤⎥⎥⎦ (73)
0 0 KϕC 0 dφ fϕ
13
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with the sub-matrices being given by:

K LL =∫
Ωs

NT
L NL

∆t

(
1 +

NT/NL exp(−∆gb/RT )(
NLCt+∆t

L /NL + exp(−∆gb/RT )
)2 −

2NT/N 2
L exp(−∆gb/RT ) NL

(
Ct+∆t

L − Ct
L

)(
NLCt+∆t

L /NL + exp(−∆gb/RT )
)3

)
dΩs

+

∫
Ωs

DL

1 − NLCt+∆t
L

(∇NL)
T

∇NL +
DL

NL
(
1 − NLCt+∆t

L

)2 (∇NL)
T

∇NLCt+∆t
L NL dΩs

−

∫
Ωs

DLV H

RT
(∇NL)

T NLB∗

uut+∆t dΩs

+

∑
ndss

2Lss

(
∂νA

∂CL
−
∂ν ′

A

∂CL

)
ILL +

∑
ndsΓ

Leint

(
∂νA

∂CL
−
∂ν ′

A

∂CL

)
ILL

(74)

K Lθ =

∑
ndss

2Lss

(
∂νA

∂θ
−
∂ν ′

A

∂θ

)
ILθ +

∑
ndsΓ

Leint

(
∂νA

∂θ
−
∂ν ′

A

∂θ

)
ILθ (75)

K θL =

∑
ndss

2Lss

(
∂νA

∂CL
−
∂ν ′

A

∂CL

)
I θL +

∑
ndsΓ

Leint

(
∂νA

∂CL
−
∂ν ′

A

∂CL

)
I θL (76)

K θθ =

∫
Ωs

2
(βs + ϵ) Nads

∆t
NT
θ Nθ dΩs +

∫
Γ

Nads

∆t
NT
θ Nθ dΓ

−

∑
ndss

2Lss

(
∂νVa

∂θads
−
∂ν ′

Va

∂θads
−
∂νHa

∂θads
− 2

∂νT

∂θads
−
∂νA

∂θads
+
∂ν ′

A

∂θads
+
∂νVb

∂θads
−
∂ν ′

Vb

∂θads
−
∂νHb

∂θads

)
I θθ

−

∑
ndsΓ

Leint

(
∂νVa

∂θads
−
∂ν ′

Va

∂θads
−
∂νHa

∂θads
− 2

∂νT

∂θads
−
∂νA

∂θads
+
∂ν ′

A

∂θads
+
∂νVb

∂θads
−
∂ν ′

Vb

∂θads
−
∂νHb

∂θads

)
I θθ

(77)

K θC = −

∑
ndss

2Lss

(
∂νVa

∂Cπ

−
∂ν ′

Va

∂Cπ

−
∂νHa

∂Cπ

+
∂νVb

∂Cπ

−
∂ν ′

Vb

∂Cπ

−
∂νHb

∂Cπ

)
I θC

−

∑
ndsΓ

Leint

(
∂νVa

∂Cπ

−
∂ν ′

Va

∂Cπ

−
∂νHa

∂Cπ

+
∂νVb

∂Cπ

−
∂ν ′

Vb

∂Cπ

−
∂νHb

∂Cπ

)
I θC

(78)

K θϕ = −

∑
ndss

2Lss

(
∂νVa

∂ϕ
−
∂ν ′

Va

∂ϕ
−
∂νHa

∂ϕ
+
∂νVb

∂ϕ
−
∂ν ′

Vb

∂ϕ
−
∂νHb

∂ϕ

)
I θϕ

−

∑
ndsΓ

Leint

(
∂νVa

∂ϕ
−
∂ν ′

Va

∂ϕ
−
∂νHa

∂ϕ
+
∂νVb

∂ϕ
−
∂ν ′

Vb

∂ϕ
−
∂νHb

∂ϕ

)
I θϕ

(79)

K Cθ =

∑
ndss

2Lss
∂νπ

∂θ
I θ +

∑
ndsΓ

Leint
∂νπ

∂θ
I θ (80)

K CC =

∫
Ωs

(ϵ + βc)NT
CNC + Dπ (∇NC)

T (RT βd R + ϵ I
)
∇NC dΩs

+

∫
Ωs

zπ F Dπ

RT
(∇NC)

T (RT βd R + ϵ I
)

NC∇Nϕφ
t+∆t dΩs

+

∫
Ωe

NT
CNC + Dπ (∇NC)

T
∇NC dΩe

+

∫
Ωe

zπ F Dπ

RT
(∇NC)

T NC∇Nϕφ
t+∆t dΩe

+

∑
Lsv

∂Rπ
∂Cπ

+ 2Lss
∂νπ

∂Cπ

ICC +

∑
Lev

∂Rπ
∂Cπ

ICC +

∑
L ls
∂νπ

∂Cπ

ICC

(81)
ndss ndse ndsΓ
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K Cϕ =

∫
Ωs

zπ F Dπ

RT
(∇NC)

T (RT βd R + ϵ I
)

NCCt+∆t
π ∇Nϕ dΩs +

∑
ndss

2Lss
∂νπ

∂ϕ

+

∫
Ωe

zπ F Dπ

RT
(∇NC)

T NCCt+∆t
π ∇Nϕ dΩe +

∑
ndsγ

Leint
∂νπ

∂ϕ

(82)

KϕC =

∫
Ωs

∑
π

(βc + ϵ) zπNT
φNC dΩs +

∫
Ωe

∑
π

zπNT
φNC dΩe (83)

hese tangent matrices use the allocation matrices I xy , to allocate the lumped integration terms to the correct
ocations within the stiffness matrix, as given by the set of degrees of freedom (x, y). The matrices related to
apacity and diffusion terms also contain an offset ϵ, whose presence is explained in Section 3.4. The system
rom Eq. (73) is iterated until a converged solution is achieved, using an energy based criterion:

Ei t = E∗

i t/E0 < 10−6 with E∗

i t = [fT
L fT

θ fT
cπ fT

ϕ ]i t [dCL; dθ; dCπ ; dφ]i t (84)

pon convergence, the errors within the phase field evolution and momentum balance are calculated and compared
o the criterion E∗

i t < 10−6. If this is fulfilled, the simulation proceeds to the next time increment. If the error
s exceeded, another staggered iteration is performed solving the phase field, displacements and electrochemical
ystems.

.3. Stabilising effect of lumped integration

One issue when simulating electro-chemical systems using finite elements is the large range of reaction rates
resent. As these rates depend strongly on the environment, often varying by many orders of magnitude at different
ocations within the same simulation, it is often not feasible to enforce these reactions to be a priori in instant
quilibrium. Furthermore, enforcing a direct equilibrium between reactions is often accomplished by eliminating
hem from the governing equations of the system, greatly complicating the addition of other reactions involving the
liminated species. However, as a result of the (potentially) very high reaction rates, a stiff system of differential
quations is created. Solving this system of equations poses difficulties, with ill-conditioned tangent matrices and
esults that often exhibit non-physical oscillations.

One manner in which these difficulties can be tackled is by using lumped integration for the problematic reaction
erms [74]. Originally developed to resolve issues with traction oscillations due to contact conditions when using
nterface elements [75], lumped integration performs the integration of transfer terms (such as electro-chemical
eactions) on a node-by-node basis in a consistent manner. For instance, considering the hydrogen absorption term
ithin Eqs. (69) and (70):

fabs
L =

∫
Ωs

2βsNT
C

(
kA (NL − NLCL)Nθθ− k ′

A (1 − Nθθ)NLCL
)

dΩs (85)

fabs
θ = −

∫
Ωs

2βsNT
θ

(
kA (NL − NLCL)Nθθ− k ′

A (1 − Nθθ)NLCL
)

dΩs (86)

sing a standard Gauss integration scheme, these integrals are directly evaluated through a sum over their integration
oints. In contrast, when using a lumped integration scheme, consistent weights for these surface reactions are first
etermined as:

Lss =

∫
Ωs

βsNT dΩs =

∑
els

∑
ip

wipβs(φip)NT (87)

here the lumped integration weights associated with each node are obtained using a standard Gauss integration
cheme, as a sum over elements and integration points. Having calculated consistent weights for each node, the
umped integration of Eqs. (85) and (86) is performed as a sum over all nodes:

fabs
L =

∑
n=ndss

2Ln
ss

(
kA
(
NL − Cn

L

)
θn

− k ′

A

(
1 − θn)Cn

L

)
inL (88)

fabs
θ =

∑
2Ln

ss

(
kA
(
NL − Cn

L

)
θn

− k ′

A

(
1 − θn)Cn

L

)
inθ (89)
n=ndss
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Fig. 4. Non-zero eigenmodes obtained using Gauss (a) and lumped (b) integration evaluated for the matrices of Eq. (90). Black solid lines
nd circles are used to indicate the change in surface occupancy due to the adsorption reaction, while red dashed lines and stars indicate
he changes in interstitial lattice hydrogen concentration.

sing the superscript n to indicate the nodal values, and inL to denote the row of the force vector corresponding to
he correct degree of freedom and node n. To illustrate the effect of this lumped integration scheme on the systems
angent matrices, we shall calculate these using Gauss and lumped integration (setting kA = k ′

A = 3, NL = 1,
s = 1). For brevity, quadratic line elements are used here, while quadratic quad and triangular elements are used
ithin the actual implementation. Setting CL = θ = 0 results in the following tangent matrices:

K Gauss =

⎡⎢⎢⎢⎢⎢⎢⎣
0.6 0.3 0.1 −0.6 −0.3 −0.1
0.3 0.4 0.3 −0.3 −0.4 −0.3
0.1 0.3 0.6 −0.1 −0.3 −0.6

−0.6 −0.3 −0.1 0.6 0.3 0.1
−0.3 −0.4 −0.3 0.3 0.4 0.3
−0.1 −0.3 −0.6 0.1 0.3 0.6

⎤⎥⎥⎥⎥⎥⎥⎦ K Lumped =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
(90)

s is evident from the first three elements of the two matrices, the tangent matrix obtained using Gauss integration
llows interactions between neighbouring nodes, transferring species to different locations via chemical reactions.
n contrast, the lumped matrix solely allows reactions to occur between degrees of freedom co-located in the same
ode. The effect of this is also seen by looking at the eigenmodes described by these matrices, with the non-zero
igenmodes shown in Fig. 4. The two lowest eigenmodes when using a Gauss scheme correspond to transfer of
hemical species between neighbouring nodes without any change in the total amount of these species. It is only
ith the addition of the third and highest eigenmode that chemical reactions become possible. In contrast, the

umped tangent matrix obtains three equal eigenmodes, corresponding to reactions between degrees of freedom in
he same node.

In a similar manner, the nodal integration weights for the volume reaction terms used within the phase field
lectrolyte description are given by:

Lsv =

∫
Ωs

βcNL dΩs (91)

nd the lumped weights used for the free electrolyte and metal–electrolyte interface reactions are given by:

Lev =

∫
Ωe

NC dΩe (92)

Leint =

∫
Γ

NL dΓ (93)

his lumped integration is applied to all reaction terms. While some reactions are not dominant and would not cause
ny numerical difficulties, this is highly dependent on the local conditions. Furthermore, as the lumped integration
cheme is consistent with the weak form, using a lumped integration instead of a Gauss integration scheme has
ittle or no effect on the obtained solution [74].

.4. Prevention of ill-constrained degrees of freedom

One issue while solving Eq. (57) or Eq. (71) is that, for elements where φ ≈ 0, the multiplication with either the
hase field parameter or the surface distribution function can cause unconstrained degrees of freedom. To remedy
16
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Table 1
Material parameters relevant to the metal domain.

Parameter Value

Young’s Modulus E 200 GPa
Poisson ratio ν 0.3
Fracture release energy Gc0 2 · 103 J/m2

Residual stiffness factor k0 10−10

Degradation factor χ 0.9
Grain boundary binding energy ∆gb 30 kJ/mol
Grain boundary site concentration NT 102 mol/m3

Interstitial lattice site concentration NL 106 mol/m3

Hydrogen diffusivity DL 10−9 m/s
Reference temperature T 20 ◦C

this, while not altering the obtained solution for the well-defined degrees of freedom, inconsistent tangent matrices
are constructed using altered distribution functions. These distribution functions include a small offset ϵ to prevent
the system from becoming ill-defined, for instance defining the contribution to the internal force vector of the ion
capacity term as:

fcapacity
cπ =

∫
Ωs

h
(

1
2ℓ
φ2

+
ℓ

2
|∇φ|

2
)

1
∆t

N′

CNC
(
Ct+∆t
π − Ct

π

)
dΩs (94)

hile the tangential term contributing to the tangential matrix of the system is defined as:

K capacity
ππ =

∫
Ωs

(
ϵ + h

(
1
2ℓ
φ2

+
ℓ

2
|∇φ|

2
))

1
∆t

N′

CNC dΩs (95)

his allows the electro-chemical degrees of freedom to remain constrained. Since the offset is solely introduced
n the tangent matrix, it does not alter the converged solution state, instead only altering the rate at which this
onverged state is obtained. Small values of ϵ prevent the system from becoming ill-constrained, but significantly
lter the conditioning number of the matrix due to the many orders of magnitude difference between the terms within
nd outside the cracks. Increasing the value of ϵ improves this matrix conditioning and enhances the stability of the
olver, at the cost of requiring more iterations to obtain a well-converged solution. A value of ϵ = 10−12 is used
hroughout this paper.

.5. Initialisation of phase field parameter and history field

For the initialisation at the start of simulations, we set the displacements, electrolyte potential, surface coverage,
nd interstitial lattice, Fe2+ and FeOH+ concentrations to zero. The H+ and OH− concentrations are initialised as
qual to the imposed boundary pH, and the Na+ and Cl− concentrations are set equal to the boundary values. At
he start of the simulations, an initial fracture is assumed to be already present. While it is common for this fracture
o be represented geometrically [43,56,76–80], we choose to include it by setting initial values for the phase field
nd history variable based on the distance dx from the preferred initial fracture:

φinit
= exp (− |dx | /ℓ) Hinit

=
1/ℓ Nφϕ

init
+ ℓ

(
∇Nφϕ

init
)T (

∇Nφϕ
init
)

k0 − 2(1 − k0)
(
1 − Nφϕinit

) (96)

hich is based on the one-dimensional solution of the phase field function. While this does not provide an exact
olution for higher dimensional cases, it is sufficient to trigger the localisation of the phase field required to obtain a
racture consistent with the preferred initial crack after the first time increment. The main advantage of including the
nitial fracture through the phase field is the automatic inclusion of the electrolyte within the initial crack, whereas
ad this been represented geometrically, an additional set of equations would have been required.

. Results

The accuracy and applicability of the described model is demonstrated through a set of case studies. First, we
tudy electrolyte behaviour in a stationary crack, so as to benchmark our physics-based treatment of electrolytes
17
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Table 2
Parameters relevant to the electrolyte domain.

Parameter Value

H+ diffusivity DH+ 9.3 · 10−9 m/s
OH− diffusivity DH− 5.3 · 10−9 m/s
Na+ diffusivity DNa+ 1.3 · 10−9 m/s
Cl− diffusivity DCl− 2 · 10−9 m/s
Fe2+ diffusivity DFe2+ 1.4 · 10−9 m/s
FeOH+ diffusivity DFeOH+ 1 · 10−9 m/s

Initial concentration H+ C0H+ 10−2 mol/m3

Initial concentration OH− C0OH− 10−6 mol/m3

Initial concentration Na+ C0Na+ 600 mol/m3

Initial concentration Cl− C0Cl− ≈ 600 mol/m3a

Initial concentration Fe2+ C0Fe2+ 0 mol/m3

Initial concentration FeOH+ C0FeOH+ 0 mol/m3

Boundary potential ϕ0 0 VSHE
Metal Potential Em 0 VSHE

aValue corrected for electroneutrality condition.

Table 3
Parameters relevant to the electrochemical reactions.

Reaction k k′ α Eeq

νVa 1 · 10−4 m/s 1 · 10−10 mol/(m2s) 0.5 0 VSHE
νHa 1 · 10−10 m/s 0 mol/(m2Pa s) 0.3 0 VSHE
νT 1 · 10−6 mol/(m2s) 0 mol/(m2s Pa) – –
νA 1 · 101 m/s 7 · 105 m/s – –
νVb 1 · 10−8 mol/(m2s) 1 · 10−13 m/s 0.5 0 VSHE
νHb 1 · 10−10 mol/(m2s) 0 m/(Pa s) 0.3 0 VSHE
νc 1.5 · 10−10 mol/(m2s) 1.5 · 10−10 m/s 0.5 −0.4 VSHE

kfe 0.1 s 10−3 m3/(mol s)
kfeoh 10−3 s−1

keq 106 m3/(mol s)

within cracks against discrete simulations and other existing phase field-based models (see Section 4.1). Then, in
Section 4.2, we simulate the propagation of cracks exposed to a hydrogen-containing electrolyte, to showcase the
main predictive capabilities of the model. Finally, in Section 4.3, we extend our analysis to a case study containing
both free and crack-contained electrolytes. These three case studies all use the metal properties given in Table 1, the
electrolyte properties given in Table 2, and the reaction rate constants listed in Table 3, with this set of properties
corresponding to an iron-based metal in contact with seawater.

4.1. Benchmark case study: handling electrolyte-containing cracks

We first investigate the capabilities of the physics-based model presented in Section 2.3.2. To this end, we
onsider a boundary value problem containing two metallic regions divided by an electrolyte. This benchmark
eometry allows us to compare the predictions of our physics-based model with the results obtained using: (i)
he distributed diffusion model [50], and (ii) a discrete simulation where the electrolyte is considered a separate
omain. As shown in Fig. 5(a), the metal domain is constrained at the bottom and subjected to an applied vertical
isplacement Uext at the top edge, which results in the creation of a thin electrolyte layer of h = Uext. The explicit

interface simulations directly simulate this domain using the method described in Ref. [74]. For the phase field
simulations, the electrolyte layer is replaced by the initial presence of the phase field variable, Fig. 5(b), which is
initialised using Eq. (96). As the crack is stationary, the magnitude of Gc0 is taken to be sufficiently high (2 · 1010

J/m2) to prevent the phase field from spreading past the region initialised through the history field. On the left

side of the domain, constant concentrations and zero electrolyte potential are imposed. The metal has dimensions
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Fig. 5. Physical domain considered and directly simulated in the reference simulations (a), and the domain and boundary conditions relevant
to the phase field representation (b).

H = 50 mm, L = 5 mm, and is discretised using quadratic Lagrangian elements of size 0.2 mm × 0.2 mm.
The temporal discretisation is performed using a backward Euler method with an initial time increment of 30 s,
increasing by 5% each time step to simulate a total duration of 200 h. Simulations are performed for the following
magnitudes of the applied displacement (and thus the electrolyte height): Uext = 10−4, 10−3, 10−2 and 10−1 mm.
In the phase field-base simulations (physics-based and distributed diffusion), results are obtained for the following
choices of phase field length scale ℓ = 0.5, 0.75, 1, and 1.25 mm.

The contours of interstitial lattice hydrogen concentration CL calculated for the case of a phase field length
scale ℓ = 1 mm are shown in Fig. 6. It can be readily seen that the physics-based phase field formulation and
the discrete simulations are in perfect agreement, showing a strong sensitivity to crack opening height (imposed
through Uext). For small opening heights only a limited amount of hydrogen enters the metal, whereas for wider
cracks significantly more hydrogen ingress takes place. The sensitivity to the crack geometry is more pronounced for
small crack openings, with the hydrogen uptake predictions eventually saturating as Uext increases, suggesting that
there is an upper limit after which the opening height becomes less dominant in the hydrogen absorption process.
This upper limit appears to correspond to the result obtained with the distributed diffusion model, which is unable
to capture the smaller hydrogen uptake associated with smaller crack openings.

The electrolyte pH predictions, shown in Fig. 7, provide a similar qualitative picture. Here, the phase field-based
predictions are again based on the choice of ℓ = 1 mm, and pH contours are given over a height equal to Uext

(the discrete electrolyte height, with figures being scaled for visibility purposes). The results are shown for a time
of 200 h. Again, the distributed diffusion model delivers crack height-insensitive results that appear to coincide
with those associated with large crack openings. In contrast, the physics-based model obtains pH distributions
similar to those of the discrete fracture simulations. Since the pH within the fracture directly influences the surface
adsorbed hydrogen, an accurate estimation is paramount. Further results (not shown here) indicate that the agreement
between the physics-based and discrete simulations also extends to the prediction of the concentration of other ionic
species and the spatial distribution in electrolyte potential. In contrast, the distributed diffusion model is limited to
characterising the environments intrinsic to high crack opening heights. One behaviour that the physics-based model
is unable to capture is the two-dimensional distribution of the pH obtained for the Uext = 10−2 mm simulations in the
discrete and distributed diffusion models. These two models show a slight rise of the pH near the metal–electrolyte
interface with a lower pH in the centre of the crack. In contrast, the physics-based model is built in such a way so
as to enforce a zero concentration gradient in the direction normal to the crack. As a result, it is expected that the
physics-based model starts to deviate from the direct simulation and distributed diffusion model for large opening
heights, h ≫ O(1 mm), where these two-dimensional effects dominate.

To quantify the behaviour of the system over time, we use the volume-averaged interstitial lattice hydrogen
C =

∫
C dΩ/

∫
1dΩ . The evolution of this average hydrogen concentration is shown in Fig. 8
concentration, L L
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Fig. 6. Lattice hydrogen concentration after t = 200 h using ℓ = 1 mm, obtained from the physics-based, distributed diffusion, and discrete
racture simulations for varying Uext.

or all combinations of fracture model, applied displacement, and phase field length scale considered. For low
mposed displacements, the physics-based model obtains a near perfect match with the discrete simulation result,
ndependently of the phase field length scale adopted. As the crack opening height increases, the results start showing
ome sensitivity to the choice of phase field length scale, with smaller values of ℓ providing the most accurate
esults in terms of hydrogen uptake. However, even for the largest imposed displacement, the physics-based model
eproduces the temporal behaviour correctly. In contrast, the distributed diffusion model overestimates the total
ydrogen entry for all cases, with its results being independent of the imposed displacement and having a similar
ependence on the length scale as the physics-based model. It can thus be concluded that the physics-based model
resented here is a suitable strategy to endow phase field models with the ability of accurately predicting the
lectrolyte-crack interplay, capturing the sensitivity to the crack geometry.
20
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Fig. 7. pH after t = 200 h using ℓ = 1 mm, obtained from the physics-based, distributed diffusion, and discrete fracture simulations for
varying Uext. pH only shown for locations where φ > 0.01.

Fig. 8. Evolution in time of the volume-averaged lattice hydrogen concentration for the physics-based (left) and distributed diffusion (right)
models. Predictions are obtained for all combinations of applied displacement and phase field length scale considered, and these are compared
with the discrete simulations (black lines with markers).
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Fig. 9. Electrolyte-driven crack propagation case study: geometry and boundary conditions.

4.2. Electrolyte-driven crack propagation

The second case study aims at assessing the ability of the model in predicting the growth of cracks that contain
aqueous electrolytes. To this end, we consider a square domain of dimensions 10 mm ×10 mm with an initial crack
of length 5 mm, as shown in Fig. 9. This is a paradigmatic benchmark in the phase field fracture community [57].
The square domain is discretised using a uniform mesh with the element dimensions being 0.1 mm × 0.05 mm. A
onstant external displacement Uext = 0.01 mm is imposed on the top edge, with this displacement being insufficient
o cause the crack to propagate by itself. Over time, hydrogen is absorbed within the metal, reducing the material
oughness and allowing the crack to propagate. The combination of imposed displacement and fracture energy has
een selected such that no significant propagation occurs in the absence of hydrogen, while modest amounts of
ydrogen ingress cause the domain to fully fracture. To track the evolution of these fractures, the total crack length
s estimated based on the phase field distribution function, Eq. (3), such that:

a =

∫
Ω

φ2

2ℓ
+
ℓ

2
|∇φ|

2 dΩ (97)

While this does not provide the exact length over which the crack has propagated, it provides a good indication of
the rate at which it evolves. Both the physics-based model and the distributed diffusion model are used to simulate
the case, using phase field length scales ℓ = 0.125, 0.25, 0.375 and 0.5 mm. Due to the difficulties of discretising
the interior of a moving crack, no discrete fracture simulations were performed.

The results obtained are shown in Fig. 10, in terms of the evolution in time of the volume-averaged interstitial
hydrogen concentration and of the crack length. As shown in Fig. 10a, and in agreement with expectations, the
distributed diffusion model shows a larger hydrogen uptake initially, compared to the physics-based model. As
a result of this higher uptake, the crack propagates sooner for the distributed diffusion model simulations, see
Fig. 10(b). Since the displacement on the top surface is constant throughout the simulation, this crack develops
solely due to the role of hydrogen in reducing the fracture resistance of the material. In contrast to the static crack
case from Section 4.1, this case shows a strong length-scale dependence for both the physics-based and distributed-
diffusion results. The results show some sensitivity to the choice of phase field length scale, for both the distributed
diffusion and physics-based models, with larger values of ℓ leading to earlier failures. This can be rationalised as
follows. First, note that the choice of phase field length scale determines the strength of the material, as evident from
the critical stress obtained for a one-dimensional solution of the phase-field problem, σc = 9/16

√
EGc/(6ℓ) [24].

Although the boundary value problem under consideration involves a long crack (and thus toughness-dominated
behaviour is expected [56]), the magnitude of the strength imposes an upper limit on the hydrostatic stress levels
that can be attained, and these govern hydrogen uptake. For example, under steady state conditions, the lattice
22
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t

Fig. 10. Electrolyte-driven crack propagation case study. Predictions in time of: (a) the volume-averaged interstitial lattice hydrogen
concentration uptake, and (b) the estimated fracture length. Results obtained for both the physics-based and the distributed diffusion models
for handling electrolytes within cracks.

Fig. 11. Electrolyte-driven crack propagation case study. Contours of lattice hydrogen concentration after t = 240 h. Results obtained with
he physics-based model for two choices of phase field length scale: (a) ℓ = 0.125 mm, and (b) ℓ = 0.25 mm.
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Fig. 12. Coupling free-flowing and crack-contained electrolytes: Overview of the geometry and boundary conditions.

Fig. 13. Coupling free-flowing and crack-contained electrolytes: contours of interstitial lattice hydrogen concentration obtained after t = 10 h.
Results are presented for two choices of applied potential: (a) Em = −0.4 VSHE, and (b) Em = 0.2 VSHE.

ydrogen concentration reads,

CL = C0 exp

(
V HσH

RT

)
(98)

where C0 is the reference, far-field hydrogen lattice concentration. The interplay between the material strength and
the hydrogen localisation is shown in Fig. 11, where contours of lattice hydrogen concentration are shown for two
values of the phase field length scale, after a time of 240 h. The results show how decreasing the magnitude of ℓ
(i.e., increasing σc) results in higher levels of interstitial hydrogen. Notably, this length scale dependence becomes
more pronounced after the onset of crack growth. The damaged region is larger for higher ℓ values, providing a
larger region of exposure to the hydrogen-containing electrolyte. This can be seen in Fig. 10a, where the differences
between the predictions obtained with different ℓ values are seen to increase with time. These results confirm the
bility of the proposed scheme to capture the influence of hydrogen uptake on propagating cracks.

.3. Coupling free-flowing and crack-contained electrolytes

The last case study addresses the most general scenario, one where there is a separate, free-flowing electrolyte
omain, in addition to a solid domain and an electrolyte-containing crack domain. A sketch of the boundary
alue problem under consideration is shown in Fig. 12. The boundary value problem involves a metal of size

L × Hm = 4 × 1 cm, containing a pit in the centre with a radius of rpit = 2 mm, and an initial crack of
length a0 = 1 mm. On top of this metal, an electrolyte layer of height He = 5 mm is present. This electrolyte
is simulated directly through the Nernst–Planck equations; Eqs. (14) and (15). It should be noted that, while the
fracture-contained electrolyte takes the displacements of the metal into account through the crack opening height,
the free electrolyte does not include any effects resulting from geometry changes. On the right side of the metal,
a constant displacement Uext = 0.02 mm is imposed. To demonstrate the ability of the model in capturing the
sensitivity to the external environment, simulations are conducted for a wide range of applied metal potentials, going
from Em = −0.5 VSHE to Em = 0.3 VSHE. Lower potentials, typical of cathodic protection conditions, strongly

accelerate hydrogen reactions, while higher potentials enhance the corrosion rate. The domain is discretised using
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Fig. 14. Coupling free-flowing and crack-contained electrolytes: pH contours obtained after t = 10 h. Results are presented in regions where
> 0.1 and for two choices of applied potential: (a) Em = −0.4 VSHE, and (b) Em = 0.2 VSHE.

Fig. 15. Coupling free-flowing and crack-contained electrolytes. Predictions of the evolution in time of (a) the volume-averaged interstitial
attice hydrogen concentration CL, and (b) the external traction, indicating the loss of load carrying capacity due to cracking. Results are

obtained for a wide range of applied potentials Em. In Fig. 15(a), the star markers denote the moment of failure.

quadratic triangular elements, using small elements with characteristic size of 0.1 mm near the expected crack path,
and larger elements up to 1 mm for the electrolyte and metal away from the crack. This results in a total of 37,000
nodes, with a total of 368,000 degrees of freedom.
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Representative results for the spatial distribution of the interstitial hydrogen concentration are shown in Fig. 13.
The results are given for a time of t = 10 hours and two choices of applied potential (Em = −0.4 VSHE and
Em = 0.2 VSHE). While for negative potentials the hydrogen is absorbed from both the exterior and crack surfaces,
he majority of the hydrogen for the positive potential simulation enters through the crack. These results can be
ationalised by inspecting the pH contours obtained, which are shown in Fig. 14. Here, it is worth noting that
lthough the pH is calculated in the entire domain, its physical meaning is limited to electrolyte-containing regions
nd thus results are only shown for regions where φ > 0.1. The calculations show that the pH is dominated by the
ydrogen evolution reactions for negative metal potentials (Fig. 14a), causing the electrolyte to become highly basic
ithin the defect. In contrast, the accelerated corrosion occurring for positive metal potentials lowers the pH within

he pit and crack regions relative to the exterior surface. As a result of this low pH, hydrogen uptake is enhanced
ithin the crack for the applied potential Em = 0.2 VSHE, while a smaller sensitivity to the existence of defects is
bserved for Em = −0.4 VSHE.

The volume-averaged lattice hydrogen concentration CL and the associated loss of load carrying capacity are
iven in Fig. 15, as a function of time. Results are given for a wide range of applied potentials so as to showcase
he ability of the model in predicting the sensitivity to the environment of the hydrogen uptake and the failure
ime. As shown in Fig. 15(b), the initial external load is not sufficient to cause an immediate fracture of the

etal and thus crack growth requires the accumulation of sufficient hydrogen in the crack tip region. For the
Em = −0.2 VSHE and Em = −0.1 VSHE cases, no crack propagation occurs within 100 days and the average
nterstitial lattice hydrogen (Fig. 15(a)) starts to plateau, indicating that under these circumstances (environment,

aterial, applied load) no fracture propagation due to hydrogen embrittlement will ever occur. For all other metal
otentials, the hydrogen absorption is sufficient to cause a crack to develop, reducing the external traction to zero.
omparing Figs. 15a and 15b one can see the role of localised hydrogen uptake in driving the cracking process.
he cases dominated by corrosion (low Em) show a lower average hydrogen concentration at failure, as for these
ases the majority of the hydrogen is absorbed into the metal through the crack walls near the fracture tip. In
ontrast, the cases with a negative metal potential absorb the majority of hydrogen from the exterior surface, away
rom the crack tip and stress concentrations, and thus require this hydrogen to diffuse towards the crack. This
esults in a higher average hydrogen concentration at the point of failure. It can be seen that the most aggressive
nvironment corresponds to the one with the lowest applied potential (Em = −0.5 VSHE), as the hydrogen reactions
re greatly enhanced. However, the interplay between applied potential and hydrogen embrittlement susceptibility is
ot straightforward. As discussed in the context of Figs. 13 and 14, the enhanced corrosion process associated with
ositive applied potentials can lead to a localised reduction in pH, and thus an increase in hydrogen uptake, which
an overcompensate the reduction in hydrogen uptake associated with the deceleration in hydrogen reaction rates.
he results obtained not only showcase the ability of the model to shed light into the complex interplay between

he environment and electro-chemo-mechanical failures but also demonstrate its potential in delivering predictions
ver technologically-relevant scales, despite the large number of degrees-of-freedom involved (12 per node).

. Conclusions

We have presented a new phase field-based theoretical and computational framework for simulating electro-
hemo-mechanical fracture. For the first time, the modelling framework combines: (i) an electrochemical description
f electrolyte behaviour, capable of handling an arbitrary number of ionic species and changes in electrolyte
otential, (ii) surface reaction modelling at the electrolyte–electrode interface, (iii) species absorption and subsequent
tress-driven bulk diffusion within the electrode metal, and (iv) a phase field description of fracture that incorporates
oughness degradation due to the presence of aggressive species. Moreover, we present a novel formulation to
epresent the electrolyte contained within cracks within the context of phase field fracture models. This formulation
s based upon the governing equations for the electrolyte, mapping from an electrolyte represented in a discrete

anner to a smeared representation of the electrolyte. This approach is compared to the widely used distributed
iffusion model, showing that both can be described through similar schemes, only altering the capacity, surface,
nd diffusion distribution functions. The theoretical framework was implemented using the finite element method.
he coupled electrical-chemical-deformation-fracture problem was solved in a staggered manner, with the primary
elds (nodal degrees-of-freedom) being: (i) the electrolyte potential, (ii) the concentrations of relevant ionic species,
iii) the interface coverage of absorbable species, (iv) the concentration of diluted species in the bulk metal, (v) the

isplacement field, and (vi) the phase field order parameter. Given the number of fields involved, special emphasis is
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T. Hageman and E. Martı́nez-Pañeda Computer Methods in Applied Mechanics and Engineering 415 (2023) 116235

D

h

D

u
c
S

A

R
t
P
M
C

R

placed on improving stability and efficiency. Among others, we introduce a lumped integration scheme that greatly
reduces oscillations and enables adopting large time increments without convergence problems. Also, strategies are
adopted to prevent ill-constrained degrees-of-freedom. To demonstrate the potential of our computational framework
we particularise our generalised model to the analysis of metallic fracture due to the uptake of hydrogen from
aqueous electrolytes, a technologically-relevant problem that is pervasive across the defence, transport, construction
and energy sectors. Several boundary value problems are addressed to showcase the ability of the model to
adequately simulate the behaviour of electrolytes contained within cracks and to capture the interplay between
fracture and electro-chemo-mechanical phenomena. Key findings include:

• The physics-based formulation presented to describe electrolytes within cracks is shown to capture the
sensitivity to crack opening height, unlike other existing models. Predictions of hydrogen uptake and ionic
species distribution show an excellent agreement with discrete fracture simulations. Moreover, the predictions
of this physics-based model display a negligible sensitivity to the choice of phase field length scale ℓ for
stationary cracks, with some sensitivity being observed in propagating cracks due to the relation between ℓ
and the material strength.

• The model is shown to be capable of adequately predicting the interplay between the environment, the material
properties and the applied load for both crack-contained electrolytes and the more general case of free-flowing
electrolytes. Widely observed experimental trends can now be rationalised in terms of changes in electrolyte
behaviour, hydrogen uptake and toughness degradation.

• The analysis of defect-containing metals exposed to free-flowing, hydrogen-containing electrolytes reveals that
high applied potentials, which favour corrosive reactions relative to the hydrogen evolution reaction, can result
in early failures due to local acidification of the electrolyte solution in the defect region.
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