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A B S T R A C T

We present a generalised phase field formulation for predicting high-cycle fatigue in metals. Different fatigue
degradation functions are presented, together with new damage accumulation strategies, to account for (i)
a typical S–N curve slope, (ii) the fatigue endurance limit, and (iii) the mean stress effect. The numerical
implementation exploits an efficient quasi-Newton monolithic solution strategy and Virtual S–N curves are
computed for both smooth and notched samples. The comparison with experiments reveals that the model can
accurately predict fatigue lives and endurance limits, as well as naturally capture the influence of the stress
concentration factor and the load ratio.
1. Introduction

The fracture of materials subjected to fatigue loading is arguably
the main failure mechanism of engineering components, accounting
for (up to) 90% of all structural failures [1]. Due to its complexity,
the development of numerical methods capable of predicting fatigue
cracking is of great utility and has been a prominent research field
for several decades. Generally, the evolution of fatigue damage can
be divided into two stages: (i) crack nucleation and (ii) crack growth.
In the initiation stage, permanent microscopic degradation phenomena
such as micro-voids and, subsequently, micro-cracks are formed in the
material. These micro-cracks start growing and eventually coalesce,
leading to the formation of dominant fatigue (macro-) cracks. One
or more of those macro-cracks will then propagate, first in a stable
manner, and finally unstably leading to the complete failure of the
component.

Fatigue design is commonly based on classical empirical methods
which involve data fitting of a large number of experimental tests [2].
Such methods estimate the fatigue life as a function of the cyclic stress
(or strain) range, where the fatigue life is defined as the number of
cycles (𝑁𝑓 ) or reversals (2𝑁𝑓 ) to failure. A pioneering work in this
area is that of Wöhler [3], which is commonly referred to as the stress-
life or S–N curve approach. In general, fatigue life analyses are divided
into two limiting cases. One is denoted as high-cycle fatigue (HCF), a
regime where the material is exposed to low cyclic stress amplitudes,
behaving mainly in an elastic manner and requiring a large number
of cycles to fail (often up to 106 cycles). This approach has become
popular in applications involving low-amplitude cyclic stresses such
as offshore wind structures exposed to alternating mechanical loads
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caused by the wind and sea waves. A second scenario is that where
the applied stresses are large enough to cause plastic deformations and
thus a much lower number of cycles are needed to see failure; 104 cycles
or fewer, a regime referred to as low-cycle fatigue (LCF). Due to their
empirical nature, stress-life methods have limited applicability and can
be barely generalised to arbitrary materials, geometries and loading
conditions.

Variational phase field fracture models can provide a mechanistic
computational framework to predict low- and high- cycle fatigue, over-
coming the challenges of empirical methods. The model is based upon
Griffith’s thermodynamical framework [4], whereby a crack would
grow if the energy released by the solid exceeds its critical value,
the material toughness. Francfort and Marigo [5] presented a varia-
tional formulation for Griffith’s energy balance, and Bourdin et al. [6]
introduced a scalar phase field variable to regularise the resulting
functional and obtain computational predictions of crack evolution as
an exchange between stored and fracture energy. Since its early devel-
opment, the phase field fracture method has been gaining increasing
attention and its use has been extended to numerous applications,
including ductile damage [7–9], dynamic fracture [10–12], compos-
ites delamination [13–15], fracture of functionally graded materials
[16,17], and hydrogen-assisted cracking [18–20], among many others;
see Refs. [21,22] for an overview.

Recently, efforts have been made to incorporate fatigue damage into
variational phase field fracture methods. Lo et al. [23] introduced a
viscous term into the standard phase field model for brittle fracture,
combined with a modified 𝐽 -integral, to generate Paris-law type fa-
tigue crack growth behaviour. More commonly, an additional variable
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describing the fatigue history is introduced. This variable has been
defined either as a dissipative term to the microforce balance of the
phase field [24–26], to effectively reduce crack growth resistance, or
as a fatigue degradation function that reduces the material toughness
[27–32]. Accordingly, an additional equation is introduced to describe
the evolution/accumulation of the fatigue history variable. Boldrini
et al. [24] derived this additional equation from thermodynamic princi-
ples while Loew et al. [25] proposed an equation based on micro-crack
growth. Seiler et al. [29] applied a local strain approach to empirically
incorporate plasticity via Neuber’s rule, while Schreiber et al. [26]
employed Miner’s rule to govern the evolution of fatigue damage.
Alessi and co-workers [27] proposed describing the evolution of fatigue
damage as a function of the accumulated strain during the loading
stage of each cycle. Following [27], the authors of [28,30,33–37]
accumulated the tensile (non-compressive) parts of the strain energy
density (elastoplastic energy density in [36,37]) only during the loading
(unloading in [35]) stages.

In this work, we present a generalised formulation for modelling
the fatigue behaviour of metallic materials. We restrict our attention
to high-cycle fatigue (HCF) analysis and build our formulation upon
the variational phase field approach for fatigue proposed by Alessi
et al. [27] and Carrara et al. [28]. New accumulation strategies for
the evolution of fatigue damage are proposed, so as to capture the
typical S–N curve slope, the fatigue endurance limit and the mean stress
effect (load/stress ratio). The framework encompasses the two most
widely used phase field fracture models, the so-called AT1 [38] and
AT2 [6]. Importantly, the numerical implementation makes use of a
quasi-Newton monolithic solution scheme [39,40], which is essential to
minimise the cost of cycle-by-cycle fatigue simulations. Moreover, the
new accumulation strategy presented further accelerates computations
since, as described below, it enables solving the coupled system of
iterations only once per loading cycle.

The theoretical elements of the new generalised phase field fatigue
framework presented are first described in Section 2. Then, in Section 3,
details of the numerical implementation are provided. The results
obtained are given in Section 4. Several boundary value problems
have been addressed to investigate the performance of the proposed
modelling framework. First, the response of a homogeneous bar under
uniaxial cyclic/monotonic loading is thoroughly studied to showcase
the influence of the different material/model parameters introduced.
In addition, the failure of a notched cylindrical bar is predicted for
different load ratios and notch radii, and predictions are compared
with fatigue experiments (S–N curves) on two types of steel; AISI 4340
and 300M. Finally, the manuscript ends with concluding remarks in
Section 5.

2. A phase field model for fatigue damage

The formulation presented in this section refers to the response of an
elastic solid body occupying the volume 𝛺 ⊂ R𝛿 (𝛿 ∈ [1, 2, 3]) having
the external surface 𝜕𝛺 ⊂ R𝛿−1 with the outward unit normal 𝐧. We
first define the field variables of the model (Section 2.1), then derive
the balance of forces using the principle of virtual power (Section 2.2),
proceed to formulate the local free-energy imbalance under isothermal
conditions (Section 2.3), and finally particularise our theory to suitable
constitutive choices for the deformation, fracture and fatigue behaviour
of the solid (Section 2.4).

2.1. Field variables and kinematics

The primary field variables are the displacement field vector 𝐮 and
the damage phase field 𝜙. Assuming small deformations, the strain
tensor 𝜺 is given by

𝜺 = 1 (

∇𝖳𝐮 + ∇𝐮
)

(1)
2

2

The nucleation and growth of fatigue cracks are described by using a
smooth continuous scalar phase field 𝜙 ∈ [0; 1]. The use of an auxiliary
phase field variable to implicitly track interfaces has proven to be a very
compelling computational approach for numerous interfacial problems,
such as microstructural evolution [41] and metallic corrosion [42]. In
the context of fracture mechanics, the phase field variable resembles a
damage variable; it must grow monotonically �̇� ≥ 0 and describes the
degree of damage, with 𝜙 = 1 denoting a crack and 𝜙 = 0 corresponding
to intact material points. Since 𝜙 is smooth and continuous, discrete
cracks are represented in a diffuse fashion, with the smearing of cracks
being controlled by a phase field length scale 𝓁. The aim of this diffuse
representation is to introduce, over a discontinuous surface 𝛤 , the
following approximation of the fracture energy [6]:

𝛹 𝑠 = ∫𝛤
𝐺𝑐 d𝑆 ≈ ∫𝛺

𝐺𝑐𝛾𝓁(𝜙,∇𝜙) d𝑉 for 𝓁 → 0+ (2)

where 𝛾𝓁 is the so-called crack surface density functional and 𝐺𝑐
enotes the critical Griffith-type energy release rate, or material tough-
ess. We extend this rate-independent description of fracture to accom-
odate time and history dependent problems. Thus, for a cumulative
istory variable �̄�, which fulfils ̇̄𝛼 ≥ 0 for a current time 𝜏, and a fatigue

degradation function 𝑓 (�̄�), the fracture energy can be re-formulated as
follows

𝛹 𝑠 = ∫

𝑡

0 ∫𝛺
𝑓 (�̄�(𝜏))𝐺𝑐 �̇�𝓁(𝜙,∇𝜙) d𝑉 d𝜏 (3)

2.2. Principle of virtual power. Balance of forces

The balance equations for the coupled problem are now derived
using the principle of virtual power. With respect to the displacement 𝐮,
the external surface of the body is decomposed into a part 𝜕𝛺𝑢, where
he displacement is prescribed by Dirichlet-type boundary conditions,
nd a part 𝜕𝛺ℎ, where the traction 𝐡 is prescribed by Neumann-type
oundary conditions. A body force field per unit volume 𝐛 can also be
rescribed. With respect to the phase field 𝜙, a Dirichlet-type boundary
ondition can be prescribed at 𝛤 , a given crack surface inside the
olid body. Additionally, a phase field fracture microtraction 𝑓 can
e prescribed on 𝜕𝛺𝑓 . Accordingly, the external and internal virtual
owers read

̇ ext = ∫𝜕𝛺

{

𝐡 ⋅ �̇� + 𝑓�̇�
}

d𝑆 + ∫𝛺
𝐛 ⋅ �̇� d𝑉

̇int = ∫𝛺

{

𝝈 ∶ ∇�̇� + 𝜔�̇� + 𝝃 ⋅ ∇�̇�
}

d𝑉
(4)

here 𝝈 is the Cauchy stress tensor work conjugate to the elastic strains
, and 𝜔 and 𝝃 are the microstress quantities work conjugate to the
hase field 𝜙 and its gradient ∇𝜙, respectively. Eq. (4) must hold for
n arbitrary domain 𝛺 and for any kinematically admissible variations
f the virtual quantities. Thus, by application of the Gauss divergence
heorem and the fundamental lemma of calculus of variations, the local
orce balances (in 𝛺) are given by

∇ ⋅ 𝝈 + 𝐛 = 𝟎
⋅ 𝝃 − 𝜔 = 0

(5)

long with the following natural boundary conditions (on 𝜕𝛺)

𝐡 = 𝝈 ⋅ 𝐧
= 𝝃 ⋅ 𝐧

(6)

.3. Free-energy imbalance

The first and second law of thermodynamics can be expressed
hrough the Helmholtz free energy per unit volume 𝜓 (𝜺, 𝜙,∇𝜙) and the
xternal work ext,

�̇� d𝑉 − ̇ext d𝑆 ≤ 0 (7)
∫𝛺 ∫𝜕𝛺
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which is generally referred to as Clausius–Duhem inequality. Inserting
Eqs. (5)–(6) and applying the divergence theorem, the local free-energy
inequality can be rewritten as

∫𝛺
�̇� d𝑉 − ∫𝛺

{

𝝈 ∶ ∇�̇� + 𝜔�̇� + 𝝃 ⋅ ∇�̇�
}

d𝑉 ≤ 0 (8)

which must hold for any arbitrary volume and, thus, must also hold in
a local fashion,
(

𝝈 −
𝜕𝜓
𝜕𝜺

)

∶ �̇� +
(

𝜔 −
𝜕𝜓
𝜕𝜙

)

�̇� +
(

𝜉 −
𝜕𝜓
𝜕∇𝜙

)

⋅ ∇�̇� ≥ 0 (9)

or which a free energy function 𝜓 is proposed as the sum of the elastic
train energy density of the solid 𝜓𝑒 and the fracture surface energy
ensity 𝜓𝑠, such that:

(𝜺, 𝜙,∇𝜙 | �̄�) = 𝜓𝑒(𝜺, 𝜙) + 𝜓𝑠(𝜙,∇𝜙 | �̄�) (10)

.4. Constitutive theory

Consistent with the free energy definition (10), we proceed now to
evelop a constitutive theory that couples the deformation, fracture and
atigue behaviour of the solid.

.4.1. Elasticity
The strain energy density 𝜓𝑒 is defined as a function of the elastic

trains 𝜺, the isotropic linear elastic stiffness tensor 0 and a phase field
egradation function 𝑔(𝜙), to be defined. Hence,

𝑒(𝜺, 𝜙) = 𝑔(𝜙)𝜓𝑒0 (𝜺) with 𝜓𝑒0 (𝜺) =
1
2
𝜺𝖳 ∶ 0 ∶ 𝜺 (11)

where 𝜓𝑒0 denotes the strain energy density for an undamaged isotropic
solid. Accordingly, the Cauchy stress tensor 𝝈 can now be derived as

𝝈 =
𝜕𝜓
𝜕𝜺

= 𝑔(𝜙)0 ∶ 𝜺 , (12)

mphasising how the phase field order parameter reduces the stiffness
f the solid, as in continuum damage mechanics approaches.

.4.2. Fracture surface energy
The surface energy density of a fractured solid 𝜓𝑠, in agreement

ith (3), is defined as a function of the phase field damage 𝜙, its
gradient ∇𝜙 and a fatigue degradation function 𝑓 (�̄�), to be defined,

𝜓𝑠(𝜙,∇𝜙 | �̄�) = 𝑓 (�̄�)𝐺𝑐 𝛾𝓁(𝜙,∇𝜙) (13)

in which the crack surface density functional 𝛾𝓁 is expressed as

𝛾𝓁(𝜙,∇𝜙) =
1

4𝑐𝑤

(

𝑤(𝜙)
𝓁

+ 𝓁|∇𝜙|2
)

with 𝑐𝑤 = ∫

1

0

√

𝑤(𝜁 )d𝜁 (14)

where 𝑤(𝜙) is the geometric crack function, to be defined, and 𝑐𝑤 is a
scaling constant.

2.4.3. Strain energy decomposition
To prevent the nucleation and growth of cracks under compression,

the strain energy density can be decomposed into active (tensile) and
inactive (compressive) parts,

𝜓𝑒 (𝜺, 𝜙) = 𝑔(𝜙)𝜓+
0 (𝜺) + 𝜓

−
0 (𝜺) (15)

where we follow the hybrid formulation proposed by Ambati et al. [43]
in applying the decomposition only to the phase field evolution equa-
tion. Among the multiple decomposition splits proposed in the litera-
ture, the present work adopts the following choices:

(i) Spectral tension-compression split by Miehe et al. [44]:

𝜓±
0 (𝜺) =

1
2
𝜆⟨tr(𝜺)⟩2± + 𝜇 tr

(

𝜺2±
)

with 𝜺± =
3
∑

𝑖=1
⟨𝜀𝑖⟩± 𝒏𝑖 ⊗ 𝐧𝑖 (16)

(ii) No-tension split by Freddi et al. [45] (see also [23] for 3D strain
states):

𝜓±(𝜺) = 1𝜆 tr2(𝜺 ) + 𝜇 tr
(

𝜺2
)

with 𝜺 = sym (𝜺) (17)
3

0 2 ± ± ± ± T
(iii) Volumetric-deviatoric split by Amor et al. [46]:

𝜓+
0 (𝜺) =

1
2

(

𝜆 + 2
3𝜇

)

⟨tr(𝜺)⟩2+ + 𝜇
(

𝜺dev ∶ 𝜺dev
)

𝜓−
0 (𝜺) =

1
2

(

𝜆 + 2
3𝜇

)

⟨tr(𝜺)⟩2−
ith 𝜺dev = 𝜺 − 1

3 tr(𝜺)𝐈

(18)

where 𝜆 and 𝜇 are the Lamé constants for an isotropic material and 𝐈
is the identity matrix. Also, ± is the plus–minus sign and ⟨□⟩ are the

acaulay brackets, such that ⟨□⟩± ∶= 1
2 (□ ± |□|), and sym±(𝜺) is the

ositive/negative-definite symmetric part of the strain tensor. For the
ase of Spectral and No-tension splits, the infinitesimal strain
ensor is given in terms of the principal strains

{

𝜀𝑖
}3
𝑖=1 and principal

train directions
{

𝐧𝑖
}3
𝑖=1.

.4.4. Irreversibility condition
Damage is an irreversible process and, as a consequence, the phase

ield evolution law must fulfil the condition �̇� ≥ 0. To this end, we
ollow Miehe et al. [47] and define a history variable field  for a
urrent time 𝑡,

= max
𝜏∈[0,𝑡]

𝜓+
0 (𝜺(𝐱, 𝜏)) , (19)

hich satisfies the Karush–Kuhn–Tucker (KKT) conditions for both
oading and unloading stages,
+
0 − ≤ 0 , ̇ ≥ 0 , ̇(𝜓+

0 −) = 0 (20)

.4.5. Phase field fracture
We proceed to derive the phase field micro-stress quantities 𝜔 and

. First, considering, (11), (13) and (19), the total free energy density
f the solid (10) renders

(𝜺, 𝜙,∇𝜙 | �̄�) = 𝑔(𝜙) + 𝑓 (�̄�)
𝐺𝑐
4𝑐𝑤

(

𝑤(𝜙)
𝓁

+ 𝓁|∇𝜙|2
)

(21)

Accordingly, the micro-stress variables 𝜔 and 𝝃 can readily be
erived as

=
𝜕𝜓
𝜕𝜙

= 𝑔′(𝜙) + 𝑓 (�̄�)
𝐺𝑐

4𝑐𝑤𝓁
𝑤′(𝜙) , 𝝃 =

𝜕𝜓
𝜕∇𝜙

= 𝑓 (�̄�)
𝐺𝑐𝓁
2𝑐𝑤

∇𝜙 (22)

Inserting these constitutive relations in the phase field local balance
(5)b yields the strong form of the evolution of the crack phase field
under fatigue loading,
𝐺𝑐𝑓 (�̄�)
2𝑐𝑤

(

𝑤′(𝜙)
2𝓁

− 𝓁∇2𝜙
)

−
𝐺𝑐𝓁
2𝑐𝑤

∇𝜙∇𝑓 (�̄�) + 𝑔′(𝜙) = 0 (23)

.4.6. Degradation and dissipation functions
First, we proceed to define the phase field degradation function

(𝜙), which governs the degradation of the stored elastic energy due
o damage evolution, and must satisfy

(0) = 1, 𝑔(1) = 0, 𝑔′(𝜙) ≤ 0 for 0 ≤ 𝜙 ≤ 1 (24)

here the first two constraints are the limits for the fully intact and
ully broken states while the last constraint ensures convergence of
𝜓∕𝜕𝜙 to a final value for the fully broken state. To this end, we adopt
he widely used quadratic degradation function

(𝜙) = (1 − 𝜙)2 (25)

In addition, we define the damage dissipation function 𝑤(𝜙), which
ules the energy dissipation due to the formation of a new crack, and
ust fulfil
(0) = 0, 𝑤(1) = 𝑤1 > 0, 𝑤′(𝜙) ⩾ 0 for 0 ≤ 𝜙 ≤ 1 (26)

or which we adopt what are arguably the two most widely used
odels in the literature, the so-called AT1 [38] and AT2 [6] phase

ield models. The specific choice 𝑤(𝜙) = 𝜙2 (𝑐𝑤 = 1∕2) renders the AT2
odel while 𝑤(𝜙) = 𝜙 (𝑐𝑤 = 2∕3) corresponds to the AT1 formulation.
he latter introduces a purely elastic response prior to the onset of
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damage, unlike the AT2 case, where 𝑤′(0) = 0. As a result, a damage
driving force threshold min should be defined for the AT1 model, such
that the history field (19) yields

 = max
{

max
𝜏∈[0,𝑡]

𝜓+
0 (𝜺(𝐱, 𝜏)), min

}

with min =
3𝐺𝑐
16𝓁

(27)

Considering the homogeneous solution to (23) provides further
insight into the role of the phase field length scale 𝓁. Thus, in a 1D
setting, for a sample with Young’s modulus 𝐸, subjected to a uniaxial
monotonic stress 𝜎 = 𝑔 (𝜙)𝐸𝜀; the homogeneous solution for the stress
reaches a maximum at the following critical strength and strain,

𝙰𝚃𝟷 ∶ 𝜎𝑐 =

√

3𝐸𝐺𝑐
8𝓁

, 𝜀𝑐 =

√

3𝐺𝑐
8𝓁𝐸

𝙰𝚃𝟸 ∶ 𝜎𝑐 =
3
16

√

𝐸𝐺𝑐
3𝓁

, 𝜀𝑐 =
√

𝐺𝑐
3𝓁𝐸

(28)

where 𝓁 is shown to be not only a regularising parameter but also
a material property that defines the material strength. This enables
phase field models to predict crack nucleation and naturally recover
the transition flaw size effect [22,48]; i.e., capturing both toughness-
dominated failures (for long cracks) and strength-dominated failures
(short cracks).

2.4.7. Fatigue damage
Phase field fatigue models have proven to be capable of capturing

the nucleation and growth of fatigue cracks, and can naturally recover
key features such as the Wöhler curve or Paris law behaviour [28].
However, existing models need to be enhanced to be able to capture
behaviour frequently observed in experiments and widely embedded
in fatigue design standards. In the context of total-life analyses, this
includes the definition of suitable model/material parameters that en-
ables capturing: (i) the slope of the S–N curve, (ii) the endurance
limit of the material, and (iii) the load ratio effect. Thus, our work
aims at developing a framework that can incorporate those additional
modelling capabilities, and at showcasing the ability of this framework
to reproduce experimental data and naturally capture the role of stress
concentration factors (e.g., predicting the life of a notched component
from a smooth S–N curve).

First, following [27], the damage resulting from the application of
cyclic loads is captured by introducing a fatigue degradation function
𝑓 (�̄�), which effectively degrades the material toughness as a func-
tion of the fatigue history experienced by the solid. The following
fatigue degradation functions, proposed in the literature [28,35], are
considered here

𝑓0(�̄�) =
(

1 −
�̄� − �̄�0
�̄� + �̄�0

)2
for �̄� ∈

[

�̄�0, ∞
]

(otherwise 𝑓0(�̄�) = 1)

𝑓1(�̄�) =
(

1 − �̄�
�̄� + �̄�0

)2
for �̄� ∈ [0, +∞]

2(�̄�) =
(

1 − �̄�
�̄�0

)2
for �̄� ∈

[

0, �̄�0
]

(29)

here �̄�0 is meant to be a material parameter to be calibrated with
xperiments. As shown in Fig. 1, the main difference between them is
hat 𝑓0 and 𝑓1 deliver an asymptotically vanishing value while 𝑓2 van-

ishes for a finite value of �̄�. In addition, 𝑓0 provides an initial threshold
branch where material toughness remains unaffected by fatigue as the
value of �̄� increases.

In addition, the fatigue history variable �̄� should describe the accu-
mulation of any quantity 𝛼 that can describe the cyclic history of the
material. We follow Carrara et al. [28] in maintaining the energetic
nature of the model and thus use the active part of the stored elastic
energy density, defined in Section 2.4.3, as the fatigue history variable,
i.e.

𝛼 = 𝑔(𝜙)𝜓+(𝜺) (30)
4

0 n
Fig. 1. Evolution of the three fatigue degradation functions considered, see Eq. (29).

Note that the adoption of the degraded strain energy density ensures
that the quantity is not affected by the crack tip singularity. Accord-
ingly, the evolution of the fatigue history variable �̄�, within the time
discretisation, is given by

�̄�𝑡+𝛥𝑡 = �̄�𝑡 + ∫

𝑡+𝛥𝑡

𝑡
̇̄𝛼 d𝜏 = �̄�𝑡 + 𝛥�̄� (31)

A key aspect in developing a constitutive phase field fatigue model
ies in the definition of 𝛥�̄�; the approach employed to account for
he accumulation of fatigue damage. In Ref. [28], the accumulation
f fatigue damage is considered only during the loading part of the
ycle, which undesirably affects the proportional (monotonic) loading
ase. To address this issue, Seles et al. [35] considered the accumulation
f fatigue effects only during the unloading stage. However, we have
bserved that this might result in an unrealistic increase of the fatigue
istory variable in areas behind the crack tip as a result of localised
nloading in those material points. Here, we suggest accumulating
atigue effects only during one reversal per cycle (peak to valley,
ee Fig. 2), thus not affecting the monotonic loading cases. Most
mportantly, the new accumulation strategy enables us to achieve very
ignificant reductions in computational cost as it allows us to accurately
escribe the accumulation of �̄� by using only one increment per cycle.
hus, for constant amplitude cases, internal increments within a cycle
re instead replaced by the application of a constant (representative)
oad with the maximum value of the amplitude as its magnitude. As
hown in Fig. 2, the maximum and minimum values of the fatigue
istory variable are respectively denoted as 𝛼max and 𝛼min, and can be

estimated at the cycle peak and the valley during one reversal.
Building upon our fatigue accumulation strategy, we proceed to

define 𝛥�̄� to present a model that accounts for (i) the slope of the S–N
curve, (ii) the endurance limit, and (iii) the effect of the stress ratio.
This generalised expression reads:

𝛥�̄� =
(

𝛼max
𝛼𝑛

)𝑛
( 1 − 𝑅

2

)2𝜅𝑛
𝐻

(

max
𝜏∈[0,𝑡]

𝛼max

( 1 − 𝑅
2

)2𝜅
− 𝛼𝑒

)

(32)

and each of its elements is described below. Here, one should note that
𝛥�̄� is defined as a dimensionless quantity. A comparison with some of
the main existing phase field fatigue models is provided in Appendix A.

S–N curve slope. We add a material parameter, the exponent 𝑛, and an
additional term, (𝛼max∕𝛼𝑛)𝑛, to endow the model with the flexibility

eeded to match the slope of any S–N curve. Here, a normalisation
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Fig. 2. Constant amplitude cyclic stressing and definitions of the main variables. The red dot (peak) shows the location where 𝜎Imax and 𝛼max are calculated, where the blue dot
(valley) shows the instant at which 𝜎Imin and 𝛼min are determined.
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parameter 𝛼𝑛 is needed to achieve dimensional consistency. We adopt
𝛼𝑛 = 1∕2𝜎𝑐𝜀𝑐 , based on the critical stresses and strains given in Eq. (28).

Endurance limit. A fatigue threshold variable 𝛼𝑒 is introduced to endow
the model with a material endurance limit, below which cyclic dam-
age does not occur. This is used in combination with the Heaviside
function 𝐻 (□), which equals one for positive arguments and zero for
negative ones. The magnitude of 𝛼𝑒 can be estimated from the material
endurance stress 𝜎𝑒 as 𝛼𝑒 = 𝜎2𝑒∕(2𝐸).

Stress ratio. Fatigue behaviour is known to exhibit significant sensitivity
to the stress ratio, which can be defined as 𝑅 = 𝜎1,min∕𝜎1,max, where
𝜎1,min and 𝜎1,max respectively denote the minimum and maximum prin-
cipal stresses within each cycle (see Fig. 2). In the case of proportional
loading, which is the case for all analyses in the present paper, this
does not lead to ambiguity. However, for non-proportional loading care
must be taken to define the values properly. A suitable choice may be
to choose the direction, 𝒏1, according to the maximum principle value,
and evaluate both the maximum and the minimum normal stresses in
this direction. It should be noted that 𝑅 is not an input to the model
but a material point quantity that can be estimated at the end of each
cycle. To introduce 𝑅 into the accumulation of the fatigue history
variable, we take inspiration from classical mean stress relationships.
In particular, the Walker mean stress relationship [49] has been widely
used to enrich Basquin-type laws to account for non-zero mean stresses;
this relationship reads,

𝜎𝑎𝑟 = 𝜎max

( 1 − 𝑅
2

)𝜅
for (𝜎max > 0) (33)

here 𝜎𝑎𝑟 is the equivalent stress amplitude when the mean stress is
𝑚 = 0, 𝜎max is the maximum stress within each cycle, and 𝜅 ∈ [0, 1] is

a material constant, describing the measure of the material’s sensitivity
to mean stress. For 𝜅 = 0.5, the Walker equation reduces to the well-
known Smith–Watson–Topper (SWT) relationship [50]. As shown in
Eq. (32), our model employs Walker-based terms to capture the load
ratio effect. Other approaches, involving the use of sign functions (see
Appendix A), did not provide a good agreement with experiments.

3. Numerical implementation

Details of the numerical implementation are provided here, starting
with the finite element discretisation (Section 3.1), followed by the
formulation of the residuals and the stiffness matrices (Section 3.2).
5

3.1. Finite element discretisation

The finite element (FE) method is used to solve the coupled prob-
lem. Making use of Voigt notation, the primary kinematic variables
of the coupled problem are discretised in terms of their nodal values
𝐮𝑖 =

{

𝑢𝑥, 𝑢𝑦, 𝑢𝑧
}𝖳

𝑖 and 𝜙𝑖 at node 𝑖 as

𝐮 =
𝑚
∑

𝑖=1
𝐍𝑖𝐮𝑖 and 𝜙 =

𝑚
∑

𝑖=1
𝑁𝑖𝜙𝑖 (34)

where 𝑚 is the total number of nodes per element, 𝑁𝑖 the shape
functions associated with node 𝑖, and 𝐍𝑖 the shape function matrix,
a diagonal matrix with 𝑁𝑖 in the diagonal terms. Accordingly, the
corresponding gradient quantities can be discretised as

𝜺 =
𝑚
∑

𝑖=1
𝐁𝑢𝑖 𝐮𝑖 and ∇𝜙 =

𝑚
∑

𝑖=1
𝐁𝑖𝜙𝑖 (35)

where 𝐁𝐮
𝑖 denotes the standard strain–displacement matrices and 𝐁𝑖 is

a vector containing the spatial derivatives of the shape functions.

3.2. Residuals and stiffness matrices

We now proceed to formulate the weak form of the coupled prob-
lem. Considering the principle of virtual power (4) and the constitutive
choices described in Section 2.4, the weak forms of the displacement
and phase field problems read

∫𝛺

{

[

𝑔(𝜙) + 𝑘
]

𝝈0 ∶ ∇�̇� − 𝐛 ⋅ �̇�
}

d𝑉 − ∫𝜕𝛺ℎ
𝐡 ⋅ �̇� d𝑆 = 0

∫𝛺

{

𝑔′(𝜙)�̇� + 𝑓 (�̄�)
𝐺𝑐
4𝑐𝑤

(

𝑤′(𝜙)�̇�
𝓁

+ 2𝓁∇𝜙 ⋅ ∇�̇�
)}

d𝑉

−∫𝜕𝛺𝑓
𝑓 �̇� d𝑆 = 0

(36)

here 𝝈0 is the Cauchy stress tensor of the undamaged solid and 𝑘 is a
mall and positive constant used to avoid ill-conditioning of the system
f equations when 𝜙 = 1; in this work 𝑘 = 10−7. Now, making use of the
inite element discretisation outlined in (34) and (35) and considering
hat (36) must hold for any kinematically admissible variations of the
irtual quantities □̇, the corresponding residuals are derived as

𝐫𝑢𝑖 = ∫𝛺

[

𝑔(𝜙) + 𝑘
]

(𝐁𝑢𝑖 )
𝖳𝝈𝟎 d𝑉 − ∫𝛺

(𝐍𝑖)𝖳𝐛 d𝑉 − ∫𝜕𝛺ℎ
(𝐍𝑖)𝖳𝐡 d𝑆

𝜙
𝑖 = ∫𝛺

{

𝑔′(𝜙)𝑁𝑖 + 𝑓 (�̄�)
𝐺𝑐
4𝑐𝑤

(

𝑤′(𝜙)
𝓁

𝑁𝑖 + 2𝓁(𝐁𝑖)𝖳∇𝜙
)}

d𝑉

−∫𝜕𝛺𝑓
𝑁𝑖 𝑓 d𝑆

(37)
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Fig. 3. Sensitivity of fatigue driving force, recall 𝛼 = 𝑔(𝜙)𝜓+
0 , to the choice of strain energy density decomposition; tensile 𝜓+

0 and compressive 𝜓−
0 components for a fully-reversed

cyclic loading (𝑅 = −1) considering the (a) Volumetric/deviatoric, (b) Spectral, and (c) No-tension splits.
Fig. 4. Cyclic evolution of the fatigue history variable �̄� for different values of the power exponent 𝑛: (a) detail of the first cycles, showing how the No-tension split appropriately
accumulates damage only within one half-cycle per cycle, and (b) evolution over numerous cycles, showing the influence of the exponential parameter 𝑛.
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Finally, the consistent tangent stiffness matrices are obtained by
differentiating the residuals with respect to the incremental nodal
variables as follows

𝐊𝑢
𝑖𝑗 =

𝜕𝐫𝑢𝑖
𝜕𝐮𝑗

= ∫𝛺

[

𝑔(𝜙) + 𝑘
]

(𝐁𝑢𝑖 )
𝖳0 𝐁𝑢𝑗 d𝑉

𝐊𝜙
𝑖𝑗 =

𝜕𝑟𝜙𝑖
𝜕𝜙𝑗

= ∫𝛺

{(

𝑔′′(𝜙) + 𝑓 (�̄�)
𝐺𝑐

4𝑐𝑤𝓁
𝑤′′(𝜙)

)

𝑁𝑖𝑁𝑗

+ 𝑓 (�̄�)
𝐺𝑐𝓁
2𝑐𝑤

(𝐁𝑖)𝖳𝐁𝑗
}

d𝑉

(38)

We then solve the global linearised FE system of equations,
[

𝐊𝑢 0
0 𝐊𝜙

]{

𝐮
𝝓

}

=
{

𝐫𝑢
𝐫𝜙

}

(39)

by using a quasi-Newton method. Specifically, we employ the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm [39,40], which provides
a robust monolithic solution scheme, enabling accurate and efficient
fatigue crack growth estimations. Note that, a requirement of the
BFGS algorithm is that the stiffness matrix must be symmetric and
positive-definite.

4. Results

4.1. Smooth bar subjected to symmetric uniaxial tension–compression load-
ing

We first gain insight into the model characteristics by considering a
smooth bar subjected to uniaxial cyclic loading with a load ratio of 𝑅 =
−1. A model material is assumed with the following properties: Young’s
6

modulus 𝐸 = 1 MPa, Poisson’s ratio 𝜈 = 0.3, tensile strength 𝜎𝑐 = 1 MPa,
endurance limit 𝜎𝑒 = 0.2 MPa, critical energy release rate 𝐺𝑐 = 1
J/m2 and fatigue material parameter �̄�0 = 100. The boundary value
roblem can be solved in a semi-analytical fashion, by considering the
omogeneous solution to Eq. (23). A piece-wise cyclic linear variation
f the remote stress (or strain) is assumed. Under 1D conditions, the
ength scale and the strength are related via (28), and this relation
enders magnitudes of 𝓁 = 0.3750 mm and 𝓁 = 0.1055 mm for AT1

and AT2, respectively. Unless otherwise stated, in the remainder of
this paper the AT1 model, 𝜅 = 0.5, the 𝑓2 fatigue degradation function
(29)c and the No-tension split (17) are used. While all the numerical
studies conducted deal with constant amplitude loading, we emphasise
that the model can handle any arbitrary choice of loading history and
thus capture load sequence effects.

4.1.1. Overview of material behaviour
Fig. 3 illustrates the evolution of the elastic strain energy density

along with its active (tensile) and inactive (compressive) parts for a
constant remote stress amplitude of 𝜎𝑎∕𝜎𝑐 = 0.5, upon the assumption
of a fatigue power exponent of 𝑛 = 1. It can be clearly seen that the
No-tension split appropriately decomposes the strain energy density
such that it results in a vanishing compressive part during tension and
a vanishing tensile part during compression, which is not the case
for the Volumetric/deviatoric and the Spectral splits. The
consistency of the No-tension split is also showcased in Fig. 4, where
the cyclic evolution of the fatigue history variable �̄� is shown. It can be
een that the accumulation of fatigue effects takes place only during
he reversal (peak to valley) part of each cycle, and that the growth
ate of �̄� decreases with increasing the power exponent 𝑛.

Further insight into the evolution of the model behaviour can
be gained by comparing the differences between load-controlled and

displacement-controlled numerical experiments. To this end, we use
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Fig. 5. Uniaxial tension–compression response under load-controlled, (a) and (b), and displacement-controlled conditions, (c) and (d). Stress versus strain curves are shown in (a)
and (c), while (b) and (d) show the evolution of relevant variables (�̄�, 𝜙, cyclic stress/strain) as a function of the number of cycles 𝑁 . The number of cycles considered results in
nearly overlapping curves (black regions). Calculations obtained using AT2, 𝑛 = 1, 𝜅 = 0.5 and the No-tension split.
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the AT2 phase field model and conduct simulations: (i) applying a
remote stress amplitude of 𝜎𝑎∕𝜎𝑐 = 0.5 (load-control), and (ii) applying
a remote strain amplitude of 𝜀𝑎∕𝜀𝑐 = 0.5 (displacement-control). The
esults obtained are given in Figs. 5(a)–(b) for load-controlled loading
nd in 5(c)–(d) for displacement-controlled loading. These figures illus-
rate both material stress–strain behaviour and the evolution with the
umber of cycles (𝑁) of relevant variables (�̄�, 𝜙, cyclic stress/strain).
s shown in Fig. 5b, for the load-controlled case the phase field evolves
radually in the beginning and increases rapidly towards the end, when
he strain reaches its critical value at 𝜀𝑐 . However, this is not the
ase for the displacement-controlled loading where the phase field is
bserved to asymptotically approach its upper limit 𝜙 → 1 (see Fig. 5d).
ccordingly, a threshold for failure (e.g., 𝜙 = 0.95) must be imposed
hen considering displacement-control conditions. This variation of 𝜙

n time affects the cyclic evolution of the fatigue history variable �̄� as
ell as the cyclic stress, owing to the phase field degradation function

25), which is present in the definitions of 𝝈 (12) and 𝛼 (30). We
roceed to gain further insight by investigating the role of the phase
ield fracture constitutive model (AT1 vs AT2) and the load amplitude
𝜀𝑎∕𝜀𝑐 = 0.15 vs 𝜀𝑎∕𝜀𝑐 = 0.5). The results obtained are shown in Fig. 6.
or the strain amplitude 𝜀𝑎∕𝜀𝑐 = 0.15, the resulting stresses are below
he assumed material endurance limit (𝜎𝑒∕𝜎𝑐 = 0.2) and as a result
he monotonic response of the bar and its critical strength (strain) are
ot affected by fatigue (see Fig. 6a). On the other hand, when the
oad amplitude exceeds the endurance limit (𝜀𝑎∕𝜀𝑐 = 0.5, Fig. 6b), the
onotonic response of the bar exhibits a significant drop in the critical

trength and strain of the bar. This is observed for both AT1 and AT2
odels, being more significant in the former.
7

𝑛

.1.2. Parametric study
Subsequently, a parametric study is conducted to investigate the

nfluence of the fatigue model/material parameters. The calculations
valuating the sensitivity to �̄�0 and 𝛼𝑒 are respectively shown in Fig. 7a
nd Fig. 7b, in terms of the remote stress amplitude versus the number
f cycles to failure (S–N curves). The AT1 model is used, the stress
mplitude is normalised by the material strength, and the arrows
orrespond to the so-called fatigue runout phenomenon — samples
hat do not fail in the duration of the test. First, as can be seen in
ig. 7a, the results reveal a longer fatigue life for higher values of
�̄�0, in agreement with expectations. Second, Fig. 7b showcases how
ecreasing the threshold parameter 𝛼𝑒 leads to a decrease in the stress
mplitude at which the fatigue life is practically infinite (the endurance
imit). For both �̄�0 and 𝛼𝑒, changes in their values do not lead to
oticeable variations in the slope of the S–N curves.

Finally, the parametric study concludes with the investigation of
he role of the power exponent 𝑛. The results are shown in Fig. 8.
he S–N curves show a clear dependence on the magnitude of 𝑛 (see
ig. 8a), with larger 𝑛 values delivering fatigue responses that are
ore susceptible to changes in the stress amplitude. In other words,

his parameter 𝑛 provides additional modelling flexibility and enables
apturing the S–N curve slope 𝑚∗ of any material. As shown in Fig. 8b,
here exists a linear relationship between 𝑛 and 𝑚. Based on this
inding we list in Table 1, for different phase field models and fatigue
egradation functions, the coefficients of this linear relationship,
= 𝐶 𝑚 + 𝐶 (40)
1 2
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Fig. 6. Uniaxial cyclic and monotonic response of the AT1 and AT2 damage models, for different initially-applied remote strain amplitudes: (a) 𝜀𝑎∕𝜀𝑐 = 0.15 and (b) 𝜀𝑎∕𝜀𝑐 = 0.5.
he number of cycles considered results in nearly overlapping curves (black regions). Calculations obtained using 𝑛 = 1, 𝜅 = 0.5 and the No-tension split.
Fig. 7. Parametric study. S–N curve sensitivity to: (a) the fatigue susceptibility parameter �̄�0, and (b) the endurance parameter 𝛼𝑒. Calculations obtained using AT1, 𝑛 = 1, 𝜅 = 0.5
and the No-tension split.
Table 1
Coefficients for the linear relationship between the power exponent 𝑛 and the S–N
slope, see Eq. (40).

𝑓0 𝑓1 𝑓2
𝐶1 𝐶2 𝐶1 𝐶2 𝐶1 𝐶2

AT1 0.50 −0.56 0.50 −0.63 0.50 −0.13
AT2 0.50 −0.55 0.49 −0.61 0.49 −0.12

where 𝑚 = − (𝑚∗)−1. It is also worth noticing that, for higher stress
mplitudes, the S–N curve deviates from such linear behaviour, demon-
trating a damage-driven failure, as also reported by Carrara et al. [28].

.1.3. Load ratio effect
We shall now investigate the ability of the proposed model to

apture the mean stress effect on S–N curve behaviour. To this end,
wo load-controlled scenarios are considered: (i) a varying 𝑅 for a
ixed stress amplitude 𝜎𝑎, and (ii) a varying 𝑅 for a fixed maximum
tress 𝜎max. These loading scenarios are of particular interest because
xperimental observations report opposite trends in terms of 𝑅 vs
8

number of cycles behaviour, with fixed 𝜎𝑎 experiments showing a
longer fatigue life for decreasing 𝑅 while the opposite is observed
for fixed 𝜎max tests [51,52]. The results obtained are given in Fig. 9,
together with a subplot depicting the loading conditions for the cases
of 𝜎𝑎∕𝜎𝑐 = 0.4 and 𝜎max∕𝜎𝑐 = 0.4. A significant influence of the load
ratio 𝑅 on the fatigue life and the endurance limit is observed, for both
loading scenarios. Consider first the fixed stress amplitude case, Fig. 9a.
For a given 𝜎𝑎, the fatigue life decreases significantly with increasing
the load ratio 𝑅, in agreement with experimental observations [52]. It
can also be observed that, for higher load ratios, the S–N curve exhibits
non-linear behaviour with a notable drop in the fatigue life. This can be
explained by the fact that, for higher load ratios, the maximum value
of the cyclic stress observed in the subplot reaches the material critical
strength 𝜎𝑐 , suggesting that the failure is governed by static damage
rather than fatigue (see also Fig. 8a). Next, consider the constant
𝜎max results in Fig. 9b. Contrarily to what is observed in the constant
𝜎𝑎 case, and in agreement with experiments (see Ref. [51] and the
experimental comparison below), fatigue lives increase with increasing
𝑅. Thus, the generalised model presented is able to adequately capture
the sensitivity to the load ratio 𝑅 under both constant stress amplitude
and constant maximum stress.
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Fig. 8. Parametric study. Sensitivity to the power exponent 𝑛 in terms of the (a) S–N curve behaviour and (b) its linear behaviour with the S–N slope. Calculations obtained using
AT1, 𝜅 = 0.5 and the No-tension split.
Fig. 9. Load ratio (𝑅) effect, predictions obtained with (a) a fixed stress amplitude 𝜎𝑎, and (b) a fixed maximum stress 𝜎max. The subplots illustrate the loading conditions, for the
specific cases of 𝜎𝑎∕𝜎𝑐 = 0.4 and 𝜎max∕𝜎𝑐 = 0.4. Calculations obtained using AT1, 𝑛 = 1, 𝜅 = 0.5 and the No-tension split.
4.2. Comparison with experimental S–N curves

We proceed now to compare model predictions with S–N curves
obtained from uniaxial tension–compression fatigue experiments on
cylindrical bars, considering both smooth and notched samples. The
experimental data are taken from Ref. [51] and correspond to two types
of low-alloy steels, an AISI 4340 steel with tensile strength of 1,793
MPa, and a 300M steel with tensile strength of 2,000 MPa. The ex-
periments were carried out in laboratory air under constant maximum
stress amplitudes at various stress ratios 𝑅. As is common among steels,
both materials are assumed to have a Young’s modulus of 𝐸 = 210 GPa
and a Poisson’s ratio of 𝜈 = 0.3. The toughnesses values are taken to be
equal to 𝐺𝑐 = 20 kJ/m2 and 𝐺𝑐 = 13 kJ/m2 for AISI 4340 and 300M,
respectively, based on plane strain fracture toughness measurements
reported in Ref. [1]. Results for the unnotched samples can be obtained
semi-analytically, considering the homogeneous solution to (23). For
the notched samples, finite element calculations are conducted, where
axial symmetry is exploited to consider only one planar section of the
sample. In addition, only the upper half of the domain is modelled
due to vertical symmetry (see Fig. 10). The finite element domain is
discretised using 4-node bilinear axisymmetric quadrilateral elements
with full integration, with the mesh being refined ahead of the notch
tip, where the characteristic element size is 10 times smaller than the
9

phase field length scale 𝓁 (see Fig. 10b). Under 1D conditions, the
length scale and the strength are related via (28), and this relation
renders magnitudes of 𝓁 = 0.318 mm and 𝓁 = 0.315 mm for AISI
4340 and 300M, respectively. For the 300M notched samples, the notch
radii magnitudes considered are 𝜌 = 1.016, 0.368, and 0.107 mm, with
the bar gross diameter being 𝐷 = 12.7 mm and the net diameter
𝑑 = 6.35 mm. From these, the following stress concentration factors
(SCF) are obtained: 𝐾𝑡 = 2, 3, and 5. For the case of AISI 4340, the notch
radii magnitudes read 𝜌 = 0.762 and 0.254 mm. The following diameters
are considered: 𝐷 = 7.62 mm, 𝐷 = 6.86 mm, and 𝑑 = 5.59 mm, which
correspond to SCF values of 𝐾𝑡 = 2 and 3. The samples are subjected to
a piece-wise cyclic linear force-controlled loading with a load ratio of
𝑅 = −1. The endurance limit is estimated from the S–N curve itself at
the stress level below which infinite life is expected; the magnitudes of
𝜎𝑒 = 530 MPa and 𝜎𝑒 = 650 MPa are assumed for AISI 4340 and 300M,
respectively. The slope of the S–N curve and its intercept with the log𝑁
axis are, respectively, linked to the fatigue parameters 𝑛 and �̄�0 (see
Fig. 8 and Appendix B). Thanks to this feature, the fatigue parameters
𝑛 and �̄�0 can now be estimated so as to provide the best fit to the
experiments of unnotched (smooth) samples subjected to fully-reversed
cyclic loading (𝑅 = −1); the magnitudes of �̄�0 = 5.0 × 10−4, 𝑛 = 10 and
�̄�0 = 1.7 × 101, 𝑛 = 6, respectively, provided a good agreement with the
experiments on AISI 4340 and 300M. Accordingly, any other effects
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Fig. 10. Notched cylindrical bar (60◦ V-Groove): (a) geometry and boundary conditions, (b) finite element mesh, including a detailed view of the mesh ahead of the notch tip,
and (c) representative phase field contours showing crack initiation and growth (up to the unstable failure event) for 300M steel with 𝐾𝑡 = 5 and 𝜎nom

max = 300 MPa.
Fig. 11. Experimental validation. Numerical and experimental [51] S–N curves obtained from smooth and notched cylindrical bars for two types of steel: (a) 300M, and (b) AISI
4340. The model is shown to be able to predict the role of stress raisers (as quantified by the stress concentration factor 𝐾𝑡) in reducing fatigue lives.
(e.g. the role of notch radius or the sensitivity to the loading ratio) are
predicted as a natural outcome of the model, without any additional
fitting.

The experimental and numerical results obtained are shown in
Fig. 11. It can be seen that the Virtual S–N curves predicted are in
good agreement with the measured data. In both experiments and
simulations, the results demonstrate a strong sensitivity to the notch
radius, with the fatigue life decreasing by reducing the radius. Smaller
radii result in higher stress concentrations at the notch tip, leading to
an earlier initiation of the fatigue crack, as expected. It is also worth
noting that the agreement with experiments of 300M steel becomes
less satisfactory at smaller notch radii (𝐾𝑡 = 5), as the slope of the
experimental S–N curve exhibits a change. This change in slope for the
case of 𝐾𝑡 = 5 could be related to plastic phenomena such as the reverse
yielding effect [53].

Also, as shown for the AISI 4340 experiments, the model readily
captures the influence of stress concentrations on the endurance limit.
Overall, the model is shown to be able to reliably predict the fatigue
lives and endurance limit of samples containing different notches (stress
concentrators) without the need for fitting.

Building upon the 300M results, we use the model to gain further
insight into the material fatigue behaviour. First, as shown in Fig. 12a,
10
the number of cycles to initiation and failure is plotted as a function of
maximum nominal stress 𝜎nom

max and the stress concentration factor 𝐾𝑡.
The results reveal that the differences between crack nucleation and
final failure increase as the notch becomes sharper. This is the result of
the stronger localisation of stress, strain and damage in sharper defects.
Then, we investigate the interplay between length scales by varying
the phase field length scale parameter 𝓁, for a fixed notch radius 𝜌 -
see Fig. 12b. Specifically, we choose to consider a value of 𝓁 twice as
high (i.e., 2𝓁 = 0.63 mm). The results show that the fatigue resistance
decreases with increasing 𝓁. This is in agreement with expectations
as, according to Eq. (28), a higher value of 𝓁 will lead to a decrease
in material strength and thus a shorter time to crack nucleation. It is
worth noting that the values of 𝓁 considered are on the order of the
notch radius. However, the results do not scale with 𝓁∕𝜌, suggesting
the influence of other length scales in the problem. This can be seen by
considering the results for 𝐾𝑡 = 2 and 2𝓁 and the ones for 𝐾𝑡 = 3 and
𝓁, which respectively give 𝜌∕𝓁 = 1.168 and 𝜌∕𝓁 = 1.613, yet appear to
fall on top of each other. A dimensional analysis could be carried out to
establish the calculations needed to understand the interplay between
the various length scales of the problem.

Finally, we validate model predictions of the load ratio effect
against experiments on the two steels considered above (300M and
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Fig. 12. S–N curves behaviour predicted for notched cylindrical bars: (a) comparison between the number of cycles for crack initiation (𝑁𝑖) and the number of cycles to failure
(𝑁𝑓 ), and (b) interplay between the phase field length scale 𝓁 and the notch radius 𝜌. Results are obtained for the parameters relevant to 300M steel.
Fig. 13. Experimental validation. Numerical and experimental [51] S–N curves obtained from smooth cylindrical bars at various load ratios 𝑅 for two types of steel: (a) 300M,
and (b) AISI 4340. The model is shown to be able to predict the role of the load ratio in varying the fatigue resistance of the material.
AISI 4340). The model parameters are those considered before. In this
regard, it should be noted that 𝜅 is taken to be equal to 0.55 and 0.5
for AISI 4340 and 300M, respectively, based on estimations reported
in [52]. However, similar results would be obtained considering the
simpler Smith–Watson–Topper (SWT) relationship, thus eliminating
the need for this parameter altogether. The numerical predictions are
shown together with experimental data in Fig. 13. Both numerical
and experimental data reveal the same qualitative trend: for a fixed
𝜎∞max, the number of cycles to failure 𝑁𝑓 increases with increasing
load ratio 𝑅. Moreover, for both 300M and AISI 4340 materials,
the model delivers a good quantitative agreement with experiments,
demonstrating the ability of the model to successfully predict the mean
stress effect. Some differences are observed for the specific case of
𝑅 = −2 and 300M, where the samples are under compression for the
majority of their fatigue lives and the experimental scatter is notable.

5. Conclusions

We have formulated a generalised phase field formulation for mod-
elling high-cycle fatigue behaviour in metallic materials. The modelling
framework presented encompasses the two main phase field damage
models (AT1 and AT2), different fatigue degradation functions, and a
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new accumulation approach that significantly accelerates calculations
and allows modelling: (i) different S–N curve slopes, (ii) the fatigue
endurance limit, and (iii) the mean stress effect (load/stress ratio).
The theoretical framework presented is numerically implemented us-
ing the finite element method and the resulting system of equations
is solved in a monolithic manner, by using a robust and efficient
quasi-Newton (BFGS) algorithm. Total-life analyses are conducted to
investigate the performance of the modelling abilities of the proposed
framework. The influence on fatigue damage accumulation of various
strain energy decomposition approaches (volumetric/deviatoric, spec-
tral, no-tension) is investigated. Also, Virtual S–N curves are obtained
for various stress/load ratios and for both notched and smooth samples.
Key findings include:

• The model adequately captures the sensitivity of fatigue life to
the presence of stress raisers (such as notches), with both fa-
tigue life and endurance limit decreasing with increasing stress
concentration.

• The mean stress effect (load ratio, 𝑅) on the fatigue response is
adequately captured. In agreement with experimental observa-
tions, the model predicts an increase in fatigue life and endurance
limit with decreasing 𝑅 for a fixed stress amplitude 𝜎𝑎, while the
opposite is true for a fixed maximum stress 𝜎max.

• The agreement with experiments is both qualitative and quanti-

tative, with the model providing a good agreement with fatigue
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lives and endurance limit data for 300M and AISI 4340 steels.
Moreover, the role of stress raisers and load ratio on the fatigue
response of these two materials is naturally captured.

The modelling framework presented provides a platform to effi-
iently predict the service lives of components undergoing high-cycle
atigue. Potential avenues for future work could be directed towards
he development of a generalised model that could also consider low-
nd mid-cycle fatigue, plasticity effects and Paris law behaviour.
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ppendix A. Comparison with existing phase field fatigue models

Considering the following approximation for 𝛥�̄� as suggested in
Ref. [28, Eq. (45)]

𝛥�̄� = |

|

𝛼𝑛+1 − 𝛼𝑛||𝐻
(

𝛼𝑛+1 − 𝛼𝑛
𝑡𝑛+1 − 𝑡𝑛

)

(A.1)

where the subscripts 𝑛 and 𝑛+1 refer to the time increments 𝑡 = 𝑡𝑛 and
𝑡 = 𝑡𝑛+1, respectively. The Heaviside function 𝐻(□) = 0 when 𝛥𝛼∕𝛥𝑡 < 0
(unloading). We now proceed to calculate the total increase of the
fatigue history variable �̄� considering a fully-reversed cyclic loading
(𝑅 = −1) of a bar, using the Spectral decomposition split (16) and
8 load steps per cycle (see Fig. A.14)

Inc. 0–4: �̄�4 = �̄�3 = 𝛼2 = �̄�1 + |𝛼2 − 𝛼1| = 𝛼2
Inc. 4–8: �̄�8 = �̄�7 = �̄�6 = �̄�5 + |𝛼6 − 𝛼5| = 𝛼2 + 𝛼6

⏟⏟⏟
𝛼max+𝛼min

(A.2)

which demonstrates that the accumulation of fatigue damage at the end
of each cycle can be described by the values of 𝛼 obtained at the peak
2 and valley 𝛼6 during one reversal (see also Fig. 2). Thus, Eq. (A.1),
ould be reformulated as

�̄� =
𝛼𝑛max − sgn(𝑅) 𝛼𝑛min

𝛼𝑛𝑛
(A.3)

where the stress ratio 𝑅 and its sign sgn(𝑅) can be computed for each
material point, on the fly, within each cycle. For a specific choice of
𝑛 = 1 and 𝛼𝑛 = 1, Eq. (A.3) recovers Eq. (A.1), at the end of each cycle,
for any arbitrary stress ratio 𝑅 when using the No-tension split (and
for 𝑅 ≥ 0 and 𝑅 = −1 when using the other splits). In addition,
for constant amplitude cases, one could accelerate the calculation of
𝛥�̄� by using only one increment per cycle and applying a constant
(representative) load with the maximum value of the amplitude as its
magnitude. Thus, Eq. (A.3) can be altered as

𝛥�̄� =
(

𝛼max
𝛼𝑛

)𝑛
(

1 − sgn(𝑅)|𝑅|2𝑛
)

(A.4)

which yields identical analytical results to Eqs. (A.1) and (A.3) for a
fixed stress ratio 𝑅 ≥ 0 when using the No-tension and
Volumetric-deviatoric splits. Finally, for a specific choice of
𝑛 = 1, 𝛼𝑛 = 1, 𝑅 = −1 and 𝛼𝑒 = 0, our new accumulation approach (32)
ecovers analytically Eq. (A.1) when using the No-tension split.
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Fig. A.14. Schematic variation of 𝛼 for a fully-reversed cyclic loaded (𝑅 = −1) bar
using the Spectral split.

Appendix B. Estimation of the fatigue material parameter �̄�𝟎

Considering a typical S–N curve obtained from a fatigue experi-
ment and described mathematically by the Basquin relationship 𝜎□ =
𝐶∗ (𝑁□

)𝑚∗
where (𝑁□, 𝜎□) corresponds to the data set □ of the

fitted curve. As illustrated in Fig. 8, the slope of the S–N curve 𝑚∗ is
linked to the power exponent 𝑛, with the fitting parameters presented
in Table 1 for different choices of phase field damage model and
fatigue degradation function. We now proceed to estimate the fatigue
material parameter �̄�0, by considering the homogeneous solution to
(23) and assuming an undamaged strain energy density for 𝛼 = 𝜓+

0 (𝜀).
Then, considering the AT1 damage model, the 𝑓2 fatigue degradation
function, and the fact that 𝑓 (�̄�) = 1 for 𝜎 = 𝜎𝑐 (static loading), then
(𝜎□
𝜎𝑐

)2
= 𝑓 (�̄�) =

(

1 −
𝑁□

�̄�0

(

𝛼max
𝛼𝑐

)𝑛)2

=

(

1 −
𝑁□

�̄�0

(𝜎□
𝜎𝑐

)2𝑛
)2

(B.1)

which results in

�̄�0 =
𝑁□

(𝜎□
𝜎𝑐

)2𝑛

1 −
(𝜎□
𝜎𝑐

) (B.2)

for which a good estimation can be obtained by using low stress
magnitudes for 𝜎□ (and consequently higher fatigue lives for 𝑁□),

here the S–N curve is not deviating from linearity.
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