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Abstract

Documentation that accompanies the file CMSG.obj/CMSG.o - a user mate-
rial subroutine (UMAT) with the conventional mechanism-based strain gra-
dient plasticity theory (Huang et al., 2004). If using this code for research
or industrial purposes, please cite:

E. Mart́ınez-Pañeda, C. Betegón. Modeling damage and fracture within
strain-gradient plasticity. International Journal of Solids and Structures, 59,
pp. 208-215 (2015)
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1. Introduction

Experiments have consistently shown that metallic materials display strong
size effects at the micron scale, with smaller being harder. As a result, a sig-
nificant body of research has been devoted to model this size dependent
plastic phenomenon. At the continuum level, phenomenological strain gra-
dient plasticity (SGP) formulations have been developed to extend plasticity
theory to small scales. Grounded on the physical notion of geometrically nec-
essary dislocations (GNDs, associated with non-uniform plastic deformation),
SGP theories relate the yield strength (or the plastic work) to both strains
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and strain gradients, introducing a length scale in the constitutive equations.

The code employed in (Mart́ınez-Pañeda and Betegón, 2015) to model
gradient effects in is here provided as a compiled user material (UMAT)
subroutine for Abaqus. The present document accompanies the subroutine
file and provides details about the (i) theoretical framework for mechanism-
based strain gradient (MSG) plasticity models (Section 2), (ii) the numerical
implementation in ABAQUS based on the conventional mechanism-based
strain gradient (CMSG) formulation (Section 3), and (iii) the very simple
instructions required to run ABAQUS with the aforementioned subroutine
(Section 4).

2. Mechanism-based gradient plasticity

The mechanism-based theory of strain gradient plasticity was proposed
by Gao and co-workers (Gao et al., 1999; Huang et al., 2000) based on a mul-
tiscale framework linking the microscale concept of SSDs and GNDs to the
mesoscale notion of plastic strains and strain gradients. Unlike other SGP
formulations, MSG plasticity introduces a linear dependence of the square
of plastic flow stress on strain gradient. This linear dependence was largely
motivated by the nano-indentation experiments of Nix and Gao (1998) and
comes out naturally from Taylor’s dislocation model (Taylor, 1938), on which
MSG plasticity is built. Therefore, while all continuum formulations have a
strong phenomenological component, MSG plasticity differs from all existing
phenomenological theories in its mechanism-based guiding principles. The
constitutive equations common to mechanism-based theories are summarized
below, more details can be found in the original articles (Gao et al., 1999;
Huang et al., 2000).

In MSG plasticity, since the Taylor model is adopted as a founding prin-
ciple, the shear flow stress τ is formulated in terms of the dislocation density
ρ as

τ = αµb
√
ρ (1)

Here, µ is the shear modulus, b is the magnitude of the Burgers vector and
α is an empirical coefficient which takes values between 0.3 and 0.5. The
dislocation density is composed of the sum of the density ρS for SSDs and
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the density ρG for GNDs as

ρ = ρS + ρG (2)

The GND density ρG is related to the effective plastic strain gradient ηp by:

ρG = r
ηp

b
(3)

where r is the Nye-factor which is assumed to be 1.90 for face-centered-
cubic (fcc) polycrystals. Following Fleck and Hutchinson (1997), Gao et al.
(1999) used three quadratic invariants of the plastic strain gradient tensor to
represent the effective plastic strain gradient ηp as

ηp =
√
c1η

p
iikη

p
jjk + c2η

p
ijkη

p
ijk + c3η

p
ijkη

p
kji (4)

The coefficients were determined to be equal to c1 = 0, c2 = 1/4 and
c3 = 0 from three dislocation models for bending, torsion and void growth,
leading to

ηp =

√
1

4
ηpijkη

p
ijk (5)

where the components of the strain gradient tensor are obtained by ηpijk =
εpik,j + εpjk,i − ε

p
ij,k. The tensile flow stress σflow is related to the shear flow

stress τ by:
σflow = Mτ (6)

where M is the Taylor factor, taken to be 3.06 for fcc metals. Rearranging
Eqs. (1-3) and Eq. (6) yields

σflow = Mαµb

√
ρS + r

ηp

b
(7)

The SSD density ρS can be determined from (7) knowing the relation in
uniaxial tension between the flow stress and the material stress-strain curve
as follows

ρS = [σreff(εp)/(Mαµb)]2 (8)

Here σref is a reference stress and f is a non-dimensional function of the plas-
tic strain εp determined from the uniaxial stress-strain curve. Substituting
back into (7), σflow yields:

σflow = σref
√
f 2(εp) + lηp (9)
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where l is the intrinsic material length based on parameters of elasticity (µ),
plasticity (σref ) and atomic spacing (b). Such that, for fcc metals,

l = M2rα2

(
µ

σref

)2

b = 18α2

(
µ

σref

)2

b (10)

Several observations on the flow stress (9) must be remarked: (Huang et al.,
2004)

(i) If the characteristic length of plastic deformation is much larger than the
intrinsic material length l, the GNDs-related term lηp becomes negligible,
such that the flow stress degenerates to σreff(εp), as in conventional plastic-
ity.

(ii) The flow stress in Eq. (9) is based on the Taylor dislocation model, which
represents an average of dislocation activities and is therefore only applicable
at a scale much larger than the average dislocation spacing. For a typical
dislocation density of 1015/m2, the average dislocation spacing is around 30
nm such that the flow stress in (9) holds at a scale above 100 nm.

(iii) Even though the intrinsic material length l in (10) depends on the choice
of the reference stress σref , the flow stress in (9) is, in fact, independent of
σref . This is because both terms inside the square root in (9) are independent
of σref .

3. Finite element implementation: CMSG plasticity

While solving analytically (or semi-analytically) simple problems, such
as pure bending or shear of an infinite layer, has been particularly useful
to compare and benchmark SGP theories, quantitative assessment of gradi-
ent effects in engineering applications requires the use of numerical methods.
Particularly, the finite element method is by far the most commonly adopted
approach to characterize size effects in metal plasticity.

The numerical implementation of each class of SGP formulations is sig-
nificantly influenced by the theoretical framework. Thus, a wide range of
ad hoc numerical solutions have been proposed for each gradient plasticity
model, ranging from the relatively easy to implement lower order theories
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to the more complicated gradient plasticity formulations falling within the
mathematical framework of Cosserat-Koiter-Mindlin theories of higher order
elasticity. Hence, as a function of their order, two different classes of SGP
theories can be identified. One involves higher order stresses and therefore
requires extra boundary conditions; the other one does not involve higher
order terms, and gradient effects come into play via the incremental plas-
tic moduli. With the aim of employing mechanism-based SGP formulations
within a lower order setup, Huang et al. (2004) developed what is referred to
as the CMSG plasticity theory. It is also based on Taylor’s dislocation model
(i.e., MSG plasticity), but it does not involve higher order terms and there-
fore falls into the SGP framework that preserves the structure of classical
plasticity. Consequently, the plastic strain gradient appears only in the con-
stitutive model, and the equilibrium equations and boundary conditions are
the same as the conventional continuum theories (Huang et al., 2004). This
lower order scheme is adopted in the present work to characterize gradient
effects from a mechanism-based approach, as it does not suffer convergence
problems when addressing numerically demanding problems, such as crack
tip deformation under large strains, unlike its higher order counterpart (see
Hwang et al., 2003; Mart́ınez-Pañeda and Betegón, 2015). In MSG plasticity
the differences between the higher order and the lower order versions are
restricted to a very thin boundary layer (≈ 10 nm) (Huang et al., 2004; Shi
et al., 2001).

3.1. A Taylor-based viscoplastic-like constitutive relation

As discussed in (Qu, 2004), the Taylor dislocation model gives the flow
stress dependent on both the equivalent plastic strain εp and effective plastic
strain gradient ηp

σ̇ =
∂σ

∂εp
ε̇p +

∂σ

∂ηp
η̇p (11)

such that, for a plastic strain rate εpij proportional to the deviatoric stress σ′ij,
a self contained constitutive model cannot be obtained due to the term η̇p.
In order to overcome this situation without employing higher order stresses,
Huang et al. (2004) adopted a viscoplastic formulation to obtain ε̇p in terms
of the effective stress σe rather than its rate σ̇e

ε̇p = ε̇

[
σe
σflow

]m
(12)
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The viscoplastic-limit approach developed by Kok et al. (2002) is used to
suppress strain rate and time dependence by replacing the reference strain
rate ε̇0 with the effective strain rate ε̇. The exponent is taken to fairly
large values (m ≥ 20), which in Kok and co-workers’ (Kok et al., 2002)
scheme is sufficient to reproduce the rate-independent behavior given by the
viscoplastic limit in a conventional power law (see (Huang et al., 2004)).
Taking into account that the volumetric (ε̇kk) and deviatoric (ε̇′ij) strain
rates are related to the stress rate in the same way as in classical plasticity,
the constitutive equation yields:

σ̇ij = Kε̇kkδij + 2µ

{
ε̇′ij −

3ε̇

2σe

[
σe
σflow

]m
σ̇′ij

}
(13)

Where, as described in Section 2, the flow stress includes an additional
term to account for the influence of GNDs:

σflow = σref
√
f 2 (εp) + lηp (14)

With K being the bulk modulus, µ the shear modulus, δij the Kronecker
delta, σref a reference stress, f (εp) a non-dimensional function determined
from the uniaxial stress-strain curve, l the intrinsic material length, εij the
total strain and σij the Cauchy stress tensor.

3.2. Consistent tangent modulus

Since higher order terms are not involved, the governing equations of
CMSG plasticity are essentially the same as those in conventional plasticity
and the FE implementation is relatively straightforward. As in classical
plasticity, the plastic strain rate ε̇pij is proportional to the deviatoric stress
σ′ij

ε̇pij =
3ε̇p

2σe
σ′ij (15)

with the usual definitions of the effective stress

σe =

√
3

2
σ′ijσ

′
ij (16)

and the equivalent strain rate

ε̇ =

√
2

3
ε′ijε

′
ij (17)
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The deviatoric stresses at the end of the increment can be readily obtained
from the elastic relation with the deviatoric strains

σ′ij = 2µ
(
ε′eij
∣∣
t
+ ∆ε′ij −∆εpij

)
(18)

Where, following the notation by Qu (2004), ∆ refers to the incremental
value and |t denotes the value at the beginning of the increment. Substituting
the incremental version of (15) into (18) renders

σ′ij = 2µ

(
ε′eij
∣∣
t
+ ∆ε′ij −

3∆εp

2σe
σ′ij

)
(19)

Defining ε̂′ij = ε′eij
∣∣
t
+ ∆ε′ij and rearranging,(

1 +
3µ

σe
∆εp

)
σ′ij = 2µε̂′ij (20)

Taking the inner part of (20)

σe + 3µ∆εp = 3µε̂ (21)

where ε̂ =
√

2
3
ε̂′ij ε̂

′
ij. Reformulating (21) and substituting (12) and (14)

renders,

σe − 3µ

(
ε̂−∆ε

(
σe
σflow

)m)
= 0 (22)

Which is a non-linear equation that can be solved by Newton-Raphson
method

σe = σe +
3µ
(
ε̂−∆ε

(
σe

σflow

)m)
− σe

1 + 3µh
(23)

with h being

h = m∆ε

(
σe
σflow

)(m−1)
1

σflow
(24)

Once convergence has been achieved the incremental effective plastic
strain is obtained from

∆εp = ε̂− σe
3µ

(25)
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Such that σ′ij can be obtained from (20) and ∆εpij from the incremental
version of (15). The consistent material Jacobian ∂∆σij/∂∆εij is then com-
puted by taking the variation of (20) with respect to all quantities at the end
of the increment(

1 +
3µ

σe
∆εp

)
∂σ′ij + σ′ij

3µ

σe

(
∂∆εp − ∆εp

σe
∂σe

)
= 2µ∂ε̂′ij (26)

And (21) leads to
∂σe + 3µ∂∆εp = 3µ∂ε̂ (27)

Substituting (25) and rearranging,

∂σe =
3µ

1 + 3µh
∂ε̂ (28)

Accounting for the definition of ε̂ renders,

∂σe =
2

3ε̂

3µ

1 + 3µhε̂′ij∂ε̂
′
ij

(29)

Substituting in (26) and rearranging leads to:

∂σ′ij =

(
2σe
3ε̂

Iijkl −
1

σeε̂

(
h− ∆εp

σe

)
3µ

1 + 3µh
σ′ijσ

′
ij

)
∂ε̂′ij (30)

with Iijkl being the fourth-order unit tensor. Such that, by considering the
relation between the stress and strain tensors with their deviatoric quantities,
the material stiffness Jacobian can be expressed as:

∂σij =

(
2σe
3ε̂

Iijkl +

(
K − 2σe

9ε̂

)
Iij −

1

σeε̂

(
h− ∆εp

σe

)
3µ

1 + 3µh
σ′ijσ

′
ij

)
∂εij

(31)

3.3. Computation of the effective plastic strain gradient

The effective plastic strain gradient ηp is obtained at the element level:
the plastic strain increment is interpolated through its values at the Gauss
points in the isoparametric space and afterwards the increment in the plastic
strain gradient is calculated by differentiation of the shape functions. Here
focus is placed on the particular case of a plane strain quadrilateral element
with 8 nodes and 4 integration points, extension to other types of elements
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can be performed in a relatively straightforward manner.

Thus, the incremental value of the components of the plastic strain ∆εpij
within the element can be readily obtained from its values at the Gauss
integration points

(
∆εpij

)
k

∆εpij =
4∑

k=1

N
′

k(x, y)
(
∆εpij

)
k

(32)

where N
′

k(x, y) is the interpolation function in global coordinates. By per-
forming the classic isoparametric mapping, the coordinate transformation
is:

x =
4∑

k=1

Nk(ξ, η)xk (33)

y =
4∑

k=1

Nk(ξ, η)yk (34)

where Nk(ξ, η) is the shape function vector. For convenience, the interpola-
tion function in local coordinates takes the same form as the shape functions
and (32) becomes:

∆εpij =
4∑

k=1

Nk(ξ, η)
(
∆εpij

)
k

(35)

Accordingly, linear shape functions are adopted,

Ni =
1

4
(1 + ξiξ) (1 + ηiη) (36)

with ξi and ηi denoting the integration point coordinates in the isoparametric
space.
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Figure 1: Nodal and integration point numbering adopted for a quadrilateral plane strain
quadratic finite element

.

The numbering scheme in this Gauss point-based interpolation is depicted
in Fig. 1. The differentiation of the shape functions readily follows:

∂Ni

∂ξ
=

1

4
ξi (1 + ηηi) (37)

∂Ni

∂η
=

1

4
ηi (1 + ξξi) (38)

Which, by means of the chain rule, can be easily converted to the global
coordinate system, [∂Nk

∂x
∂Nk

∂y

]
= J−1

[
∂Nk

∂ξ
∂Nk

∂η

]
(39)

with J being the Jacobian matrix:

J =
∂(x, y)

∂(ξ, η)
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
=


4∑

k=1

∂Nk

∂ξ
xk

4∑
k=1

∂Nk

∂ξ
yk

4∑
k=1

∂Nk

∂η
xk

4∑
k=1

∂Nk

∂η
yk

 (40)
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With the plastic strain gradient being computed in MSG plasticity from:
Gao et al. (1999)

∆ηpijk = ∆εpik,j + ∆εpjk,i −∆εpij,k (41)

The non-zero components of the strain gradient increment in plane strain
are,

∆ηp111 =
4∑
i=1

∂Ni

∂x
(∆εp11)i (42)

∆ηp112 = 2
4∑
i=1

∂Ni

∂x
(∆εp12)i −

4∑
i=1

∂Ni

∂y
(∆εp11)i (43)

∆ηp121 =
4∑
i=1

∂Ni

∂y
(∆εp11)i (44)

∆ηp122 =
4∑
i=1

∂Ni

∂x
(∆εp22)i (45)

∆ηp133 = −
4∑
i=1

∂Ni

∂x
(∆εp11 + ∆εp22)i (46)

∆ηp211 = −
4∑
i=1

∂Ni

∂y
(∆εp11)i (47)

∆ηp212 = −
4∑
i=1

∂Ni

∂x
(∆εp22)i (48)

∆ηp221 = 2
4∑
i=1

∂Ni

∂y
(∆εp12)i −

4∑
i=1

∂Ni

∂x
(∆εp22)i (49)

∆ηp222 =
4∑
i=1

∂Ni

∂y
(∆εp22)i (50)

∆ηp233 = −
4∑
i=1

∂Ni

∂y
(∆εp11 + ∆εp22)i (51)

∆ηp313 = −
4∑
i=1

∂Ni

∂x
(∆εp11 + ∆εp22)i (52)
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∆ηp323 = −
4∑
i=1

∂Ni

∂y
(∆εp11 + ∆εp22)i (53)

∆ηp331 =
4∑
i=1

∂Ni

∂x
(∆εp11 + ∆εp22)i (54)

∆ηp332 =
4∑
i=1

∂Ni

∂y
(∆εp11 + ∆εp22)i (55)

And the effective strain gradient increment being:

∆ηp =
1

4

ηpijk∆η
p
ijk

ηp
(56)

With ηpijk being computed in the same way as ∆ηpijk. Under rate-proportional
loading ∆ηp can be computed as

∆ηp =

√
1

4
∆ηpijk∆η

p
ijk (57)

This non-local approach can be easily implemented in commercial FE
software. For example, in the case of the well-known package ABAQUS,
modules may be used within a UMAT subroutine to store the plastic strain
components at each Gauss point.

3.4. Finite deformation theory

The numerical framework is extended to finite strains. Rigid body ro-
tations for the strains and stresses are conducted by means of the Hughes
and Winget (1980) algorithm and the strain gradient is obtained from the
deformed configuration since the infinitesimal displacement assumption is no
longer valid. More details can be found in (Mart́ınez-Pañeda and Betegón,
2015).

4. Usage instructions

One must consider the peculiarities of the code provided here when cre-
ating a finite element model in Abaqus that is intended to be run with the
aforementioned UMAT subroutine. Namely,
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• Rate-proportional conditions are assumed; i.e., the effective strain gra-
dient increment is computed from (57). Feel free to contact for a more
general version.

• A warning message will appear in the *.msg file if the inner Newton-
Raphson loop (see Section 3) does not converge after 200 iterations.

• The maximum number of elements in the model is 500000. Feel free to
contact to increase this upper bound.

• The subroutine only works for quadrilateral quadratic plane strain el-
ements with reduced integration (CPE8R).

• The effective plastic strain gradient is computed from the plastic strains
in the previous increment. Hence, a time increment sensitivity study
is highly recommended.

• In Eq. (1), α is assumed to be equal to 0.5

• The following hardening law is employed,

σ = σY

(
1 +

Eεp

σY

)N
(58)

such that σref = σY (E/σY )N and f (εp) = (εp + σY /E)N in (9), withN
being strain hardening exponent. Nevertheless, the response of other
common hardening laws (Ramberg-Osgood, Hollomon, etc.) can be
appropriately captured by choosing equivalent values of σY and N .

When developing the model a user material must be defined with a total
of 15 solution dependent state (SDV) variables; the equivalence between each
of them and the corresponding constitutive variable is given in Table 1. Note
that some of them are only required for output purposes. Particularly, one
should be aware that the Burgers vector has been defined in mm (SI Units
are employed, MPa and mm) but a unit conversion takes place inside of the
subrutine so as to plot the dislocation densities in m−2, a more appropriate
unit; this relates to ρS (SDV11) and ρG (SDV12), but not to ρ (SDV13).

Besides the solution dependent state variables, a user material is defined
with 6 constants/properties. These are (by order): 1) Young modulus E,
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2) Poisson’s ratio ν, 3) Yield stress σY , 4) material length scale l, 5) strain
hardening exponent N and 6) flag variable indicating if we are dealing with
an fcc material (1) or a bcc material (0). Note that the flag variable is only
relevant for output purposes, as it assigns the appropriate values of M and
b to compute the dislocation densities (r̄ is assumed to be equal to 1.9 for
both configurations).

Table 1: Equivalence between the solution dependent state variables and the corresponding
material parameters.

SDV Constitutive variable

1 ε11 - xx component of the elastic strain tensor

2 ε22 - yy component of the elastic strain tensor

3 ε33 - zz component of the elastic strain tensor

4 ε12 - xy component of the elastic strain tensor

5 εp11 - xx component of the plastic strain tensor

6 εp22 - yy component of the plastic strain tensor

7 εp33 - zz component of the plastic strain tensor

8 εp12 - xy component of the plastic strain tensor

9 εp - equivalent plastic strain

10 ηp - effective plastic strain gradient

11 ρS - density of statistically stored dislocations

12 ρG - density of geometrically necessary dislocations

13 ρ - total dislocation density

14 ε̇p - equivalent plastic strain rate

15 ρ̇ - total dislocation density rate

Hence, for an fcc material with Young’s modulus E = 20000 MPa, Pois-
son’s ratio ν = 0.3, initial yield stress σY = 400 MPa, material length scale
l = 0.005 mm and strain hardening exponent equal to N = 0.2, the material
definition part of the input file should look like,

*Material, name=Material-1

*Depvar

15,
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*User Material, constants=6

200000., 0.3, 400., 0.005, 0.2, 1.

An input file is also provided to facilitate the use of the subroutine. A
small description of the model follows to ease the understanding of the input
file.

The capabilities of the CMSG model will be shown by addressing one of
the most popular benchmarks in small scale plasticity: bending of thin foils.
A micron-scale metallic beam of thickness H and length W will be subjected
to pure bending boundary conditions as depicted in Fig. 3.

x
1

x
2

H

W

u =  x
21 W/2

Figure 2: Bending of thin foils: boundary conditions on the undeformed configuration

.

A uniform mesh of 10 (thickness) x 300 (length) elements is employed.
Despite the problem being essentially one-dimensional, a full 2D model will
be considered for the sake of clarity. The bending moment will be computed
as a function of the applied curvature for the following material proper-
ties: E = 200000 MPa, ν = 0.3, σY = 400 MPa and N = 0.2. Results
will be given as a function of the relation between the material length scale
and the foil thickness; one should note that making l = 0 renders the con-
ventional plasticity solution. The predicted moment M is normalized by
M0 = σYH

2/(6
√

1− ν + ν2), defining initial yielding in conventional rate-
independent, von Mises plasticity. Figure 3 shows the results obtained, where
one can easily see that thinner foils are stronger and strain harden more than
thinner foils, in consistency with the experimental data (see, e.g., Stölken and
Evans, 1998).
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Figure 3: Normalized moment versus curvature for different foil thicknesses.

The input file of the aforementioned benchmark is also included with the
code. To run the calculation type in the command line:

abaqus job=Job-1 user=CMSG.obj

where Job-1 is the name of the input file (Job-1.inp). Linux users should
instead use the CMSG.o file, such that the command line would look like,

abaqus job=Job-1 user=CMSG.o

Micro-bending is one of the most popular benchmarks for strain gradi-
ent plasticity theories; other classic examples are torsion or nano-indentation.
However, geometrically necessary dislocations - that start playing a role when
large gradients of plastic strain are confined into a small volume - do not
limit their influence to small scale tests. SGP formulations have proven to
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be fundamental in a number of applications, such as void growth (Liu et al.,
2005; Niordson and Tvergaard, 2007), crack tip mechanics (Martinez-Paneda
et al., 2017; Mart́ınez-Pañeda and Niordson, 2016), hydrogen embrittlement
(Mart́ınez-Pañeda et al., 2016a,b), strengthening on TRIP steels and fiber-
reinforced materials (Bittencourt et al., 2003; Mazzoni-Leduc et al., 2010),
friction and contact (Song et al., 2016) or damage (Peerlings et al., 2012),
among many other. It is hoped that the present add-on for Abaqus will fa-
cilitate research in this directions.

The code is expected to work with all Abaqus versions above 6.11 but
if an error shows in the log file before performing a single iteration, please
contact me to find a suitable version.

5. Conclusions

If the code and the documentation provided here are useful please cite:

E. Mart́ınez-Pañeda, C. Betegón. Modeling damage and fracture within
strain-gradient plasticity. International Journal of Solids and Structures, 59,
pp. 208-215 (2015)

Do not hesitate to contact for further clarifications.
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