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Abstract

The thesis is motivated by the goal of developing techniques for inspecting plate

structures using ultrasonic Lamb waves. Many engineering structures are composed

of large areas of flat or curved plates, including, for example, oil and chemical stor-

age tanks. The inspection of a plate by Lamb waves requires the propagation of

multiple signals in order to achieve full coverage. This can be achieved using a plate

tester device which has been developed separately. The work presented in this thesis

investigates the interaction of the fundamental Lamb modes with a free edge of a

plate and with different types of defects with very simple geometries. This is stud-

ied in order to bring understanding of the detection capabilities of the inspection

system, as well as to aid the signal processing procedures used by the system. Finite

Element, analytical and experimental studies are compared.

The reflection of Lamb waves when the fundamental antisymmetric Lamb mode (A0)

or the fundamental symmetric Lamb mode (S0) is incident at the free end of a plate

is studied, in order to identify the extent to which the generation of non-propagating

modes influences the field local to the end of the plate. The results of this work are

important if the pate tester device is placed close to a defect, or close to the edge of

a plate, because the non-propagating modes could then interfere with propagating

modes and pollute the signal processing. Two frequencies are investigated. A simple

case is a frequency below the second anti-symmetric mode cut off frequency, where

there is only one anti-symmetric mode (A0 mode). A second and more complex

case is above this cut-off frequency when there are more than one anti-symmetric

mode. These two cases show that there is some additional motion due to the non-

propagating modes. It is also shown, in contrast, that no such additional motion

happens in the case when the fundamental symmetric mode S0 is incident at the

end of the plate.

The interaction of the S0 Lamb mode with circular defects is investigated. The low

frequency mode S0 is the most attractive of the two fundamental modes for Non
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Destructive Evaluation (NDE) because it has low dispersion (the velocity is ap-

proximately constant for low frequencies), it has a high group velocity, it is equally

sensitive to defects at any depth in the plate and, if the plate is immersed in a fluid

medium, the attenuation due to leakage is very small. Two types of generation and

two types of defect are studied. First the S0 Lamb mode is excited by a plane wave

and interacts with a circular hole through the full-thickness of the plate. Second, the

S0 mode is still excited by a plane wave but interacts with a part-depth circular hole.

These two studies give the first understanding of the reflection behaviour, showing

the mode conversion at the defect, the beam spreading of the reflected wave and the

creation of circumferencial waves that propagate around the hole. Finally the S0

mode is excited by a small circular source and interacts with the same defects. This

is of particular interest because it gives information which is directly applicable to

what takes place with the plate tester device.
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Chapter 1

Introduction

1.1 Motivation

This thesis reports work done as part of a project to design a low frequency ultra-

sonic inspection technique which will test large areas of thick walled structures such

as pressure vessels or petro-chemical storage tanks. Figure 1.1 shows a photograph

of a typical oil tank. Tank floors are composed of many welded plates. The plate

thickness can vary between 5mm and 20 mm and the area of each plate can be 20 m2.

The arrow shows a corrosion patch that needs to be detected by the ultrasonic in-

spection technique, corrosion also has to be found if formed underneath the plate.

The usual inspection of such large areas is very time consuming and thus expensive

because conventional techniques require a test point by point in two dimensions over

the whole area. Two conventional techniques are widely used and measure thickness

changes. The first one is SLOFEC (Saturated LOw Frequency Eddy Current) (see

for example [2]). The technique uses the magnetic biased eddy current principle.

By superimposed DC-magnetization, the depth of penetration in the material is in-

creased. This technique is used for testing through-corrosion, coating, rubber and

plastic layers. SLOFEC scanners have been developed for (semi) automatic Non De-

structive Testing (NDT) inspections. The second and older technique is called MFL

(Magnetic Flux Leakage) (see for example [3]). The magnetizer module induces a

magnetic circuit into the floor to produce a high magnetic flux density within the
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1. Introduction

corrosion patch

Figure 1.1: Photograph of an oil tank. The arrow shows an example of a corrosion patch

plate. Changes in shape such as defects or corrosion pitting cause localized flux

leakage at the top and bottom surfaces of the plate. The inspection instrument’s

Flux Leakage (FL) sensors detect these perturbations in the magnetic field. The

advantage of these two methods is that the floor thickness can be given in millime-

tres, but again, there are point-by-point measurement techniques, and both are very

time consuming.

Conventional ultrasonic inspection techniques can be used through-thickness for a

similar kind of scan as SLOFEC or MFL, but besides also being time consuming,

there are in addition coupling problems. These conventional ultrasonic inspection

techniques use bulk longitudinal or shear waves which propagate in the region of the

structure immediately around the probe. The reflections from the features can be

detected either by the emitter itself (pulse-echo test) or by a receiver placed adjacent

to it (pitch-catch test). This method is not very attractive because of the large areas

to be scanned and in practice it is used mostly for spot checks or to investigate local

areas where there is a particular concern.

An alternative method is to use ultrasonic Lamb waves which propagate along the
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Figure 1.2: Example of a map of the plate

plate and may be reflected by any defects. These waves can inspect all positions

along a line; thus the time of inspection can be reduced. Lamb waves will be dis-

cussed in greater detail in section 1.2.

This approach of using Lamb waves has been implemented in a project involving the

author and Dr Paul Wilcox. Dr Wilcox has developed a plate tester device [1, 4].

This is a phased array transducer, which generates a controlled signal in a chosen

direction in the structure and then receives the reflections coming from defects and

other features. Conceptually, the operation of the array may be regarded as a num-

ber of pulse-echo tests, each looking in a different direction at the surrounding plate.

The final output from the array is displayed to the operator as a two-dimensional

grey scale map of the plate, where the colour scale indicates the amplitude of the

reflected signal at each point in the plate (white low, black high). Figure 1.2 shows

an example of a map of a plate where the edges can be clearly seen as well as a

10mm diameter hole drilled through the thickness of the plate, labelled ’defect’ in

the figure.

The part of the project investigated in this thesis is the interaction of the waves

with different kinds of features and defects. It is essential when processing received

signals to account properly for those which arise due to reflection from different

features. For example, studying interactions from corrosion-like defects is a necessity
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in order to understand what modes are converted at the defect and how they behave

when they propagate in the plate. Their amplitude, the beam spreading, and their

interaction with additional displacements created at the feature were studied. It

is also important to be aware of how far the transducer needs to be from an edge

of the plate or a defect, in order to avoid detecting additional displacements (non-

propagating modes), which may be generated at the edge of the plate.

1.2 Lamb waves

Lamb waves are guided elastic waves which propagate in the plane of a plate and,

like bulk elastic waves, their interaction with defects means they can be used for

inspection purposes. The plate forms a guide to the ultrasonic waves, which directs

them along the structure. Because they can propagate in the plane of a plate, and as

the material used here has very little damping, the energy of the waves is practically

not absorbed as they travel, and thus they can travel over long distances. Hence,

reasonably large area of the tested structure can be inspected from a single location.

Figures 1.3(a) and 1.3(b) show examples of velocity dispersion curves for a 1mm

thick steel plate. The dispersion will be explained later in the section. These curves

were calculated using the DISPERSE code [5, 6]. Figure 1.3(a) displays the dis-

persion curves as phase velocity against frequency. This display describes the rate

at which an individual crest of the wave travels. The group velocity projections

are shown in Figure 1.3(b). This figure displays the speed at which a guided wave

packet travels. For isotropic non-attenuative media, this can also be seen as the

velocity of the energy of the wave. The attenuation (decay of the guided wave) or

the wavenumber (relationship between temporally and spatially varying wave char-

acteristics along the direction of propagation) as a function of frequency are further

representations of the dispersion curves.

Two types of Lamb modes exist: symmetric (solid lines) and anti-symmetric (dashed

lines). The symmetric modes are symmetric with respect to the mid-plane of the

plate and are noted Si, where i is the order of the mode. Anti-symmetric modes are
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Figure 1.3: (a) Phase and (b) Group velocity dispersion curves for a 1mm thick steel

plate. Solid lines denote symmetric modes and dashed lines denote anti-symmetric modes.

anti-symmetric with respect to the mid-plane of the plate and are noted Ai.

It can be seen from Figures 1.3(a) and 1.3(b) that the number of modes increases

with the frequency. Thus, an infinite number of symmetric or anti-symmetric modes

can exist. For each of these modes, their velocity varies with frequency, which means

that they are all dispersive. The effect of dispersion on a propagating wave packet of

acoustic energy is that the energy spreads in time and space as it propagates. Hence,

close to the source, the signal is similar to the input, but as the distance increases,

the signal duration increases and the peak amplitude decreases. Both of these fea-

tures are undesirable in an inspection application as the sensitivity decreases, and

as reflections from two artefacts in close proximity might not be separated and iden-

tified. The use of Lamb waves is then not as straight-forward as it is for bulk waves.

The selection of a suitable Lamb mode is fundamental to the project. The aim of

long-range inspection is to investigate large areas rapidly. Hence, the dispersion is a

key factor and modes with low dispersion have to be chosen and the signal to noise

ratio needs to be as high as possible to maximize the range of inspection. Another

important effect is the attenuation. Attenuation will primarily be due to leakage
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of energy into surrounding fluid in any test structures which contains fluid or are

in contact with fluid. Hence it is very likely that this will reduce the choice of a

suitable Lamb mode to those who have very little out-of-plane displacement at the

contacting surface of the plate. The fundamental S0 Lamb mode at low frequency

satisfies such criteria. It is not very dispersive, the resolution will not worsen as

the signal duration increases and the peak amplitude of the signal will not decrease

as it propagates, hence the signal to noise ratio does not change; and it has very

low attenuation if the plate is in contact with a fluid. These properties make it a

suitable mode for the plate tester device.

The small number of modes present at low frequency is also useful. When the inci-

dent S0 mode reaches a defect, some mode conversion into other modes may occur

[7, 8, 9, 10, 11, 12, 13]. But at this low frequency, only one other Lamb mode is

present: the fundamental anti-symmetric mode A0. The A0 wave has stress and dis-

placement fields which are simple too, but these are anti-symmetric with respect to

the mid-plane of the plate, and it displays the characteristics of flexural behaviour.

Besides the Lamb waves, another possible wave within the frequency range is the

SH0 wave. The SH0 wave is the fundamental symmetric wave of the family of waves

whose particle motion is parallel to the plate surfaces and normal to the direction

of propagation.

Although Lamb produced the dispersion equation for acoustic wave propagation in

plates in 1917 [14], it was not until 1961 that Worlton [15, 16] gave an experimental

confirmation of Lamb waves at megacycle frequencies and that Lamb waves can be

used for non destructive testing purposes. Since then, much work has been carried

out on the use of Lamb waves and other guided waves, a good review can be found

in [17].

In general, Lamb waves are used for two different purposes. Firstly, there is short

range propagation, where Lamb waves may be used at relatively high frequency in

preference to conventional techniques. This purpose includes material characteriza-
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tion [18, 19] and the detection of defects close to interfaces, see for example [20].

In these cases the dispersion is not of such importance as the wave propagates over

short distances but the sensitivity is a key factor.

The second purpose is in applications where the wave propagates over long distances.

Applications of long range inspection include pipeline inspection [21, 22, 23, 24, 25,

26, 27] or inspection of composites [28, 29, 30, 31].

More about the theory of Lamb waves will be discussed in the following sections.

1.3 Background to research

This section will present a summary review of earlier work which is of relevance for

the thesis. Two main topics are presented. The first is the generation of localised

perturbations when the incident wave reflects at a free end of a plate; the second

is the scattering from circular defects. Scattering is an extremely broad area of

research and in accordance with the work presented later in the thesis, two main

lines are discussed here. The first one is the interaction between an incident wave

and small inclusions and the second is the reflection and mode conversion from

circular defects.

1.3.1 Non-propagating modes

It is well known that the reflection of Lamb waves from a free end of a plate is often

accompanied by the generation of localised displacements that do not propagate into

the plate. The non-propagating modes, which exist solely in the vicinity of the end

of the plate, have been reported and studied quite broadly [7, 32, 33, 34, 35, 36, 37].

The work of Torvik [7] is of particular interest. He describes a method using the

modes of vibration for an infinite plate as elements of an expansion applicable to

semi-infinite plates. The method is employed to study the reflection of an infinite

train of waves from the edge of an elastic plate. The incident waves induce other,

non-propagating, modes. The evanescent modes affect the stress distribution of a
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portion of the end of the plate. Gazis [36] and Mindlin [32] have also studied this re-

flection using an approximate, two-dimensional, solution. Their study employs only

the first three roots of the frequency equation. At low frequency, this includes only

the propagating modes and the first pair of non-propagating modes. Most of the

time, the interest in using these non-propagating modes is in properly accounting

for all contributions to the field around a discontinuity when a normal mode super-

position technique is employed, see for example the work of Auld [33], Le Clézio [38]

or Wang et. al. [39].

In this thesis, analytical, Finite Element and experimental results for the reflection

of the first anti-symmetric Lamb mode and the generation of non-propagating modes

at the free end of a plate will be compared. A key novelty of this research will be

the measurement of the displacement field of the non-propagating modes using a

laser interferometer.

1.3.2 Scattering

The work which is presented in this thesis is motivated by the development of a

technique in order to inspect a plate. One part of this work is the interaction of

Lamb waves with circular defects. When the incident wave reaches the defect, it is

reflected and mode converted, and these waves propagate back in the plate. This is

called scattering.

Scattering is a very wide topic and has been discussed by many authors. The scatter-

ing of ultrasonic waves from contacting surfaces, see for example [40, 41, 42, 43, 44],

is one example of this topic. Different models were developed for the understanding

of the transmission and reflection of an incident wave with contacting surfaces. It

has been shown that the transmission between two surfaces is a result of the large

number of micro-contacts [40]. Also developed in this field is an understanding of

the interaction between waves and contacting asperities, and that the density and

size of the contacts (or asperities) can be estimated from acoustical measurements

[41, 42, 43, 44]. Although very interesting, this field of research is not directly ex-
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ploitable for the work described in this thesis. The defects that are studied in the

thesis are between one and three wavelengths of the incident wave (approximately

between 50 and 150 mm), and there is only one defect present in the portion of the

plate modelled.

More important in regard to the work presented here, a key area of scattering in-

vestigation has been the reflection and mode conversion of guided waves when they

are incident to a single defect, see for example [11, 34, 45, 46, 47, 48, 49, 50, 51, 52].

Strong interaction between the incident wave and the flaw is important to the loca-

tion and sizing of the defect. These cited studies assume in general a two-dimensional

plain strain domain, representing a section through the plate and defect, which are

infinite in the direction normal to the plane. This approximation is only valid when

the size of the defect is large compared with the beam of the wave, whereas in

this thesis, the size of the defect can be narrower than the width of the excita-

tion. But these approaches are very useful for the understanding of the phenomena.

Other work done on three-dimensional defects have been published, see for example

[39, 53, 54, 55]. In these works, the authors study the interaction of an incident

wave with a spherical or cylindrical shaped cavity. Their analytical work gave great

understanding of the behaviour of the reflected waves.

When the incident wave reaches the hole, some additional waves, other than Lamb

waves are mode converted. These waves, first introduced by Viktorov [56], are called

“circumferential creeping waves”. They are Rayleigh-like waves and are formed when

the incident wave reaches the hole. They have been studied quite extensively in re-

lation to incident shear waves by Nagy et. al. [57, 58], and by various authors

[59, 60, 61, 62, 63, 64]. In the case developed in the thesis, the creeping waves are

generated from an incident S0 wave (instead of a SH wave), but the phenomenon

is essentially the same. It is interesting to notice that these waves re-radiate some

of the energy into the solid. The re-radiated field can then be observed as a weak

scattering perturbation caused by the curvature of the surface. These waves can

also be used in order to locate and size cracks [58, 65]. For sizing the crack, the am-
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plitude of the circumferential wave is used. The crack is then located by calculating

time delays between a perfect hole and its backscattered counterpart (if a crack is

present). This time delay gives the distance between the defect and the receiver as

long as the size of the hole is known.

This thesis will show the behaviour of the reflected and scattered waves at different

angles around the hole. Finite element, analytical and experimental results will

study their interaction, beam spreading, and the importance of the creeping waves.

1.4 Overview of the thesis

This thesis presents the interaction between the fundamental Lamb modes and dif-

ferent types of features. Two main themes are addressed. The first is the reflection

of the first antisymmetric Lamb mode from a free edge of a plate. This is studied in

order to give understanding on where the plate tester device has to be placed for a

test in order to avoid the measurement of additional displacements which only exist

in the vicinity of the end of the plate or of a defect. The second is the interaction

between an incident symmetric mode with a circular defect; this is studied in order

to find out the sensitivity of the inspection technique.

Chapter 2 studies the reflection of the fundamental mode A0 from the end of a

plate, in order to identify the extent to which the generation of non-propagating

modes influences the field. Analytical predictions, Finite Element simulations and

experimental measurements are presented for frequencies below the A2 cut-off. It

is shown, for frequencies below the A1 cut-off, that reflection of the A0 mode is ac-

companied by a delay in phase, and that there is significant additional motion due

to non-propagating modes within about 5 plate thicknesses of the end. The extent

of this additional motion in the vicinity of the end of the plate is demonstrated by

subtracting the contribution of the propagating modes from the displacement field.

The wave field at frequencies above the A1 cut-off is more complex because the A1 as

well as the A0 propagating modes are present at the end of the plate. Nevertheless,

it has still been possible, using analytical predictions and Finite Element simula-
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tions, to demonstrate the additional motion due to the non-propagating modes. The

reflection of the S0 mode, which is much simpler in its behaviour, is also considered

for completeness.

The interaction between an incident S0 Lamb mode with a corrosion like defect is

presented in three different chapters (3-5). The interactions of Lamb waves with

cracks or notches have already been studied by others using plain strain models

[51, 66]. Here we will be interested in circular defects as a first approximation of

corrosion patches. The studies start with the simplest shape of defect or source

(plane stress model, hole through the full thickness of the plate and plane wave

source) and tend towards more realistic cases (three dimensional, flat-bottom de-

fect) as we go through the chapters in order to better match the wave field of the

real testing device and more realistic flaws.

Chapter 3 presents the first study of the interaction of the S0 Lamb wave with a

circular through-thickness hole in a plate. The study is limited to the non-dispersive

frequency range of this wave, in which the distributions of stress and displacement

are simple. This allows a Finite Element analysis to be undertaken using a two-

dimensional membrane discretisation. Predictions of the direct reflection of the S0

mode and the lateral scattering of the SH0 mode are made for a range of diameters

of the hole. At the same time, an analytical solution based on modal superposition

is developed, and this is also used to predict the reflection and scattering coefficients.

Both sets of predictions are validated by experimental measurements. It is found

that the trends of the reflection coefficients for different hole diameters, frequencies

and distances from the hole satisfy a simple normalisation. On a detailed scale, the

functions exhibit undulations which are shown to result from the interference of the

direct reflection with the re-radiation of a creeping wave which travels around the

hole.

In Chapter 4 the second study of the interaction of Lamb waves with a circular

defect is presented. The Lamb wave mode chosen was again the S0 mode in the low
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frequency-thickness regime. A three dimensional Finite Element mesh was gener-

ated, representing an area of the plate with a circular part-depth hole (33% or 50% of

the plate thickness deep). The specular reflection of an incident S0 wave is predicted

and shows the importance of several factors, such as the decay in amplitude of the

reflected wave and the generation of “creeping waves” which travel around the hole.

Chapter 5 presents the third study of the interaction of Lamb waves with a circular

defect. The Lamb wave mode chosen was again the S0 mode but this time it was

excited by a small circular source. A three dimensional Finite Element mesh was

generated, representing an area of the plate with a 50% of the plate thickness deep

circular hole. The specular reflection of an incident S0 wave was predicted and com-

pared with the plate tester device as well as with a single EMAT transducer. This

chapter assesses the significance of the path lengths, wavelengths and defect sizes

on the reflection characteristics.

Finally, Chapter 6 summarizes the work undertaken through the thesis and future

work is recommended in Chapter 7.
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Chapter 2

Predictions and measurements of

non-propagating modes at the end

of a plate when the fundamental

anti-symmetric mode A0 is

incident

2.1 Introduction

It is well known that the reflection of a Lamb wave from the end of a plate is very

often accompanied by the generation of additional localised disturbances. These

non-propagating modes, which exist solely in the material near the end of the

plate, and which are present only during the time it takes for the Lamb wave to

reflect, have indeed been studied and reported quite extensively, see for example

[7, 32, 33, 34, 35, 36, 37, 38]. The work of Torvik [7] is particularly recommended.

Very often the interest in considering these modes is in properly accounting for all

contributions to the field around a discontinuity when applying normal mode super-

position techniques [33, 37, 38, 39].

The aim of the work presented in the thesis is to develop a technique which can
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2. Predictions and measurements of non-propagating modes at the end
of a plate when the fundamental anti-symmetric mode A0 is incident

be used rapidly to assess the integrity of a plate using Lamb waves. The notion is

that a transducer unit placed on the plate will generate and receive Lamb waves in

controlled directions; processing of the arrival of reflected waves will then allow a

map of corrosion anywhere in the plate to be constructed (see section 1.1). Some

preliminary results of the work on this technique have already been reported [4, 67].

The value of the knowledge of the non-propagating modes for that work is: (1) it is

essential when processing received signals to account properly for those which are

reflections from the edge of the plate under test; for example, if not understood,

phase delays of these reflections could adversely affect the performance of a phased

array transducer; (2) it is important to be aware of how far the transducer needs

to be from the edge of the plate in order to avoid detecting the additional localised

displacements.

The study of the non-propagating modes which is presented in this chapter was

conducted in the context of collaborative work between the Non-Destructive Testing

(NDT) laboratory at Imperial College and the Laboratoire de Mécanique Physique

(LMP) of Bordeaux. It resulted in a joint publication [68]. Nevertheless, the major-

ity of the work presented in this chapter was done by the author at Imperial College

and unless indicated, it should be assumed that it belongs to the author. The work

from Bordeaux will be clearly indicated.

The principal aim of this chapter is to understand what happens at the edge of a

plate. This is done by performing a cross-validation of the model developed in Bor-

deaux with the FE calculations and experiments undertaken at Imperial College,

by comparing results for the reflection of Lamb waves and the generation of non-

propagating modes when the A0 mode is incident, at frequencies both below and

above the A1 cut-off frequency. Even though the chosen Lamb mode for the plate

tester device is the S0 mode, when it reaches a non-symmetric feature it will mode

convert into other modes [11]. Thus, the A0 mode will propagate in the plate and

this is why its interaction with a free end of a plate needs to be studied. The novel

measurements of the fields of the non-propagating modes using a laser interferometer
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are also included in the validation exercise. Finally, the reflection of the S0 mode,

which is much simpler in its behaviour, is considered briefly for completeness and

because of its importance as the primary mode of interest for the plate tester device.

The chapter is in seven sections. The first section presents the properties of the anti-

symmetric propagating and non-propagating modes. The second section summaries

the analytical model developed at the University of Bordeaux. The experimental

set-up used to validate numerical results is presented in the third section, while the

procedure for Finite Element simulation is reported in the fourth section. Results

are compared and discussed in the fifth section and finally a conclusion is presented,

summarizing the results.

2.2 Properties of the antisymmetric propagating

and non-propagating modes

Figure 2.1 shows the group velocity dispersion curves for Lamb waves in an alu-

minium plate (see properties in table 2.1). These, and all other dispersion curves

and mode shapes in this chapter, were plotted using the predictive model DISPERSE

[5, 6]. Lamb wave dispersion curves are scalable by the product of the frequency

and the plate thickness. Thus the curves here show the frequency-thickness on the

horizontal axis. The work which is presented here is focused on the A0 mode at two

different frequency-thicknesses: (1) at 1 MHz-mm, where it is least dispersive and is

also below the A1 cut-off; (2) at 2.7 MHz-mm where both the A0 and A1 modes are

present as propagating modes (“real modes”), and A1 is relatively non-dispersive.

The edge of the plate is assumed to be cut perfectly square, and the A0 wave is

assumed to be normally incident. It follows that at 1 MHz-mm there is no mode

conversion of the propagating modes due to the symmetry of the reflector: an inci-

dent mode of A0 reflects as A0 with a reflection coefficient amplitude of unity. On

the other hand, at 2.7 MHz-mm the incident A0 mode can be reflected partially as

A0 and partially, by mode conversion, as A1.

15



2. Predictions and measurements of non-propagating modes at the end
of a plate when the fundamental anti-symmetric mode A0 is incident

Frequency-thickness (MHz-mm)

G
ro

up
ve

lo
ci

ty
(m

\m
s)

0 8

6

0

A0

A1

S0

S1

Figure 2.1: Group velocity dispersion curves for Lamb waves in an aluminium plate.

Solid lines are symmetric modes, dashed lines are antisymmetric modes. The two dots

show the two frequencies (1.0 and 2.7MHz-mm) at which the study was carried out.

Density (ρ) Poisson’s ratio (ν) Young Modulus (E)

2.7 g/cm3 0.33 70.75 GPa

Table 2.1: Material properties for aluminium.

The role of the non-propagating modes when Lamb waves are reflected from the end

of a plate is easily understood by examining the mode shapes of the A0 and the A1

modes, shown for frequency-thickness products of 1 MHz-mm and 2.7 MHz-mm in

Figure 2.2. The z direction is the direction of propagation of the wave and the x

direction is the normal to the plate. Considering for example the A0 mode at 1 MHz-

mm, the two components of the stress field of importance here, the normal stress

(σzz) and the shear stress (τxz), show the characteristic distributions corresponding

to the flexural behaviour of the wave. Shown by Figure 2.3, and very important,

is the phase relationship; in fact although both components vary harmonically in

time, τxz lags 90 degrees in phase behind σzz. At this frequency, and considering

just the propagating modes, it is clear that an A0 mode incident at the square end

of a plate must reflect also in A0 with unit amplitude reflection coefficient at 1 MHz-

mm. However, because of the phase difference of the stress components, there is no
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linear combination of incident and reflected modes which can satisfy the requirement

that both σzz and τxz are zero across the end of the plate. It is then of course the

presence of non-propagating modes which allow these boundary conditions to be

satisfied. The same feature happens at 2.7 MHz-mm when A0 is incident and is

partially reflected into A0 and A1. There is no combination at the end of the plate

to satisfy the boundary condition and hence non-propagating modes are needed.

(a) A0 at 1MHz-mm

(b) A0 at 2.7MHz-mm

(c) A1 at 2.7MHz-mm
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Figure 2.2: Mode shapes of the A0 and A1 modes in an aluminium plate: (a) A0 mode

at 1 MHz-mm; (b) A0 mode at 2.7 MHz-mm; (c) A1 mode at 2.7 MHz-mm.
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Figure 2.3: Stress mode shapes of the A0 and A1 modes in an aluminium plate displayed

as phase: a) A0 mode at 1MHz-mm; (b) A0 mode at 2.7 MHz-mm; (c) A1 mode at

2.7MHz-mm.
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Dispersion curves for the anti-symmetric modes in a 1mm thick aluminium plate,

including the non-propagating branches, are shown in Figure 2.4. These show sim-

ilar information to the well-known curves in [32, 33], except that those authors

present only the symmetric modes, and also it was chosen here to plot the curves

three times with different 2-D projections as an alternative to their 3-D plot. In

part (a), the only addition which the non-propagating modes make to the usual

Lamb wave phase velocity curves (the real modes) are the branches labelled A2+A3

(these two modes are separated in a 3D plot but appear together when displayed

in the phase velocity / frequency-thickness plane [69]) and A4 linking the cut-offs

to the origin of the plot. These are in fact complex branches whose wavenumbers

have both real and imaginary parts, as can be seen in parts (b) and (c) of the figure.

These complex non-propagating modes are therefore characterised by a sinusoidal

variation of the field along the plate, described by the real part of the wavenumber,

modified by an exponential decay function, described by the imaginary part of the

wavenumber. The imaginary part corresponds to Nepers/mm attenuation along the

plate (1Np/mm = 8.69 dB/mm). The shape of a complex mode is illustrated in the

sketch in Figure 2.5(b).

The A1 mode is radically different from A2 and A3, its non-propagating branch be-

ing entirely imaginary. Thus it does not appear in the phase velocity plot and it

has zero value to the left of the A1 cut-off in the real wavenumber plot. Its shape is

thus characterised just by an exponential decay, as illustrated in Figure 2.5(a).

Torvik [7] demonstrated that neither the imaginary nor the complex modes trans-

port energy along the plate. Thus the imaginary part of the wavenumber describes,

not an attenuation of energy, but simply the spatial shape of the field. Also, this

means that calculations of power flow may only be used to equate the energy of the

incident and the scattered propagating modes. Although the mode shapes bear a

strong resemblance to the mode shapes of vibrations at the end of a plate, such a

comparison can lead to misunderstanding, for two reasons. First, these modes have

non-zero stresses at the end of the plate, so it is not possible for them to exist in
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isolation; they can only be present in combination with other modes. The second

point follows from this, that they do not exhibit the ringing of a free vibration mode

but exist only while the propagating modes are reflecting.
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Figure 2.4: Dispersion curves for anti-symmetric modes in a 1mm thick aluminium plate,

including non-propagating branches: (a) phase velocity, (b) real part of wavenumber and

(c) imaginary part of wavenumber.
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(a) Exponential function (b) Harmonic function, ex-

ponential window

Figure 2.5: Illustration of the shapes of the non-propagating modes at the end of the

plate: (a) imaginary modes, (b) complex modes.
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Figure 2.6: Stress mode shapes of the non-propagating modes: (a) A1 at 1 MHz-mm and

(b) A2 at 1 MHz-mm.
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The stress mode shapes of the first two non-propagating modes are shown in Figure

2.6(a) and 2.6(b). It is interesting to see here that the shapes of the A1 mode

are very similar to those of the A0 mode shown in Figure 2. However these A1

shapes differ in that there is no phase shift between the σzz and τxz components.

On the other hand the A2 mode, which is complex, does have phase shifts between

stress components; indeed the phase shift varies according to the position through

the thickness of the plate. A2 also shows an increase, with respect to A1, in the

number of cycles in the shape of the through-thickness distribution, a trend which

is continued with the higher non-propagating modes in the series.

2.3 Procedure for prediction of the amplitudes

of the non-propagating modes using normal

mode analysis

The work presented in this section was undertaken by Emmanuel Le Clésio from the

Laboratoire de Mécanique Physique (LMP) at the Université de Bordeaux I. The

analytical model presented here is a summary of the model he developed as part

of his work [69]. The results from his model will be compared later with the ones

developed in the thesis.

A normal mode analysis is chosen to solve the reflection of A0 at the free end of a

plate. Every acoustic field that exists in the plate can be developed as an expansion

of Lamb waves:

V =
∑

n

αnVn (2.1)

where Vn = vn(x)ei(knz−ωt) is the particle velocity field of the nth Lamb mode. In

order to be able to represent completely the acoustic phenomena, all of the Lamb

modes that can exist in the plate must be considered [70]. Indeed, at a particular

frequency-thickness product, only a finite number of propagating (real), a finite

number of imaginary, and an infinite number of complex Lamb modes coexist in

the plate. As discussed in the preceding section, the imaginary and complex modes
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do not propagate energy but they create a spatially transient acoustic field in their

excitation area. The reflection of a Lamb mode at the free end of a plate requires

selecting specific imaginary and complex roots, so that the corresponding modes have

a physical meaning. Here the z axis is defined to be positive in the direction away

from the edge of the plate. With this convention, these imaginary and complex

wave-numbers must correspond to amplitudes decreasing away from the end [36]

according to:




kn = ik
′′
n, for imaginary modes

kn = ±k
′
n + ik

′′
n, for complex modes

. (2.2)

The co-existence of real, imaginary and complex Lamb modes at the end of the plate

allows stress-free boundary conditions to be satisfied. To fulfil these conditions, from

ten to twenty-five locations are considered across the thickness at the end. At these

points, the total stress field, produced by the superposition of all the propagating

modes, all the imaginary modes, and between ten and twenty complex modes, must

vanish. To find the complex amplitudes αn of all these Lamb modes, a linear system

is solved. For each point:

¯̄σ.êz =




∑
n

αnσzz(n)

∑
n

αnτxz(n)

=




0

0
. (2.3)

An energy balance criterion is used to check the validity of the numerical result.

The energy carried by the reflected propagating modes must be as close as possible

to the energy of the incident mode. However, if the energy balance is not satisfied,

the parameters of computation (i.e. the number of the points through the thickness

at the end of the plate and the number of complex modes) are optimised until the

best result is obtained. In the results presented in this chapter, the energy balance

is always correct within 5% error.

When the system is correctly solved, the particle velocity field at the end can be

computed by introducing the amplitudes αn in equation (2.1). The displacement is

given by dividing the particle velocity by iω. Moreover, to compare to the Finite

Element predictions and to the experimental data, the reflection coefficients can be
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computed as ratios of displacements at the plate surface:

Rn
j = αn

Un
j (h/2)

U I
j (h/2)

, where j = x, z indicates the displacement component. (2.4)

U I
j (h/2) and Un

j (h/2) are the displacements, at the plate surface, in direction j, of

the incident Lamb mode (I) and of the reflected Lamb mode (n) respectively.

A single frequency computation of the displacement field at the end and the re-

flection coefficients of the propagating modes takes about thirty seconds. If similar

computations were to be done for a range of frequencies, then the computational

parameters should be optimised for some frequencies, thus implying a non-linear

increase of the computational time. This method has proved to be numerically sta-

ble up to 16 MHz-mm. However, the validity of the results obtained for such high

frequency-thickness products has not been confirmed by experimental data, or com-

pared to other numerical predictions. A more thorough description of this model is

presented in references [38, 69].

2.4 Experimental set-up for measurement of the

non propagating modes

Experimental studies were conducted in order to provide some practical validation

for both the analytical and the Finite Element work. The experimental set-up to

study the A0 reflection above the A1 cut-off frequency requires a very long plate.

This can be understood by looking at the dispersion curves plotted in Figure 2.1,

from which it can be seen that the group velocities of A0 and A1 are very close. In

order to fully separate in time these reflected propagating modes, which is necessary

in order to calculate the non-propagating modes (see Section 2.5), a 4 m long plate

would be needed. Thus, only experiments below the A1 cut-off frequency have been

performed, as the only propagating mode within this frequency bandwidth is A0.

For practical convenience, an 800mm x 800 mm x 8mm thick aluminium plate was
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used. The A0 Lamb mode was excited using a piezo-electric transducer (ULTRAN

WS100-0.2) aligned at the appropriate coincidence angle ( � 35o) in a local water

immersion arrangement (see Figure 2.7). The signal was narrow in bandwidth, con-

sisting of a 10 cycle tone burst modified by a Hanning window at 125 kHz (equivalent

to 1 MHz for a 1mm thick plate). This scaling relationship will be exploited so that

all the results presented later will correspond to a plate of 1 mm in thickness. The

transducer was excited using a WAVEMAKER instrument from Macro Design Ltd

(UK). A POLYTEC laser interferometer [71] was used in order to measure the in-

plane and out-of-plane displacements at the different locations marked in the figure.

Plate

Transducer
laser

interferometer

A

B

C

800 mm

8 
m

m

Figure 2.7: Schematic illustration of the experimental set-up.

The interferometer system consists of the interferometer itself, a decoder and two

probes connected by fibre optic cable to the interferometer. One of the two probes

is nominally the measurement probe and the other the reference probe. In order

to measure the in-plane displacement at a surface, both the measurement and the

reference probe are aligned so that their beams lie in a plane normal to the sur-

face, and both beams strike the surface at the same spot. Within their plane, the

two probes are aligned at equal and opposite directions with an angle of ±30o to

the normal to the plate. In this configuration, both displacements measured by the

probes contain equal amounts of the out-of-plane component of surface displacement

and equal and opposite amounts of the in-plane component of surface displacement.

Hence when the reference signal is subtracted from the measurement signal, the

out-of-plane components of surface displacement cancel out and the in-plane com-

ponents of surface displacement add. Using an angle of ±30o for the probes means
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that the constant of proportionality relating voltage to displacement is equal for

both the in-plane and out-of-plane measurement configurations. In order to mea-

sure out-of-plane displacements the reference probe is replaced by a mirror while

the second probe is simply aligned normal to the surface of the plate.

With the interferometer at the location marked A, both the incident and the re-

flected A0 modes could be monitored remote from the end. Then at the positions B

and C the displacements comprising the sum of the incident and reflected A0 modes

and the non-propagating modes could be measured. When measuring at C, only

the displacements in one half of the plate were measured, those in the other half

being expected to respect the conditions of anti-symmetry. While setting up, the

attenuation of the signal due to beam spreading, which is inversely proportioned to

the square root of the propagating distance, was measured by detecting the change

in amplitude of the incident signal for two different locations near A; subsequently

all measured amplitudes were adjusted according to the distance travelled so that

the results would correspond to those for lossless plane waves.
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Figure 2.8: Typical experimental out-of-plane displacement at location “B” when A0

mode of 1MHz-mm centre frequency-thickness is incident; (a) 40 mm from the end of the

plate and (b) at the end of the plate.

Figures 2.8(a), 2.8(b) and 2.9 show typical experimental time histories. Figures

2.8(a) and 2.8(b) shows out-of-plane displacements measured at location B in Fig-
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ure 2.7. Figure 2.8(a) shows a measurement at 40 mm away from the end of the

plate, where the incident and the reflected A0 modes are just separated but they

still include some contribution from non-propagating modes. This measurement will

be used later for the calculation of the spatial attenuation of the non-propagating

modes. Figure 2.8(b) shows the out-of-plane displacement measured at the end of

the plate, on the top surface. Note the increase in amplitude at the end of the plate

(b) compared to that at the location 40 mm away (a). Figures 2.8(a) and 2.8(b) also

shows some unwanted reflections from the sides of the plate. Fortunately these ar-

rive sufficiently late to be gated out; however they indicate the importance of using

a plate of significant width in order to achieve the necessary delay.

Figure 2.9 shows the in-plane displacement at the end of the plate measured at the

corresponding location C in Figure 2.7. Some S0 mode is visible just before the A0

wave. This is due to the very strong in-plane displacement of the S0 mode, which is

partially excited by the set-up. It did not appear in the out-of-plane measurements

because its out-of-plane displacement is very weak, and S0 is indeed very difficult

to excite at this frequency with an out-of-plane forcing technique. The S0 velocity

is much higher than the A0 velocity (see Figure 2.1) and they are easily and safely

separated in time when they have travelled along the plate.
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Figure 2.9: Typical measured signal of in-plane displacement near the top surface of

the plate at location “C ”, when the A0 mode of 1 MHz-mm centre frequency-thickness is

incident.

27



2. Predictions and measurements of non-propagating modes at the end
of a plate when the fundamental anti-symmetric mode A0 is incident

2.5 Procedure for Finite Element simulation

The FE simulation is used as a validation in the same way as experiments, and

indeed the results will be processed in the same way. In the previous section, the

formation of non-propagating modes above the A1 cut-off frequency has not been

studied experimentally due to the closeness of the group velocities of the A0 and the

A1 modes. However the case of a very long plate is possible in the FE model, and

so predictions at both of the test frequencies can be made.

The general features of the FE approach is first discussed and then the specific

models for the 1 MHz-mm and 2.7 MHz-mm cases.

2.5.1 Discretisation

The propagation of straight-crested Lamb waves can be modelled using a two-

dimensional spatial discretisation. The two-dimensional Finite Element modelling

was performed, with the assumption of plane strain, using the program FINEL which

was developed at Imperial College [72]. Rectangular elements, with four nodes and

linear shape functions, each node having two displacement degrees of freedom in the

plane of computation, were used in the models. The spatial discretisation in both

cases was chosen to be certain of satisfying the rule:

λmin ≥ 8∆x, (2.5)

where λmin is the shortest wavelength, within the bandwidth of the signal, of any

waves which may travel in the structure, and ∆x is the biggest dimension across any

single element in the model. This rule has been found to be effective for ensuring

accurate modelling, see for example [26].

The program uses a diagonal mass matrix, allowing an efficient explicit time march-

ing algorithm to be exploited. The explicit algorithm is stable provided that the

time step δt is short enough to meet the stability criterion [73]:

δt ≤ 0.8
∆s

c
, (2.6)

where c is the velocity of the wave and ∆s is the shortest side-length of any element.
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2.5.2 Simulations below and above the A1 cut-off frequency

A schematic illustration of the model is shown in Figure 2.10. Plates of 8mm

thickness were modelled, the thickness being chosen for convenience to match the

thickness of the plate in the experimental work. In fact, as discussed earlier, the

choice of thickness is arbitrary provided that the other spatial dimensions and the

frequency are scaled to give the appropriate frequency-thickness product when com-

paring the results. Accordingly all the results presented later will correspond to a

plate of 1 mm in thickness. The models used 16 elements through the thickness of

the plate and the elements were defined to be square. Thus the number of elements

per wavelength was safely above the 8 elements required, being about 37 elements

per wavelength at the frequency-thickness product 1 MHz-mm and 20 elements per

wavelength at the frequency-thickness product 2.7MHz-mm.
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Figure 2.10: Schematic illustration of Finite Element spatial discretisation for a plate,

with excitation of the A0 wave.

The temporal model for the 1 MHz-mm case was chosen to match exactly the exper-

imental A0 input signal, so a 1MHz-mm 10 cycle tone burst modified by a Hanning

window was excited at one end of the plate. This was achieved by prescribing in-

plane and out-of-plane displacements at each node across the thickness (see Figure

2.10). The model was 800 mm long and several regions were monitored. First the

end of the plate through the thickness (location “C”) was monitored in the in-plane
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and out-of-plane directions, every 0.5 mm, providing the total field displacement. A

second region was monitored through the thickness at 300mm and 200 mm away

from the end of the plate in order to monitor the incident and the reflected A0

modes when they are fully separated in time. Finally, in order to study the spatial

attenuation of the non-propagating modes, points every 0.5mm from the end of the

plate along the top surface were monitored.

The same model could not be used for frequencies above the A1 cut-off frequency

because then more than one antisymmetric mode exists. The problem is that the A1

mode is excited by mode conversion at the end of the plate and it propagates back

together with the reflected A0 mode. Since they have very similar values of group

velocity, they need to propagate a very long distance before they can be recorded

separately. Thus the model was extended to 4 m in length. The separation of these

two modes in time is important in order to perform the processing to expose the

non-propagating modes which will be explained in the following section of the chap-

ter.

The input A0 signal for the 2.7 MHz-mm case was similar to the 1 MHz-mm case,

except that a 30 cycle signal was used, in order to minimise dispersion over the long

propagation distance. Furthermore, the profile of the displacement field which was

imposed at the end of the plate had to be chosen more carefully, since it was essential

to avoid generating any A1 in the incident signal. This was done by imposing dis-

placements which matched exactly the mode shape of the A0 mode at 2.7MHz-mm

[74].

FE predictions of the 2.7 MHz-mm case were done at 3 m and 3.2m away from the

end of the plate, through the thickness of the plate and in both in-plane and out-

of-plane directions. Figure 2.11 shows, by way of example, the monitored in-plane

displacement at 3.2 m from the end of the plate; it can be seen that the A0 and A1

modes are satisfactorily separated. The end of the long plate was also monitored,

in exactly the same way as in the 1 MHz-mm case.
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Figure 2.11: Typical FE predicted in-plane displacement signal, when the incident A0

wave has a centre frequency-thickness of 2.7 MHz-mm, monitored at 3.2m from the end

of the plate, showing separation of the reflected A0 and the mode converted A1.

2.6 Procedure for removal of the propagating modes

from the total displacement field at the end

of the plate

An aim of the analysis in this chapter is to illustrate the extent to which the non-

propagating modes contribute to the total displacement field at and near the end of

the plate. One way to perform such an illustration is to subtract the contributions

of the propagating modes from the total field at the end of the plate, thus leaving

only the displacements due to the non-propagating modes. The procedure by which

that subtraction is performed will be explained here.

The amplitudes of the incident and reflected propagating modes are known from the

remote monitoring at location “A” (these will be presented later and are plotted in

Figure 2.12), so this determines the amplitudes of the fields to be subtracted at the

end of the plate. However the phases of these waves at the end of the plate are not

yet known. The following process is applied sequentially and separately to each of

the three possible propagating modes: the incident A0 mode, the reflected A0 mode
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and (if present) the mode converted A1 mode.
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Figure 2.12: Predictions of the reflection coefficient spectrum of the A0 and A1 modes

when the A0 mode is incident. Solid lines are analytical solution (Le Clézio model), filled

circles are FE results. The reflection coefficient is defined as the ratio of the amplitude

of the out-of-plane displacement of the reflected wave to that of the incident A0 wave,

calculated at the surface of the plate.

The out-of-plane displacement of the propagating mode is monitored at two separate

locations remote from the end of the plate, let us say locations at distances D1 and

D2 from the end of the plate. The FFT of each of these monitored signals is

calculated, giving the amplitude and phase at the chosen calculation frequency (1

or 2.7MHz-mm). The phase, φend, at the end of the plate is then found by linear

extrapolation of the phases at D1 and D2:

φend = φD2 − (φD2 − φD1) ∗ D2

D2 − D1
(2.7)

Having found the amplitude and phase of the propagating wave at the end of the

plate, these can be converted to real and imaginary quantities and subtracted from

the real and imaginary parts of the total field at the end of the plate. Once this

has been performed for all of the propagating modes, the remaining field is that due

solely to the non-propagating modes.
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The above calculation corresponds just to the out-of-plane component of displace-

ment at the surface of the plate. In order to process the in-plane displacement, and

the values at any other locations through the thickness of the plate, it is a simple

matter just to make use of the known mode shape of the mode (Figure 2.2). Thus

for example, the amplitude of the out-of-plane displacement at a quarter depth in

the plate is taken to be the known amplitude at the surface multiplied by the ratio

of the amplitudes of the mode shape at quarter-depth and surface. When processing

the FE results, an alternative approach was to perform the complete phase extrap-

olation separately at each depth, since the signals were monitored at all depths at

the remote locations. This achieved the same results, confirming agreement between

the mode shapes in the FE simulations and those predicted by DISPERSE.

2.7 Results

2.7.1 Below A1 cut-off frequency

Figure 2.12 shows a comparison of the analytical (Le Clézio model [69]) and the

Finite Element predictions of the amplitudes of the reflection coefficient of the A0

mode and the “mode conversion coefficient” of the A1 mode when the A0 mode is

incident at the free edge of an aluminium plate. The reflection coefficient here is

calculated from the out-of-plane component of the displacement at the surface of

the plate (at location A in the FE models), and is defined by the ratio of the am-

plitude of the displacement of the reflected wave to that of the incident wave. This

detail is unimportant when considering the A0 mode, because the identical reflection

coefficient would be indicated by considering any component or depth-location of

the displacement; however it will become essential information when considering the

A1 mode because the mode shapes of the A1 mode are different from those of the

incident A0 mode. Furthermore, it should be emphasised that neither the A0 nor the

A1 coefficient indicates directly the coefficient of the reflection of energy; the A0-A0

energy reflection coefficient is given by the square of the value reported here, while

the A0-A1 mode conversion coefficient would require a calculation accounting for all

of the field through the thickness of the plate. The FE coefficients were calculated
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in the frequency domain, that is to say the amplitude frequency spectrum of the

reflected signal was divided by that of the incident signal. This required a number

of simulations with different centre frequencies in order to cover the bandwidth of

the plot.

Very good agreement is found in Figure 2.12 between the two methods across the full

bandwidth, thus confirming consistency in the methodologies of the two techniques.

As would be expected, only the A0 mode is present at frequencies below the A1

cut-off frequency, and its reflection coefficient is unity. As the frequency is increased

above the cut-off, it can be seen that the amplitude of A0 initially decreases while

the amplitude of A1 increases; then later A0 rises again. These trends have also been

demonstrated experimentally using a water-coupled piezo-electric source transducer

and an air-coupled capacitive receiver transducer; full details of that setup and

results are given in [69].
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Figure 2.13: Predictions of the phase of the reflected A0 and A1 modes at the end of

the plate when the A0 mode is incident. Solid lines are analytical solution (Le Clézio

model), filled circles are FE results. The values are the difference between the phase of

the out-of-plane displacement of the reflected mode and that of the incident mode.

Figure 2.13 shows the change of phase of the two propagating modes as they are

reflected or mode converted at the end of the plate. The phase was calculated from

the out-of-plane component of displacement at the surface of the plate. Thus if the

incident mode has its phase set to zero at the moment it arrives at the end of the
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plate, then the plotted phase is that of the reflected or mode converted mode at the

moment it leaves the end of the plate. The sign convention is that negative angles

denote a phase delay. Very good agreement is again found between the analytical

and the FE predictions.
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Figure 2.14: Prediction of the enhancement of the displacements at the end of the plate

caused by the non-propagating modes: (a) incident A0 mode; (b) signal at end of plate,

consisting of incident and reflected A0 and non-propagating modes; (c) ratio (b)/(a) (solid

line) and expected ratio (b)/(a) (dashed line) if there were no non-propagating modes. All

results are out-of-plane component of displacement at surface of plate, using signal with

centre frequency of 1MHz-mm.

Figures 2.14(a), 2.14(b), and 2.14(c) show Finite Element predictions which illus-

trate the extent to which the displacements at the end of the plate are enhanced by

the contributions from the non-propagating modes. For simplicity the illustration is

based on predictions made using a signal with centre frequency-thickness equal to 1

MHz-mm, when the only propagating mode is A0. The incident wave was sampled

by monitoring the out-of-plane component of the displacement at the surface of the

plate at location A of Figure 2.7, and this is shown in Figure 2.14(a). Figure 2.14(b)

then shows the same component of displacement at the end of the plate (surface of

plate at location C). If this study had been carried out on the reflection of plane

bulk waves from the free surface of a semi-infinite half-space, then the amplitude of

the signal in (b) is expected to be exactly twice that of the signal in (a). However

the ratio of these amplitudes, shown in the frequency domain in Figure 2.14(c), is
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clearly very much more than two. The additional displacement amplitude is that of

the non-propagating modes. Similar enhancement of the displacements is found at

frequencies above the A1 cut off frequency, but for brevity such cases are not shown

here.

Further illustration of these enhanced displacements is developed in Figure 2.15.

This shows the total displacement field through the thickness at the end of the

plate at 1 MHz-mm. The field comprises the sum of the incident and reflected

propagating modes and the non-propagating modes. The values are scaled such

that the amplitude of the out-of-plane surface displacement of the incident A0 mode

is unity. Each of the two components of the displacement is plotted without phase

information, that is to say the displacement profile is shown at the instant during the

harmonic cycle when it has its maximum value at the surface of the plate. Excellent

agreement is found between the analytical solutions, the FE predictions and the

experimental measurements.

Top of
plate

Bottom
of plate

Finite Element
analytical solution

in-plane out-of-plane

Amplitude 4-4

nn

Experiments

Figure 2.15: Total displacement field (all modes) through the thickness at the end of

the plate at 1 MHz-mm, when the incident A0 mode has unit amplitude out-of-plane

displacement at plate surface. Solid lines are analytical solution (Le Clézio model), filled

circles are FE results, empty circles are experimental measurements.

Results making use of the method and described in Section 2.6 to remove the prop-

agating modes from the total displacement field of Figure 2.15 are now presented,

leaving the contribution due just to the non-propagating modes. The results thus
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processed are shown in Figure 2.16. Again the amplitudes are scaled to correspond

to unit amplitude of the out-of-plane surface displacement of the (removed) incident

A0 mode. Also, the displacement components are shown without phase information,

as in the preceding figure. This process was applied separately to the FE and the

experimental data, and both are shown in the plot: FE predictions by filled circles

and experimental measurements by empty circles. The sum of the non-propagating

modes from the analytical model are also shown here, plotted as solid lines. In

general there is very good agreement between these results, although the measure-

ments show some scatter near the surface of the plate. This scatter comes from the

difficulty measuring near a corner with the laser. The diffraction of the laser beam

caused by the corner of the plate means that not the full beam (or full displacement)

is received by the interferometer but only a part of it.

Top of
plate

Bottom
of plate

Finite Element

in-plane

out-of-plane

Amplitude 2.5-2.5

Experiments

analytical solution

Figure 2.16: Displacement field corresponding to Figure 2.15, but after removal of the

incident and reflected propagating modes, leaving just the non-propagating modes. Solid

lines are analytical solution (Le Clézio model), filled circles are FE results, empty circles

are experimental measurements.

An interesting outcome of the study at this particular frequency is that the non-

propagating wave field is dominated by the A1 non-propagating mode. This is

confirmed by examining the results of the analytical model, revealing that the dis-

placement amplitudes of the A1 non-propagating mode are more than one order of

magnitude larger than those of any other non-propagating mode. Indeed plots of
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the in-plane and out-of-plane displacement mode shapes of A1 can be practically

overlaid on Figure 2.16.

Finite Element
Experiment Normalised

displacement
amplitude

Distance from end of  plate
(multiples of plate thickness)

0

1.0

126

Analytical solution

Figure 2.17: Out-of-plane displacement field of the non-propagating modes in the vicinity

of the end of the plate, after removal of the incident and reflected A0 mode, at 1 MHz-

mm. Solid line is analytical solution (Le Clézio model), filled circles are FE results, empty

circles are experimental measurements.

A similar approach was applied to the displacement field along the top surface of

the plate, in the vicinity of the end (location B). After applying the processing

to remove the displacements of the incident and reflected A0 modes, the Finite

Element predictions and the experimental measurements of the non-propagating

modes field are shown in Figure 2.17. The plot shows the out-of-plane displacement,

the amplitude corresponding as before to unit amplitude of the incident mode. Once

again there appears to be good agreement between the Finite Element and the

experimental results. The decay of the non-propagating modes within about 5 plate

thicknesses of the end of the plate is clearly demonstrated. Also shown in the figure,

by a solid line, is the decay profile of the A1 non-propagating mode, taken from

the imaginary part of the wavenumber from the analytical model (the DISPERSE

prediction shows exactly the same shape). This confirms the observation that the

non-propagating modes field is well described by just the A1 non-propagating mode.

Indeed it can be seen in Figure 2.4(c) that the A1 non-propagating mode has much

the lowest value of attenuation at 1 MHz-mm, and so any other non-propagating

modes present at the end of the plate would have vanishing amplitude within a short
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distance along the plate.

2.7.2 Above the A1 cut-off frequency

The behaviour at 2.7MHz-mm, when both the A0 and A1 modes may propagate is

now considered. For brevity the field across the end of the plate in this case is only

studied.

Figure 2.18 shows the total displacement field through the thickness at the end

of the plate. This field comprises the sum of the incident A0 mode, the reflected

A0 mode, the reflected and mode converted A1 mode, and all the non-propagating

modes. The amplitude scaling and the form of the presentation is exactly the same

as was used in the preceding section for the 1 MHz-mm case. The results show very

good agreement between the FE and the analytical predictions.

Amplitude

Top of
plate

bottom
of plate -3 3

in-plane
(z)

out-of-plane
(x)

Figure 2.18: Total displacement field (all modes) through the thickness at the end of

the plate at 2.7 MHz-mm, when the incident A0 mode has unit amplitude of out-of-plane

displacement at plate surface. Solid lines are analytical solution (Le Clézio model) , filled

circles are FE results.

Finally, Figure 2.19 shows the displacement field through the thickness at the end of

the plate, after removal of the three propagating modes. This field is thus the sum

of the non-propagating modes. Good agreement between the FE and the analytical
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predictions is demonstrated. The shape of the field here is somewhat more com-

plicated than that for the 1 MHz-mm case, and indeed the analytical study showed

that this field is no longer dominated by a single non-propagating mode, but by a

combination, consisting predominantly of A2 and A3.

Amplitude

Top of
plate

bottom
of plate 0.4-0.4

in-plane
(z)

out-of-plane
(x)

Figure 2.19: Displacement field corresponding to Figure 2.18, but after removal of the

incident and reflected propagating modes, leaving just the non-propagating modes. Solid

lines are analytical solution (Le Clézio model), filled circles are FE results.

2.7.3 The symmetric mode S0

As discussed in Section 2.2, the non-propagating modes play a part in the reflection

behaviour when the traction-free boundary condition at the end of the plate cannot

be satisfied by a superposition of propagating modes. At low frequencies the S0

mode is dominated by its in-plane displacement and stress components, and these

allow the traction-free boundary conditions to be satisfied simply by the sum of the

incident and reflected S0 modes. Thus negligible contributions from non-propagating

modes are expected.

Indeed FE studies of the S0 mode within the frequency range up to the A1 cut-off

showed no evidence of the phenomena which were observed with the A0 mode. The

displacements at the end of the plate were found to be almost exactly twice the
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values of the incident mode, thus implying that the amplitude of non-propagating

modes is negligible. There was also no evidence of a phase change when reflecting

from the end of the plate.

Nevertheless, it should be noted that this conclusion only applies in this low fre-

quency range; significant amplitudes of non-propagating modes exist at higher fre-

quencies [7, 38].

2.8 Conclusion

The study has demonstrated significantly enhanced displacements in the vicinity

of the end of a plate when the A0 mode is incident. Analytical predictions, Finite

Element simulations, and experimental measurements have been used to investigate

these fields at two example values of frequency-thickness, below (1 MHz-mm) and

above (2.7 MHz-mm ) the A1 cut-off. Good agreement has been found between

the results of all three techniques. Then, by identification of the amplitudes and

phases of the propagating modes, it has been possible to remove these from the

displacement fields at the end of the plate, thus revealing the fields due solely to the

non-propagating modes.

In relation to the motivation for the work, the development of NDE techniques for

the inspection of plates, there are two important outcomes from the study. The first

is that the reflection of the A0 mode occurs with a change of phase, for example a

90 degree delay in the more useful 1 MHz-mm case. It may be necessary to take

account of this when dealing with the superposition of multiple reflected signals in

an area-inspection technique. The second is that the non-propagating modes can

enhance the displacement field at some distance from the end of the plate, and this

indicates the importance of transducer placement for inspection. In the 1 MHz-mm

case the field is enhanced within a region of about 5 plate thicknesses from the end

of plate.
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It is also useful to know that there should be negligible non-propagating mode

generation by reflection of the S0 Lamb mode from the edge of the plate. This

is important information because the S0 mode is the preferred mode for the test

instrument.
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Chapter 3

Reflection and scattering of the S0

Lamb mode from a

through-thickness circular defect

3.1 Introduction

The motivation of the work presented in the thesis is the development of a Lamb

wave inspection technique for large areas. The primary goal is the detection of

corrosion. In more recent years, there has been a large and increasing number

of publications relating to the exploitation of Lamb waves for the inspection of

flat plates [46, 11, 49, 34, 45, 50, 47, 48, 54, 75, 76, 77, 78] or cylindrical shell

[21, 22, 79, 24, 25, 26, 27] structures. Rayleigh waves have also been exploited for

the detection and measurement of surface breaking cracks, for example [80, 81],

although such an approach is limited to localised detection of small cracks rather

than long range inspection. A large proportion of the literature has addressed the

practical aspects of the application of guided waves to the inspection of pipes; this is

in some ways a simpler problem than inspecting flat plates because the propagation

is essentially unidirectional. However, there remains a strong motivation to extend

the findings on pipe inspection to the closely related two-dimensional problem of

inspecting the area of a plate [4]. This chapter is the first of several where the

fundamental S0 Lamb mode interacts with circular shaped defects, approximating
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a corrosion patch.

Specifically, it is important to extend the knowledge of the interaction of the Lamb

waves with defects from the two-dimensional plane strain studies (see for example

[51, 66]) to cases in which the defect is realistically represented as a three-dimensional

shape at some location in a plate. Knowledge of this will be essential in order for

the area scanning approach to be exploited reliably. This chapter is an initial study,

taking a defect with the simplest geometry of a through-thickness hole. Increases

in the complexity to address more realistic defects such as part-depth holes repre-

senting corrosion loss, and more realistic sources, will be presented in the following

chapters. The diameters of the hole relative to the wavelength in this study are

representative of the dimensions being considered in the developments reported by

Wilcox et. al. [4].

Two predictive studies are reported here. The first uses a Finite Element time do-

main model to simulate the interaction of an incident plane S0 Lamb wave with

a circular hole. The S0 wave which is reflected straight back from the hole, and

the SH0 wave which is scattered at 90 degrees to the incident direction, are both

monitored, and these are used to predict the reflection and scattering functions for

a range of hole sizes, frequencies and monitoring distances from the hole. The sec-

ond approach uses an analytical model to predict the same quantities. This model,

whose derivation is summarised, is based on mode superposition. It has been devel-

oped by Dr Tomas Grahn [82] who worked in collaboration with the present author.

His work will be clearly indicated. Finally a third set of results consists of a limited

number of experimental measurements, using a set-up which approximates that of

the predictions sufficiently well to validate the trends of the findings.

The work reported in this chapter has been published in the Journal of the Acoustical

Society of America [83].
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3.2 Mode characteristic and frequency range of

interest

Dispersion curves for the well-known Lamb waves in a steel plate (see material

properties in table 3.1) are shown in Figure 3.1. These dispersion curves were

calculated using the predictive model DISPERSE [5, 6].
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Figure 3.1: Group velocity dispersion curves for Lamb waves in a steel plate.

Density (ρ) Poisson’s ratio (ν) Young Modulus (E)

7.850 g/cm3 0.30 210.0 GPa

Table 3.1: Material properties for steel.

The choice of the low frequency mode S0 for the project has been explained in chap-

ter 1. It has been shown that at low frequency, the S0 Lamb mode has very little

dispersion, which is ideal for long range NDE. However resolution requirements nor-

mally force the frequency of choice upwards, so that a compromise is required, and

indeed an optimum can be identified logically [84]. Furthermore, another considera-

tion is that increasing the frequency may also increase the sensitivity to defects [51].

A sensible upper limit to this increase is about 1.6 MHz-mm [84], in order to avoid

the A1 cut-off frequency. In fact the work which is presented here is limited to the
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very low end of the range, that is below about 500 kHz-mm, where the S0 mode is

essentially non-dispersive.

Figure 3.2 shows stress and displacement mode shapes of the S0 mode through the

plate at 100 kHz-mm. The co-ordinate system used from here is different than

the system used in the previous chapter. The direction y denotes the normal to

the surface of the plate, z denotes the normal to the plane of plane strain, and x

denotes the direction of propagation of the wave; displacements and stresses are u

and σ respectively. It can be seen here that the mode shapes of this mode at low

frequency are extremely simple. This will enable a very simple Finite Element to be

employed for the modelling. Within the same frequency range, SH0 and A0 can also

Top of
plate

in-plane
(x)

out-of-plane
(z)

Bottom of
plate

Amplitude0

(a) Displacements

σxx

(in-plane)

τxz

(shear)

Amplitude0

(b) Stresses

Figure 3.2: Mode shapes of the S0 mode in an aluminium plate at 100kHz-mm;

(a)Displacements and (b) Stresses.

be present. Since these two waves may exist within the frequency range of interest,

it is possible in principle for both of them to be excited by mode conversion when

an S0 wave is incident at a defect.

3.3 Procedure for Finite Element simulation

3.3.1 Discretisation

The case which was chosen for the study is sufficiently simple that it can be modelled

using a two-dimensional spatial discretisation. Examination of Figure 3.2 shows that
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the behaviour of the S0 mode at low frequency is essentially that which is described

by simple membrane theory. Propagation of this wave in a plate can therefore be

modelled using plane stress membrane Finite Elements, the elements lying along

the neutral axis of the plate. Such an approach has similarly been used to model

the L(0,2) mode in pipes [26]. Clearly the through-thickness hole can be intro-

duced in such a model, although it should be noted that future chapters will present

development of this work to part-depth holes and this will require a genuinely three-

dimensional discretisation. The membrane elements can also correctly represent the

propagation of the SH0 wave and so mode conversion between the incident S0 wave

and scattered SH0 waves can be predicted.

There are two limitations of the membrane model, but fortunately neither invali-

dates this particular study. The first is that it cannot represent the propagation

of the S0 mode at higher frequency, that is in its dispersive region; therefore at all

frequencies the wave propagates at the velocity which it has at zero frequency. The

second is that it cannot represent the propagation of the A0 mode. However the A0

mode is never excited when the S0 wave arrives at the hole, the reason being that all

of the features of the geometry and of the incident wave are symmetric with respect

to the mid-plane of the plate.

The Finite Element modelling was performed using the program FINEL which was

developed at Imperial College [72] and already discussed in section 2.5. The mem-

brane elements which were used were four-noded quadrilaterals with 2 degrees of

freedom (x, y displacements) at each node, so the solution was performed in the

two-dimensional xy plane. Figure 3.3 illustrates the spatial domain, including detail

of the mesh around the hole.

An interesting issue worth mentioning here is how best to design the mesh around

the hole. A smooth surface around the hole is most easily defined by designing the

whole mesh in a radial form, rather like a spider’s web (see Figure 3.4(a)). Us-

ing this type of mesh raised a problem. Because each element is different to its
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Figure 3.3: (a) Schematic illustration of Finite Element spatial discretisation for the

plate and (b) Mesh details around the hole.

neighbour, the energy does not propagate completely from one element to the next

but is scattered and steered a little. Another alternative is to introduce different

shapes of elements in the locality of the hole, including triangular elements at the

edge (see Figure 3.4(b)). However the author’s experience has shown that the most

satisfactory behaviour is obtained by maintaining identical element sizes and shapes

throughout the model. The rather crude approach of simply omitting elements

which is illustrated in Figure 3.3 gives the level of accuracy needed throughout the

study and is therefore believed to be an appropriate choice.

The same spatial and temporal criteria as described in chapter 2 were used:

λmin ≥ 8∆x, (3.1)

for the spatial discretisation and:

δt ≤ 0.8
∆s

c
(3.2)
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for the temporal discretisation.

(a) (b)

Figure 3.4: (a) Portion of mesh where a circular hole is present, using 4-noded membrane

deformed elements; (b) portion of mesh using triangular elements.

3.3.2 Simulations

The plate which was modelled was 600 mm wide and 1200 mm long. Since the mem-

brane element models waves which are perfectly non-dispersive, the thickness of the

elements has no effect on the predictions and so was set arbitrarily. A circular hole

was introduced by removing elements from the mesh, as discussed above, and illus-

trated in Figure 3.3. The dimensions of the plate were chosen to be large enough

to avoid the unwanted edge reflections and also to be able to separate in time the

reflected signals from the input signals. The length of each element was chosen to be

3 mm, the spatial criterion of equation 3.1 being controlled in this case by the SH0

mode which has the shortest wavelength. Thus, approximately 10 elements were

present per wavelength of SH0 at 100 kHz. Symmetry was assumed along the x axis

through the centre of the hole, so that only one half of the plate had to be modelled

(Figure 3.3). The model was repeated for different sizes of hole, its diameter vary-

ing between 1 and 3 wavelengths of S0 at 100 kHz (one wavelength is approximately
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55mm).

The S0 mode was excited by prescribing nodal displacements in the x direction along

the whole edge of the plate, as shown in the figure. The input signal consisted of a

five-cycle narrow band tone burst, defined by a sine wave modulated by a Hanning

window function. The frequency of the tone was 100 kHz. The propagation of the

plane wave across the plate was then simulated by the time marching algorithm.

Following the interaction of the S0 wave with the circular hole, the scattered S0 and

SH0 waves were received by monitoring the displacements at two series of nodes

shown in the figure. The first series of points was along the axis of symmetry

(defined by y = 0), in order to extract only the S0 wave which was reflected from

the hole. The displacements in the x direction were monitored here, so that the

time trace showed the input S0 signal on its way to the hole, then the reflected S0

signal returning. Due to the symmetry, there cannot be any SH0 wave on this axis,

so it was never present in these received signals. The second series of points was

along a line at 90o to the hole, and once again the displacements in the x direction

were monitored here. The purpose of these monitoring points was to detect the SH0

wave which was scattered in this direction. Thus the time traces at these points

showed the incident S0 plane wave passing through, then the scattered SH0 wave.

In general an S0 wave is also scattered in this direction but this was not received

because it has negligible displacements in the x direction.

3.4 Analytical model

In this section an analytical model developed by Dr Tomas Grahn [82], suitable for

full three-dimensional predictions, is summarised. This model was part of his PhD

and was developed during a placement period when he worked at Imperial College

in collaboration with the present author. Therefore, it is appropriate to compare

it with the work presented in this thesis. This approach should apply not only for

the low frequency range which is of concern in this chapter but also for higher fre-

quencies. Furthermore, it is well configured for further development to the more
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advanced problems involving part-depth holes.

Analytical approaches for scattering problems in plates are quite rare. Plate theory

approaches have been employed by for example McKeon and Hinders [54] to study

the scattering of Lamb waves by a through hole in a plate using Kane-Mindlin higher

order plate theory. Scattering of flexural waves by circular holes have been treated

by Norris and Vemula using Kirchoff plate theory [75] and Mindlin theory [76]. A

combined FE and mode expansion technique has been used by Chang and Mal [77]

to investigate the scattering of Lamb waves by a circular hole, with or without edge

cracks. In their paper the far-field is expanded in propagating Lamb modes and the

region around the hole is modelled using FE.

In this particular study the incoming field is defined, as discussed in the preceding

section, to be a plane S0 Lamb wave mode. However in the general case this analyt-

ical model is applicable to other forms of incident field, such as fields that include

several symmetric Lamb wave modes or Lamb waves which have been generated

from a point source. The same principle would also apply for an anti-symmetric

incoming field.

The geometry for the 3-D problem is given in Figure 3.5. The coordinate system

is placed at the centre of the hole and the XY plane is the mid-plane of the plate.

The coordinate z denotes the thickness of the plate.

Since only symmetric incoming fields are considered, and since the scatterer is sym-

metric, the scattered field also consists solely of symmetric modes [11]. Thus, the

scattered field is represented by only the S0 Lamb mode and the SH0 mode. One way

of expressing Lamb wave modes is via a potential function as shown in Achenbach

and Xu [78]. The SH modes can be expressed in a similar way as the Lamb modes

with the aid of a different scalar potential function [78]. Then, in order to find the

different parts of the wave field, solutions of these scalar potentials have to be found.
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Figure 3.5: Geometry of the analytical problem with: (a) side view and (b) top view.

The expansions for the stresses for the incoming field, needed for the boundary con-

ditions, are calculated using Hooke’s law. The total stress distribution in the plate is

given by the sum of the incoming field and the scattered field, i.e. σ = σinc + σscat.

Next the expressions for the stresses are used to calculate the expansion coefficients

for the scattered field by applying the boundary conditions.

The boundary conditions for the stress free hole, expressed in cylindrical co-ordinates

are

σrr = σrθ = σrz = 0, r = a, −h < z < h, 0 < θ < 2π. (3.3)

To obtain a system of equations for the expansion coefficients of the scattered field,

the boundary conditions (3.3) and the expressions for the stresses are employed. The

boundary conditions are projected onto some complete set of orthogonal functions

in order to get rid of the dependence on the z and θ co-ordinates. The orthogonality

of the θ-dependent functions, fm(θ) = eimθ, suggest that they are suitable as pro-

jection functions in the θ-direction. For the z-dependency there is no obvious choice

of projection functions, at least not for the Lamb wave part. However, it is always

possible to project onto any complete orthogonal set of functions.

The displacements in all of the examples given below are calculated at the mid-plane

of the plate (z = 0). However, as discussed earlier, the displacements of the S0 and

SH0 modes are more or less uniform through the plate thickness.
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To produce results in the time domain which can be compared with the correspond-

ing results given by the Finite Element calculations, an inverse Fourier transform is

employed

u(t) =

∫
u(ω)F (ω)e−iωtdω. (3.4)

Here F (ω) is the frequency spectrum, in this case given by a Hanning window.

In order to have almost identical input signals to the Finite Element studies, the

frequency spectrum F (ω) which was used was taken from an FFT of the input signal

in the Finite Element model.

3.5 Experimental procedure

An experimental programme was conducted in order to provide some practical val-

idation of the findings of the Finite Element and analytical modelling work. It is

clearly a very difficult task to generate a plane S0 wave across a significant width

of a plate and so this was not attempted. Instead the S0 Lamb wave was generated

at a single location, approximating a point source, at a significant distance from

the hole. Thus the experimental configuration was not precisely that which was

modelled. Nevertheless, it is believed that this approximate approach was useful

and sufficiently accurate to validate the trends and magnitudes of the cases which

were predicted. The case of the point source will be considered in later modelling.

Six 1200 mm x 1200 mm x 1mm thick steel plates, each with a through-thickness

circular hole in the middle, were used for the experiments. The plates and exper-

imental set-up are illustrated in Figure 3.6(a). The diameters of the holes varied

between approximately 1 wavelength and 2.5 wavelengths of the S0 wave at 100 kHz

centre frequency (between 60 mm and 132 mm). The S0 wave, generated using a

Wavemaker (Macro Design Ltd, UK) instrument, was excited at one end of the

plate by a 5-cycle 100 kHz tone burst modified by a Hanning window.

Although the S0 mode is the simplest of the Lamb waves, and is non-dispersive
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Figure 3.6: (a) Experimental set-up; (b) transducer element description.

at low frequencies, it is actually very tricky to work with experimentally. A clas-

sic excitation method consists of creating perturbations on the surface of the plate

[85, 86, 87, 88, 89]. Typically, stresses can be induced at the surface of the plate

by an ultrasonic transducer sending waves through a coupling medium such as wa-

ter between it and the plate. By setting a specific angle of the incident wave with

respect to the plate, a selected Lamb mode can be excited. However, S0 at low

frequency has very little out-of-plane displacement and so it is not easily excited,

whereas A0 is very readily excited. Therefore, even when the angle of the incident

wave is set to excite the S0 mode, it only excites it weakly, and at the same time

the spatial bandwidth of the excitation field is such that some unwanted A0 is also

excited. Consequently it was decided to make use of dry contact transducers (see

Figure 3.6(b)) [90, 91] both to excite the S0 wave and to receive the reflected and

scattered signals. These piezoelectric transducers do not need coupling and impose

a shear stress in the region of contact, therefore preferentially exciting modes with

significant in-plane displacements at the surface of the plate.

These transducers are small (approximately 14 mm long) compared to the wave-

lengths used in this study (typically 55 mm), and so can be considered here to be

point sources. In fact, although they preferentially excite the S0 and SH0 modes,

they do excite some of the A0 mode, so care is still needed in order to make use of
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them. The S0 mode and the A0 modes are excited along one axis (both backwards

and forwards) and the SH0 mode is excited in the perpendicular axis. Differentia-

tion of the S0 and A0 modes may most easily be achieved by choosing sufficiently

long propagation distances that their signals separate. A further step to minimise

the excitation of A0 is to use a pair of transducers working in parallel on opposite

sides of the plate, as shown in the figure. With this set-up, any remnant A0 can be

the result only of an imbalance of the pair of transducers. The SH0 mode is more

easily separated by selection of the orientation of the transducer. Of course these

arguments apply equally to the use of the transducers for excitation or reception.

Along the line of primary interest, corresponding to the axis of symmetry in the

Finite Element model, and shown in the illustration in 3.6(a), the measurements

contain S0 and any remnant A0 and SH0. These can easily be separated in time in a

plate of this size and so it was possible to record reliably just the S0 reflection. Fig-

ure 3.7 shows a typical measured time history at a location on this axis and 390 mm

from the hole. This shows the incident S0 mode on its way to the hole, which was

in this case 108 mm in diameter, and the S0 reflection from the hole. To calculate

the reflection ratio in the frequency domain, the frequency spectrum of the reflected

S0 signal was divided by that of the incident S0 signal, yielding a reflection ratio as

a function of the frequency within the bandwidth of the windowed toneburst. In

some cases reflection ratios were also calculated using time domain values. This was

done by calculating the envelope of the time signal, by taking the Hilbert transform,

then simply dividing the value of the reflection peak by that of the incident peak.

Given that the signal has rather a narrow frequency band, such an approach gives

a reasonable estimate of the reflection ratio for the centre frequency.

There is negligible attenuation due to damping in a steel plate at this frequency.

However there is a signal decay due to beam spreading, and indeed this will be

discussed later when examining the detail of the predictions. The beam spreading

loss in the experiments was estimated by observing the reduction in the measured

reflected signal as a receiver was moved away from an edge of the plate, and assuming
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Figure 3.7: Example of measured time signal at 390 mm away from the edge of the hole;

the hole is 108 mm in diameter.

the decay to be a logarithmic function. This gave an attenuation of 8.2 dB/m. This

figure was used to compensate the experimental measurements for comparison with

the predictions. Essentially the compensation required the received signal to be

compared with the amplitude of the incident signal when it arrived at the hole,

rather than when it passed the receiver on its way to the hole.

3.6 Results and discussion

The results of the Finite Element, analytical and experimental studies are presented

and compared here. First the direct reflection of the S0 wave from the hole is

considered, then the SH0 wave which is scattered at 90 degrees from the hole, and

then finally, the variation of the wave fields with angular position around the hole

is presented.

3.6.1 S0 direct reflection from the hole.

Figure 3.8 shows a comparison between a typical time history predicted by the

analytical model with that predicted by the Finite Element simulation. The signal

is monitored at a location which is 390 mm from the edge of a hole, and the hole

is 114 mm in diameter. Excellent agreement is found between the two curves. The

figure also shows clean separation of the signals, so allowing reliable extraction of

the incident and reflected parts for the calculation of the reflection ratio functions.
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Figure 3.8: Comparison between typical Finite Element (solid line) and analytical

(dashed line, Grahn model) time traces of direct S0 reflection for a hole 120 mm in di-

ameter and monitored at 390 mm from the edge of the hole.

The reflection ratio was initially calculated using the frequency domain technique,

that is by dividing the frequency spectra of the reflected part of the signal by that

of the incident part. The curve thus obtained displays amplitude (reflection ratio)

against frequency. A convenient way to present the results for different hole diam-

eters is to normalise them to the wavelength of the incident mode. This has been

done in Figure 3.9 using results from the analytical predictions, the Finite Element

predictions and the experimental measurements, and in each case for the centre fre-

quency of 100 kHz. Very good agreement of the trend is obtained in all three sets

of results, and it is particularly noteworthy how well the experimental points agree

with the predicted points.

However there are some differences in detail between the two sets of predictions.

It is believed that the principal reason for the differences is in the Finite Element

discretisation around the hole. Since the surface of the hole is not smooth, but com-

posed of a series of steps, the propagation of waves around the hole (these will be

discussed shortly) is significantly affected by the detail of the mesh [67]. This was

confirmed by repeating one of the cases with different discretisations of the same

hole: the outcome was that there were indeed some variations of the results which

were of the appropriate magnitude. On the other hand, a refined mesh, yet which
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Figure 3.9: Predicted variation of S0 reflection ratios at 390 mm away from the hole with

hole diameter normalized to wavelength; comparison between experimental (circle), Finite

Element (filled square) and analytical (solid line, Grahn model) results.

retained the identical step profile of the hole, gave identical results, confirming that

the mesh itself was sufficiently fine for the correct propagation of the waves. This

issue could in principle be pursued using significantly refined meshes, but it was

decided not to pursue this. The computation effort for these calculations is already

large, and in any case this focus would go beyond the needs of the practical appli-

cation which motivates the study.

The upward trend of the reflection function is as expected, but it also exhibits undu-

lations which need some explanation. Additionally, it will be important to examine

how this function would change for different receiver positions. Each of these issues

will be examined in turn, starting with the latter.

In order to see how the reflection function varies with the distance of the receiver

from the hole, Finite Element predictions of the reflection ratio were made at a

series of points along the axis. In each case the processing was performed using the

time domain method which had the benefit of smoothing the undulations out of the

signal, and so clarifying the comparisons for different distances. The basis of this

smoothing will be studied later.
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Figure 3.10: Hilbert envelope of the signal from the Finite Element results in Figure 3.8.

Figure 3.10 represents the Hilbert transform of the signal in Figure 3.8. Following

the explanation in section 3.5, the reflection ratio was extracted from the figure by

dividing the peak amplitude of the S0 direct reflection by the maximum amplitude

of the input S0 wave. This was repeated for a range of distances from the hole

and for three different sizes of hole. The results are presented in Figure 3.11. As

expected, the reflection ratio increases with diameter and decreases with distance

from the hole.
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Figure 3.11: Finite Element predictions (symbols) of S0 reflection ratio plotted as a

function of distance away from the edge of the hole, for three different diameters of the hole.

Values are taken from the Hilbert envelope calculation. Lines show the approximation

function which has been fitted to just one point for each hole.
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If the hole is assumed to act as a cylindrical emitter of the reflected waves, then

it is possible to fit a simple decay function to these curves to describe this beam

spreading behaviour. The ideal spreading function of cylindrical waves is that the

amplitude is inversely proportional to the square root of the propagation distance

from the source, such that

A(δ) =
Arefl√
δ + δ0

, (3.5)

where Arefl is a constant related to the amplitude of the wave, δ is the distance from

the edge of the hole along the axis of propagation and δ0 is the distance from the

centre of the beam spreading to the edge of the hole. As the centre of the hole is

also the centre of the curvature, a logical choice for δ0 is to set it equal to the radius

of the hole. The constant Arefl was calculated by fitting this equation to values

from the Finite Element results. Each curve required just a single value to calculate

its Arefl, and in each case this was taken towards the near end of the distribution

in Figure 3.11. The approximation functions have been superposed on the Finite

Element results in the figure, showing a very good fit.

An interesting correlation is observed if the analytical solutions are re-plotted (same

as plotting the approximation function curves) using the axis of the distance nor-

malised to the hole-diameter. Figure 3.12 shows that all the curves plotted in this

way are almost overlaid. This means that, at a given distance from the hole mea-

sured in multiple diameters, all reflection ratios at a given frequency are the same,

whatever the hole size. For example, if the hole diameter is 30mm, the reflection at

180 mm (6 diameters) away from that hole will be the same as that from a 60 mm

diameter hole monitored at 360mm. Also shown in this plot is that some curves are

shorter than others. This comes from the fact that all the data were calculated for

the same distance path away from the hole but different cases were normalised to

different hole diameters.

Returning to the issue of the undulations, the underlying phenomenon can be shown

to be the interference of the signal which is reflected directly from the near side of

the hole with a second signal which arrives slightly later. The second signal is much
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Figure 3.12: Analytical amplitudes plotted as a distance normalised to hole diameter.

smaller than the direct reflection, but nevertheless has an influence on the overall

result. The second signal can just be seen following the direct reflection in Figure

3.8, where it is labelled “secondary reflections”. Sources of the secondary reflections

include reflected SH0 waves, which are slower than the S0 wave, and “creeping wave”,

which travel around the circumference of the hole, re-radiating time-delayed signals.

SH0 waves are present directly on the axis, but only with a radial component that

decays quickly with the distance (equation 3.5). Creeping waves have been studied

quite extensively, albeit usually in plane strain, for example by Nagy et. al. [57, 58].

The secondary waves were neglected when the peak of the Hilbert transform of the

direct reflection was used to construct Figures 3.11 and 3.12, resulting in smooth

distributions. However, they can be taken into account by dividing the spectra of

the whole reflected wave signal by the spectra of the incident S0 wave, using the

frequency domain approach. This was done for three diameters of hole, and in each

case the reflection ratio was measured at the centre frequency (100 kHz) for several

points away from the edge of the hole. The results of this processing are shown in

Figure 3.13, exhibiting the undulations which are characteristic of the interference

phenomenon. In this plot the undulations are believed to result mainly from the

reflected SH0 waves, because their amplitudes decrease with distance from the hole.
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Figure 3.13: Reflection ratio calculated using the whole reflection from the hole, showing

influence of the creeping waves. Example for three different diameters: 60mm (filled

circle), 120mm (filled diamond) and 144 mm (filled square).

3.6.2 SH0 reflected at 90 degrees from the hole.

A very similar study was performed on the SH0 mode which is scattered at 90 degrees

from the hole. The direction of the scattering and location of the monitoring points

is indicated in Figure 3.3.
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Figure 3.14: Comparison between typical Finite Element (solid line) and analytical

(dashed line, Grahn model) time traces of direct SH0 reflection for a hole 120 mm in

diameter and monitored at 234mm from the edge of the hole.

Figure 3.14 shows typical time domain predictions from the Finite Element and

analytical models, and once again there is very close agreement. The predictions

were made at 390 mm from the edge of the hole. The Finite Element reflection ratios
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were calculated from these signals using the frequency domain approach applied to

the whole scattered wave signal, and extracting just the value at the centre frequency

of 100 kHz. The reflection ratios are plotted against the ratio of hole diameter to

wavelength in Figure 3.15. Care should be taken in interpreting the reflection ratio

axis, since this relates modes of different types: this ratio expresses the amplitude

of the in-plane displacement of the scattered SH0 wave divided by the amplitude of

the in-plane displacement of the incident S0 wave. Fairly good agreement is found

between the Finite Element and the analytical results. As with the earlier work,

the differences between the predictions are believed to result from the mesh details

around the edge of the hole. Similarly, the undulations are expected to result from

the creeping wave behaviour, and indeed this is in evidence in the later part of the

signal in Figure 3.14. Experimental measurements were not obtained for this case

because it proved not to be possible to avoid unwanted signals due to reflections

from the edge of the plate and also the presence of the incident plane wave across

the full width of the plate.
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Figure 3.15: Predicted variation of SH0 reflection ratios at 390 mm away from the hole,

with hole diameter normalized to wavelength; comparison between analytical (solid line,

Grahn model) and Finite Element (filled square) results at 100 kHz.

Figure 3.16 summarises the results for the scattered SH0 wave, following the sequence

of analysis which was taken earlier for the reflected S0 wave. It shows precisely the
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same features: (a) the amplitude of the scattered wave increases with the hole

diameter and decreases with the distance from the hole; (b) the decay with distance

form the hole can be described well by the cylindrical beam spreading function; (c)

if the distance away from the hole is normalised to hole diameter all reflection ratios

are approximately the same whatever the hole size; and (d) creeping waves have an

effect on the results.
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Figure 3.16: (a) Comparison between analytical (Grahn model) and Finite Element

predictions for the SH0 amplitude plotted as a function of distance away from the edge of

the hole. Values are taken from the Hilbert envelope calculation. For clarity, results are

plotted for only two diameters (84 mm and 132 mm), (b) Comparison between results from

the S0 specular reflection for Finite Element and approximation function, (c) Analytical

results plotted as distance normalised to hole diameter and (d) Influence of the creeping

waves on the scattered SH0 curves.
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3.6.3 Wave field around the hole represented by polar plots

The scattered field around the hole is illustrated well by a polar plot. Figures 3.17(a)

and 3.17(b) show the predicted amplitudes of the scattered modes for a hole which is

84mm in diameter, when the receiver is at a distance of 390 mm away from the edge

of the hole. The circumferential axis of the plots corresponds directly to the angular

location with respect to the centre of the hole; the origin (180 degrees) corresponds

to the direction of the incident wave. The radial axis of the plots corresponds to the

magnitude of the displacement.
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Figure 3.17: Polar plots comparing analytical (solid line, Grahn model) and Finite

Element (asterisk) predictions for a hole 84 mm in diameter, when the wave is received at

390 mm away from the hole. The radial distance in the plots represents the amplitude of

the received signal. The S0 mode is incident at 100 kHz-mm. Plots show scattering of (a)

S0 mode; (b) SH0 mode.

The dominant displacement components are shown, that is the radial component,

ur (Figure 3.17(a)), for the S0 mode and the circumferential component, uθ (Figure

3.17(b)), for the SH0 mode. The solid lines are calculated from the analytical model

developed by Grahn for a single frequency of 100 kHz. Results from the Finite Ele-

ment models are also included at some specific angles and those points are calculated

from the Hilbert envelope of the signal. Very good agreement is found between the
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two techniques. The reflected S0 wave is scattered mainly forwards and backwards

(at 0 and 180 degrees), while the reflected SH0 is scattered mainly in the transverse

direction. Note that the incoming S0 wave is not plotted.

3.7 Conclusion

The interaction of a low-frequency plane S0 wave with a circular through-thickness

hole in a plate has been studied using three different approaches: Finite Element

simulation, analytical predictions, and experimental measurements. A specific focus

was directed on the directly reflected S0 mode and the laterally scattered (90 de-

grees) SH0 mode, and the study was limited to hole diameters in the range of 1 to 3

wavelengths of S0 at the frequency thickness product of 100 kHz. Good agreement

between the three sets of results was obtained. The results show quite high reflection

ratios: for example, a 54 mm hole diameter has a specular reflection ratio of 0.27

(approximately -11 dB).

Interpretation of the nature of the S0 reflection and SH0 scattering ratios has indi-

cated the same form of the behaviour for each case:

(a) the ratio increases with the diameter of the hole and decreases with distance

from the hole;

(b) a single function can be used to express the trend of the ratio for all hole

diameters and distances from the hole, by normalising the distance to the

diameter of the hole;

(c) the trend of the decay of the ratio with distance from the hole closely follows

a cylindrical beam spreading function;

(d) the trend of the ratio is perturbed by small undulations; these are the result

of interference with the main signal by re-radiation from creeping waves which

travel around the hole.
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Chapter 4

Reflection and scattering of the S0

Lamb mode from a part-depth

circular defect

4.1 Introduction

A second study of the interaction of Lamb waves with a circular defect is pre-

sented in this chapter. The Lamb wave mode chosen is the S0 mode in the low

frequency-thickness regime. A three dimensional Finite Element mesh is generated,

representing an area of the plate with a circular part-depth hole (33% or 50% of the

plate thickness deep). The specular reflection of an incident S0 wave is predicted and

shows the importance of several factors, including the constructive or destructive

interference between the front and the back edge of the hole; the decay in amplitude

of the reflected wave; and the generation of “creeping waves” which travel around

the hole.

The chapter is in four sections. The first section presents the methodology of the

Finite Element modelling; the details of the mesh, and the chosen frequency for the

tests, and surveys significant earlier work done by the author on two-dimensional

Finite Element analysis of plates with notches. The second presents an analytical

model, which is an extension of the model represented in 3.4, for the part-depth
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hole, and the third section reports results obtained for partial-depth defects (3-D),

where investigation has been carried out in order to understand the scatter and

discontinuities shown on the reflection coefficient curves. Finally a conclusion is

presented, summarizing the results.

Note that no experimental results are attempted in this chapter. In principle, exper-

iments similar to those presented in the precedent chapter could be done, but as the

results show the same trend as in the previous chapter, they were not attempted.

On the other hand, experimental results obtained with the plate tester device will

be compared with predictions in the next chapter.

4.2 Methodology for Finite Element predictions

4.2.1 Frequency range of interest

Figure 4.1(a) shows the group velocity dispersion curves for an aluminium plate.

Aluminium was chosen in this case in regard to later experiments that will be pre-

sented in chapter 5. Large plates were used in those experiments and they needed to

be manoeuvrable. Since steel is much heavier than aluminum, the latter was chosen.

The material properties of aluminium are presented in table 2.1.

Figure 4.2 shows the displacement and stress mode shapes for the S0 Lamb mode

at the frequency-thickness product 100 kHz-mm. They are very similar to those for

a steel plate presented in chapter 3. They are dominated by the in-plane compo-

nents. At this frequency regime, this mode is equally sensitive to any type of defect

through the thickness of the plate; it has low dispersion; and if the plate is immersed,

the attenuation due to leakage is very small (see Figure 4.1(b)). Within the same

frequency range A0 and SH0 can also be present as was the case in the preceding

chapter.

69



4. Reflection and scattering of the S0 Lamb mode from a part-depth
circular defect

Frequency-thickness (MHz-mm)

G
ro

up
 v

el
oc

ity
 (m

\m
s)

4

6

0

A0

A1

S0

S1 SH1

SH0

0

(a) Group velocity

Frequency-thickness (MHz-mm)

A
tte

nu
at

io
n 

(d
B

\m
)

2

2000

0

A0

A1

S0

S1

0

attenuation due to 
leakage of S0 at 100kHz

(b) Attenuation

Figure 4.1: (a) Group velocity dispersion curves for Lamb waves in an aluminium plate;

(b) attenuation dispersion curves for for lamb waves in the system water-aluminium.
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Displacements and (b) Stresses.
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4.2.2 Plates with a notch (previous work)

A previous piece of work which forms a necessary understanding for the part-depth

circular hole in a plate is the infinitely long notch in a plate. This will help to

understand one aspect of the behaviour of the reflection from a part-depth circular

hole and so is summarised here. The notch work was achieved prior to the PhD and

thus prior to the work done on circular holes. The material thickness and frequency

were different in that earlier work, nevertheless, the important trends can be seen

in the results. This work on notched plates has been published in the Journal of the

Acoustical Society of America [51].
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Figure 4.3: Schematic illustration of Finite Element spatial discretisation, with excitation

of the S0 wave.

Finite Element

The notch is assumed to be rectangular in section (with zero width in the case of a

crack), is infinitely long and is aligned normal to the direction of propagation. Thus

a plane strain assumption in the plane of the particle motion of the Lamb wave is

sufficient for all considerations. Thus, the Finite Element modelling was performed

in a two-dimensional domain using the program FINEL [72]. A schematic illustra-

tion of the model is shown in Figure 4.3. A plate of 3 mm thickness and 600mm

length was modelled, each notch was created simply by removing elements from the

mesh, as is shown in the figure. Two different depths of notch were studied, 17%

and 50% of the plate thickness.
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The temporal model used a narrow band signal consisting of a 5 cycle tone burst

of 400 kHz in a Hanning window, applied at one end of the plate as a displace-

ment boundary condition in the in-plane direction (as shown in Figure 4.3), thus

generating the S0 wave.

Experiments

A plane wide-band piezoelectric transducer (Panametrics V301, 0.5MHz centre fre-

quency) was placed centrally at the end of the 3 mm thick plate (see Figure 4.4).

In-plane measurement of the signal at a single point on the surface of the plate

ensured that only the S0 mode was present. The signal which was used for the

study was a 400 kHz centre frequency tone burst modified by a Hanning window

and generated by a wavemaker (Macro design Ltd, UK) instrument.

LASER
interferometer

transducer
notch

(a) side view

notch

monitoring locations

(b) top view

Figure 4.4: Arrangement of notched plate, piezoelectric transmitter and laser receiver

for experiments; (a) side view, (b) plan view.

The detection was achieved using the same laser interferometer presented in chap-
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ter 2 to measure the in-plane displacement at the surface of the plate. Since the

notch reflects energy of both the S0 and A0 modes, it was necessary to take steps

to detect just the desired S0 mode. First, the in-plane displacement was measured,

rather than the out-of-plane displacement. Second, the measurements were taken at

a series of equally spaced positions along the plate, then a two-dimensional Fourier

transform (2DFFT) [92] was used to separate the S0 and A0 components.

The experiment was repeated for a series of notches identical to the Finite Element

cases.

Results

Figures 4.5(a) and 4.5(b) show comparison between experimental data and Finite

Element results. The horizontal axis has been scaled to normalise the notch width to

the wavelength of S0. Plotting results in this manner allows the reader to compare

different models on the same graph. The experimental measurements and Finite

Element predictions can be seen to agree well in both cases.
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Figure 4.5: Comparison between predicted and experimental variations of S0 with notch

width normalised to wavelength, when notch depth is (a) 17% of plate thickness and (b)

50 % of the plate thickness; results for 5 similar frequency-thickness products.
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The reflection coefficient starts at a low value, then rises as the notch width in-

creases. The peak amplitude then occurs when the notch width is about 25 % of

the wavelength and decreases until it is 50% of the wavelength, then there is an in-

crease again. It is not shown here, but this pattern of peaks and troughs continues

regularly as the notch width is increased. The reason for the peaks and troughs of

the function is the interference between two signals which reflect from the notch,

one from the leading edge and the other one from the trailing edge. This is the

important behaviour which must be understood as a background to the study of the

part-depth circular defects.

The reflection from the trailing edge is of course retarded with respect to the signal

from the leading edge, so their superposition in the resulting wave packet is either

constructive or destructive, depending on the duration of the delay. Furthermore,

the reflections from the start and the end of the notch differ in phase too, this is due

to the impedance change. For the leading edge, there is a decrease in impedance,

whereas there is an increase for the trailing edge. Consequently, the constructive

interference occurs when the trailing edge reflection is half a cycle behind the front

edge reflection, that is when the notch is a quarter of a wavelength wide. Similarly, a

notch width of half a wavelength delays the reflection by one cycle, thereby causing

the destructive effect. However, these maxima and minima do not occur exactly at

a quarter or half wavelength. This is because the reflection is not only composed of

the S0 mode, but is a combination of both the A0 and the S0 modes. This is more

evident with the deeper of the two notches.

Further work on the nature of these maxima / minima can be found in [93], where

Demma examines the scattering of the SH0 mode from steps and notches.

4.2.3 Plates with a part-depth circular hole

Geometry of the part-depth circular hole studied

In order to be able to model all the different Lamb modes which might be present,

three-dimensional solid “brick” elements with eight nodes were used, each node
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having three degrees of freedom (X, Y, Z displacements in Figure 4.6). Three-

dimensional Finite Element models are computationally very intensive, so just two

or three elements were used through the thickness of the plate.

To be sure that two or three elements through the thickness are enough to model

the different waves properly, a model with six elements through the thickness was

used and compared with the current models. Exactly the same results were achieved

and the time required to perform the calculation lasted four times longer than the

model with three elements through the thickness. This comforted the author in the

choice of having few elements through the thickness in order to gain computational

time.

Plates of 5 mm and 7.5 mm thickness were selected, each with a 2.5 mm deep hole.

Thus the holes were 50 % and 33 % deep respectively. The two other dimensions (X

and Y axes) of the element were 3 mm. Also to reduce computation time, only half

of the plate was modelled, applying symmetry in the X/Z plane through the centre

of the hole.

scattered field

input S0

x y

z

(a)

mesh details around the hole

(b)

Figure 4.6: Schematic illustration of Finite Element spatial discretisation: (a) outline of

the mesh and (b) details of the hole.
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Computational method used

A 5 cycle S0 wave input was excited at 100 kHz by prescribing axial displacements (in

the X direction only) along the whole edge at one end of the plate and its propagation

was simulated in the time domain. Following the interaction of the input S0 with

the hole, the S0, A0 and SH0 components of the signal are reflected or scattered. In

this chapter, only the S0 wave specular reflection is studied. Since only S0 and A0

are present along the plane of symmetry, a monitoring region was required which

was long enough to avoid overlay of the input and these two reflected waves. A

plate edge to hole distance of 900 mm was found to be sufficient and 33 points were

monitored along the plane of symmetry. To remove the A0 component, the top and

bottom surface in-plane time history signals were added. As A0 is antisymmetric,

this addition removed the A0 in-plane displacement and only S0 remained.

4.3 Analytical model

The analytical model for this problem, developed by Dr. T. Grahn, is very similar

to that presented in chapter 3. Dr. Grahn has already produced literature on the

interaction between the S0 Lamb mode and part-depth circular defects [82, 94]. In

comparison with the model surveyed in chapter 3, the calculation of Lamb and SH

waves need now to include the antisymmetric Lamb modes, as the A0 Lamb mode

will be generated by mode conversion at the defect.

2h

z

x
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2b

(a) side view

x

y

(b) top view

Figure 4.7: Geometry of the analytical problem with: (a) side view and (b) top view.
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The boundary conditions have also changed. For this specific problem, the boundary

conditions have to be specified in order to determine the scattered wave field due

to the hole in the plate. The boundary conditions are of two kinds, continuity of

displacements and stresses. For the displacements, continuity must hold at r = a

(see Figure 4.7) in the region of the hole, thus

uinc + u> = u<, 0 < z < 2b, r = a. (4.1)

where u> is the scattered field in the outer region (x < −a and x > a) and u< is

the displacement field in the inner region (−a < x < a). The boundary conditions

for the stress are continuity at r = a in the region below the hole and that the hole

is stress free, thus

(σinc + σ>).êr =




0, 2b < z < 2h, r = a

σ<.êr, 0 < z < 2b, r = a
. (4.2)

where êr is the unit vector in the radial direction.

Only polar plots similar to Figures 3.17(a) and 3.17(b) will be compared with the

work of the author, unlike in chapter 3 where time traces and reflection ratio curves

were also compared.

4.4 Results

Figure 4.8 shows a typical Finite Element time history signal monitored at 390mm

from the edge of a hole 114 mm in diameter and 50 % of the plate-thickness in depth.

The incoming S0 Lamb wave on its way to the defect is separated from the S0 wave

reflected by the defect.

The reflection ratio was calculated by dividing the spectrum of the full signal re-

flected from the hole by that of the input, in the frequency domain. The curve thus

obtained displays amplitude (reflection ratio) against frequency. By further plot-

ting reflection ratio against the axis “hole-diameter to wavelength ratio”, different

models can be compared. The results for 33 % and 50 % deep holes are presented
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in Figures 4.9(a) and 4.9(b) respectively. The wavelengths of the S0 mode chosen

correspond to frequencies at 90, 95, 100, 105 and 110 kHz for each point extracted

from each plate.
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Figure 4.8: Typical time record from Finite Element simulation; hole diameter 114mm,

50 % of the plate thickness deep and monitored at 390 mm from the first edge of the hole.
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Figure 4.9: Predicted variation of S0 reflection ratio with hole diameter normalized to

wavelength, when hole depth is (a) 33% and (b) 50 % of plate thickness; results for hole di-

ameters 60 mm (•), 72 mm(�), 84 mm(�), 96 mm(◦), 114 mm(�), 120 mm(�), 132 mm(♦),

and 144 mm(�) for different frequencies.

As in the case of the notched plates, maxima in amplitude are observed at diam-

eters corresponding to an odd multiple of quarter of wavelengths, and minima at

even multiples. These results are very useful from an engineering point of view,
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but for precise computing, in order to get an accurate mapping of the plate, more

understanding is needed, as it is obvious that there is significant scatter in the

data, i.e. different results are obtained from the same diameter to wavelength ratio

with the different models. One reason for these discontinuities is the mesh details

of the holes which changes from one mesh to another. As the hole is modelled

with cube-shaped elements, its shape is not exactly a circle and the “definition” of

a hole differs one from another. Another reason is that the receiver location is a

fixed distance (390mm), not a normalised distance (fixed number of hole diameters).

In order to see how the reflection function varies with the distance of the receiver

from the hole, a series of points was monitored along the axis of symmetry at the

mid-plane of the plate (see Figure 4.10). In each case, the processing was performed

using the time domain method which has the benefit of smoothing the undulations

out of the signal, and so clarifying the comparisons for different distances. The

principle of the smoothing will be discussed later.
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S0 excited by prescribing
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Figure 4.10: Portion of mesh where a circular hole is present and 33 points are monitored

along the X axis in order to calculate the decay of the first part of the reflection.

79



4. Reflection and scattering of the S0 Lamb mode from a part-depth
circular defect

Time (ms)

A
m

pl
itu

de
 (

ar
bi

tr
ar

y 
sc

al
e)

0
0 0.45

1.1
input S0

first edge
reflection

reflection from the
end of the plate

Figure 4.11: Envelope of time signal shown in Figure 4.8; hole diameter 114 mm, 50 %

of the plate thickness and monitored at 390 mm from the first edge of the hole.
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Figure 4.12: Decay of the first reflection form the hole for (a) 33% of the thickness deep

hole and (b) 50% of the thickness deep hole. Note that to clarify the results are only

shown for 3 diameters.
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The time domain processing method uses the Hilbert transform, as follows Figure

4.11 represents the Hilbert transform of the signal in Figure 4.8. This is essentially a

convenient way of obtaining the envelope of the time domain signal. The reflection

ratio was extracted from the figure by dividing the peak amplitude of the first-edge

reflection by the maximum amplitude of the input. This differs from the spectral

method used for Figures 4.9(a) and 4.9(b) because that takes the full hole reflection

into account, not just the first peak. This was repeated for a range of distances

from the defect and for several defect diameters. Results obtained from the different

models are presented in Figures 4.12(a) and 4.12(b). As expected, the reflection

ratio increases with diameter and decreases with distance from the hole, also the

difference in amplitude between the 33 % and 50 % deep hole results can be observed.
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Figure 4.13: Comparison between Finite Element results and approximate curves for 33

and 50 % of the thickness deep hole. Note that the results are only shown for 3 diameters

in order to clarify the graph.

The hole is assumed to function as a cylindrical emitter of reflected waves. Since

the decay of a signal is (ideally) inversely proportional to the square root of the

propagated distance, equation 4.3 should represent the decay of the reflected wave:

A(δ) =
Arefl√
δ + δ0

(4.3)

where Arefl is related to the amplitude of the wave, δ is the distance from the edge
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of the hole along the axis of propagation and δ0 is the distance from the edge to

the centre of the beam spreading. As the centre of the hole is also the centre of

the curvature where the beam spreading is generated, δ0 was set equal to the radius

of the hole. The coefficient Arefl was then calculated simply by taking the Finite

Element predictions of the amplitude of the wave at a given distance away from

the near-edge of the hole. Comparisons between FE and the approximate curves are

shown in Figures 4.13(a) and 4.13(b). The good fit confirms the assumed value of δ0.

As in the work in chapter 3, an interesting correlation is observed if these approxi-

mations are plotted as a function of the ratio between distance and hole-diameter.

Figures 4.14(a) and 4.14(b) shows that all the curves plotted in this way are very

similar. This means that, at a given distance from the hole measured in multiple

diameters, all reflection ratios at a given frequency are approximately the same,

whatever the hole size. For example, if the hole diameter is 30mm, the reflection at

180 mm (6 diameters) away from that hole will be approximately the same as that

from a 60 mm diameter hole monitored at 360 mm.
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Figure 4.14: Approximations calculated from the Finite Element results, plotted as ratio

of distance away from hole to hole diameter for: (a) 33 % of the plate thickness deep hole

and (b) 50 %. All data points for 8 diameters between 60 and 144mm are shown.

Returning to the issue of discontinuities in the plots, the waviness phenomenon can
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be seen as an interference between the S0 Lamb waves reflected by the defect and

secondary reflections. In Figure 4.8, waves other than the reflected and input S0

mode can be seen to be present (labelled “secondary reflections”). These waves

consist of the back edge reflection, circumferential creeping waves (as discussed in

chapter 3) and SH0 waves. Shear waves are present directly on the axis, but only

with a radial component that decays quickly (equation 4.3).
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Figure 4.15: Influence of the creeping waves on the whole wave reflected as it propagates

away from the hole for (a) a 33 % of the plate thickness deep hole and (b) 50 % of the

plate thickness deep hole.

The total re-radiated field can then be observed as a small perturbation caused by

the curvature of the surface. Figures 4.15(a) and 4.15(b) shows the magnitude of the

Fourier transform at the centre frequency (100 kHz) of the full signal reflected from

the hole shown in Figure 4.8 as a function of distance away from the hole. Figures

4.9(a) and 4.9(b) show the same kind of data but plotted at different frequencies

and fixed distance. Figures 4.15(a) and 4.15(b) shows that the decay curve with

distance is not smooth, in contrast to Figures 4.12(a) and 4.12(b) which excluded

the secondary reflections. This undulation may contribute to the discontinuities

between curves for different models shown in Figures 4.9(a) and 4.9(b) (the same

hole-diameter to wavelength ratio in Figures 4.9(a) and 4.9(b) was obtained by vary-

ing the frequency for different modelled hole sizes).
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The scattered field around the hole is illustrated well by a polar plot. Figures 4.16(a)

and 4.16(b) show the predicted amplitudes of the scattered modes for a hole which is

100 mm in diameter, when the receiver is at a distance of 250 mm away from the edge

of the hole. The circumferential axis of the plots corresponds directly to the angular

location with respect to the centre of the hole; the origin (180 degrees) corresponds

to the direction of the incident wave. The radial axis of the plots corresponds to the

magnitude of the displacement.
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Figure 4.16: Polar plots comparing analytical (solid line) and Finite Element (∗) predic-

tions for a hole 100 mm in diameter, when the wave is received at 250 mm away from the

hole. The radial distance in the plots represents the amplitude of the received signal. The

S0 mode is incident at 100 kHz-mm. Plots show scattering of (a) S0 mode; (b) SH0 mode.

The dominant displacement components are shown, that is the radial component,

ur (Figure 4.16(a)), for the S0 mode and the circumferential component, uθ (Figure

4.16(b)), for the SH0 mode. The solid lines are calculated from the analytical model

developed by Grahn for a single frequency of 100 kHz. The amplitude plotted here

is the whole Lamb mode reflected amplitude from the hole, that is to say the com-

bination of the first edge and the back edge waves. Results from the Finite Element

models are also included at some specific angles and those points are calculated by
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measuring in the frequency domain the reflected or scattered Lamb wave amplitude

at 100 kHz.

Very good agreement is found between the two techniques. The reflected S0 wave is

scattered mainly forwards and backwards (at 0 and 180 degrees), while the reflected

SH0 is scattered mainly in the transverse direction. Note that the incoming S0 wave

is not plotted. What can also be drawn from the results, but is not shown here, is

that there were enough elements through the thickness of the Finite Element models

in order to predict the A0 mode conversion.

4.5 Conclusion

Following work presented in chapter 3 on related two-dimensional problems, three-

dimensional Finite Element studies have been performed in order to investigate the

nature of the specular reflection of the simple extensional mode S0 from a circular

part-depth hole in a plate. It was found that:

(a) when the reflection ratio of the full reflection from the defect is plotted as a

function of hole diameter to wavelength ratio, maxima in amplitude are ob-

served at diameters corresponding to an odd multiple of quarter-wavelengths,

and minima at even multiples. This comes from the constructive or destructive

interference between the front and the back edge of the defect reflections;

(b) the signal decays as a function of one over the square root of distance from

the centre of the hole;

(c) at a given distance away from the hole-centre, measured in multiple diameters,

all reflection ratios at a given frequency are approximately the same whatever

size the hole is;

(d) secondary waves, consisting of creeping waves and SH0 waves, induce undula-

tion in the reflection ratio.

Furthermore, comparison with analytical results of the wave field around the hole

showed that the three-dimensional Finite Element model predicts well the S0 Lamb
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mode reflected at the defect and the SH0 mode conversion.

Experiments were not attempted in this chapter because of the difficulty of exciting

plane waves, but experiments will be performed in the next chapter, when comparing

Finite Element results with the plate tester device (small circular source or plate

tester array).
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Chapter 5

Reflection of the S0 Lamb mode

from a circular defect when the

incident wave is created by a small

source

5.1 Introduction

In chapter 3, the interaction of Lamb waves with a through-thickness circular hole

was studied. FE predictions compared with experimental results showed that the re-

flection and scattering of the incident S0 wave at different monitoring angles around

the defect generate a wave field consisting of the SH0 mode as well as S0. Their

magnitude depends on the monitoring angle. Chapter 4 studied the interaction of

the same S0 mode with a flat bottom circular defect. This showed effects of interac-

tions between the reflections from the near side and the far side of the hole, as well

as secondary reflections which propagate around the hole. In these two chapters,

the S0 Lamb mode was excited along one end of the plate, matching the behaviour

of a plane wave. In the present chapter, the author is interested in the behaviour

of the specular S0 mode reflection when the incident wave is excited by a circular

source aimed to be more representative of the practical transduction arrangement.

This will be studied both numerically and experimentally.

87



5. Reflection of the S0 Lamb mode from a circular defect when the
incident wave is created by a small source

The chapter is in 4 sections. The first section surveys the methodology of the Finite

Element modelling; the details of the mesh and the frequency range chosen. The

second section presents the experimental set-ups; the first studies the case of a single

EMAT and a second studies the phased array transducer. Finally the third section

will compare results from the two precedent sections before a conclusion is drawn.

5.2 Methodology for Finite Element simulation

studies

5.2.1 Frequency range of interest

Figure 5.1 shows the group velocity dispersion curves for Lamb waves and SH waves

in an aluminium plate and Figure 5.2 shows stress and displacement mode shapes

through the plate at a frequency-thickness product of 750 kHz-mm. This frequency-

thickness was chosen because it was found that this is the most appropriate for

the use of the EMATs which were available. As in the two previous chapters, the

displacements and stresses are dominated by the in-plane component, which means

that a wave excited at this frequency-thickness is equally sensitive to any type of

defect though the thickness of the plate; it has low dispersion; and if the plate is

immersed, the attenuation due to leakage is very small. Within the same frequency

range A0 and SH0 can also be present as was the case in the preceding chapter.

5.2.2 Discretisation

The simulation of the propagation of Lamb waves has been performed using FINEL

[72]. In order to be able to model all the different wave modes that might be present,

three-dimensional solid brick elements with eight nodes, each node having three

degrees of freedom (X, Y and Z displacements in Figure 5.3(a)), were used. For this

project, plates of interest are between 5 and 20mm thick and it was decided to study

a plate of 5mm thickness. 3D FE models are computationally very intensive so it

is important to minimise the number of elements. The author has found ([95]) that
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Figure 5.1: Group velocity dispersion curves for Lamb waves in an aluminium plate.
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Figure 5.2: Mode shapes of the S0 mode in an aluminium plate at 150kHz;

(a)Displacements and (b) Stresses.

just two elements through the thickness are sufficient to model all 3 different Lamb

modes with reasonable accuracy at this low frequency. The two other dimensions of

the element (X and Y axes) were of 1.5 mm. Note that the mesh is then finer than

in the two precedent chapters, where elements were 3 mm in the X and Y directions.

A hole of 50% of the plate thickness whose diameter varied between one and 2.5

wavelengths of S0 at 150 kHz (corresponding to 750 kHz-mm) was introduced in the

mesh by removing elements. Also, to reduce computation time, only half of the plate

was modelled, applying symmetry boundary conditions at the symmetric edge.
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Figure 5.3: (a) Outline of the Finite Element model, showing the monitoring line as well

and the excitation; (b) details of the excitation.

It is not possible to excite motion at a single point in all the in-plane directions.

Thus in order to model a localised source, excitation from the edge of a circular hole

was introduced, as shown in Figure 5.3(b). Excitation could have been applied to

a circle of nodes, without creating a hole, but in this case there would have been

an additional component of the signal caused by waves propagating back through

the centre of the circle. Therefore the use of a hole enables a cleaner signal to

be simulated. A five cycle S0 wave input was excited at 150 kHz centre frequency

by prescribing in-plane displacement radially to the edge of the source circle all

through the thickness of the plate and its propagation was simulated in the time

domain [67, 95]. In order to be sure that the wave was excited in a cylindrical

manner (amplitude constant around a circle centred on the source), the incident

wave has been monitored at 420 mm from the source and at three angles (0, 45 and

90 degrees) around the excitation source. It can be seen from Figure 5.4 that all

three curves overlay perfectly, meaning that the same wave is excited all around the

excitation circle.

Following the interaction of the incident S0 wave with the defect, S0, A0 and SH0
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Figure 5.4: Superposed time records from Finite Element simulation at 420 mm from the

source and monitored at three different angles: 0, 45 and 90 degrees, showing the incident

S0 wave.

are reflected and scattered. For comparison with the experimental data, the author

is particularly interested in the S0 specular reflection. Since remotely from the hole

only A0 and S0 have motion in the X direction along the plane XZ, by monitoring

the in-plane displacement at the centre of the plate thickness, only the S0 mode is

monitored. As the A0 Lamb mode is anti-symmetric, its in-plane displacement at

this location is equal to zero. The displacement was monitored starting at 150mm

away from the edge of the defect and then every 12 mm for 30 locations.

5.3 Methodology for experimental studies

This section will bring some understanding on the performance of the phased array

transducer that was developed by Wilcox, by comparing results with Finite Ele-

ment predictions. Before the array itself is presented, it is interesting to review the

functioning of a single EMAT.

5.3.1 Single EMAT study

The abbreviation EMAT stands for Electro-Magnetic Acoustic Transducer. In the

context of ultrasonic NDE it is used to describe a particular family of transducers

[96, 97, 98]. These rely on Eddy-currents to induce and receive ultrasonic waves

in an electrically conducting material. Their range of application includes for ex-

ample tube inspection [22, 99, 100], the railway industry [101, 102, 103] and stress
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measurements [104, 105].

Principle of operation

A wire carrying an alternating current above a sheet of conducting material will in-

duce a “mirror image” current in the conductor. This current is known as an Eddy

current. Now, if a DC magnetic “bias” field is superimposed over the region of the

Eddy current, a Lorentz force will be generated within the material. This force will

react against the source of the magnetic field. This force will be perpendicular to the

eddy current and the magnetic field. By choosing the orientation of the magnetic

field it is thus possible to induce the S0 mode in the plate. The ability to generate an

in-plane wave is not the only advantage of the EMAT, it also has more predictable

coupling, and can also work at high temperature. On the other hand, they are not

as sensitive, in voltage terms, as piezoelectric transducers.

Figure 5.5 shows an example of the EMAT that will be used in the experiments.

Circular eddy currents are induced in the plate (parallel to the coil) and they interact

with an out-of-plane magnetic field to produce a radial pattern of Lorentz forces on

the plate.

Pancake coil

Permanent
magnet m

agnetic field

Force

Eddy current

Magnetic flux

Plate

Figure 5.5: Pancake coil EMAT schematic diagram.
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Experimental set-up

Two kinds of experiments have been carried out with a single EMAT. First the

EMAT transducer is supposed to work as point source and it was considered useful

to check its basics behaviour. This was performed with the help of a student:

Prabhu Rajagopal. To study this, tests were done on a 4 mm thick, 1 m by 1.28m

aluminium plate. The transmitter and the receiver (both EMATs) were located

along the diagonal of the plate. Both of them had weight to hold them down and

the gap between the plate and the EMAT is constant and equal to the plastic layer

underneath it. In order to obtain the variation of the amplitude with distance, the

receiver was moved every 10 mm away from the transmitter for 25 measurements.

Figure 5.6(a) describes this set-up.

transmitter

receiver

moved every
 10mm

1000mm

12
80

m
m

plate

(a) Point source behaviour experi-

ment

emitter

receiver

flat bottomed
 hole

1000mm

10
00

m
m

plate

(b) Reflection ratio study experi-

ments

Figure 5.6: Pair of single EMAT experimental set-up for (a) the study of the point source

behaviour and (b) reflection ratio from flat bottomed circular defects.

The second set of experiments was carried out to compare results directly with the

Finite Element reflection ratio calculations.
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The major problem working with time traces is to separate unwanted echoes from

echoes from the defect. One idea would be to use a two dimensional Fourier trans-

form (2D-FFT), but contrary to section 4.2.2, the incident wave here is supposed

to be a point source and so it decays with distance travelled. Hence, the 2D-FFT,

which extracts an average value of the amplitude over a spatial length cannot use-

fully be employed. Instead, the plate has to be designed so that all the unwanted

signals are separated from the reflection from the defect. As the thickness increases,

the amount of the A0 mode increases and so the thickness was chosen to be as small

as possible in order to reduce this factor. Taking into account these factors, 3mm

thick aluminium plates were used. The plates were 1 m by 1 m wide and a 30, 40

or 50 mm diameter flat bottom circular defect was machined in each of them (see

Figure 5.6(b)).

Different measurement distances were used for each defect (hole). For the 50 mm di-

ameter and 50% of the plate-thickness defect, the emitter was positioned at 125mm

from the leading edge of the hole and the receiver was positioned at a further 300mm

away. For the 40mm diameter hole the emitter was placed at 130 mm from the

leading edge of the defect and the receiver 300 mm further. The emitter for the ex-

periment on the 30 mm diameter defect was placed at 140mm from the edge of the

defect and the receiver at 250 mm from the exciter EMAT. Five frequency-thickness

product measurements were taken at 450, 570, 660, 810 and 1020 kHz-mm.

5.3.2 Full array study

A 1m by 1 m by 5 mm thick aluminum plate was used for the full array experiments.

Two defects, 30 and 50 mm in diameter and 50% of the plate thickness deep, were

machined in the plate as shown in Figure 5.7. The S0 mode was excited by a 5 cycle

150 kHz tone burst modified by a Hanning window. The testing device [1] uses an

array of transduction elements (the overall diameter of the array is 200 mm) to excite

and detect guided waves. The array elements are electromagnetic acoustic transduc-

ers (EMATs) and individually they behave as either point transmitters or receivers
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with omni-directional sensitivity. The transmission and reception electronics and

digitisers are housed in a number of separate boxes and the overall operation is con-

trolled by a computer. Digital post-processing of the data obtained from numerous

transmitter receiver pairs enables the system as a whole to achieve directionality

and wavelength selectivity.

EMAT array

240mm

240mm

250mm
350mm

1m

1m

monitoring lines

∅: 30mm

∅: 50mm

Figure 5.7: Experimental set-up using the phased array transducer.

Conceptually, the operation of the array may be regarded as a number of pulse-echo

tests, each looking in a different direction at the surrounding plate. In each of these

tests, the array sends out a burst of guided wave energy in a particular direction

and detects energy reflected back towards it from the same direction. Reflections

occur when the outgoing wave-packet is incident on a feature in the plate such as

an edge or a defect. The final output from the array is displayed to the operator as

a two-dimensional map of the plate, where a colour scale indicates the amplitude of

the reflected signal at each point in the plate. Because the array is of finite size, its

directionality is not perfect, and it cannot resolve the angular position of a reflector

precisely. Instead, a single reflector produces a characteristic arc shaped signal on

the output map as can be seen later. The array was used along two lines of interest

as shown in Figure 5.7, it was hold down by weight and the gap between it and

the plate was equal to the plastic layer thickness underneath it. More information
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about this array can be found in [1].

5.4 Results

The results of the Finite Element, analytical and experimental studies are presented

and compared in this section. Only the direct reflection of the S0 wave from the

hole is considered. The results from the single EMAT study will give some insight

for the studies carried out with the phased array transducer.

5.4.1 Single EMAT

Single EMAT studies are performed in order to understand the behaviour of the

elements of the phased array transducer. In this manner experiments are made to

be compared with FE results to investigate if it works as a point source. In a second

part, more investigations will be performed in order to see if a receiving EMAT acts

on any waves which travel under it. That is to say, if the properties of the electronic

equipment or the effect of the magnetic field modify the waves travelling underneath.

Comparison between Finite Element and single EMAT results

In order to see how the reflection function varies with the distance of the receiver

from the hole, Finite Element predictions of the reflection ratio were made at a

series of points along the axis. In each case the processing was performed using the

time domain method which had the benefit of smoothing the undulations out of the

signal, and so clarifying the comparisons for different distances.

Figure 5.8(a) shows a FE typical measured time history at a location on this moni-

toring line and 350 mm from the hole. This shows the incident S0 mode on its way

to the hole, which was in this case 50 mm in diameter, and the S0 reflection from the

hole. The secondary reflections can also be seen. Figure 5.8(b) shows a measured

time history trace at a location 425 mm from the hole. The centre frequency of the

5 cycle tone burst is 810 kHz. This shows the incident S0 mode on its way to the
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hole, which was in this case 50mm in diameter, and the S0 reflections from the hole.

Electrical noise is also present, but it does not interfere with the incident wave.
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Figure 5.8: Example of (a) a monitored FE time signal at 350 mm away from the edge

of the hole, the hole is 50 mm in diameter; and (b) a monitored single EMAT time signal

at 425 mm away from the edge of the hole; the hole is 50 mm in diameter.

Figures 5.9(a) and 5.9(b) represent the Hilbert transforms of the signals in Figures

5.8(a) and 5.8(b), respectively. The reflection ratio was extracted from the figures

by dividing the peak amplitude of the S0 direct reflection by the peak amplitude of

the input S0 wave.
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Figure 5.9: (a) Envelope of time signal shown in Figure 5.8(a); hole diameter 50 mm,

50 % of the plate thickness and monitored at 350 mm from the first edge of the hole. (b)

Envelope of time signal shown in Figure 5.8(b); hole diameter 50 mm, 50 % of the plate

thickness and monitored at 425 mm from the first edge of the hole.
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Figure 5.10 compares experimental data with FE results for decay of the incident

S0 Lamb wave with distance travelled towards the hole. Also shown on the figure

is the “point source decay” approximation function described in earlier chapters.

Excellent agreement is found between all three. This result will be important to

explain the behaviour of the phased array transducer.
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Figure 5.10: Comparison between Finite Element predictions (•) and experimental data

using a single EMAT (◦) of the incident S0 mode plotted as a function of distance from

the source. Values are taken from the Hilbert envelope calculation. The line shows the

approximation function which has been fitted to just one point.

The reflection ratio was calculated by dividing the spectrum of the full signal re-

flected from the hole by that of the input in the frequency domain, for both the

FE and experimental data and some results are shown in Figure 5.11. The curve

thus obtained displays amplitude (reflection ratio) against frequency. The points

on the graph correspond to 10 frequency-thickness measurements from the Finite

Element results and 5 frequency measurements from the experimental data within

the frequency-thickness bandwidth 500-1000 kHz-mm. Note that each frequency-

thickness product measurement corresponds to a hole diameter to wavelength ratio.

Plotting reflection ratio against the axis “hole-diameter to wavelength ratio” allows

different models to be compared. The experimental incident wave has travelled only

125 mm on its way to the defect, compared with the 900 mm for the FE calculations;
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and the receiver is placed at 425 mm away from the hole in both cases. In order to

compensate the difference in amplitude between the two incident waves when they

reach the defect, the beam spreading, or decay in amplitude, is taken from Figure

5.10 and normalized to that of the FE. The results for 50 % deep holes are presented

in Figure 5.11 and good agreement is found between the different techniques. As in

the previous case (cf. chapter 4), maxima in amplitude are observed at diameters

corresponding to an odd multiple of quarter of wavelengths, and minima at even

multiples. There is still scatter in the data despite the finer mesh, i.e. different

results are obtained from the same diameter to wavelength ratio with the different

models. One reason for these discontinuities is the mesh details of the holes which

change from one mesh to another. As the hole is modelled with cubic elements,

its shape is not exactly a circle and the “definition” of one hole may differ from

another.
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Figure 5.11: Comparison between predicted and experimental variation of S0 reflection

ratio with hole diameter normalized to wavelength, when hole depth is 50 % of plate

thickness; FE results for hole diameters 30mm (•), 36 mm (�), 50 mm (�), 57 mm(�),

60 mm (�), 66 mm (�), and 72mm(�) and experimental data for 30 mm, 40 mm and

50 mm (◦) for different frequencies.
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Study on single EMAT for plate tester use

Three different studies were performed in order to assess the physical properties of a

single EMAT and their effect on the plate tester device. They are summarised below.

The first study showed that there is some variation of measurements with time.

Measurements showed that the amplitude of the signal takes a few minutes to sta-

bilize. This variation (around 3 %) was found to be mainly caused by the electrical

system of the receiver EMAT.

The second study was carried out after the electrical system had been on for a

while and it showed that EMATs give consistent readings but as the thickness of

the plate increases, the repeatability decreases. The A0 Lamb mode has some in-

plane displacement at the frequency-thickness product used for the tests. Hence,

the EMAT exciting in-plane displacements will generate some A0. The reason for

this change in repeatability with the thickness of the plate is that as the thickness

increases, the A0 Lamb mode is more readily excited. This may become an issue

for the sensitivity of the plate tester device, as plate up to 10mm thick can be tested.

A final study showed that the magnetic field created by a receiving EMAT did not

perturb the signal going under it as it has already been seen by others [106]. This

study was also important in order to understand the full phased array transducer.

As it was explained in section 5.3.2, the plate tester excites with one EMAT after

another and receives with all. Then, the excited wave will propagate in the plate

and underneath the receiving EMAT, but the magnetic field created by the receiving

row should not alter the signal.

In conclusion to this study, it comes out that small variations in the power supply

to the receiver are the only source of variations in the results.
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5.4.2 Comparison between Finite Element and phased array

results

In this section, results of Finite Element studies with a small circular source are

compared with results obtained with the plate tester device. The calculations are

on the outgoing wave as well as the S0 specular reflection.

Finite Element study

Distance from defect (mm)

A
m
p
li
tu
d
e
o
f
fi
rs
t
ed
g
e
re
fl
ec
ti
o
n hole diameter:

0
100 700

0.08

30mm
36mm
42mm
50mm
57mm
60mm
66mm
72mm

Figure 5.12: FE predicted decay of amplitude of first reflection from the defect with

distance from the hole. Different hole diameters are plotted: 30 mm (•), 36 mm (�),

42 mm (�) 50 mm (�), 57 mm (�), 60 mm( �), 66 mm (�), and 72 mm( �). Source has

unit amplitude.

Figure 5.8(a) shows a typical Finite Element time history signal monitored at

350 mm from the edge of a hole 50 mm in diameter and 50 % of the plate-thickness

in depth when the source excitation is from a 120 mm diameter circular source. The

side of the source was 960 mm away from the side of the defect. The figure shows

clean separation of the signals, so allowing reliable extraction of the incident and

reflected parts for the measurement of the amplitude of the reflection. The reflected

signal is the sum of signals from the near and far edge of the hole, and they can

also include creeping waves [95] and SH0 waves which have been created at the

defect and reflected at a slight angle around the XZ plane. In order to see how

the reflection function varies with the distance of the receiver from the hole, Finite
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Element predictions were made at a series of points along the axis. In each case the

processing was performed using the time domain amplitudes. Figure 5.9(a) shows

the Hilbert transform of the signal in Figure 5.8(a). The amplitude of the reflected

signal from the hole was measured by taking the peak amplitude of the whole re-

flection from the hole. This was repeated for hole diameters varying between one

and 2.5 wavelengths of S0 at 750 kHz-mm. The amplitude of the incident signal was

unity at the edge of the source circle. The results are presented in Figure 5.12. As

expected, the reflection amplitude increases with hole diameter and decreases with

distance from the hole, the decay being inversely proportional to the square root of

the propagated distance.

Figure 5.13 shows the same curves but when the distance from the edge of the hole

to the monitoring location is normalised to the defect diameter. Unlike in the plane

wave predictions [67, 95], all the curves do not overlay, here we also need to take into

account the source diameter and the distance between the source and the defect.
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Figure 5.13: FE predicted decay function when the distance from the hole is normalised

to the diameter of the defect. Different hole diameters are plotted: 30 mm (•), 36 mm (�),

42 mm (�) 50 mm (�), 57 mm (�), 60 mm( �), 66 mm (�), and 72 mm( �). Source has

unit amplitude.

Two models were studied in order to confirm the proposed normalisation procedure.

The first model had a source diameter of 120 mm and the defect was placed at 8
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source diameters away (960 mm) from the edge of the source circle. A second model

had a 60 mm diameter source and again the distance between the edge of the source

and the defect was 8 source diameters (480 mm). The results for two different defect

diameters are shown in Figure 5.14. The two reflection amplitude curves overlay.

This shows that the source can be normalised for all cases by the ratio of its distance

from the defect to its diameter.
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Figure 5.14: FE predicted decay function when the distance from the hole is normalised

to the diameter of the defect and the distance between the edge of the source and the

defect is taken into account. Results shown for a 30 mm diameter defect (•) and a 60 mm

diameter defect (�). Source has unit amplitude.

Comparison with the plate tester device results

Figure 5.15 shows an example of a map obtained by the plate tester system described

earlier in the chapter and in detail in [1]. The edges of the plate can be clearly seen

as well as the two defects. Only one wave reflected by the 30 mm diameter defect

is detected, as the near edge and the far edge reflections overlay in time. On the

other hand, these two reflections can be seen separately for the 50 mm diameter hole.

In order to compare FE amplitude results with these experiments, the FE incident

wave needs to be scaled to the amplitude of that from the experiments. In the FE

model, the incident wave has unit amplitude at the edge of the source circle. In the
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experiment, the normalisation is such that the incident wave has unit amplitude at

its first reflection, this being the near edge of the plate (240 mm, see Figure 5.7).

edge of
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30mm
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50mm
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array

Figure 5.15: Map of the plate obtained with the plate tester device [1]. Scale: 27 dB

(white 0 dB, black -27 dB).
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Figure 5.16: Comparison between experimental and FE results of the decay of the

amplitude of the incident wave. Incident wave has unit amplitude at 240 mm from the

centre of the source.

It is interesting to see the nature of the decay, or beam spreading, of the outgoing

wave from the experimental transducer before it gets to the defect. This is needed to

understand if the approximation of decay from a point source is correct. Figure 5.16
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shows a comparison between the FE and the experimental results for the outgoing

wave. The dashed line shows the constant amplitude which would be expected for a

plane wave source (unity), the solid line is the amplitude predicted by FE for a point

source, and the filled circles are the experimental data. In general, good agreement

is found between FE and experiments. It seems, unsurprisingly, that the decay of

the incident wave follows the predicted point source decay at distances greater than

the reference distance (240 mm).

Figures 5.17(a) and 5.17(b) show a comparison between the experimental data (sym-

bols) and the FE results (dashed line: plane wave; solid line: circular source exci-

tation) for the wave reflected from a 30 mm diameter defect (Figure 5.17(a)) and a

50mm diameter defect (Figure 5.17(b)). The symbols representing the experimental

data are calculated as follows: the middle point is the root mean square (rms) of 5

values; the upper and lower points are the rms plus or minus one standard devia-

tion, respectively. Again, very good agreement is found between the predictions and

the experiments. The same trend as for the incident wave, of point source decay, is

observable. There is one anomalous experimental point marked α on Figure 5.17(b),

it is possible that this point results from an experimental error.
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(a) Defect diameter: 30 mm
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Figure 5.17: Comparison between experimental and FE results of the decay of the

amplitude of the reflected wave for (a) a 30 mm diameter defect and (b) a 50 mm diameter

defect. Incident wave has unit amplitude at 240 mm from centre of source.
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5. Reflection of the S0 Lamb mode from a circular defect when the
incident wave is created by a small source

5.5 Conclusion

In the two precedent chapters, the interaction of a plane S0 Lamb wave with circular

shaped defects has been studied.

In this chapter, three-dimensional Finite Element studies have been performed in

order to investigate the nature of the reflection of the simple extensional mode S0,

excited by a circular source, from a circular part-depth hole in a plate, and the

results have been compared with experimental measurements.

FE model studies have demonstrated that the reflection behaviour for a circular

source can be normalised to account for the source diameter, the defect diameter,

and the distance between them. Very good agreement was found between FE and

experimental results using a single EMAT and the prototype plate tester instrument.

The single EMAT experiments were performed in order to give some understanding

of the full array and it was found that there is limited experimental scattering in

the results which comes from fluctuations of the power supply to the receiver if it is

used before it has had enough time to stabilize.
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Chapter 6

Conclusions

The non-destructive testing of materials can be conducted by various techniques, of

which ultrasonic waves is one of the most common. Lamb waves are of particular

interest for the inspection of large structures. There are a number of reasons for this:

they permit the inspection of a line or a 2-dimensional space rather than a single

point; they are equally sensitive to flaws on either side of the plate; they propagate

over long distances; and they are guided by the structure.

The detection of corrosion in large plate-like structures such as oil tanks and pressure

vessels using guided wave array transducers has been investigated in this thesis. A

new technique using Lamb waves to assess rapidly the integrity of a plate has been

developed. A transducer unit is placed on the plate which generates and receives

Lamb waves in controlled directions; processing the reflected waves allows a map of

corrosion anywhere in the plate to be constructed. Work on the transduction and

signal processing aspects of this technique has already been carried out by Dr. Paul

Wilcox. This thesis addressed the scattering aspect of the project, assessing the

important challenge of identifying the strength of the reflection of the guided waves

from the defects.
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6.1 Non Propagating Modes

The chosen Lamb mode for the plate tester device is the S0 mode, but when it

reaches a non-symmetric feature, it will mode convert into anti-symmetric modes.

This study of the reflection of the fundamental A0 and S0 modes from the end of a

plate has been carried out in order to understand two phenomena: (1) it is essential

when processing the received signal to account for the ones which are reflections

from the edge of the plate; for example, if not understood, phase delays of these

reflections could affect the performance of the phased array transducer; (2) it is

important to be aware of how far the transducer needs to be from the edge of the

plate in order to avoid detecting the additional localised displacements.

Semi-analytical, Finite Element and experimental studies confirmed the presence

of these non-propagating modes when the incident Lamb mode was A0. Two fre-

quencies have been studied, one below the A1 cut-off frequency (1 MHz-mm) and

one above (2.7 MHz-mm). Good agreement has been found between all three tech-

niques. Then, by identification of the displacement fields and phases of the prop-

agating modes, it has been possible to remove these propagating modes from the

total edge displacements, thus revealing and illustrating the fields due solely to the

non-propagating modes.

The symmetric S0 Lamb mode has also been studied, and Finite Element predictions

showed that within the frequency range up to the A1 cut-off there is no evidence of

such additional disturbances. There was also no evidence of a phase change when

reflecting from the end of the plate. Nevertheless, this is only applicable to the low

frequency regime; significant amplitudes of non-propagating modes exist at higher

frequencies.

Overall, the changes of phase and the region around the edge of the plate where

these non-propagating modes occur have been identified for both A0 and S0 modes.
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6.2 Reflection and scattering of the S0 Lamb mode

from circular defects

The interaction between an incident S0 Lamb wave and a circular defect has been

studied through three different chapters. The studies started with the simplest of

shapes, that is to say a circular hole through the full thickness of a plate and plane

wave excitation, and went on to a more realistic study of part depth defects and

circular sources.

6.2.1 Hole through the full thickness of a plate - Plane wave

excitation

The interaction between the S0 Lamb wave and a circular hole through the full

thickness of a plate was studied using Finite Element and experimental approaches.

The results have also been compared with analytical solutions developed by Dr.

Tomas Grahn. The specular S0 reflection, and the SH0 wave scattered at 90o from

a hole whose diameter varied between 1 and 3 wavelengths of S0 at 100 kHz were

studied with particular interest. Good agreement was found between all three dif-

ferent techniques.

The results indicated that both S0 and SH0 reflections exhibit equivalent behaviours.

It was shown that the reflection ratio increases with the hole diameter and decreases

in a cylindrical beam spreading manner with the distance from the defect. It was

also shown that if this distance from the hole is normalised to the corresponding

defect diameter, all the curves overlay. This is understandable as all the parameters

of the system are then taken into account. Also the results were perturbed by

additional reflections from the hole, consisting of creeping waves as well as shear

waves propagating at shallow angles around the monitoring lines.
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6.2.2 Part depth hole - Plane wave excitation

As a normal follow up of the work done on through thickness holes, three-dimensional

Finite Element studies have been performed in order to study the nature of the di-

rect S0 reflection from 33 % and 50% of the plate thickness deep flat-bottom circular

defects.

The first results showed that when the reflection ratio is plotted as a function of hole

diameter to wavelength ratio, maxima in amplitude are observed at diameters corre-

sponding to an odd multiple of quarter-wavelengths, and minima at even multiples.

This behaviour is the result of the interference between the near edge of the hole

and the back edge of the hole reflections. The reflection from the trailing edge is of

course retarded with respect to the signal from the leading edge, so their superposi-

tion in the resulting wave packet is either constructive or destructive, depending on

the duration of the delay. Furthermore, the reflections from the start and the end

of the hole differ in phase too, this is due to the impedance change. Consequently,

the constructive interference occurs when the trailing edge reflection is half a cycle

behind the front edge reflection, that is when the defect is a quarter of a wavelength

in diameter. Similarly, a diameter of half a wavelength delays the reflection by one

cycle, thereby causing the destructive effect. Other results showed the same features

as for the full thickness deep defects, that is to say: the signal decays as a function

of one over the square root of the distance from the centre of the hole; at a given

distance away from the hole-centre, measured in multiples of hole-diameters, all re-

flection ratio are approximately the same whatever the diameter is; and secondary

waves, consisting of creeping waves, as well as SH0 waves, induce undulations in the

reflection ratio results.

Furthermore, the S0 and SH0 wave fields around the hole were compared with an-

alytical solutions and the good agreement showed that the Finite Element model

predicted well the symmetric modes as well as the anti-symmetric mode converted

at the defect. Further more, the latter was not trivial due to the small number of el-

ements through the thickness, which might not have been enough to model correctly
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the A0 Lamb mode.

6.2.3 Part-depth hole - Circular source

The third part of the study of the interaction of the S0 Lamb wave with a circular

defect was when the incident S0 mode was approximated by a small circular source

in the low frequency-thickness regime.

A three dimensional Finite Element mesh was generated, representing an area of the

plate with a 50% of the plate thickness deep circular hole. The specular reflection

of an incident S0 wave was predicted and compared with the plate tester device as

well as with a single EMAT transducer.

FE model studies demonstrated that the reflection behaviour for a circular source

can be normalised to account for the source diameter, the defect diameter, and the

distance between them. Very good agreement was found between FE and experi-

mental results. In addition to the generic results throughout the thesis, the single

EMAT experiments gave some understanding of the full array and it was found that

one source of experimental scattering in the results comes from the power supply to

the receiver, whereas the magnetic field created by a receiving EMAT has no effect

on the wave propagating underneath it and on its way to the hole or back to the

receiver.

6.3 Implication for testing

In relation to the motivation for the work, the development of NDE techniques

for the inspection of plates, there are two important outcomes from the study of

non-propagating modes. The first is that the reflection of the S0 mode occurs with-

out change of phase, whereas the reflection of the A0 mode occurs with a change

of phase, for example a 90 degree delay in the more useful 1 MHz-mm case. It

may be necessary to take account of this when dealing with the superposition of

multiple reflected signals in an area-inspection technique. The second is that the
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non-propagating modes can enhance the displacement field at some distance from

the end of the plate, and this indicates the importance of transducer placement for

inspection. In the 1 MHz-mm case the field is enhanced within a region of about 5

plate thicknesses from the end of plate.

Research on the interaction between the S0 Lamb mode and a circular defect was

achieved in order to model a first approximation of corrosion patches and to give

some background knowledge when processing the raw data from the plate tester

device. It is essential when processing received signals to account properly for those

which are reflected from different features. For example, studying interactions with

corrosion-like defects is a necessity in order to understand what modes are converted

at the defect and how they behave when they propagate back in the plate. That

means their amplitude or reflection ratio, the beam spreading, and their interaction

with additional displacements created at the feature. It was shown that not only

common Lamb modes (A0 and S0 waves) are mode converted at the defect but there

are also some other waves including Shear Horizontal and creeping waves, both of

which may pollute the direct reflection from the defect.
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Chapter 7

Future work

This thesis has investigated the scattering aspects of the reflection of fundamental

Lamb modes from different defects. Several topics have been covered in some detail,

and in this chapter, future work in these areas is proposed.

7.1 Towards a more realistic model of defects

Only straight edge circular holes have been studied in this thesis. But real corrosion

patches are not perfectly circular nor do they have straight edges. Figures 7.1(a)

and 7.1(b) show different types of defects that would be interesting to model using

Finite Element or analytical methods. The circular shape of the defect in plan does

not really need to be changed as corrosion patches are often more or less circular.

But the through thickness shape is always very un-even.

h

w

d

(a)

h

w
d

(b)

Figure 7.1: Examples of defects to be studied.

Models will have to be performed in two major steps. First, 2-dimensional models
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will study the scattering aspect from infinitely long notches [51, 66] but with shapes

such as in Figures 7.1(a) or 7.1(b). This approach should indicate the most impor-

tant characteristics of the defects. Is it the depth (d on the figures), the length (w

on the figures) or other parameters? Second, Once this study is done, one can move

on to 3-dimensional plate design and study more realistic defects.

7.2 Using other modes

On thicker plates, a better approach may be to use a higher order low attenuation

mode such as S1.

Figure 7.2 shows a map of a 20 mm thick steel plate with various defects. The centre

frequency of the incident S0 Lamb mode used is 100 kHz. The scale of the plot is

30 dB (white 0 dB, black -30 dB). This is a very bad result because the edges of the

plate cannot be distinguished from potential defects or even from the noise. The

reason for this bad measurement is that on 20 mm thick plates, 100 kHz (or 2 MHz-

mm) correspond to a dispersive area of the S0 Lamb mode (see Figure 7.3), and

there are multiple modes which do not simplify the processing of the measurements.

But at lower frequencies, thus in the non dispersive regime, would not give better

results as the EMATs would not behave at their best. Another idea would be to

use another mode at a higher frequency which is more appropriate for the EMATs.

Hence, a stronger mode could be excited and better results should be obtained.

Figure 7.3 shows the dispersion curves for a 20 mm thick steel plate. In the frequency

range highlighted in white, several modes appear. The S1 Lamb mode (thicker line)

was chosen to perform a test. Figure 7.4 shows the map of the same plate as in

Figure 7.2 but when a 220 kHz centre frequency S1 Lamb mode is used. The scale

of the plot is the same as in the previous figure, that is to say 30 dB. This time, the

edges of the plate can be clearly seen as well as potential defects. But some work

still needs to be done on the processing. Nevertheless, this first result looks very

promising.
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Figure 7.2: Map of a 20 mm thick steel plate when the incident signal is S0 at 100 kHz.

The advantage of using a higher mode is that the operating frequency is higher.

Hence, a better resolution is acquired. The disadvantages of using higher modes

is that there are more unwanted modes present that need to be suppressed by the

processing algorithm and that the defect sensitivity is unknown. Furthermore there

is a limited range of test frequencies. Mode conversion could possibly be used at

these higher frequencies, giving more information on the defects. In turn, this would

require more work on scattering studies, particulary for realistic defects (see section

7.1). The new research will have to address all these issues.
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Figure 7.3: Dispersion curves for a 20mm thick steel plate.
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Figure 7.4: Map of a 20 mm thick steel plate when the incident signal is S1 at 220 kHz.
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