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A B S T R A C T

Phase field fracture models have seen widespread application in the last decade. Among these applications, its
use to model the evolution of fatigue cracks has attracted particular interest, as fatigue damage behaviour can
be predicted for arbitrary loading histories, dimensions and complexity of the cracking phenomena at play.
However, while cycle-by-cycle calculations are remarkably flexible, they are also computationally expensive,
hindering the applicability of phase field fatigue models for technologically-relevant problems. In this work, a
computational framework for accelerating phase field fatigue calculations is presented. Two novel acceleration
strategies are proposed, which can be used in tandem and together with other existing acceleration schemes
from the literature. The computational performance of the proposed methods is documented through a series
of 2D and 3D boundary value problems, highlighting the robustness and efficiency of the framework even in
complex fatigue problems. The observed reduction in computation time using both of the proposed methods
in tandem is shown to reach a speed-up factor of 32, with a scaling trend enabling even greater reductions in
problems with more load cycles.
1. Introduction

The phase field fracture model has received substantial attention in
the last decade — and for good reason. The original model, proposed
by Bourdin et al. (2000) as a regularization of the variational fracture
formulation by Francfort and Marigo (1998), is flexible and simple
to implement numerically. It can readily capture complex cracking
phenomena such as crack branching (Borden et al., 2012), coales-
cence (Kristensen et al., 2020b), complex crack trajectories (Hirshikesh
et al., 2019) and crack nucleation from non-sharp defects (Tanné et al.,
2018). Moreover, it can naturally capture the crack size effect (Tanné
et al., 2018; Kristensen et al., 2021) and be readily extended to accom-
modate specific failure surfaces (Navidtehrani et al., 2022; Lorenzis and
Maurini, 2022). The model has proven to be extremely versatile and
thus has been used in a vast number of applications, both within com-
plex fracture problems such as cohesive fracture (Wu, 2017; Feng and
Li, 2022), micromechanical damage (Guillén-Hernández et al., 2020;
Tan and Martínez-Pañeda, 2021), and ductile fracture (Aldakheel et al.,
2018; Alessi et al., 2018), but also in multi-physics applications ranging
from thermal shocks (Bourdin et al., 2014) and moisture effects (Ye and
Zhang, 2022) to hydrogen embrittlement (Martínez-Pañeda et al., 2018;
Duda et al., 2018; Anand et al., 2019; Kristensen et al., 2020a) and
Lithium-ion battery degradation (Klinsmann et al., 2016; Boyce et al.,
2022; Ai et al., 2022).
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Among the many problems attracting phase field developments,
fatigue is arguably one of the most important ones, from both scientific
and technological perspectives. Using phase field as a framework for
fatigue models is an attractive prospect (Alessi and Ulloa, 2023), as
fatigue remains a longstanding challenge in solid mechanics and a
sufficiently flexible phase field fatigue model could readily encompass
the aforementioned phase field models and applications. An example of
such a flexible framework is found in the work by Carrara et al. (2020),
where a history variable is introduced to introduce a dependence of
the fracture energy on the loading history of the material. The model
naturally recovers the Paris Law and S–N curve behaviour and has
proven an attractive platform from which to develop phase field fatigue
models for various applications (Loew et al., 2020; Golahmar et al.,
2022; Simoes and Martínez-Pañeda, 2021; Simoes et al., 2022). Aside
from Carrara et al. (2020), there have been several other notable works,
both of a cycle-by-cycle nature (Seiler et al., 2020; Mesgarnejad et al.,
2019; Song et al., 2022) and more practical approaches, which take the
Paris behaviour as an input (Lo et al., 2019).

Two known drawbacks associated with phase field fracture are
the computational cost associated with the need for a sufficiently
fine mesh to resolve the phase field length scale (Kristensen et al.,
2021), and the inefficiency of the solution due to the non-convexity
of the balance equations (Gerasimov and De Lorenzis, 2016). Sig-
nificant efforts have been extended towards remedying both issues.
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Strategies to ease meshing requirements include adaptive mesh refine-
ment (Heister et al., 2015; Klinsmann et al., 2015; Freddi and Mingazzi,
2022, 2023), specialized element formulations (Olesch et al., 2021)
and the use of a combined finite element-finite volume approach (Sar-
gado et al., 2021). Similarly, a wealth of improvements have also
been proposed for the solution strategy, including (residual) control
algorithms (Ambati et al., 2016; Seleš et al., 2019), quasi-Newton
methods (Kristensen and Martínez-Pañeda, 2020; Wu et al., 2020), line
search algorithms (Gerasimov and De Lorenzis, 2016; Lampron et al.,
2021; Börjesson et al., 2022), and multigrid approaches (Jodlbauer
et al., 2020). The computational costs of phase field fracture become
particularly demanding when performing cycle-by-cycle computations
of fatigue, hindering high cycle fatigue analyses. A common strategy
to minimize the costs of computing high cycle fatigue is the use of so-
called cycle jumping, where the cycle-by-cycle solution is extrapolated
o skip the computation of several load cycles (Cojocaru and Karlsson,
006). Loew et al. (2020) introduced such a scheme for phase field
atigue by locally extrapolating the fatigue history variable.

This paper seeks to introduce alternative means of accelerating
ycle-by-cycle phase field fatigue computations. Two methods are pro-
osed which are mutually compatible and individually provide substan-
ial computational performance improvements. Furthermore, neither
ethods prevent the use of existing cycle jump strategies, which can

e included for additional performance improvements. The first com-
utational acceleration method proposed is a modification to existing
taggered solution strategies commonly adopted in the phase field
iterature (Miehe et al., 2010a; Ambati et al., 2014; Seleš et al., 2019),
o that the tangent stiffness matrices are not updated in each load step,
ut rather stored in factorized form such that subsequent increments
nd iterations are solved with a significant reduced computational cost.
his approach, henceforth referred to as Modified Newton (MN), is
specially suitable for high-cycle fatigue, where very small changes to
he overall system are observed between individual load increments.
he second method proposed, referred to as Constant Load Accumulation
CLA), is suitable for problems where only one step of the loading
ycle contributes significantly to the fatigue accumulation. For systems
here this assumption is valid, the fatigue accumulation rule can be
djusted to permit the simplification of the loading curve to a single
oad increment per cycle, significantly reducing the total number of
ncrements in the simulation. As shall be shown, for high-cycle prob-
ems this approach can be extended to capture multiple load cycles
n a single increment with negligible loss of accuracy for even greater
omputational performance improvement.

The manuscript is organized as follows. Section 2 formulates the
hase field fatigue framework used for the cycle-by-cycle computations.
he details of the numerical aspects of the finite element solution
nd the proposed methods are given in Section 3. Subsequently, a
eries of numerical examples are analyzed in Section 4 to illustrate the
apabilities of the proposed method. Concluding remarks end the paper
n Section 5.

. A phase field model for fatigue

This section introduces the specific phase field fatigue model
dopted, which is based on the work by Carrara et al. (2020). This
hoice is grounded on its flexibility, simplicity of implementation and
uitability to be used in conjunction with other acceleration schemes
such as those by Loew et al. (2020)). Furthermore, the fatigue acceler-
tion strategies presented here can be readily incorporated into a wide
ange of phase field fatigue models and, as such, the specific choice
hase field model is of secondary importance.

.1. Basic theory

Consider a solid domain 𝛺 ∈ R𝑛 with boundary 𝜕𝛺 ∈ R𝑛−1. In a
mall deformations context, we consider a displacement field 𝐮 ∈ R and
2

a phase field 𝜙 ∈ [0; 1], for which a value of 0 denotes intact material
and a value of 1 denotes broken material with vanishing stiffness. Then,
the standard so-called AT2 phase field fracture model (Bourdin et al.,
2000) can be formulated from the minimization of the following energy
functional:

(𝜺(𝐮), 𝜙,∇𝜙) = ∫𝛺

[

𝜓(𝜺(𝐮), 𝜙) +
𝐺𝑐
2

(

𝜙2

𝓁
+ 𝓁∇𝜙 ⋅ ∇𝜙

)]

d𝑉 (1)

here 𝐺𝑐 is the critical energy release rate or material toughness, 𝓁
enotes the phase field length scale, and 𝜓(𝜺(𝐮), 𝜙) is the strain energy
ensity, which for a linear elastic solid may be expressed as;

(𝜺(𝐮), 𝜙) = (1 − 𝜙)2𝜓0(𝐮) = (1 − 𝜙)2 1
2
𝜺∶𝐂0 ∶ 𝜺. (2)

Here, 𝐂0 is the linear elastic stiffness tensor of the material and 𝜺 is the
nfinitesimal strain tensor, given by 𝜺 = (∇𝐮 + ∇𝐮𝑇 )∕2. The phase field
ariable, 𝜙, is seen to degrade the material stiffness.

2.2. Extension to fatigue

To extend the above fracture framework to account for fatigue dam-
age, Carrara and co-workers (Carrara et al., 2020) proposed introducing
a degradation function 𝑓 (�̄�), which reduces the material toughness, as
a function of an accumulated fatigue history variable �̄�. Several options
are available for both the formulation of the degradation function
and the accumulated fatigue history variable. Here, as in Seleš et al.
(2021), the accumulated fatigue history variable at time step 𝑛 + 1 is
introduced as the cumulative positive increments of undegraded elastic
strain energy density:

�̄�𝑛+1 = �̄�𝑛 + |𝜓0,𝑛+1 − 𝜓0,𝑛|𝐻(𝜓0,𝑛+1 − 𝜓0,𝑛), (3)

where 𝐻 is the Heaviside function. Also following Carrara et al. (2020),
we use the asymptotic fatigue degradation function:

𝑓 (�̄�) =

⎧

⎪

⎨

⎪

⎩

0 if �̄� ≤ 𝛼𝑇
(

2𝛼𝑇
�̄� + 𝛼𝑇

)2
else .

(4)

where the threshold parameter 𝛼𝑇 introduces a lower limit below which
accumulated fatigue does not influence the material toughness. This
threshold is here chosen as 𝛼𝑇 = 𝐺𝑐∕12𝓁.

2.3. Principle of virtual power

Let us first define the Cauchy stress tensor 𝝈 in terms of the strain
energy density 𝜓 ,

𝝈 =
𝜕𝜓
𝜕𝜺

= (1 − 𝜙)2𝝈0 = (1 − 𝜙)2𝐂0 ∶ 𝜺. (5)

Then, the internal energy of the system can be expressed as

 = ∫𝛺
(1 − 𝜙)2𝝈0 ∶ 𝜺d𝑉 + ∫𝛺 ∫

𝑡

0
𝑓 (�̄�(𝜏))

𝐺𝑐
𝓁

(

𝜙�̇� + 𝓁2∇𝜙 ⋅ ∇�̇�
)

d𝜏 d𝑉 .

(6)

lternatively, the above may be expressed in terms of internal power
ensity as

̇ = ∫𝛺

[

(1 − 𝜙)2𝝈0 ∶ �̇� +
𝜕𝜓
𝜕𝜙

�̇� + 𝑓 (�̄�(𝑡))
𝐺𝑐
𝓁

(

𝜙�̇� + 𝓁2∇𝜙 ⋅ ∇�̇�
)

]

d𝑉 . (7)

The external power depends only on the external mechanical loading

̇ = ∫𝛺
𝐛 ⋅ �̇�d𝑉 + ∫𝜕𝛺𝑡

𝐭 ⋅ �̇�d𝑆, (8)

where 𝜕𝛺𝑡 denotes the part of the boundary where mechanical tractions
𝐭 are applied and 𝐛 are the body forces. Here, the external contributions

due to the phase field variable and its work-conjugate are omitted, as
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only problems with homogeneous phase field boundary conditions are
considered. The balance of virtual power requires

̇ − ̇ = 0, (9)

which, after applying integration by parts, may be expressed as:

∫𝛺
−
[

(1 − 𝜙)2∇ ⋅ 𝝈0 + 𝐛
]

⋅ �̇�d𝑉 + ∫𝛺

{

𝜕𝜓
𝜕𝜙

−
𝐺𝑐
𝓁

[

𝑓 (�̄�)
(

𝓁2∇2𝜙 − 𝜙
)

+ 𝓁2∇𝑓 (�̄�) ⋅ ∇𝜙
]

}

�̇�d𝑉 + 𝐺𝑐𝓁 ∫𝜕𝛺
𝑓 (�̄�)∇𝜙 ⋅ 𝐧�̇�d𝑆

+ ∫𝜕𝛺𝑡

[

(1 − 𝜙)2𝝈 ⋅ 𝐧 − 𝐭
]

⋅ �̇�d𝑆 = 0

(10)

he above must hold for arbitrary, kinematically admissible, vari-
tions of the velocities �̇� and phase field increments �̇�, which by
tandard arguments implies the following local balance equations and
ccompanying boundary conditions:

⋅
[

(1 − 𝜙)2𝝈0
]

+ 𝐛 = 0 in 𝛺 (11)

− 2(1 − 𝜙)𝜓0 + 𝑓 (�̄�)
𝐺𝑐
𝓁

(

𝜙 − 𝓁2∇2𝜙
)

− 𝐺𝑐𝓁∇𝑓 (�̄�) ⋅ ∇𝜙 = 0 in 𝛺 (12)

(1 − 𝜙)2𝝈0 ⋅ 𝐧 = 𝐭 on 𝜕𝛺 (13)

∇𝜙 ⋅ 𝐧 = 0 on 𝜕𝛺 (14)

2.4. Strain energy split to adequately handle compression behaviour

In its original formulation, the phase field fracture model predicts
a symmetric behaviour under tension and compression. That is, crack
growth is equally driven by compressive and tensile stresses and, since
the degradation of the material stiffness is similarly isotropic, the crack
faces are allowed to interpenetrate and while carrying no compressive
loads. A common strategy to mitigate this is to decompose the strain
energy density into active and passive parts such that:

𝜓 = (1 − 𝜙)2𝜓+
0 (𝐮) + 𝜓

−
0 (𝐮) (15)

where only the active part of the strain energy density (𝜓+
0 ) contributes

to crack growth and only the active part of the stiffness is degraded
by the phase field variable. Several suggestions have been made for
defining the active and passive parts of the strain energy density,
with the two most popular being the volumetric/deviatoric split by
Amor et al. (2009) and the spectral split by Miehe et al. (2010b). The
volumetric/deviatoric split is given by

𝜓+
0 = 1

2
𝐾 ⟨tr𝜺⟩2+ + 𝜇(𝜺𝑑𝑒𝑣 ∶ 𝜺𝑑𝑒𝑣)

𝜓−
0 = 1

2
𝐾 ⟨tr𝜺⟩2− ,

(16)

where ⟨ ⟩± denotes the two signed Macaulay brackets, 𝜺𝑑𝑒𝑣 is the
deviatoric part of the strain tensor, 𝐾 is the bulk modulus and 𝜇 is
the shear modulus or second Lamé parameter. On the other side, the
spectral split is based on a spectral decomposition of the strain tensor:
𝜺± =

∑3
𝑎=1 ⟨𝜀𝐼 ⟩± 𝐧𝐼 ⊗ 𝐧𝐼 , where 𝜀𝐼 are the principal strains and 𝐧𝐼

denote the principal strain directions (with 𝐼 = 1, 2, 3). The, the spectral
strain energy decomposition is defined as

𝜓±
0 = 1

2
𝜆 ⟨tr𝜺⟩2± + 𝜇tr

(

𝜺2±
)

, (17)

with 𝜆 denoting the first Lamé parameter and tr being the trace opera-
tor.

A significant improvement to the numerical performance of these
splits was introduced with the so-called hybrid scheme by Ambati
and co-workers (Ambati et al., 2014), where only the active part
of the strain energy contributes to crack growth, but the stiffness is
isotropically degraded by damage, with the caveat that degradation
only applies if the stress state is predominantly tensile. An alternative
strain energy decomposition, which has been shown to be particularly
effective for fatigue modelling (Golahmar et al., 2023), is the so-called
no-tension split by Freddi and Royer-Carfagni (2010). The no-tension
split, first intended for masonry-like materials, filters out contributions
3

a

from compressive strains more effectively than other approaches. Using
𝜆 and 𝜇 to denote the Lamé parameters, 𝐸 and 𝜈 respectively being
Young’s modulus and Poisson’s ratio, and taking 𝜀1, 𝜀2, 𝜀3 as the prin-
cipal strains, with 𝜀1 being the largest, the strain energy decomposition
is given as (Lo et al., 2019) Eq. (18) in Box I.

Unless otherwise stated, this no-tension split by Freddi and Royer-
Carfagni (2010) is the one adopted in the numerical experiments
reported in this manuscript.

3. Finite element implementation

This section provides details of the numerical implementation of the
phase field fatigue model presented in Section 2. The finite element
method is used and the solution of the resulting system of equations
is discussed, together with the fatigue acceleration methods presented
in this work: the Modified Newton (MN) and the Constant Load Accu-
mulation (CLA) solution strategies. The implementation is carried out
using the Ferrite.jl finite element library (Carlsson et al., 2021).1

3.1. Crack irreversibility

Enforcing damage irreversibility is of critical importance when con-
sidering non-monotonic loading. For simplicity, we shall here make use
of the so-called history field  approach pioneered by Miehe et al.
(2010a). Accordingly, the history field is defined as the maximum
active strain energy density experienced in a point during the loading
history

 = max
𝜏∈[0,𝑡]

𝜓+
0 (𝜏) (19)

and it replaces the active undegraded strain energy density 𝜓+
0 as the

crack driving force in the phase field equation (12). While this approach
is convenient and tends to ease the convergence of the phase field
equations, it has also been the target of sensible objections (Linse et al.,
2017; Strobl and Seelig, 2020), especially regarding its influence on
crack nucleation from non-sharp defects and its non-variational nature.
The latter issue is of little relevance here, as the fatigue extension of
phase field is not variationally consistent in the form adopted here. A
more critical aspect in the case of fatigue is that for variable amplitude
loading, only the locally maximal loads will be retained as a crack
driving force throughout cycles that also include lower loads. However,
this scenario is not relevant to this work, as the numerical examples
deal with constant amplitude loading and pre-existing sharp defects.

Another method of enforcing irreversibility of fully formed cracks
is the so-called crack-set method by Bourdin et al. (2000), where nodes
in which the phase field exceeds a given threshold are added to a set
of nodes subject to a 𝜙 = 1 Dirichlet condition. Anecdotally, we find
that this method seems to ease some convergence issues which have
been observed to occur at the original crack tip after some degree of
crack growth in high-cycle fatigue simulations, regardless of whether
the degraded or undegraded strain energy is used to obtain the fatigue
variable. As a result, this work uses both the history variable approach
and the crack set method in tandem, with the threshold value for nodes
to be added to the crack set chosen as 0.95.

3.2. Solution strategy

The governing Eqs. (11)–(14) can be reformulated in a numerically
convenient decoupled form as

∫𝛺

[

(1 − 𝜙)2𝝈0 ∶ 𝛿𝜺 − 𝐛 ⋅ 𝛿𝐮
]

d𝑉 + ∫𝜕𝛺𝑡
𝐭 ⋅ 𝛿𝐮 d𝐴 = 0

𝛺

[

−2(1 − 𝜙)𝜓+
0 𝛿𝜙 + 𝑓 (�̄�)𝐺𝑐

(

𝜙
𝓁
𝛿𝜙 + 𝓁∇𝜙 ⋅ ∇𝛿𝜙

)]

d𝑉 = 0
(20)

1 The Julia implementation developed is openly shared with the community
nd made available to download at www.empaneda.com/codes.

http://www.empaneda.com/codes
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if 𝜀3 > 0 then
{

𝜓+
0 = 𝜆

2

(

𝜀1 + 𝜀2 + 𝜀3
)2 + 𝜇

(

𝜀21 + 𝜀
2
2 + 𝜀

2
3
)

𝜓−
0 = 0

elseif 𝜀2 + 𝜈𝜀3 > 0 then
⎧

⎪

⎨

⎪

⎩

𝜓+
0 = 𝜆

2

(

𝜀1 + 𝜀2 + 2𝜈𝜀3
)2 + 𝜇

[

(

𝜀1 + 𝜈𝜀3
)2 +

(

𝜀2 + 𝜈𝜀3
)2
]

𝜓−
0 = 𝐸

2 𝜀
2
3

elseif (1 − 𝜈)𝜀1 + 𝜈(𝜀2 + 𝜀3) > 0 then
⎧

⎪

⎨

⎪

⎩

𝜓+
0 = 𝜆

2

[

(1 − 𝜈) 𝜀1 + 𝜈𝜀2 + 𝜈𝜀3
]2

𝜓−
0 = 𝐸

2(1−𝜈2)
(

𝜀22 + 𝜀
2
3 + 2𝜈𝜀2𝜀3

)

else
{

𝜓+
0 = 0

𝜓−
0 = 𝜆

2

(

𝜀1 + 𝜀2 + 𝜀3
)2 + 𝜇

(

𝜀21 + 𝜀
2
2 + 𝜀

2
3
)

(18)

Box I.
The weak form Eqs. (20) are then discretized using standard bilinear
lements to form the system of equations:

𝐊𝐮𝐮 𝐊𝐮𝜙

𝐊𝜙𝐮 𝐊𝜙𝜙

]{

𝐮
𝝓

}

=
{

𝐫𝐮
𝐫𝜙

}

(21)

here 𝐊 and 𝐫 are stiffness matrices and residuals vectors, respectively.
he phase field equations are non-convex with respect to the variables 𝐮
nd 𝜙 simultaneously. As a result, the full coupled system is notoriously
ifficult to solve in a stable and efficient manner (unless unconven-
ional schemes, such as quasi-Newton methods, are used (Kristensen
nd Martínez-Pañeda, 2020; Wu et al., 2020)). However, the equa-
ions are convex with respect to the primary variables individually.
herefore, a common strategy is to solve the system in a decou-
led fashion, using alternate minimization. In the following, common
taggered schemes are briefly introduced, followed by the proposed
odified Newton approach for accelerated fatigue computations.

.2.1. Standard alternate minimization techniques
Solving the phase field equations by a sequence of alternate mini-

ization of the two decoupled subproblems was popularized by Miehe
t al. (2010a). The scheme which was then proposed involves solving
ach of the subproblems independently until individual convergence
s achieved before moving on to the next load increment. This is now
ommonly referred to as a single-pass scheme and introduces signifi-
ant sensitivity to the size of the load increments. As was shown by
ristensen and Martínez-Pañeda (2020), this approach may be highly

nefficient for fatigue computations. Alternatively, one can use so-
alled multi-pass schemes where the alternate minimization is repeated
ntil some global convergence criterion is reached. Examples of such
onvergence criteria can be found in Refs. Ambati et al. (2014) and
eleš et al. (2019). Here, we adopt the same residual-based multi-
ass approach as found in Lampron et al. (2021), also adopting the
olerances 𝚃𝙾𝙻𝚒𝚗 = 10−5 and 𝚃𝙾𝙻𝚘𝚞𝚝 = 10−4. The scheme is provided
n Algorithm 1 and only differs from the single-pass algorithm by the
resence of the while loop.

Algorithm 1 Multi-pass alternate minimization
Increment 𝑛 + 1
Initialize: 𝜙0 = 𝜙𝑛, 𝐮0 = 𝐮𝑛, 𝑘 = 0
while ||𝑅𝜙(𝐮𝑘+1, 𝜙𝑘+1)||∞ ≤ TOLout do

Find 𝜙𝑘+1 such that ||𝑅𝜙
(

𝐮𝑘, 𝜙𝑘+1
)

||∞ ≤ TOLin
Find 𝐮𝑘+1 such that ||𝑅𝐮

(

𝐮𝑘+1, 𝜙𝑘+1
)

||∞ ≤ TOLin
𝑘← 1

end while
𝜙𝑛+1 = 𝜙𝑘, 𝐮𝑛+1 = 𝐮𝑘
4

3.2.2. Modified Newton approach for accelerated fatigue computations
In order to accelerate high cycle fatigue computations, a simple

modified Newton approach is introduced. In high cycle fatigue com-
putations, it is generally reasonable to expect that changes to the
solution variables will be small between individual load increments.
Consequently, changes to the tangent stiffness matrices of the system
are also expected to be small. As Newton–Raphson based methods do
not require the tangent stiffness matrix to be exact, we here propose
to modify the multi-pass staggered algorithm given in Algorithm 1,
such that the tangent stiffness is only updated and factorized on an as-
needed basis. In this implementation, the tangent stiffness matrices for
the two subproblems are updated and factorized if any of the following
conditions are met:

• Start of analysis

• One of the subproblems fails to converge in 𝑛𝑖 inner Newton
iterations.

• A number of load increments 𝑛𝑐 have passed without updating the
stiffness matrices.

The parameters 𝑛𝑖 and 𝑛𝑐 may be chosen differently. While we have not
attempted a systematic study of optimal values, which will depend on
the size of the boundary value problem and the total number of cycles
to failure, the results obtained (see Section 4) suggest that choosing
𝑛𝑐 to have a higher magnitude in the damage sub-problem will likely
result in an improved performance.

3.3. Accelerating calculations by accumulating fatigue damage under a
constant load

Another technique for accelerating cycle-by-cycle fatigue compu-
tations can be achieved by changing the way in which fatigue is
accumulated. Here, henceforth referred to as the Constant Load Ac-
cumulation (CLA) acceleration strategy. In the current fatigue model,
fatigue is accumulated by positive increments of active strain energy.
The load ratio 𝑅 is here loosely defined in term of applied displacement
�̄� as

𝑅 =
�̄�𝑚𝑖𝑛
�̄�𝑚𝑎𝑥

. (22)

In the case where 𝑅 ≥ 0, the load cycle can be resolved using only
two load increments per cycle (loading and unloading). However, only
one of these increments actually contributes to fatigue. In the case
where 𝑅 < 0, four increments per cycle are required (tensile loading,
unloading, compressive loading and unloading). If the compressive
loading stage does not contribute significantly to fatigue, only the
tensile loading increment is relevant, as illustrated by the dashed blue
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Fig. 1. Illustration of loading pattern and fatigue accumulation for the original formulation on the left and the proposed constant load accumulation scheme of the right. As
llustrated, the former requires at least four increments per load cycle, while the latter requires only one.
a
c

urves in Fig. 1. Note that these considerations are only intended for
igh-cycle fatigue where material response is usually well within the
inear regime and no effects such as compressive plasticity would be
xpected to occur to a significant degree. It should also be noted that
here are loading conditions where multiple points in the load cycle can
e relevant, such as non-proportional loading.

For problems which are sufficiently simple such that only one
ncrement of the load cycle is significant, considerable acceleration of
he computation can be achieved by changing the fatigue accumulation
rom Eq. (3) to

̄𝑛+1 = �̄�𝑛 + 𝜓+
0,𝑛+1, (23)

and combining this with the application of a constant load �̄� = �̄�𝑚𝑎𝑥 and
he counting of one cycle per increment. The approach is illustrated by
olid red lines in Fig. 1. We note for completeness that formally, to
ccount for cases where 𝑅 > 0, the formulation should be amended to

̄𝑛+1 = �̄�𝑛 + 𝜓+
0,𝑛+1

[

1 − 𝑅2𝐻(𝑅)
]

, (24)

lthough such cases will not be considered here.

. Numerical experiments

We shall now present the results of our numerical experiments,
iming at benchmarking the performance of the two novel acceler-
tion strategies proposed here: the Modified Newton (MN) method
resented in Section 3.2.2 and the constant load accumulation (CLA)
cheme described in Section 3.3. For all the case studies considered,
he material parameters are chosen as Young’s modulus 𝐸 = 210 GPa,
oisson’s ratio 𝜈 = 0.3, and toughness 𝐺𝑐 = 2.7 kJ∕m2. First, the

growth of fatigue cracks in a Single Edge Notched Tension (SENT)
specimen (Section 4.1) is investigated to compare acceleration schemes
and quantify gains relative to the reference solution system. Then, more
complex cracking patterns are simulated by addressing the nucleation
and growth of cracks in an asymmetric three point bending sample
containing multiple holes (Section 4.2). Here, one of the objectives is
to compare the crack trajectories obtained with different strain energy
decomposition approaches. Finally, in Section 4.3, the robustness of
the model and its ability to simulate fatigue cracking in large scale 3D
problems is demonstrated.
5

4.1. Fatigue crack growth on a Single Edge Notched Tension (SENT)
specimen

The geometry and boundary conditions of the Single Edge Notched
Tension (SENT) sample considered in the first case study are shown in
Fig. 2(a). The no-tension strain energy density decomposition given in
Eq. (18) is used and the initial crack is initialized as a Dirichlet con-
dition on the phase field. The Dirichlet boundary condition is applied
on two rows of elements so as to define a constant width for the initial
crack.

The specimen is discretized using approximately 32,000 bilinear
quadrilateral elements with a refined zone in the crack growth region.
In this refined zone, the characteristic element length equals 0.003 mm,
more than five times smaller than the phase field length scale, chosen
here as 𝓁 = 0.016 mm. The specimen is subjected to an alternating
pplied displacement �̄�. The fatigue loading is repeated for 120.000
ycles with a maximum applied displacement �̄�𝑚𝑎𝑥 = 0.0002 mm.

Calculations are obtained for four scenarios. First, results are obtained
for the standard fatigue accumulation given in Eq. (3) and the multipass
staggered algorithm from Algorithm 1. These are considered to be the
baseline conditions, not including any of the acceleration strategies
proposed in this work. A second scenario constitutes the case where
fatigue crack growth is simulated using the Modified Newton (MN)
scheme presented in Section 3.2.2. Conversely, the third scenario em-
ploys only the Constant Load Acceleration (CLA) scheme described in
Section 3.3. Finally, a fourth scenario is considered where both MN and
CLA approaches are used in tandem. The MN parameters are chosen as
𝑛𝑖 = 25 and 𝑛𝑐 = 100 and the load ratio is always considered to be equal
to 𝑅 = 0. All computations are performed with a single core of a CPU
of the model Xeon E5-2650 v4.

The finite element predictions of crack extension versus number of
cycles are given in Fig. 3. Here, crack extension is measured as the
distance between the original crack tip and the furthest point with 𝜙 =
0.95. The results reveal that the acceleration schemes do not inherently
introduce any deviation in crack extension when compared to the
baseline. This is always the case for the modified Newton Method,
and holds true for the CLA scheme when there is no compressive
contribution to fatigue.

As shown in Table 1, the computational performance of the different
modelling strategies is measured by a number of factors. The first
measure of performance is the actual computation time (in hours).

However, one should note that although noise in this indicator has been
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Fig. 2. Fatigue crack growth in a Single Edge Notched Tension (SENT): (a) geometry (with dimensions in mm) and boundary conditions, (b) initial crack contour, and (c) final
stage of the fatigue crack propagation.
𝑢

Fig. 3. Predictions of crack extension 𝛥𝑎 versus number of cycles 𝑁 for the SENT
case study. The figure shows results obtained with the reference (baseline) conditions,
and the two acceleration scheme presented here (Modified Newton, NM; Constant load
accumulation, CLA), independently and in tandem.

minimized by the absence of parallel computing and the use of identical
CPU types, individual measures of computation time should not be
taken as an exact quantification of performance. A more objective
measure is the second performance indicator considered, the total
number of matrix factorizations, where one factorization here denotes a
factorization of both the displacement and the damage subproblems. In
addition, Table 1 also provides with the total number of iterations used
on the phase field and displacement subproblems. The results reveal
that while the use of a constant load accumulation acceleration strategy
significantly reduces the computation time by reducing the necessary
number of load increments, bringing a similar reduction in iterations
and factorizations, the use of the Modified Newton approach presents
a trade-off between a reduction in matrix factorizations and an increase
in necessary iterations, especially on the displacement problem. How-
ever, with the choice of parameters for the modified Newton approach
of 𝑛𝑖 = 25 and 𝑛𝑐 = 100, this strategy requires roughly 100 times less
matrix factorizations than the baseline result in exchange for only 4
times more iterations on the displacement problem. Also, we emphasize
6

Table 1
Performance details for the SENT case study, comparing baseline results with the
use of the Modified Newton (MN) approach, constant load accumulation (CLA) and
a combination thereof.

Solutions strategy MN + CLA CLA MN Baseline

Computation time [h] 13.0 32.7 40.1 96.5
Matrix factorizations 1191 120 032 2379 240 032
Total iterations 𝜙 120 205 120 032 240 114 240 032
Total iterations 𝐮 276 812 120 032 973 678 240 032

that the iterations on the displacement problem are very cheap when
using the MN approach as they only require rebuilding the residuals
and trivially finding the solution with the existing factorized stiffness
matrix. The results obtained show that both the Modified Newton (MN)
and the constant load accumulation (CLA) accumulation strategies can
provide substantial performance gains (independently or in tandem)
without loss of accuracy. Moreover, these methods are compatible with
existing cycle jump schemes such as those presented in Loew et al.
(2020) and Seleš et al. (2021).

4.1.1. Additional acceleration with multiple cycles per increment
With the use of the constant load accumulation scheme, the choice

of counting one cycle per increment is somewhat arbitrary as the
update to the accumulated fatigue variable �̄� from increment 𝑛 to
increment 𝑛 + 1 can be readily modified to

�̄�𝑛+1 = �̄�𝑛 +𝜓0,𝑛+1, (25)

where the number of cycles per increment  can be chosen smaller
or greater than one. While a small degree of error is expected to
arise as a result of the discrete sampling of the cycle history that
will result from considering  > 1 (‘‘cycle-jumping’’), we here show
that this error is negligible for simulations involving varying numbers
of cycles to failure. To this end, calculations are conducted for the
SENT geometry considering three values for the maximum applied
displacement, namely �̄�𝑚𝑎𝑥 = 0.00016 mm, �̄�𝑚𝑎𝑥 = 0.00020 mm, and
̄𝑚𝑎𝑥 = 0.00025 mm, and corresponding characteristic number of cycles
equal to 60,000, 120,000 and 240,000, respectively. The number of
cycles per increment  is varied in the range from 1 to 32 to in-
vestigate its influence on the accuracy of the solution. In all cases,
this enhanced CLA approach is used in conjunction with the Modified
Newton method. Results are provided for all three cases in Fig. 4. It
can be observed that the accumulated error is small, with deviations
in final crack extension from the reference  = 1 being in all cases
below 3%. Moreover, for a given value of  , the deviation in the
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Fig. 4. Predictions of crack extension 𝛥𝑎 versus number of cycles 𝑁 for the SENT case study considering selected values of  (number of cycles per increment) and the following
characteristic number of cycles: (a) 60,000 cycles, (b) 120,000 cycles, and (c) 240,000 cycles.
estimated crack extension at the end of the characteristic number of
cycles decreases with increasing characteristic number of cycles. For
high-cycle fatigue problems of engineering relevance, where the total
number of cycles may be in the order of millions, a high value of
 can be used with insignificant error. Performance tables similar to
Table 1 are provided in Appendix. These show that, while computation
times do not scale linearly with  , they do monotonically decrease in
he range investigated. Relative to the baseline cases in Table 1, the
orresponding computation with the Modified Newton method and the
onstant load accumulation technique with  = 16, is 32 times faster

than the baseline case.

4.2. Asymmetric three point bending

The second case study aims at applying the fatigue acceleration
schemes to a boundary value problem exhibiting more complex crack
growth. As shown in Fig. 5, a plane strain beam containing an array of
holes is subjected to three point bending loading conditions. An initial
crack is located asymmetric to the loading pins and the holes, inducing
7

mixed-mode cracking. This paradigmatic boundary value problem has
been previously investigated in the context of static loading (see,
e.g., Refs. Molnár and Gravouil (2017) and Hirshikesh et al. (2019)).

The domain is discretized using roughly 128,000 linear quadri-
lateral elements, with a characteristic element size ℎ𝑒 = 0.01 mm,
five times smaller than the phase field length scale. The applied dis-
placement is �̄� = 0.003 mm, which is cycled for 90,000 load cycles.
As is typical for three point bending experiments, the load ratio is
assumed to be 𝑅 = 0. Both the modified Newton and the constant load
accumulation scheme are exploited to capture the fatigue history in an
efficient manner. The computation is carried out using different strain
energy density decompositions to the differences in crack trajectory
predictions. The obtained crack paths at the end of the analysis are
shown in Fig. 6.

We note that in all cases the crack path differs from those observed
under monotonic loading; see, e.g., Refs. Molnár and Gravouil (2017)
and Mandal et al. (2019). This deviation is explained by the accumu-
lation of fatigue near the holes which leads to the nucleation of new
secondary cracks prior to the intersection of the primary crack with the
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Fig. 5. Sketch of the asymmetric three point bending problem, including dimensions (in mm) and boundary conditions. Only the light grey region is subject to fatigue damage.
Fig. 6. Asymmetric three point bending: Contours of the phase field crack growth after 90,000 fatigue cycles using (a) no strain decomposition. (b) The volumetric/deviatoric
strain decomposition of Amor et al. (2009). (c) The spectral decomposition of Miehe et al. (2010b). (d) The no-tension split of Freddi and Royer-Carfagni (2010).
Table 2
Performance details for the asymmetric three point bending case study as a function of the strain energy decomposition.

Strain decomposition Isotropic Volumetric/deviatoric Spectral No-tension No-tensiona

Computation time [h] 44.9 44.4 60.3 75.5 399.0
Matrix factorizations 1249 1278 1341 1295 180 130
Total iterations 𝜙 91 355 91 400 91 742 91 624 180 130
Total iterations 𝐮 314 292 328 948 400 795 426 645 180 130
aWithout acceleration schemes.
holes. If an endurance limit were to be introduced in the phase field
fatigue formulation, these secondary cracks could be eliminated and
the monotonic loading crack path might be recovered. We also remark
that the issues with nucleation of cracks from non-sharp defects high-
lighted by Strobl and Seelig (2020), which stems from the use of the
history field approach for crack irreversibility, are not of significance
for this phase field fatigue model. Performance measures for the four
computations are provided in Table 2.
8

The spectral and the no-tension split exhibit a more complex crack
pattern and also require significantly more iterations on the displace-
ment problem. However, in all cases, the proposed solution strategy
offers a large reduction in the number of matrix factorizations required,
in exchange for a modest increase in the number of iterations needed
on the displacement problem. The results of this case study show that
this performance improvement prevails even for complex crack growth
studies. In the case of the No-tension split, which took the longest to
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Fig. 7. Sketch of the three-dimensional beam undergoing uniaxial tension and containing a tilted edge crack, including the sample dimensions (in mm) and boundary conditions.
Fig. 8. Contours of the 3D tension problem. The crack rotates to be perpendicular to the overall maximal principal stress.
compute with the modified Newton approach, it is still more than five
times faster than when computed with a standard Newton method and
without constant load accumulation. It can be expected that in the
absence of these acceleration schemes, computation time is roughly
independent of the strain decomposition as only one iteration per field
per increment is required even in this most advanced case. Thus, the
acceleration is roughly a factor of 9 for the isotropic and volumet-
ric/deviatoric splits. . As it was the case for the SENT specimen, a more
optimal performance can most likely be achieved by differentiating
how often the stiffness is updated for the two subproblems, as the
damage subproblem can be updated far less frequently without paying
the price of a significant number of additional iterations.

4.3. 3D beam under tension with a tilted edge crack

As a final benchmark, we consider the uniaxial tension of a three-
dimensional beam with an edge crack. The induced complex crack
9

behaviour, the crack is rotated 45◦ relative to the beam cross section,
as sketched in Fig. 7.

The beam is subjected to cyclic tension by means of a displacement
boundary condition applied on both ends. The load amplitude is �̄� =
1 mm and a total of 600 000 cycles are computed combining the
Modified Newton approach with 𝑛𝑖 = 25 and 𝑛𝑐 = 50 with the constant
load accumulation scheme with  = 4 cycles per increment (see Sec-
tion 4.1.1). The computational domain is meshed using approximately
196,000 linear tetrahedral elements, with a characteristic length near
the crack ℎ𝑒 = 0.35 mm. The phase field length scale is here chosen to
be equal to 𝓁 = 1.2 mm. The results obtained are shown in Fig. 8 in
terms of the phase field contours, showing the crack growth pattern.

The results obtained reveal the expected crack growth behaviour,
with the crack rotating to position itself perpendicular to the over-
all maximum principal stress. The proposed methods accelerate the
computation significantly, with a total of only 150,000 load incre-
ments needed to capture 600,000 cycles during which only 2978
matrix factorizations are performed. In the absence of the Modified
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Newton approach and Constant Load Accumulation (CLA) acceleration
strategies, a minimum of 1,200,000 increments would be required,
with 1,200,000 matrix factorizations and 1,200,000 iterations on each
subproblem. Combining the two acceleration schemes proposed here,
the computation is achieved using only about 172,000 iterations for
the displacement problem and 160,000 for the phase field problem.
Furthermore, the majority of these iterations take significantly less
time than in the baseline case, as only a few of them require matrix
factorization. The number of matrix factorizations, which is the quan-
tity expected to dominate the computation time for large problems, is
reduced by a factor of over 400 in total. For a problem with a million
cycles, a larger number of cycles per increment  can be employed
for even greater computational improvement without loss of accuracy.
Endowed with the acceleration strategies presented in this work, phase
field fatigue is shown to be a technologically-relevant tool capable
of delivering complex fatigue crack growth predictions in 3D over a
hundred thousand cycles.

5. Concluding remarks

We have presented two compelling yet simple methods for ac-
celerating phase field fatigue computations: (i) a Modified Newton
(MN) approach, which is shown capable of drastically reducing the
number of matrix factorizations necessary in the solution of a high cycle
fatigue problem, and (ii) a constant load accumulation (CLA) approach
that significantly reduces the number of load increments needed by
considering only those relevant to the evolution of the fatigue variable.
Three case studies are investigated to explore the performance benefits
of these two acceleration strategies, individually and in tandem. Fatigue
crack growth is predicted in 2D and 3D scenarios and compared with
the baseline model. The results showed that computation times can be
reduced by orders of magnitude when using MN and CLA and that
these techniques remain robust even in the case of complex crack
patterns and three-dimensional crack growth. The acceleration schemes
presented enable predicting complex cracking patterns in 3D for over
a hundred thousand cycles, endowing phase field fatigue models with
the ability of delivering predictions for scales relevant to engineering
practice. Moreover, the proposed methods are compatible other accel-
erations methods such as the cycle jump scheme presented in Loew
et al. (2020), which unlocks the potential for even greater performance
benefits.
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Table 3
Performance details for the SENT specimen at a characteristic number of cycles of
60 000. Computations utilize the proposed modified Newton approach and the constant
load accumulation scheme with 𝑁 cycles per increment.
 1 2 4 8 16

Computation time [h] 8.7 6.8 4.0 2.2 1.2
Matrix factorizations 606 333 298 294 290
Total iterations 𝜙 60 314 30 491 15 600 8131 4528
Total iterations 𝐮 234 934 210 754 126 138 71 018 39 680
Crack extension deviation [%] – 0.19 −0.64 −1.36 −2.9

Table 4
Performance details for the SENT specimen at a characteristic number of cycles
of 120,000. Computations utilize the proposed modified Newton approach and the
constant load accumulation scheme with 𝑁 cycles per increment.
 1 2 8 16 30

Computation time [h] 13.0 9.3 5.3 3.0 1.3
Matrix factorizations 1191 609 293 297 293
Total iterations 𝜙 120 205 60 312 15 634 8271 4778
Total iterations 𝐮 276 812 227 920 127 541 70 568 40 896
Crack extension deviation [%] – 0.19 −0.89 −1.51 −2.85

Table 5
Performance details for the SENT specimen at a characteristic number of cycles
of 240 000. Computations utilize the proposed modified Newton approach and the
constant load accumulation scheme with 𝑁 cycles per increment.
 1 2 8 16 32

Computation time [h] 20.6 12.4 7.0 4.0 2.2
Matrix factorizations 2378 1191 320 290 298
Total iterations 𝜙 240 150 120 227 30 501 15 614 8186
Total iterations 𝐮 357 149 266 701 216 611 127 401 70 764
Crack extension deviation [%] – 0.00 −0.43 −0.83 −1.74

Appendix. Performance data for the SENT specimen with multiple
cycles per increment

We here provide additional performance data for the computations
addressed in Section 4.1.1. Specifically, the performance data for the
analysis with a characteristic number of cycles equal to 60,000 is given
in Table 3, the data pertaining to the analysis for 120,000 cycles is
given in Table 4, and the results for the 240,000 cycles case is provided
in Table 5. Consistent with the main text, a matrix factorization denotes
a factorization of the tangent stiffness matrix of both the damage and
the displacement subproblems. The crack extension at the end of the
total number of cycles for a given number of cycles per increment  is
denoted 𝑎𝑁 . Crack extension deviation is here measure relative to the
 = 1 case such that the relative deviation 𝛥𝑎𝑁 is given by:

𝛥𝑎𝑁 =
𝑎𝑁 − 𝑎1
𝑎1

. (26)
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