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A B S T R A C T

A novel FFT-based phase-field fracture framework for modelling fatigue crack initiation and propagation at the
microscale is presented. A damage driving force is defined based on the stored energy and dislocation density,
relating phase-field fracture with microstructural fatigue damage. The formulation is numerically implemented
using FFT methods to enable modelling of sufficiently large, representative 3D microstructural regions. The
early stages of fatigue cracking are simulated, predicting crack paths, growth rates and sensitivity to relevant
microstructural features. Crack propagation through crystallographic planes is shown in single crystals, while
the analysis of polycrystalline solids reveals transgranular crack initiation and crystallographic crack growth.
1. Introduction

Fatigue damage in metal alloys is arguably the biggest threat to
the service life of engineering components [1]. Service life predictions
are thus dependent on our ability to model the various stages of
fatigue damage, from the nucleation of a fatigue crack to its prop-
agation and unstable failure [2]. In many applications and sectors,
such as the aeronautical or automotive industries, the formation of
a macroscopic crack corresponds to a very significant portion of the
fatigue life. Hence, being able to predict the stages of fatigue crack
nucleation and short crack growth is of notable scientific and techno-
logical importance. However, these early stages of fatigue damage are
very microstructurally-sensitive [3], partially explaining the observed
variability in fatigue lives [4,5], and thus require the development of
models capable of capturing the microstructural localisation of plastic
deformation and how this plastic localisation leads to the formation of
microscopic cracks that go on to propagate and become macroscopic
cracks.

Recent modelling approaches for the incubation and early prop-
agation stages of fatigue cracks in polycrystalline metals typically
build upon micromechanics-based models and a fatigue driving force
definition. For example, the nucleation stage is often described using
so-called Fatigue Indicator Parameters (FIPs), which are surrogate mea-
sures for fatigue cracking obtained from micromechanical fields [6].
FIPs are estimated by using computational polycrystalline homogeni-
sation models, in which the macroscopic response resulting from a
specific microstructure can be predicted by solving a boundary value
problem on a periodic Representative Volume Element (RVE) of the
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microstructure. This RVE typically consists of an aggregate of grains
modelled using an appropriate crystal plasticity model [7]. Although
these FIPs-based approaches provide a compelling pathway to account
for microstructural effects on fatigue life [8], they are unable to account
for the differentiated regimes of crack initiation, i.e., nucleation and
short crack propagation. Understanding these regimes is fundamen-
tal for designing fatigue-resistant microstructures and predicting the
role of microstructural features such as grain size, distribution, and
morphology in fatigue lives [9]. Recently, efforts have been allocated
to enrich computational polycrystalline homogenisation models so as
to account for the short fatigue crack growth regime [10,11]. This
is accomplished by establishing suitable fatigue driving force defini-
tions, for example, based on the stored energy density [12]. However,
these analyses have been so far limited to the use of finite element
methods, which are limited in their ability to handle large RVEs [13],
and discrete fracture methods such as X-FEM that cannot capture
complex cracking conditions (3D, crack branching and coalescence,
etc.) [14–16]. A step-change in short fatigue crack growth modelling
can be achieved by exploiting recent advances in the development
of computationally efficient techniques, such as Fast Fourier Trans-
form (FFT)-based methods, and of robust diffuse (phase-field) fracture
mechanics models.

The phase-field fracture method [17–19] has gained remarkable
popularity in recent years due to its flexibility, robustness, easiness of
implementation, as well as its ability to model advanced fracture phe-
nomena such as crack nucleation from arbitrary sites [20,21], complex
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crack trajectories [22,23], and multiple crack interactions [24,25], in
arbitrary geometries and dimensions and on the original finite element
mesh. Unlike discrete fracture methods, phase-field fracture models
smear the interface over a finite domain, using an auxiliary variable
to track the evolution of the crack-solid interface without the need
for re-meshing or ad hoc criteria for crack growth [17,26]. Although
phase-field fracture models were first aimed towards modelling brittle
fracture, they were later extended to ductile fracture [27–30], fa-
tigue [31–34] and chemo-mechanical damage [35–38], among others.
Recently, phase-field fracture has also been adopted to model crack ini-
tiation and propagation in polycrystalline materials undergoing static
loading [39–41].

While the combination of phase-field fracture and micromechanical
modelling holds great promise, their application to fatigue is limited
by the computational cost. An accurate prediction of fatigue behaviour
usually requires the simulation of a sufficiently high number of cy-
cles and large RVEs [42], and phase-field simulations require a mesh
sufficiently fine to resolve the phase-field length scale. This obstacle
can be overcome by using FFT-based methods [43,44], which rely on
the properties of the derivatives of periodic fields in the Fourier space
and exhibit a remarkable numerical performance compared to finite
element methods [13]. For a model with 𝑛 degrees of freedom, FFT-
based approaches scale as 𝑛 log 𝑛 while finite element methods (iterative
olvers) scale as (𝑛2). Also, FFT solvers suffer from scalability issues
r high phase contrast limitations. Recent studies have shown the
otential of FFT-based approaches in accelerating phase-field fracture
alculations [45–47].

In this work, we combine FFT-based modelling with phase-field
racture to investigate the nucleation and short growth of fatigue cracks
n polycrystalline materials. We present a novel formulation whereby a
ew phase-field fracture driving force is defined based on the crack tip
tored energy density concept [11,12], extending phase-field fracture
odels to the simulation of nucleation and short fatigue crack growth.

everal case studies are addressed to showcase how the framework is
ble to predict the nucleation of fatigue cracks, as a result of plastic
ocalisation, and the subsequent expected short crack paths, accounting
aturally for microstructural effects and the transition to macroscopic
racking. Additionally, the use of FFT solvers improves the efficiency
f the calculations and enables the simulation of sufficiently large
D RVEs over a relevant number of cycles. The remainder of this
anuscript is organised as follows. Section 2 presents the theoretical

ramework proposed, which combines crystal plasticity, phase-field
racture and fatigue crack tip stored energy density concepts. The
umerical procedures employed are described in Section 3, including
he FFT formulation of the governing equations and the solution algo-
ithm. The results obtained in the 2D and 3D numerical experiments
onducted on polycrystalline materials are presented in Section 4,
ogether with the associated discussion. Finally, the manuscript ends
ith concluding remarks in Section 5.

. A crystal plasticity-based phase-field fatigue model

In this section, the phase-field formulation for short fatigue crack
rowth is developed within the context of crystal plasticity microme-
hanics for single- and poly-crystals. The crack phase-field and its
radient are used to regularise the sharp topology of cracks, and crack
volution is driven by the accumulation of elastic and plastic strain en-
rgy, as characterised by means of a phenomenological criterion based
n the stored energy density parameter. In the following, we describe
he constitutive relations for the crystal plasticity model, the phase-field
racture description, and the phenomenological fatigue driving force,
2

ogether with their interactions.
.1. Crystal plasticity constitutive equations

The crystal plasticity formulation adopted in this work follows the
islocation-based model developed by Dunne et al. [48,49]. We empha-
ise that the present micromechanical phase-field fatigue model can be
eadily used with any other constitutive choice for the crystal plasticity
ehaviour. For the sake of completeness, we proceed to briefly outline
he constitutive laws. Within a continuum setting and considering finite
trains and rotations, the total deformation gradient 𝑭 is assumed to

support a multiplicative decomposition into elastic 𝑭 e and plastic 𝑭 p
components that respectively account for lattice distortion and plastic
slip, such that

𝑭 = 𝑭 e𝑭 p. (1)

Accordingly, the total velocity gradient 𝑳 can be also decomposed into
an elastic part and a plastic part, and can be calculated as:

𝑳 = 𝑳e + 𝑭 e ⋅𝑳p ⋅ 𝑭 −1
e (2)

where 𝑳e denotes the elastic velocity gradient and 𝑳p is the plastic
elocity gradient. The crystal plasticity description assumes that dislo-
ation slip occurs on slip systems and 𝑳p is calculated as the sum of all

the plastic shear strain rate contributions from the active slip systems.
Hence, for a total number of slips Ns (e.g., Ns = 12 in FCC lattices), the
plastic velocity gradient is given by

𝑳p = �̇� p𝑭 −1
p =

Ns
∑

𝑖=1
�̇� i𝐬i ⊗ 𝐧i (3)

where �̇� i is the shear strain rate for the i-th slip system, and 𝐬i and 𝐧i
stand for the aligned and normal vectors to the direction of the i-th
slip plane. The plastic shear strain rate �̇� i on the i-th slip system can be
stimated from the resolved shear stress 𝜏 i as [48]:

�̇� i = 𝜌m𝑏
2𝑣𝐷 exp

(

−𝛥𝐹
𝑘𝑇

)

sinh
⎡

⎢

⎢

⎣

|

|

|

𝜏 i − 𝜏 ic
|

|

|

𝛥𝑉

𝑘𝑇

⎤

⎥

⎥

⎦

, (4)

where 𝜌m is the density of mobile dislocations, 𝑣𝐷 is the frequency of
ttempted dislocation jumps over obstacles, 𝑏 is the Burgers vector, 𝛥𝐹
s the thermal activation energy, 𝑘 is the Boltzmann constant, 𝑇 is the
bsolute temperature (295 K), 𝜏 ic is the critical resolved shear stress
CRSS) on the i-th slip system, and 𝛥𝑉 is the activation volume.

The mechanistic slip rule in Eq. (4) is derived from the notion of
islocation mobility being constrained by the pinning of dislocations,
ntil the thermodynamic driving force causes the dislocation to escape
hese pinning points, leading to rate-sensitive slip. The CRSS follows

Taylor-based hardening law on these systems, due to the evolving
ensity of statistically stored dislocations (SSDs) and geometrically
ecessary dislocations (GNDs), such that
i
𝑐 = 𝜏 i𝑐0 + 𝜇𝑏

√

𝜌𝑆𝑆𝐷 + 𝜌𝐺𝑁𝐷 (5)

where 𝜏 i𝑐0 is the initial CRSS, 𝜇 is the elastic shear modulus, and
𝑆𝑆𝐷 and 𝜌𝐺𝑁𝐷 respectively denote the SSD and GND densities. The
SD density is assumed to evolve with accumulated slip and induces
ardening on the slip system CRSS. Then, the evolution of the SSD
ensity is defined to vary linearly with the rate of equivalent plastic
train, such that

̇𝑆𝑆𝐷 = 𝜆
√

2
3
𝑳p ∶ 𝑳p (6)

here 𝜆 is the hardening coefficient.
GNDs account for permanent lattice curvature, or plastic strain

radients, and can obstruct dislocation glide [50–52]. The Nye tensor
[53], and its characterisation of plastic incompatibility, are used to

stimate the GND density. Accordingly, the definition of the Nye tensor
is given by,

= ∇0 × 𝑭 p =
Ns
∑

𝜌i𝐺𝑠𝐛
i ⊗ 𝐬i + 𝜌i𝐺𝑒𝐛

i ⊗ 𝐭i, (7)

i=1
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where ∇0× denotes the curl in the reference configuration, 𝜌iGs
and

𝜌iGe
respectively stand for the pure screw and pure edge independent

dislocation components, and 𝐛i and 𝐭i are the Burgers vector and the
tangent vector to the direction of the i-th slip plane. In the FFC lattice,
the number of pure edge and screw dislocation segments equals 12 and
6, respectively. Then, the inherent non-uniqueness of the GND solution
is addressed by using the L2-norm scheme, which minimises the sum of
he squares of the resulting dislocation densities vectors to obtain the
crew and edge components of the dislocation densities, leading to the
ollowing scalar GND density value [54]:

𝐺𝑁𝐷 =

√

√

√

√

Ns
∑

i=1

(

𝜌i𝐺𝑠
)2 +

(

𝜌i𝐺𝑒
)2. (8)

Note that the consideration of a smooth plastic deformation gradient
field is only valid for small values of plastic deformation and low
misorientation boundaries, and implies an artificial increased GND
effect on high-angle grain boundaries and on already damage zones.

2.2. Phase-field modelling for fracture

The nucleation and growth of cracks are characterised by a phase-
field description, whereby an auxiliary field variable (the phase-field
𝜙) is introduced to describe the crack-intact material interface. This
field variable 𝜙 exhibits a continuous, smooth transition within a given
interval, e.g. 𝜙 ∈ [0, 1], taking the lower limit value (𝜙 = 0) in the
undamaged phase and the upper limit magnitude (𝜙 = 1) in fully
cracked material points. The phase-field variable is typically assumed
to evolve based on the balance between stored and fracture energies,
following the energy balance first postulated by Griffith for brittle
solids [55]. Accordingly, the potential energy of the solid 𝛹 can be
written as the additive decomposition of the mechanical stored energy
and the fracture energy, which in the reference configuration reads

𝛹
(

𝑭 , 𝛤0
)

= ∫𝛺0

𝑊 (𝑭 ) d𝛺0 + ∫𝛤0
0𝑐 d𝛤0 (9)

where 𝑊 denotes the stored strain energy per unit volume and 0𝑐 is the
critical fracture energy per unit area. The phase-field regularised form
of Eq. (9) introduces a crack density function 𝛤𝑐 to provide a volumetric
approximation of the energy contribution from the crack surface and
thus enable predicting the evolution of cracks based on an exchange
between the stored and fracture energies [17,56];

�̃� (𝑭 , 𝜙) = ∫𝛺0

𝑔 (𝜙)𝑊 (𝑭 ) d𝛺0 + ∫𝛺0

0𝑐𝛤𝑐 (𝜙,∇𝜙) d𝛺0 (10)

Here, 𝑔(𝜙) is the degradation function that reduces the material stiff-
ness, which we assume to be of a quadratic form:

𝑔 (𝜙) = (1 − 𝜙)2 + 𝑘 (11)

with 𝑘 being a residual numerical stiffness that prevents the mechanical
equilibrium system of equations to become singular. In this work, a
value of 𝑘 = 10−5 is assumed and this numerical term is henceforth
dropped for simplicity. The crack density function is often assumed to
be given by [17]

𝛤𝑐 (𝜙,∇𝜙) =
1
2𝓁

(

𝜙2 + 𝓁2
|∇𝜙|2

)

(12)

here 𝓁 ∈ R+ is a length scale parameter that determines the width of
he regularised crack.

In extending this theory to ductile materials, an effective plastic
ork contribution 𝑊𝑝 is incorporated into the total potential energy
f the solid [57]:

̃ (𝑭 , 𝜙,𝛂) = ∫𝛺0

𝑔(𝜙)
[

𝑊e
(

𝑭 e
)

+𝑊p(𝑭 ,𝛂)
]

+ 0𝑐𝛤𝑐 (𝜙,∇𝜙) d𝛺0 (13)

where 𝛂 is the vector of internal variables and 𝑊e is the elastic stored
energy per unit volume. Note that the plastic energy contributes to
3

v

crack growth and is degraded in an analogous manner to its elastic
counterpart. The role of plastic strains in contributing to damage evo-
lution can be readily observed by deriving the Euler–Lagrange equation
from Eq. (13), rendering the following strong form:
(

𝜙 − 𝓁2∇2𝜙
)

− 2(1 − 𝜙) (state (𝑭 ,𝛂)) = 0 (14)

here  (state (𝑭 ,𝛂)) is a crack driving state function, which for the
onventional phase-field fracture model equals  (state (𝑭 ,𝛂)) = 𝓁∕0𝑐
𝑊e +𝑊p

)

. This fracture driving force is here reformulated to extend
hase-field fracture modelling to the analysis of microstructural fatigue
rack nucleation and growth.

.3. A fracture driving force for microstructural fatigue cracks

Our choice for the phase-field fracture driving force relies on the
tored energy density concept, as its ability to predict microstructural
atigue crack nucleation and growth has been demonstrated [15,58].
his approach is phenomenological yet mechanistic, relating the plastic
ork and the dislocation density with the current fatigue damage state
f the material. In the crystal plasticity formulation, the stored energy
ensity is determined from the fraction of the plastic work that is
tored in the local dislocation structure and normalised by the length
cale over which the energy is stored (the dislocation mean free path),
endering

𝑠 = ∫
𝜉𝝈 ∶ d𝜺p

√

𝜌𝑆𝑆𝐷 + 𝜌𝐺𝑁𝐷
(15)

Fatigue cracking will then occur when the stored energy density reaches
a critical value, 𝐺𝑠 → 𝐺𝑐𝑟𝑖𝑡. We incorporate this concept in the context
of phase-field fracture by defining a new crack driving state function
 (state (𝑭 ,𝛂)) and a new stored energy density-based threshold 𝑊crit .

The condition 𝐺𝑠 → 𝐺𝑐𝑟𝑖𝑡 is accounted for by defining a threshold
condition for the onset of damage initiation, which is then incorporated
into the phase-field balance equation. Thus, a variable 𝑊crit is defined
as the sum of elastic and plastic energies at the time when the stored
energy density reaches the critical value; i.e.,

𝑊crit =
(

max
𝜏∈[0,𝑡]

(

𝑊 +
e
)

+𝑊p

)

|

|

|

|

|𝐺𝑠=𝐺𝑐𝑟𝑖𝑡

, (16)

here max𝜏∈[0,𝑡]
(

𝑊 +
e
)

stands for the maximum value reached by the
ensile part of the elastic strain energy, where a spectral decomposition
f the elastic tensor is applied [59]. That is,

+
e (𝜺) = 𝜺𝑒+ ∶ C ∶ 𝜺𝑒+ , with 𝜺𝑒+ =

3
∑

𝑖=1

⟨

𝜀𝑒𝑖
⟩

+ 𝐧𝑖 ⊗ 𝐧𝑖 (17)

here
⟨

𝜀𝑒𝑖
⟩

+ and 𝐧𝑖 are the positive eigenvalues and eigenvectors of
he Eulerian logarithmic elastic strain tensor (i.e., 𝜺𝑒 = 1∕2 ln

(

𝑭 e𝑭 𝑇
e
)

),
nd C denotes the anisotropic fourth order elastic stiffness tensor of the
rystal lattice, which contains cubic symmetries.

Then, a new crack driving state function is defined as

(

state
(

𝑭 ,𝑭 p,𝛂
))

=
𝓁𝑊crit

0𝑐

⟨

𝑊 +
e +𝑊p

𝑊crit
− 1

⟩

, (18)

where ⟨𝑥⟩ ∶= (𝑥+|𝑥|)∕2 are the Macaulay brackets. Inserting Eq. (18) in
he phase-field balance Eq. (14) delivers a model capable of nucleating
nd growing cracks based on the mechanisms driving microstructural
atigue damage. Two particularly relevant features can be noted. First,
hile other phase-field fracture models have exploited the concept
f a damage threshold, it has always been assumed to be a constant
alue. Here, the threshold 𝑊𝑐𝑟𝑖𝑡 is highly dependent on the local stored
nergy density. Second, a dimensionless parameter 𝜁 = 𝓁𝑊crit∕0𝑐 can
e identified in Eq. (18), which triggers the activation of damage
ue to the elasto-plastic contribution and governs the post-nucleation
ehaviour. The phase-field damage tends to increase sharply for high
alues of 𝜁 , whereas low propagation rates are obtained for a small 𝜁 .
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Moreover, 𝜁 is dependent on the local stored energy density parameter,
suggesting the need for experimental calibration to define the most ac-
curate 𝑊crit∕0𝑐 relation. In this work, 0𝑐 is assumed to be proportional
o 𝑊𝑐𝑟𝑖𝑡 and, for simplicity, 𝜁 is assumed to be constant and equal to
(i.e., the magnitude of 0𝑐 can be estimated for the choices of 𝓁 and
crit).

. Numerical procedures

This section describes the details of the numerical implementa-
ion. The FFT-based solver is employed to solve both the mechani-
al boundary value problem and the phase-field governing equation
redicting the onset and growth of fatigue cracks. An alternate min-
misation method is used to calculate the solution of the resulting
oupled non-linear system of equations. The implementation is carried
ut in the FFTMAD package [13], which is wrapped with Abaqus UMAT
ubroutines for the calculation of the constitutive equations.

.1. FFT-based formulation of the governing equations

For both the deformation and phase-field equations, we address the
eriodic boundary value problem using the FFT spectral method and
ssuming quasi-static conditions. The field equations are posed in a pe-
iodic parallelepiped domain 𝛺 with dimensions 𝐿1 ⋅𝐿2 ⋅𝐿3, accounting
or both periodic geometry and periodic boundary conditions.

We start by formulating the strong form of the coupled problem. For
he linear momentum balance in the reference configuration, consider-
ng the degradation function (11) and a hybrid solution scheme [60],
ne gets

0 ⋅
[

(1 − 𝜙)2 𝑷
(

𝑭 ,𝑭 p,𝛂
)]

= 0 (19)

here 𝑷 is the first Piola–Kirchhoff stress tensor and ∇0⋅ stands for the
ivergence operator in the reference configuration. Eq. (19) is solved
nder the constraint of an evolution law for the internal variables 𝛂,
uch that

̇ = �̇�
(

𝑭 ,𝑭 p,𝛂
)

(20)

hich follows the crystal plasticity constitutive laws (Section 2.1). On
he other side, the phase-field balance reads

(

𝜙 − 𝓁2∇2
0𝜙

)

− 2 (1 − 𝜙)
𝓁𝑊crit

0𝑐

⟨

𝑊 +
e +𝑊p

𝑊crit
− 1

⟩

= 0 (21)

where ∇2
0 is the Laplacian operator in the reference configuration

and the newly defined crack driving state function (18) has been
introduced.

Within the Fourier method, the domain 𝛺 is discretised in a vox-
elised regular grid containing 𝑁1 ⋅ 𝑁2 ⋅ 𝑁3 voxels. The fields involved
in the problem will then be represented by their value at the centre
of each voxel. The Fourier space is discretised in the same number of
frequencies, and the Fourier transform of a function defined in 𝛺 is
obtained by the Discrete Fourier Transform of the discrete field and
computed using the FFT algorithm. The Fourier space discretisation is
defined by the frequency vectors

𝛏 = 𝜉𝑖 = 2𝜋
𝑛𝑖 − ⌊𝑁𝑖∕2⌋

𝐿𝑖
for 𝑛𝑖 = 0,… , 𝑁𝑖 − 1 (22)

where 𝑛𝑖 is the frequency number and 𝐿𝑖 and 𝑁𝑖 are, respectively, the
length of the domain 𝛺 in the 𝑖th direction and the number of voxels
in which it is discretised.

Eqs. (19) and (21) are then translated to the Fourier space by using
frequencies for the spatial derivatives, rendering


{

(1 − 𝜙)2 𝑷
(

𝑭 ,𝑭 p,𝛂
)}

⋅ 𝑖𝛏 = 0 (23)

(

𝜙 − 𝓁2−1 {𝑖2𝛏2 {𝜙}
})

− 2 (1 − 𝜙)
𝓁𝑊crit

0

⟨

𝑊 +
e +𝑊p − 1

⟩

= 0 (24)
4

𝑐 𝑊crit
where −1 and  stand for the inverse and direct Fourier transform of
a real-valued function and 𝑖 is the imaginary unit.

For the linear momentum balance, a Newton–Raphson procedure
is performed where the linearised form of Eq. (23) is posed. For a
given iteration, the deformation gradient is defined as a function of
the displacement field in the Fourier space �̂�𝑖 and the macroscopic
deformation gradient 𝑭 by

𝑭 𝑖 = −1 {�̂�𝑖 ⊗ 𝛏
}

+ 𝑭 (25)

Then applying corrections, 𝛿�̂�, to the displacement field following �̂� =
𝐮𝑖 + 𝛿�̂�, the linearised mechanical equilibrium reads
{

(1 − 𝜙)2 𝜕𝑷
𝜕𝑭

|

|

|

|𝑖
∶ −1 {𝛿�̂�⊗ 𝑖𝛏

}

}

⋅ 𝑖𝛏 = −
{

(1 − 𝜙)2 𝑷 𝑖
}

⋅ 𝑖𝛏 (26)

being 𝑷 𝑖 = 𝑷
(

𝑭 𝑖,𝛂𝑖
)

, and requiring the definition of a consistent
tangent K = 𝜕𝑷

𝜕𝑭
|

|

|𝑖
. For strain-controlled tests, 𝑭 is the imposed macro-

scopic strain, acting as the input boundary condition of the problem.
This linear system of equations is reduced by accounting for the real
Fourier transform symmetries and solved by means of a Krylov solver
(GMRES with a relative tolerance of 𝑡𝑜𝑙𝑙𝑖𝑛 = 10−5), similar to the
DBFFT method proposed in Ref. [61], where a stress/mixed controlled
extension is derived. The Newton–Raphson procedure is considered
converged when the gradient in the reference configuration of the
displacement correction is sufficiently small ‖∇0𝛿𝐮‖∞∕‖𝑭 𝑖 − 𝑭 𝑡‖∞ <
5 ⋅ 10−3. This scheme requires preconditioning to solve the system of
equations given by (24) and (26). The preconditioners used in this case
are operators defined in the Fourier space, as follows. For the linearised
mechanical problem, the preconditioner operator M̂𝐮 reads as

M̂𝐮 (𝛏) (∗) =
[

𝛏 ⋅K ⋅ 𝛏
]−1

⋅ ∗ (27)

where K is the volume averaged consistent tangent tensor

K = 1
𝑉𝛺 ∫𝛺

K (𝐱) d𝛺 (28)

nd 𝑉𝛺 represents the volume of the entire domain 𝛺. For the phase-
ield balance, the preconditioner operator M̂𝜙 is given by

̂
𝜙 (𝛏) (∗) =

[

1 + 𝛏2
]−1 ∗ (29)

nd is applied to Eq. (24).
Finally, the Nye tensor 𝜦 (Eq. (7)) is computed using the Fourier

roperties of derivation, so that its expression becomes simpler in the
ourier space, i.e.

= −1
{

𝑖𝝃 × 
{

𝑭 𝑇
p

}}

, (30)

here × denotes the cross product. The Nye tensor 𝜦 is generally
omputed inside each crystal domain and then the dislocation density
s obtained in the polycrystal homogenisation process. This approach
an be problematic due to the singularity of the plastic strain fields
ver the crystal boundaries. In this study, the evaluation of the plastic
train incompatibility is computed over the entire domain, assuming
hat the plastic deformation gradient field is smooth, as in Ref. [62].
n addition, a regularisation technique is applied for the calculation of
ye’s tensor to avoid discretisation effects. Thus, following Ref. [63],
e estimate the spatial variation of the plastic deformation gradient by

olving the following equation in the Fourier space,

p̃ − 𝓁𝑭 p
∇2
0𝑭 p = 𝑭 p (31)

here 𝓁𝑭 p
is the relevant characteristic length of the regularisation.

Note that the proposed FFT framework might exhibit Gibb’s oscil-
ation phenomena due to the use of a standard FFT derivative and
he inclusion of high phase contrast in the domain. Mitigation mech-
nisms, such as the use of discrete derivative definitions [64] or FFT
reconditioned FEM schemes [65], could be employed.
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3.2. Non-linear alternating minimisation

We solve the non-linear coupled system of equations by using
a non-linear alternating minimisation technique (algorithmic scheme
described in Algorithm 1), which encompasses an implicit time dis-
cretisation approach. Thus, for a given time increment, Eqs. (24) and
(26) are solved in a staggered manner and the process is repeated until
reaching convergence for a tolerance of 𝑡𝑜𝑙 = 5⋅10−3 based on the maxi-
mum relative correction of the solution of the solutions (displacements
and phase-field) at each iteration (see Alg. 1). Additionally, upon the
resolution of Eq. (24), an extra constraint is imposed within the solver
to enforce damage irreversibility by assuming �̇� ≥ 0, which is imposed
explicitly enforced in the solution field within each global iteration.

Algorithm 1: Non-linear alternating minimisation of a time
increment
Data: 𝑭 𝑡, 𝛥𝑭 , 𝛥𝑡, 𝑡𝑜𝑙, 𝜙𝑡
esult: 𝑭 𝑡+𝛥𝑡, 𝜙𝑡+𝛥𝑡

𝑭 0 ← 𝑭 𝑡 + 𝛥𝑭
𝜙0 ← 𝜙𝑡
𝑖 ← 1
while ‖𝑭 𝑖−𝑭 𝑖−1‖∞

‖𝑭 𝑖−𝑭 𝑡‖∞
> 𝑡𝑜𝑙 or ‖𝜙𝑖−𝜙𝑖−1‖∞

‖𝜙𝑖−𝜙𝑡‖∞
> 𝑡𝑜𝑙 do

𝛿𝐮 ← Solve Eq. (23) by Newton-Krylov solver with a tolerance
of 𝑡𝑜𝑙 for 𝑭 = 𝑭 𝑖−1 and 𝜙 = 𝜙𝑖−1

𝑭 𝑖 ← 𝑭 𝑖−1 + ∇0𝛿𝐮
𝜙𝑖 ←Solve Eq. (24) by Krylov solver with a tolerance of 𝑡𝑜𝑙 for
𝑭 = 𝑭 𝑖
if 𝜙𝑖 < 𝜙𝑡 then 𝜙𝑖 = 𝜙𝑡 endif ; /* Pointwise */
𝑖 ← 𝑖 + 1

nd
𝑡+𝛥𝑡 ← 𝑭 𝑖

𝑡+𝛥𝑡 ← 𝜙𝑖

4. Numerical examples and discussion

In this section, we present and discuss the results obtained with the
proposed framework in a variety of numerical cyclic loading experi-
ments, including single crystal, bicrystal and polycrystalline specimens.
In all cases, the computational domains are discretised in regular
grids of voxels where the characteristic voxel length is chosen to be
𝓁𝑣𝑜𝑥𝑒𝑙 = 0.78 μm. This is in line with previous works [47] and enables
establishing a good resolution of the geometry and morphology of the
grain structures (≈1000 voxels/grain). Without loss of generality, we
introduce the mechanical load by considering strain-controlled uniaxial
cyclic testing conditions with a strain amplitude of 𝜀𝑚𝑎𝑥 = 2%, strain
atio 𝑅𝜀 = 0, and strain rate �̇� = 1 ⋅ 10−3 s−1. Note that these loading
onditions lead to a more homogeneous distribution of plasticity rel-
tive to high-cycle fatigue, where localisation effects are prominent,
nd large RVEs containing microstructural defects are necessary for
ccurate analyses. However, the framework could be readily used in
ther loading regimes. Numerical experiments are conducted on FCC
rystal structures, with the crystal plasticity parameters being the ones
orresponding to a CMSX-4 single crystal at room temperature (see
ef. [66]); these are listed in Table 1. The calculation of Nye’s tensor

s carried out using a characteristic regularisation length of 2 voxels
𝓁𝑭 p

= 1.56 μm), which has shown to be the minimum required to van-
sh discretisation effects [63]. The phase-field parameters are chosen
o as to ensure that a sufficient number of loading cycles take place,
o that stabilised fatigue loops are reached before crack formation and
ropagation. Fatigue crack nucleation phenomena can be predicted
ith a few simulation cycles and the conclusions extracted from a

tabilised fatigue response can be applied to total life estimates [67].
pecifically, we consider 𝐺𝑐𝑟𝑖𝑡 = 4 Jm−2 and take the phase-field length
cale to be 𝓁 = 2.34 μm, three times larger than the characteristic voxel
ength so as to ensure discretisation-independent results [45]. Note
hat for quantitative estimates of fatigue life, extrapolation schemes are
5

eeded.
Table 1
Parameters used for the crystal plasticity model.

Parameter Magnitude

Elastic constant 𝐶11 [GPa] 250
Elastic constant 𝐶12 [GPa] 161
Elastic constant 𝐶44 [GPa] 129
Initial CRSS 𝜏𝑐0 [MPa] 350
Burgers vector 𝑏 [mm] 3.5 × 10−7

Frequency of attempted dislocation jumps 𝑣𝐷 [s−1] 1 × 1011

Boltzmann constant 𝑘 [JK−1] 1.4 × 10−23

Thermal activation energy 𝛥𝐹 [J] 4.9 × 10−20

Density of mobile dislocations 𝜌𝑚 [mm−2] 5.0 × 106

Hardening coefficient 𝜆 [mm−2] 150 × 106

4.1. Failure of a single crystal plate as a function of the lattice orientation

The first case study involves the initiation of growth and subsequent
propagation of microstructural fatigue cracks in a single crystal plate as
a function of the crystal orientation. The sample, depicted in Fig. 1a,
has dimensions 𝐿𝑥 = 200 μm × 𝐿𝑦 = 200 μm × 𝐿𝑧 = 0.78 μm and
is discretised using 𝑁𝑥 = 256 × 𝑁𝑦 = 256 × 𝑁𝑧 = 1 voxels. An
nitial crack of length 50 μm is introduced in the centre of the sample,

perpendicular to the loading direction (mode I fracture). This through-
thickness crack was introduced geometrically for numerical purposes as
it requires handling high levels of plasticity in the damaged region from
the begging of the analysis if pre-damage is introduced. Specifically, the
geometrical crack is introduced by defining a region of linear elastic
material with a stiffness 10−5 times the original stiffness of the crystal.
This region spans the voxels located in the domain

(

3𝐿𝑥∕8, 5𝐿𝑥∕8
)

,
(

𝐿𝑦∕2 − 𝐿𝑦∕𝑁𝑦, 𝐿𝑦∕2 + 𝐿𝑦∕𝑁𝑦
)

. Plane stress conditions are assumed.
Two different orientations are analysed: (i) a single crystal oriented in
the [100] direction, so that there is a preferential slip system at 45
degrees, and (ii) a rotated configuration, so that the [111] direction is
aligned with the load and perpendicular to the crack. The crystal ori-
entations are shown in Fig. 1, together with a sketch of the sample, the
loading conditions, and the macroscopic stress–strain loops obtained
for both orientations.

The stress–strain behaviour is shown until the failure cycle 𝑁𝑓 , with
𝑁𝑓 = 6 for the [100] case and 𝑁𝑓 = 4 for the [111] analysis. The [111]
sample (red lines) exhibits a stiffer and stronger response across the
entire cycle history. In both cases, the crystal cyclic behaviour quickly
stabilises, with the 𝑁 = 3 results corresponding to the stabilised stress–
strain curves. Some influence of damage is observed in the failure cycle
before the crack propagates throughout the specimen. It is important
to note that the observed changes in stress–strain loops during cyclic
loading are the result of slip band formation, GND accumulation, and
the evolution of phase-field degradation. The resulting stored energy
distributions and crack trajectories are given in Fig. 2b and 2d for the
[100] and [111] studies, respectively.

First, let us consider the results obtained for the [100] orientation,
Figs. 2a and 2b. Two clear regimes of behaviour are observed in terms
of the crack propagation response. Initially, the distribution of plastic
strain is symmetric with respect to the initial crack, and plasticity is
mostly concentrated near the crack tip, resulting in a mode I crack
growth trajectory, perpendicular to the loading direction. However,
cyclic loading is leading to plastic accumulation and the formation
of slip bands, as can be seen in the 𝐺𝑠 contour, Fig. 2a. As a result,
the crack eventually deviates from the mode I trajectory to follow
a crystallographic plane path along which it propagates due to the
accumulation of stored energy density.

The results obtained when the load is applied along the [111] direc-
tion are shown in Figs. 2c and 2d. It can be seen that the distribution
of plastic strain is asymmetric with respect to the crack plane, with the
plastic strain and stored energy density 𝐺𝑠 concentrating on the upper-
left and lower-right regions of the domain (see Fig. 2c). As shown in
Fig. 2d, this results in mixed-mode cracking with the crack propagating
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Fig. 1. Fatigue failure of a single crystal plate as a function of the orientation: (a) geometry of the sample, boundary conditions and sketch of the crystal orientations, and (b)
macroscopic stress–strain results (2-vertical direction) obtained for both orientations ([100] and [111]) at the first cycle, the third cycle and the failure cycle.
Fig. 2. Fatigue failure of a single crystal plate as a function of the orientation: [100] (top) versus [111] (bottom). Subfigures (a) and (c) show the stored energy density 𝐺𝑠
contours, while subfigures (b) and (d) provide the predicted crack trajectories, as described by the phase-field contours. The results are shown at the end of the failure cycle 𝑁𝑓 .
along two crystallographic planes forming a 30◦ angle with the initial
crack. These slip systems are thus found to be dominant relative to the
other two slip systems in that plane, perpendicular and parallel to the
initial crack.

Model predictions reveal crack trajectories that can be significantly
influenced by the formation of slip bands along crystallographic planes.
This is in agreement with experimental observations of crack path
alignment with specific slip planes and deviation from the mode I
trajectory at the micro-scale [68,69].

4.2. Failure of a bicrystal plate as a function of the grain boundary
orientation

The second case study aims at predicting the interplay between
crack growth behaviour and grain boundary orientation. To this end, a
bicrystal plate is investigated mimicking the geometry and boundary
conditions of the previous study. That is, the plate dimensions are
200 μm × 200 μm ×0.78μ, with the plate containing an initial crack of
6

length 50 μm. The same discretisation is also employed; 256 × 256 × 1
voxels. However, as depicted in Fig. 3, this case study divides the
domain into two crystallographic orientations, [100] and [111], and
considers two case studies: (i) a sample with an inner [100] part and
two outer [111] regions, with the grain boundaries aligned perpendic-
ular to the initial crack, and (ii) a sample with alternating [100] and
[111] regions and with the grain boundaries inclined 45◦ relative to the
initial crack. It should be emphasised that in the present framework,
grain boundaries constitute the interface between two domains with
different properties, without any additional treatment or modelling
assumption. This naturally leads to inhomogeneous plastic distributions
and generation of GNDs near the grain boundaries.

The macroscopic stress–strain responses obtained are shown in
Fig. 3b. As in the previous case study, the stabilised cyclic response
is rapidly attained, requiring only three load cycles in both bicrystal
analyses. Also, both scenarios reach the same number of cycles (5)
before showing significant crack growth and a load drop. The grain
boundary alignment appears to have a negligible influence on the
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Fig. 3. Fatigue failure of a bicrystal plate as a function of the grain boundary orientation: (a) geometry of sample, boundary conditions and sketch of the crystal and grain
boundary orientations, and (b) macroscopic stress–strain (2-vertical direction) results obtained for both case studies (parallel and inclined grain boundaries relative to the initial
crack) at the first cycle, the third cycle and the failure cycle.
Fig. 4. Fatigue failure of a bicrystal plate as a function of the grain boundary orientation: perpendicular to the initial crack (top) versus inclined 45◦ relative to the initial crack
(bottom). Subfigures (a) and (c) show the stored energy density 𝐺𝑠 contours, while subfigures (b) and (d) provide the predicted crack trajectories, as described by the phase-field
contours. The results are shown at the end of the failure cycle 𝑁𝑓 .
macroscopic stress–strain response, as the two scenarios considered
lead to almost identical stress–strain curves. However, a significant
influence is observed in terms of microscopic crack trajectories, as
shown in Fig. 4.

In both cases, as in the previous case study, cracking patterns
deviate from the horizontal mode I trajectory that would be expected
in isotropic materials. As the 𝐺𝑠 contours of Fig. 4 reveal, this is due
to plastic accumulation and the formation of slip bands. In addition,
an interplay between dislocation densities and grain boundaries is
also observed. Thus, the crack is able to propagate through the grain
boundaries for the case study where the grain boundary is aligned
perpendicular to the initial crack (Fig. 4a). However, when the grain
boundary is inclined 45◦ relative to the initial defect, the crack trajec-
tory is deflected and the crack grows along the grain boundary. As can
be inferred from Fig. 4d, this is due to the interplay between dislocation
density and grain morphology; plasticity is shown to be concentrated at
some bands parallel to the grain boundaries in the [100] grains. Hence,
grain boundaries are shown to act as barriers or preferential directions
of crack growth. The results reveal the ability of the model in capturing
the interplay between grain morphology, dislocation density and crack
trajectory.
7

4.3. Nucleation and growth of fatigue cracks in a 2D polycrystal

The third case study aims at shedding light on both nucleation and
short crack propagation of microstructural fatigue cracks. A polycrys-
talline plate of dimensions 200 μm × 200 μm ×0.78 μm is considered,
assuming plane stress behaviour and undergoing the cyclic boundary
conditions described before. No initial crack is introduced, so as to
study the nucleation process. The computational domain is discretised
using 256 × 256 × 1 voxels. The plate contains a total of 62 crystals,
which are randomly oriented and follow a log-normal distribution with
a mean equivalent diameter of 30 μm and a 0.1 scatter in standard
deviation. The periodic microstructure studied is shown in Fig. 5, where
the slip plane projection lines with Schmid factor larger than 0.35 are
also given. The results obtained are given in Fig. 6, in terms of plastic
accumulation (𝐺𝑠 contours) and crack trajectories (𝜙 contours), as a
function of the number of cycles.

In agreement with the hypotheses of the model, the nucleation of
microstructural fatigue cracks is driven by the accumulation of stored
energy density. As shown in Fig. 6, no damage is observed in the
first cycles but the stored energy is being accumulated in slip bands
inclined with respect to the loading direction within the grains. In this
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Fig. 5. Nucleation and growth of cracks in a polycrystal: (a) geometry, boundary conditions and grain distribution, and (b) sample microstructure, highlighting the slip plane
projection lines (right) with Schmid factor > 0.35.
Fig. 6. Nucleation and growth of cracks in a polycrystal: predictions of stored energy density 𝐺𝑠 (top) and crack trajectories, as described by the phase-field contours (bottom).
The results are shown as a function of the number of cycles 𝑁 .
regard, it should be noted that polycrystalline configurations show a
significant GND effect near grain boundaries, leading to lower plastic
deformation due to grain boundary GND hardening and therefore
low 𝐺𝑠 values. Thus, the model produces transgranular cracking with
cracks originated within the grains and not at the grain boundaries. In
order to account for non-crystallographic cracking, a modified defini-
tion of critical stored energy density parameter based on the specific
microstructural features or environmental conditions of the material
under investigation may be necessary.

The crack incubation process is shown to take several cycles and
the nucleation of the primary crack occurs within one crystallographic
plane of one of the grains with a high Schmid factor. Additionally,
other damaged zones can be observed in Fig. 6e, where regions with
high dislocation activity are observed, which act as potential secondary
crack formation sites. The results showcase how the present frame-
work, which builds upon a phase-field description of fracture, can
appropriately simulate crack formation.

Following the nucleation of fatigue cracks, the microstructurally
short crack propagation process takes place in a few cycles, as shown
in Fig. 6f. The crack follows specific crystal facets in some cases, but
also deflects within some grains as a result of the contributions of
multiple slip systems, showing in a polycrystalline setting the behaviour
8

observed in the previous case studies. For instance, two active slip
systems are shown on the right end of the crack in Fig. 6c. After the
crack spans several grains, the propagation becomes unstable due to
periodicity and effective area reduction.

4.4. Nucleation and growth of fatigue cracks in a 3D polycrystal

The fourth numerical experiment demonstrates the abilities of the
modelling framework in predicting complex microstructural cracking
phenomena in realistic 3D microstructures, taking advantage of the
computation speed-up provided by FFT methods. Specifically, a cubic
RVE containing 64 grains is considered. The RVE has dimensions of
100 μm × 100 μm × 100 μm and is discretised using 128 × 128 × 128
voxels, which results in approximately 8 × 106 degrees-of-freedom. The
synthetically generated periodic microstructure follows a log-normal
distribution with an average diameter of 30 μm and a standard devia-
tion of 0.1. The RVE is subjected to the same cyclic loading conditions
as the previous case studies, and the analysis is conducted until unstable
cracking is observed. Model predictions are shown in Fig. 7, in terms
of stored energy density 𝐺𝑠 and phase field 𝜙 contours as a function of
the number of loading cycles 𝑁 .
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Fig. 7. Nucleation and growth of cracks in a 3D polycrystal: predictions of stored energy density 𝐺𝑠 (top) and crack trajectories, as described by the phase-field contours (bottom).
The results are shown as a function of the number of cycles 𝑁 . For ease of visualisation, phase field contours are shown only above a specific threshold value, equal 0.5 in
subfigure (e) and of 0.8 in subfigure (f).
The results show that 11 cycles are required to accumulate sufficient
levels of stored energy so as to trigger microstructural damage. Then,
fatigue damage spreads relatively fast and multiple cracks are observed
after 14 cycles. The model appropriately captures the interplay be-
tween plastic localisation and microstructural cracking. Prior to crack
nucleation, the stored energy density parameter accumulates on slip
planes within the grains and, similar to the 2D polycrystal case study,
a significant effect of GNDs in preventing crack nucleation on grain
boundaries is observed (see Fig. 7b). Nucleation sites can be detected
from the first cycles (see Figs. 7a and 7b), as they are located where the
highest levels of stored energy density parameter are attained. Damage
is found to initiate in three locations (see Fig. 7e), resulting in the
nucleation of three cracks that go on to propagate and interact. Again,
as in the previous case study, crack nucleation sites are located within
crystals with high Schmid factors.

Cracking trends are shown to be closely connected with microstruc-
tural plastic localisation phenomena. Crack nucleation is found to
follow crystallographic planes, and the subsequent propagation takes
place throughout the microstructure following a transgranular crack-
ing mechanism. The propagation trends observed are either single
slip mode, following one plane, or multiple slip mode, a competition
between two directions which was also observed in the previous 2D
analyses. On the final cycles, the primary and secondary cracks coalesce
due to their proximity (see Fig. 7f), leading to final crack patterns
similar to those observed in experiments [70]. Eventually, multiple
microstructural cracks interact and fracture becomes unstable. The
results show the ability of the model in capturing the simultaneous
nucleation of multiple cracks and complex cracking phenomena such as
crack branching and the merging of multiple cracks. In addition, this
case study demonstrates the ability of the framework to tackle large-
scale 3D problems, which can be prohibitive with conventional finite
element approaches. However, one must note that FFT solvers might
suffer from scalability issues or high phase contrast limitations.

4.5. Micro- to macro-structural crack growth in a notched sample with free
surfaces

Finally, we examine the propagation of a crack from a notch-like
defect in a non-periodic boundary value problem where a dominant
crack propagates along several grains. The aim is to observe a transition
9

from micromechanical cracking behaviour, which is mostly dominated
by plastic localisation and anisotropy, to macroscopic mode I crack
growth, when the crack is sufficiently large relative to the relevant
microstructural length scales. To this end, a sample of dimensions
200 μm × 100 μm ×0.78 μm is considered, which is discretised using
256 × 128 × 1 voxels. As shown in Fig. 8a, two free surfaces are
introduced on both sides of the domain by including a buffer layer
of voxels. In addition, a small notch is introduced on the left edge,
effectively facilitating the nucleation of a crack and forcing the crack to
propagate in only one direction. For both the free surface buffer layer
and the notch region, a stiffness 10−5 times softer than the original
crystal stiffness has been considered. It should be noted that the con-
sideration of free surfaces is not suitable for standard FFT methods, here
requiring an increase in the tolerance value to 𝑡𝑜𝑙𝑙𝑖𝑛 = 10−3 to achieve
convergence of the Krylov solver. The underlying microstructure and
grain sizes are chosen so as to ensure that the width of the specimen
spans 10 grains. This requires slightly reducing the grain size to keep
the same voxel and phase field length scale magnitudes. The material
parameters and loading conditions are kept the same as in previous case
studies except for the assumptions of a load amplitude of 𝜀𝑚𝑎𝑥 = 1%
and a critical stored energy parameter of 𝐺𝑐𝑟𝑖𝑡 = 2 Jm−2. The results
obtained are given in Fig. 8, in terms of the crack trajectory (removing
regions where 𝜙 > 0.9) and the 𝑑𝑎∕𝑑𝑁 vs 𝛥𝐾 behaviour computed
using the formula for an edge crack in a semi-infinite body.

The calculations show that it only takes 4 cycles for a crack to
nucleate at the tip of the pre-existing notch but that 45 cycles are then
required for the crack to propagate over several grains. Initially, the
crack trajectory is influenced by crystallographic planes but the sensi-
tivity to the microstructure appears to diminish as the crack increases
in size, becoming closer to the macroscopic mode I propagation path.
A transition from mode II or mixed-mode to mode I fracture is typically
observed in the early stages of fatigue damage [71]. Crack propagation
rates, shown in Fig. 8b, exhibit initial oscillations resulting from the
change in crack growth velocity that occurs when the crack crosses a
grain boundary (relative to propagation within the bulk of a crystal),
followed by a decrease due to the strain-controlled loading conditions.
These oscillations due to transgranular cracking are in agreement with
predictions from theoretical microplasticity-based fatigue models [72].
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Fig. 8. Micro to macro crack growth in a notched sample: (a) crack propagation results (𝜙 contours, removing regions of 𝜙 > 0.9 and with a scale deformation factor of 5), and
(b) fatigue crack growth rates 𝑑𝑎∕𝑑𝑁 as a function of the stress intensity factor amplitude 𝛥𝐾.
5. Concluding remarks

This work presents a microstructure-based phase-field fatigue frame-
work able to capture the nucleation and propagation of fatigue cracks
in polycrystalline materials. The theoretical elements of the model
combine dislocation-based crystal plasticity, a phase-field description
of damage evolution, and a new fracture driving force based on the
stored energy density concept. This driving force definition incorpo-
rates microstructural information and is shown to appropriately capture
plastic localisation phenomena. The numerical implementation is car-
ried out using FFT-based solvers, which enables simulating sufficiently
large RVEs undergoing multiple loading cycles. Five case studies are
investigated to gain insight into the abilities of the model in captur-
ing nucleation and propagation of fatigue cracks in single crystals,
bicrystals and 2D and 3D polycrystals. These numerical experiments
have been carefully chosen so as to evaluate relevant microstructural
plasticity-fracture interactions. The main findings are:

• Model predictions show that short fatigue crack trajectories can
be significantly influenced by the formation of slip bands along
crystallographic planes. Cracks are found to grow along single
crystallographic planes but also exhibit a mixed-mode behaviour
resulting from the influence of multiple slip planes.

• Crack nucleation is observed to occur in preferentially oriented
slip planes. Also, crack nucleation at grain boundaries is seen to
be precluded by the consideration of GND effects — dislocation
hardening that hinders plastic localisation at grain boundaries.

• Depending on the grain boundary orientation, cracks are observed
to readily propagate through grain boundaries or to deflect and
grow along them. The latter is more readily observed when grain
boundaries are inclined 45◦ relative to the initial crack while the
former is seen when cracks are perpendicular to grain boundaries.

• The analysis of polycrystals reveals the formation of cracks in
grains of high Schmid factors and a subsequent transgranular
crack propagation, following crystallographic plane paths.

• By combining efficient FFT methods and phase-field fracture, the
model is able to predict complex cracking phenomena such as
crack branching, as well as the nucleation of multiple cracks and
their interaction, in relevant 3D RVEs and over multiple loading
cycles.

• The simulation of an edge-cracked sample shows how the effect of
the microstructure diminishes as the crack length becomes large
relative to the relevant microstructural scales. Also, the model is
able to capture the oscillations in fatigue crack growth rates that
result from the interaction of cracks with grain boundaries.
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