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Abstract

The major objective of this thesis is the development of quantitative methods of applying
Lamb waves in industrial nondestructive testing (NDT). The key problem associated with the
measurement of the characteristics of Lamb waves is that invariably more than one mode is
excited at any given frequency. This has led to problems when interpreting the typically
complicated Lamb wave signals which are commonly found in NDT applications.

The first two chapters of this thesis provide an introduction to the field of NDT using Lamb
waves, reviewing past work and relevant theory. The review has shown that quantitative or
qualitative time domain methods may be adopted in low frequency-thickness product regions
where only two propagating modes are possible as they may be easily decoupled from one
another by the orientation of the transducers. However, in higher frequency-thickness regions
the multi-mode dispersive nature of Lamb waves makes this approach unreliable for most
NDT applications. In chapter 3 a new method is presented for measuring the amplitudes and
velocities of Lamb waves. The method involves a two-dimensional Fourier transformation (2-
D FFT) of the time history of the signals received at a series of equally spaced positions along
the propagation path. The output of this transform is a three-dimensional plot of the amplitude
versus frequency and wavenumber, from which the amplitudes of the different propagating
Lamb modes may be obtained.

In chapters 4 and 5 the 2-D FFT method is used to measure the characteristics of propagating
Lamb waves in finite element modelling studies, where single Lamb modes have been
launched. Numerical predictions of Lamb wave reflection from boundaries and interaction
with straight sided notches are presented. In chapters 6 and 7 the numerical model is validated
by experimental investigations carried out on a variety of plates with straight sided notches.
The correlation between the experimental results and the numerical predictions is excellent and
the results are presented in terms of Lamb wave amplitudes as a function of frequency-
thickness product and Lamb wave amplitudes as a function of notch depth at particular
frequency-thicknesses, this being the more useful format in NDT applications. The final two
chapters discuss the practical implementation of quantitative and qualitative Lamb wave
techniques in the NDT of plate-like structures and present the major conclusions of the thesis.
Here, the emphasis is on practical problems such as signal-to-noise considerations, coupling
requirements, excitation methods, and on methods of distinguishing the signals from defects.
from those produced by boundaries or other impedance changes.

The main conclusion of the thesis is that Lamb waves may be used very successfully for the
quantitative NDT of plates. In localised, detailed NDT applications the detectability of a defect



may be optimised by choosing the most suitable mode at the appropriate frequency-thickness
product. Since stresses are produced throughout the thickness of the plate by Lamb waves (in
some cases there may be stress nodes which must be carefully considered), the entire
thickness of the plate is interrogated, which means it is possible to find defects that are
initiated at either surface or internal locations. Lamb waves may be propagated over
considerable distances, so they are ideally suited to the long range NDT of plates and plate-
like structures where a fast, coarse inspection may be carried out. The finite element
predictions and experimental results have shown that Lamb wave techniques may be used to
find defects when the wavelength to critical defect dimension is as high as 40. The
computational requirements of the 2-D FFT method are fairly modest and can be handled by
most IBM compatible micro-computers interfaced to a data capture system. The multi-element
transducers which are now available make the implementation of the 2-D FFT method feasible
in industrial NDT.
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the 3.0 mm thick plate after interaction with (a) the 0.5 mm deep notch, (b) the
1.0 mm notch, (c) the 1.5 mm notch, (d) the 2.0 mm notch.

Predicted transmission ratio of the ag mode as a function of frequency-thickness
in the 3.0 mm thick plate after interaction with (a) the 0.5 mm deep notch, (b) the
1.0 mm notch, (c¢) the 1.5 mm notch, (d) the 2.0 mm notch.

(a) Predicted time history in a 3.0 mm thick plate S mm after the 0.5 mm deep
notch, when the centre frequency of the input tone burst was 0.75 MHz and was
designed to excite only aj. (b) at 70 mm after the notch.

Predicted transmission ratio of the a; mode as a function of frequency-thickness
in the 3.0 mm thick plate after interaction with (a) the 0.5 mm deep notch, (b) the
1.0 mm notch, (c) the 1.5 mm notch, (d) the 2.0 mm notch.

Predicted transmission ratio of the sg mode as a function of frequency-thickness
in the 3.0 mm thick plate after interaction with a 0.5 mm deep notch which was
(a) 0.25 mm wide notch; (b) 0.5 mm wide, (¢) 0.75 mm wide, (d) 1.0 mm
wide, (e) 2.0 mm wide, (f) 4.0 mm wide notch.

Predicted transmission ratio of the sy mode as a function of w/2d at 1.25, 1.35
and 1.45 MHzmm.

(a) Predicted time history in a 3.0 mm thick plate 60 mm after the angled (45° to
the plate surface) 1.0 mm deep notch, when the centre frequency of the input
tone burst was 0.45 MHz and was designed to excite only sqg. (b) Predicted
transmission ratio of the sy mode as a function of frequency-thickness for the
case given in (a).

Schematic representation of experimental setup.

Schematic representation of (a) the direct 'wedge' method and (b) the indirect
'wedge' method.

Schematic representation of (a) the variable angle probe and (b) the interfaces of
the variable angle probe shown in (a).

(a) Normalised time history of the response of the variable angle probe in air
when excited by a broad band signal. (b) Amplitude spectrum of the time history
shown in (a). :
Schematic representation of the Lamb wave test rig.

Amplitude spectrum of the response of the 0.5 MHz immersion probe when
excited by a broad band signal.

Amplitude spectrum of the response of the 1.0 MHz immersion probe when
excited by a broad band signal.
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Figure 6.20

Lamb wave coincidence angle dispersion curve for steel for a variable angle
probe mounted in a perspex block (perspex cp = 2550 m/s). The rectangle
shows the region of excitation for the variable angle probes used in the initial
experiments with pulse excitation.

(a) Normalised time history of the measured response at x = 100 mm in a 1.0
mm thick plate when broad band pulsed excitation was used. (b) Amplitude
spectrum of the time history shown in (a)

(a) Normalised time history of a simple 5 cycle excitation tone burst at 1.2 MHz.
(b) Measured response at x = 200 mm in a 0.5 mm thick plate when the
excitation signal shown in (a) was appropriate for sq. (¢) Amplitude spectrum of
the time history shown in (b).

Normalised time history of the measured response at x = 200 mm in a 2 mm
thick plate when the frequency of the excitation signal shown in Fig. 6.10(a)
was 1.0 MHz and was appropriate for s.

Normalised time history of the measured response at x = 200 mm in a 3 mm
thick plate when the frequency of the excitation signal shown in Fig. 6. 10(a)
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(a) Normalised time history of the 5 cycle 1.2 MHz excitation tone burst
modified by a Hanning window. (b) Measured response at x = 200 mm in a 0.5
mm thick plate when the excitation signal shown in (a) was appropriate for sg.
(c) Amplitude spectrum of the time history shown in (b).

(a) Normalised time history of the measured response at x = 150 mm in a 0.5
mm thick plate when the excitation signal was a 12 cycle 1.0 MHz tone burst in a
Hanning window and the angle was appropriate for sg; (b) at x = 250 mm and
(c) the sum of the time histories shown in (a) and (b)

(a) Normalised time history of the measured response at x = 150 mm in a 3.0
mm thick plate when the excitation signal was a 12 cycle 0.45 MHz tone burst in
a Hanning window and the angle was appropriate for sg; (b) at x = 250 mm.

(a) Normalised time history of the measured response at x = 150 mm in a 3.0
mm thick plate when the excitation signal was a 12 cycle 0.6 MHz tone burst in a
Hanning window and the angle was appropriate for sg; (b) at x = 250 mm.

(a) Normalised time history of the measured response at x = 150 mm in a 3.0
mm thick plate when the excitation signal was a 12 cycle 0.75 MHz tone burst in
a Hanning window and the angle was appropriate for sg; (b) at x = 250 mm.

(a) Normalised time history of the measured response at x = 150 mm in a 3.0
mm thick plate when the excitation signal was a 12 cycle 1.0 MHz tone burst in a
Hanning window and the angle was appropriate for sq, aj, and sg; (b) at x = 250
mm. :

(a) Normalised time history of the measured summed responses at x = 200 mm
and x =250 mm in a 0.5 mm thick plate when the excitation signal was a 5 cycle
1 MHz tone burst in a Hanning window and the angle was appropriate for sq; (b).
Amplitude spectrum of the time history shown in (a).

A comparison of the phase and amplitude spectrum results obtained from the

time record shown in Fig. 6.19, where the amplitude spectrum results are
denoted by squares.
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(a) Normalised time history of the measured summed responses at x = 200 mm
and x =250 mm in a 3.0 mm thick plate when the excitation signal was a S cycle
0.6 MHz tone burst in a Hanning window and the angle was appropriate for sg;
(b) Amplitude spectrum of the time history shown in (a).

A comparison of the phase and amplitude spectrum results obtained from the
time record shown in Fig. 6.21, where the amplitude spectrum results are
denoted by squares.

(a) Normalised time history of the measured summed responses at x = 200 mm
and x = 250 mm in a 3.0 mm thick plate when the excitation signal was a 5 cycle
1.0 MHz tone burst in a Hanning window and the angle was appropriate for sy,
a1, and sg; (b) Amplitude spectrum of the time history shown in (a).

Normalised 3-D plot of the 2-D FFT results for the case of Fig. 6.10(b).
Normalised 3-D plot of the 2-D FFT results for the case of Fig. 6.11.
Normalised 3-D plot of the 2-D FFT results for the case of Fig. 6.12.

A comparison of the experimental results ({<]) obtained from Fi g. 6.24 with the
analytically generated dispersion curve for sg.

A comparison of the experimental results (A) obtained from Fig. 6.25 with the
analytically generated dispersion curve sq.

Normalised 3-D plot of the 2-D FFT results for the case of Fig. 6.13(b).

Schematic representation of experimental procedure; (a) to obtain reference 2-D
FFT; (b) to obtain 2-D FFT after interaction with a notch.

(a) The time history of the measured response at x = 350 mm from the
transmitter in a 3.0 mm thick steel plate, when the excitation was appropriate for
so- (b) Amplitude spectrum of the time history shown in (a).

(a) The time history of the measured response at x = 350 mm from the
transmitter in a 3.0 mm thick steel plate, when the excitation was appropriate for
so and a 0.5 mm deep notch was located at x = 250 mm; (b) a 1.0 mm notch ; (c)
a 1.5 mm notch; (d) a 2.0 mm notch.

(a) Normalised 3-D plot of the reference 2-D FFT results for the case of Figure
7.2(a). (b) Normalised 3-D plot of the 2-D FFT results after the so mode had
interacted with the 2.0 mm deep notch.

Normalised plot of the measured amplitude versus wavenumber information
from the 2-D FFT results, obtained after the transmission of sg across notches of
different depths; (a) at 1.35 MHzmm, (b) at 1.45 MHzmm and (c) 1.55
MHzmm.

(a) The time history of the measured response at x = 350 mm from the -
tranismitter in a 3.0 mm thick steel plate, when the excitation was appropriate for
a1. (b) Amplitude spectrum of the time history shown in (a). (c) Time history of
the response when a 1.0 mm deep notch was located at x = 250 mm and the
excitation was the same as in (a).

Normalised plot of the measured amplitude versus wavenumber information

from the 2-D FFT results, obtained after the transmission of a; across notches of
different depths at 2.5 MHzmm.
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Figure 7.9

Figure 7.10

Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

Transmission ratio of the a; mode as a function of frequency-thickness after
interaction with (a) the 0.5 deep notch, (b) the 1.0 mm notch, (c) the 1.5 mm
notch and (d) the 2.0 mm notch.

Schematic representation of a 3.12 mm thick 350 mm long butt welded steel
plate.

Normalised time history of the measured response at x = 500 mm from the
transmitter in a 3.12 mm thick butt welded steel plate, when the excitation was
appropriate for sg and the weld region was located at x = 250 mm. (a) good weld
(b) poor weld (c) bad weld and (d) very bad weld.

(a) Predicted time history at x = 150 mm in a 2.0 mm thick plate, when the
excitation signal was a 3 cycle 60 kHz tone burst modified by a Hanning
window and was designed to excite only ap and recombine at x = 340 mm to
form the 3 cycle tone burst. (b) at 200 mm, (c) at 260 mm and (d) at 340 mm.

(a) Time history of the 12 cycle 0.65 MHz tone burst in a Hanning window
excitation signal applied to the transmitter. (b) Normalised time history of the
measured response at x = 200 mm in a 3.0 mm thick plate when the excitation
signal was shown in (a).

(a) The reverse of the response signal shown in Fig. 8.2(b) used as the

excitation signal. (b) The time history of the measured response at x = 200 mm

from the transmitter in a 3.0 mm thick steel plate, when the excitation signal was
shown in (a).

(a) The time history of the measured response at 200 mm from the transmitter in
a 3.0 mm thick steel plate, when the excitation was shown in Fig. 8.3(a) and a
1.0 mm deep and 0.5 mm wide notch was located at 100 mm from the
transmitter.
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Nomenclature

In some cases multiple definitions have been made due to the large number of parameters
used, but they can be easily identified from the context.

1. Normal letters

A

49,1,2,..etc

B
C, CI, Cn

C

C12

2d

[E]

fdeo
fn

Generalised amplitude constant

Antisymmetric Lamb wave (subscript refers to wave mode)
Generalised amplitude constant

Constants

Generalised wave velocity

Bulk wave velocity (subscripts refer to wave mode 1-longifudina1 2- shear)
Theoretical velocity error

Free flexural wave velocity considering transverse shear and rotary inertia
Group wave velocity

Longitudinal wave velocity in a ideal fluid

Leaky Lamb wave phase velocity respectively

Rayleigh and leaky Rayleigh phase velocity respectively
Velocity of Longitudinal wave in an infinite plate
Generalised phase velocity

Constants

Plate thickness

Modulus of elasticity

Normal (to the surface) energy flux of an acoustic wave
Function

Forcing vector; Generalised constant wave shape; Function
Generalised frequency

Cut-off frequency for non zero order dispersive wave modes
Resonant frequency

Function
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H(k)
Hk,t)

H(w)

kq, ko, kg,

Modulus of rigidity; function

Notch depth

Spatial Fourier transform
Two-dimensional Fourier transform

Transfer function

ﬂ

Function

Bulk modulus

Generalised wavenumber = w/c

Wavenumbers (subscripts refer to wave type 1-longitudinal, 2-shear and L-

longitudinal in a fluid)

Inhomogeneous wave vector

Leaky Lamb wavenumber

Nyquist wavenumber

Rayleigh and leaky Rayleigh wave number respectively

Sampling wavenumber

Wavenumber of dispersive shear horizontal waves = v [k, - (tn/2d)?]
Complex wavenumbers

Global stiffness matrix

Element stiffness matrix

Distance in the x direction

Global mass matrix

Element mass matrix

Diagonalised consistent mass matrix

Number of nodes per wavelength; matrix of element shape functions
Direction cosines in cartesian directions

Horizontally and vertically polarized shear Waves

Generalised reflection coefficient

Symmetric Lamb wave (subscript refers to wave mode)
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Us.as Wsa

] ]
Uga Wga

X, ¥, 2

Generalised transmission coefficient

Kinetic energy

Time

Critical time step in numerical modelling

Displacement in x, y and z directions in cartesian coordinates
Displacement vector of horizontally polarized waves

Strain energy

Lamb wave displacements Lamb wave in the x and z directions (subscripts refer
to mode type s-symmetric and a-antisymmetric modes)

notch width

Leaky Lamb wave displacements in the x and z directions -

Cartesian coordinates

Generalised normal acoustic impedance = pc/cos0

2. Greek letters

o

5

A

V2

Exxo Eyys €2z
By Eyz Egx

M

Modulus of imaginary part of complex angle

Dirac delta function

Dilatation (€ + €yy + €5,

Laplace operator in cartesian coordinates (92/0x2 + 02/0y2 + 92/0z2)
Direct strains in cartesian directions

Shear strains in cartesian directions

Ratio of Lamb wave phase and group velocity (cp/cg)

Generalised incidence angle

Propagation direction of bulk waves (subscripts denote wave type 1-longitudinal
2-shear I -longitudinal in an fluid)

Critical an gle at which the bulk waves travel parallel to a boundary

Generalised wavelength
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PL
Oxx>0yy:Ozz

Oxy>Oyz:0zx

¢

D(z)

Ao

Lame's constant

Mesh spacing

Lame's constant

Poisson's ratio

Generalised density

Density of fluid

Direct stresses in cartesian directions
Shear stresses in cartesian directions
Longitudinal wave potential
Through-thickness mode shape
Generalised Phase

Difference in phase spectrum of two signals

Shear wave potential

Angular frequency = 2n/f

Frequency thickness product = 2fd
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CHAPTER 1

A review of the application of stress waves in nondestructive
testing and monitoring

1.1 Introduction

The testing and monitoring of the state of manufactured items is so commonplace that we tehd
to take it for granted. For example, few would buy a bicycle without leaning or sitting on it to
test its sturdiness. With the trend in the more industrialised nations to produce finished
products which have an ever higher proportion of added value, nondestructive testing and
process monitoring methods are becoming more important. In particular, the nuclear and
aerospace industries, in which component reliability is crucial, have in many cases, developed
new, specialised techniques. Ultrasonic inspection is one of the most commonly used
techniques and its application has been increasing rapidly over the last few decades as the
electronic equipment necessary has become cheaper and more readily available.

The aim of all nondestructive testing and monitoring methods is to identify and locate physical
features which are unacceptable without causing any damage to the material structure or
component under test. These features will be referred to henceforth as defects. Restricting our
attention to industrial applications and disregarding qualitative audio and/or visual inspection
carried out by humans (probably the most widely used forms of ihspection), then the
following methods are the most commonly used:

. Magnetic particle

. Dye penetrants

. Eddy currents

. Radiography

J Ultrasonics (standard)
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The first three methods are generally used to detect surface breaking or near surface defects.
Radiography and ultrasonics are used generally to detect buried features as well as surface
breaking defects and may be employed where a quantitative analysis is required.

In the next section a brief introduction to standard ultrasonic NDT will be given. Experimental
Rayleigh and Lamb wave NDT methods will then be discussed, the results and work of many
of the leading researchers being used to illustrate particular applications. Finally, the
advantages of using Lamb waves in applications, where coarse, fast, long range testing is
adequate, and in situations where a more detailed localised interrogation is necessary will be
discussed.

1.2 General ultrasonic nondestructive testing.

Standard ultrasonic testing in the 0.2-30 MHz range using bulk stress waves constitutes a
substantial area of NDT. These waves may be excited in the majority of materials used in
industrial applications, and systems using stress waves are flexible, versatile, cheap and safe.
The resulting data may be interpreted in the time or frequency domain and can be stored and
processed to operate sorting gates, or to give alarms. Standard ultrasonic testing may be
separated into two major areas, resonance techniques in which the excitation is narrow band
and pulse techniques in which the excitation is wide band.

Resonance techniques are principally employed to measure the thickness of walls and the
depth of delaminated layers. Physically, this is achieved by locating the resonant frequencies
of the component under investigation, the wall thickness being obtained from the relation

C
24 = 57— n=0,1,2,...0max (1.1)

where fq is a resonant frequency, ¢ is the wave velocity, 2d is the wall thickness and n is an
integer. Since the wave velocity is material dependant, instruments that use this method must
be recalibrated for different materials. Provided that damping (or apparent damping due to, for
example, acoustic transmission) is light these frequencies are well defined and may be located
accurately. For more details on resonance techniques see standard NDT texts, for examplé,
Szilard (1982) or Krautkrimer and Krautkrdmer (1983).

Pulse excitation methods in which ultrasonic pulses are propagated through the area of
interest, (see Fig. 1.1) are used far more extensively in industry. When ultrasonic pulses
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interact with a defect, for example, air filled cracks, there will generally be almost total
reflection. This enables the relative amplitudes and time of flight of the ultrasonic pulses to be
used as a measure of the integrity of the material or component under investigation. The
advantage of pulse methods is that the system under test may be decoupled easily from the
measuring system and the rest of the world. Firestone (1940) and Firestone and Ling (1951)
probably were the first to recognise the advantage of using pulsed methods in NDT
applications

The pulse-echo mode, (see Fig. 1.1(a)) requires access to only one side of the testpiece and a
single transducer acts as a transmitter and receiver. In pitch-catch mode, (see Fig. 1.1(b)) two
transducers, one acting as transmitter one acting as receiver are located on the same side of the
testpiece. In through-transmission mode, (see Fig. 1.1(c)) the transmitting and receiving
transducers are located on either side of the testpiece. In each of the above cases the area
interrogated is along a line joining the two transducers.

Because of the large impedance mismatch between air and solid material, it is difficult to
propagate waves from a transducer through air into the structure to be tested. Therefore, a
coupling media between the two is generally employed. The normal impedance Z, is the ratio
of the acoustic pressure to the projection of the particle velocity on the normal of the surface
and is given by

__pc
cos9

(1.2)
where p is the density and 0 is the angle of the wave front to the normal of the surface.
Maximum energy transfer occurs if the impedances of the testpiece and the coupling medium
are equal. In solid coupling, the transducer is bonded or fixed to the testpiece. In dry contact
coupling a flexible membrane which is generally filled with oil and will deform to the shape of
the testpiece surface is attached to the transducer. In thin film coupling a gel is applied to a
small area where the transducer is to be positioned, and in immersion coupling the whole
testpiece is immersed in a liquid (generally water). Thin film and immersion coupling are the
most popular methods because only a longitudinal wave is incident at the liquid-testpiece
interface. '

The frequency and the wavelength of ultrasound are related by

A= (1.3)

|0
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where A is the wavelength. Hence, if the wave velocity is constant, the wavelength will
become smaller with increasing frequency. It is shown by, for example, Ensminger (1973)
that detectable defect size is related to wavelength, the higher the frequency the smaller the
detectable defect. However, in real materials the wave ainplitudes decrease or attenuate during
propagation. Attenuation is a function of frequency, therefore, as the frequency of the wave is
increased its penetrating power (propagation distance) will be reduced. At frequencies where
the wavelength is reduced to the order of grain size, scattering from the grain boundaries will
also result. Modern NDT techniques using high frequency ultrasonic stress waves (up to 50
MHz) are capable of detecting defects less than 0.1 mm in diameter. In order to detect ever
smaller defects and increase the resolution, the trend has been to use ever higher frequencies
with short duration pulses. However, in some cases, for instance in highly attenuating media
or materials with a coarse grain structure (a good example being stainless steel), it is not
possible or desirable to use high frequencies.

The sensitivity of ultrasonic methods is dependent on the properties of the transducer used.
Transducers have near and far fields (see Krautkrdmer and Krautkrimer 1983); in the near
field it is difficult to determine the presence of defects as the amplitude of the reflected wave is
affected by the diffraction pattern. Delay lines or immersion coupling may be used to alleviate
this problem. Focussed transducers may also be used to reduce the extent of the near field and
increase the intensity of the ultrasound at a particular point, thereby increasing sensitivity.

Resolution is the ability to distinguish between defects located very close to one another. To
increase the resolution, short pulses are required, which require wide band, heavily damped
transducers. Resolution and sensitivity are also functions of the properties of the testpiece.
The testpiece geometry determines accessibility, and is also a factor when considering the
choice of wave mode for inspection. When thin film coupling is used, the amplitude of the
wave at the fluid-testpiece interface is also sensitive to the contact pressure between the
testpiece and the transducer.

Other important factors include anisotropy, surface roughness, the presence of internal
scatterers and their cross-section, and grain-size and grain-boundary conditions; for more
details on these effects and ultrasonic NDT in general there are many good text books, for
example, Szilard (1982).
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1.3.1 General nondestructive testing using Rayleigh and Lamb waves

Rayleigh and Lamb waves are propagating two-dimensional vibrational modes (sometimes
called guided waves). The Rayleigh wave exists on the bondary of a free half space and Lamb
waves may propagate in free plates. In practice half spaces do not exist, but if the plate
thickness is greater than 5AR, where AR is the Rayleigh wavelength, Viktorov (1970) shows
that the zero order Lamb modes ag and sg will combine to form a quasi-Rayleigh wave which
is effectively indistinguishable from the Rayleigh wave, and henceforth will be referred to as
the Rayleigh wave. Other types of guided waves also exist in tubes and cylinders and
theoretical treatments of them may be found in many standard texts, for example, Graff
(1975). When the radius of curvature of these sections is much less than the wavelength of the
propagating mode(s), they may be approximated to plates.

In the last few decades Rayleigh, Lamb and other guided waves have been used increasingly
in ultrasonic NDT applications where standard ultrasonic techniques using bulk waves cannot
be applied; for example, to detect small cracks located near an interface or narrow cracks that
run normal to an interface or free surface. As Rayleigh and Lamb waves are two-dimensional
they may be propagated over considerable distances and therefore many workers have applied
them in long range testing applications. However, more than one propagating mode is usually
excited by real transducers and in the case of Lamb waves, dispersion is generally present.
The last two points mean that Lamb waves signals are generally very complicated. Hence, a
substantial part of the research work to date has been directed towards the interpretation of
Lamb wave signals. Rayleigh and Lamb waves are usually excited using either thin film or
immersion coupling; if immersion coupling is used then energy from these modes will be
leaked continuously into the coupling fluid and their propagation distances will be reduced.

Rayleigh wave inspection is used predominantly to find small defects located near to or at
boundaries, as the Rayleigh wavelength is always smaller than that of any other propagating
mode and most of its energy is concentrated close to the surface. Reinhardt and Dally (1970)
looked at the interaction of Rayleigh waves with slits and were able to obtain quantitative
transmission and reflection coefficients using dynamic photoelasticity methods. Hall (1976)
and Burger ez al (1982) and many of his co-workers have also used photoelasticity methods to.
obtain quantitative measurements of Rayleigh wave defect interactions. Finch and Bray (1973)
used quarter scale model railway wheels to study the interaction of surface and other guided.
waves with simulated thermal cracks. Derkacs and Matay (1979) have used high frequency
(45 MHz) Rayleigh waves to detect defects with dimensions of the order of 0.1 mm. The
frequency dependent amplitudes of reflected Rayleigh wave signals have been used by Singh
and Singh (1981), Klein and Salzburger (1982), Fitting, Adler (1982) and Kinra and Vu
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(1983) to determine the dimensions of surface defects. Bond et al (1984) have discussed the
trends in ultrasonic NDT and highlighted the increasing emphasis on quantitative methods, in
which detectable changes caused by mode conversion are used in the analysis. Bond and his
co-workers, for example, Georgiou and Bond (1985) and Saffari and Bond (1983) have
concentrated on the interaction of Rayleigh waves with different types of surface breaking
defects. Cooper et al (1985) have used a laser to generated short duration Rayleigh wave
pulses in order to investigate surface breaking slots. They report being able to detect slots
from 0.3 mm to 3.0 mm deep and conclude that the technique may be developed to measure
slot depth.

Viktorov has published extensively on the use of Rayleigh and Lamb waves in nondestructive
testing and monitoring applications, and his book (Viktorov 1970) has become a standard text
in the field. However, it was probably Worlton (1957) and (1961) who first recognised the
advantages of using Lamb waves to nondestructively test plates. Since then there has been a
great deal of interest in these and other guided waves in NDT applications. Worlton's work,
and that of many other early investigators (for example, Lehfedt 1962) was qualitative, but
they led many other workers to investigate the possibility of using the Lamb modes, ap and sy
at frequency-thickness products below the cut-off of the first higher order mode, a;
(approximately 1.63 MHzmm in steel).

Doyle (1978) reviewed guided wave NDT methods and gave suggestions for directions of
future research. Much of the previous and subsequent work has shown that coarse, fast, long
range qualitative NDT techniques using Lamb waves can be carried out on plates or plate-like
structures, if the tolerable defect dimension is less than 25% of the section thickness.
Rowland and Lichodziejewski (1973) have used Lamb waves in long range fast inspection of
honeycomb panels and report reliably finding 25 mm long delaminations over propagation
distances of 300 mm. Silk and Bainton (1979) carried out experiments to study the interaction
of guided waves with artificial defects. The aim of the work was to locate defects in boiler and
heat exchanger piping. Hayashi and Naoe (1986) have used Lamb waves, the sp mode, in a
continuous automatic NDT method for testing thin metal sheets (thickness less than 0.8 mm),
but report low sensitivity. Duncumb and Keighley (1987) reported using Lamb waves to
detect simulated corrosion defects, where the defect depth was greater than a quarter of the
plate thickness. Rose ez al (1983) and Avioli (1988) tried to obtain quantitative results of
defect detectability in large structures, by comparing Lamb wave signals in the frequency and
time domain respectively, but they reported limited success because of the typically
complicated nature of Lamb waves signals when more than one mode is present.

Zelik and Reinhardt (1972) used Lamb wave techniques to detect and locate small cracks and
holes in space cabin wall panels of 1.5 mm thick aluminium. Lockett (1973) looked at the
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interaction of Lamb waves with defects in tubes and reported limited success. Work in the
Soviet Union by Burmistrov et al (1978) was carried out to develop methods of testing steel
pipes with ribs for cracks and foreign inclusions using guided waves, and they report being
able to detect defects with depths of less than 0.1 mni, when the thickness of the pipe wall
was 0.6 mm. Boness (1981) réported experimental investigations carried out to determine the
integrity of welded seals on nuclear material storage cans, in which they used the lowest order
Lamb modes ag and sg. Chimenti and Bar-Cohen (1985) have analysed the spectra of Lamb
waves in order to test fibre-reinforced composite laminates.

Ultrasonic NDT techniques using guided waves have concentrated on using pulsed methods.
Most of the researchers have tried to correlate defect size to the scattered pulse amplitude using
time domain methods or spectroscopic analysis. However, because of the difficulty of
measuring Lamb wave amplitudes accurately using standard time or frequency domain
methods, the reported quantitative experimental results have tended to be restricted to
frequency-thickness regions where only ag and sg may propagate. Recently many workers
have recognised that there are two distinct application areas of Rayeigh and Lamb waves;
firstly in localised short range applications were sensitivity is important, and secondly in long
range applications where speed is important. Hence, these two situations are discussed briefly
below.

1.3.2 Localised nondestructive testing using Rayleigh and Lamb waves

When testing very thin plates or looking for defects on or very close to an interface, the
resolution between two echoes, which is inversely proportional to the pulse length, is critical.
Because of the finite duration of pulses from real probes a null zone below any interface will
not be interrogated using standard ultrasonic bulk wave testing. This is of major importance in
industrial NDT, where many potentially damaging defects are found near free surfaces or at
material interfaces, for example, fatigue cracks in steel.

Lamb waves have been used to determine the elastic properties of materials, especially
composites on which there is a great deal of published work. For example, Nayfeh and
Chimenti (1988) and Mal and Bar-Cohen (1990) have carried out work to determine the elastic
constants of composites and Okada (1986) has used Lamb waves techniques to measure”
anisotropy of cold rolled metals.

In localised detailed nondestructive testing or monitoring applications the detectability of a
particular defect may be optimised when using Lamb waves by choosing the most appropriate
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mode at the most suitable frequency-thickness product and not necessarily by using higher
frequencies as in standard ultrasonic NDT using bulk waves. Furthermore, in these
applications the dispersive nature of Lamb waves is not so problematic, as the propagation
distances are relatively small and reasonable signal-to-noise ratios may be maintained in most
frequency-thickness regions.

The major advantage of using Lamb waves in localised detailed NDT applications is that they
produce stresses throughout the plate thickness (although there may be stress nodes which
have to be carefully considered). Therefore, the entire thickness of the plate is interrogated.
This point is of major importance as it means that is possible to detect defects that are located
at or very near interfaces, or at other internal locations. Many workers have investigated the
possibility of using Lamb waves and/or other guided waves with similar properties to detect
delaminations and defects in adhesively bonded joints. Kline and Hashemi (1987) have used
guided waves to monitor fatigue cracks in bonded joints and Rokhlin (1986) has investigated
using these modes to characterise the quality of adhesive bonds.

1.3.3 Long range nondestructive testing using Lamb waves

Standard ultrasonic methods using bulk waves for the nondestructive testing and monitoring
of large plates or plate-like structures interrogate discrete points, or discrete points along a line
as may be seen from Fig. 1.1, and are therefore essentially one-dimensional. In order to
completely test a component or structure of any significant size reliably requires many point
readings. The use of Lamb waves is a very attractive solution to this problem since they can
be excited at one point on the structure and propagated over considerable distances. If a
receiving transducer is positioned at a remote point on the structure, the received signal
contains information about the integrity of the line between the transmitting transducer and the
receiving transducer. This procedure therefore interrogates a two-dimensional area between
two points (as can be seen from Fig. 1.2), rather than a line between two point. Hence we
refer to this as two-dimensional inspection. The use of these modes would therefore greatly
reduce testing time on large plates and plate-like structures where a thorough inspection is
required.

Moreover, bulk waves are three-dimensional and will thus radiate energy three-dimensionally.
Therefore, if excited from a point source their amplitude decreases inversely as a function of
distance squared and at any instance after initiation the wavefront will describe a sphere in
space. Because Lamb waves are free modes of plates (two-dimensional propagating
vibrations), their amplitude will decrease only inversely with respect to the propagation
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distance from the source, (see Fig. 2.1). Hence, Lamb waves may be propagated over
considerably longer distances than bulk waves and still have a reasonable signal-to-noise
ratio. The signal-to-noise ratio is usually further improved by using long duration tone burst
excitation and exciting the Lamb wave required at a point of minimum velocity dispersion.

A very large number of workers in the field have recognised the advantages of using Lamb
waves for fast inspection, where sensitivity and resolution in comparison to standard high
frequency ultrasonic techniques is not so critical. Lamb waves have been used to carry out
coarse, quick inspection on a variety of different strips and plates by, for example, by Conn
and Jackson (1971), Ball and Shewring (1976) and Mansfield (1975). Rokhlin (1979) has
reported many studies on the sensitivity of Lamb waves to elongated delaminations. Rokhlin
and Bendec (1983) have also studied the interaction of Lamb waves with spot welds and have
shown that the transmission of the first symmetric mode through a spot weld may be linearly
related to the cube of the diameter of the spot weld. Rose et al (1983) have reported
investigations using Lamb waves to globally inspect K-joints in off-shore structures. The
Welding institute in the UK (see, for example, Bartle 1985) have being developing an acoustic
pulsing technique to monitor crack growth in large plate-like structures.

1.4 Conclusions

During the last few decades a large number of researchers have investigated using Rayleigh
and Lamb waves in industrial NDT applications, where standard ultrasonic methods may not
be used or are difficult to apply.

Rayleigh waves are used to detect near surface defects where the defect size is of the order of
the Rayleigh wavelength. Lamb waves produce stresses throughout the thickness of the plate
(although there are stress nodes in many cases which have to be considered) and therefore
allow two-dimensional interrogation of plates and plate-like structures, rather than the usual
point by point investigation necessary when using standard ultrasonic methods. Also, because
they are two-dimensional, their amplitudes decreases less rapidly with propagation:distances
than the three-dimensional bulk waves. Propagation distances for NDT purposes may
therefore be increased. The last two points are of great importance in NDT applications where
a quick coarse inspections is sufficient. It is also possible to optimise the detectability of-a-
particular defect by choosing the most appropriate Lamb wave at the best frequency-thickness
product.
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The review of past experimental research has shown that qualitative or quantitative methods
can be applied in low frequency-thickness product regions, where the only propagating modes
are ag and sg, as they may be easily decoupled from one another. In higher frequency-
thickness regions most researchers have being unable to report reliable and robust methods of
obtaining quantitative experimental results and have in many cases reported qualitative results
obtained using a variety of comparison techniques.

1.5 Qutline of the thesis

The major objective of the thesis is the development of quantitative and qualitative methods of
applying Lamb waves to industrial nondestructive testing and monitoring applications.

Chapter 1 provided an introduction, including a review of the use of guided waves in the NDT
of plates and plate-like structures.

Chapter 2 will present all the stress wave theory necessary, paying attention to the physical
significance of the analytical expressions. The way in which these waves may be excited and
received more efficiently using transducers of finite size and excitation signals of finite
duration will also be discussed.

The key problem of Lamb wave testing is that invariably more than one mode is excited by
real transducers and in chapter 3 a new method of measuring the amplitudes and velocities of
guided waves using a two-dimensional Fourier transformation will be presented.

In chapter 4 the results of initial numerical studies using the finite element numerical method
are presented. The initial results are discussed and the advantages of the finite element method
stated. Further numerical work is presented where single and multiple modes have been
launched successfully using finite elements. The results have been processed using the time of
flight method and the two-dimensional Fourier transform. ‘

Chapter 5 presents a finite element study of the interaction of different Lamb waves with
straight sided notches of varying depths, which are orientated normal to the plate surface. In’
all the finite element tests the 2-D FFT method was used to analyse the results quantitatively.

In chapter 6 the experimental procedures and equipment used are discussed and the practical
methods of exciting and measuring propagating Lamb waves are presented. The velocities are
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calculated using standard time domain and frequency domain methods and the 2-D FFT
method, which also gives the relative amplitudes of the modes.

Chapter 7 reports the results of experiments carried out‘using a variety of plates with straight
sided notches and weld defects. The results are correlated with those obtained in the finite
element studies to validate the model and again the 2-D FFT method is used to analyse the
results quantitatively.

Chapter 8 discusses the implementation of Lamb waves to the NDT of plates and plate-like
structures, concentrating on ways of reducing or circumventing the practical limitations

evident when trying to adopt quantitative or qualitative methods.

The major conclusions of the the thesis are given in chapter 9.
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CHAPTER 2

Wave propagation and boundary interaction

2.1 Introduction

Elastic waves can propagate in solid, liquid and gaseous media. However, the propagation of
waves in solids and liquids is the major area of interest in ultrasonic NDT. This is because of
the large impedance mismatch between solid materials, in which the the ultrasonic waves are
usually generated and gases such as air, which are sufficiently rarefied for them to be
considered as a vacuum.

In this chapter, the theory used to describe the characteristics of stress waves in infinite and
finite media will be briefly described, and a number of commonly used methods of efficiently
exciting and receiving Rayleigh and Lamb waves will be discussed. In all the analysis, the
material will be assumed to be homogeneous, isotropic, linear elastic, non-absorbing and non-
piezoelectric.

2.2 The plane wave model

In most practical NDT applications simple plane wave models are sufficiently accurate to yield
satisfactory results. This describes the simplest form of wave motion, and may be expressed
by a general analytic expression given by Brekhovskikh (1980) as:

F[Nxx-FNgy-FNzZ ) t] A @.1).

Where A is a constant and Ny y , may be regarded as direction cosines of the line representing
the direction of propagation, which satisfy the condition

-14 -
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Ny2 +Ny2 +N2 = 1 2.2)

The function F is constant at any time over a plane normal to that line. It describes a wave
travelling with velocity ¢, and the waveform defined by F remains constant during
propagation.

2.3 Bulk waves

Rigid body dynamics assumes that a resultant force sets every point in a body in motion
instantaneously, which is equivilent to assuming that the material of the body has infinite
Young’s modulus. In all real media Young's modulus will be finite, and wave equations may
be developed from the concept of a series of infinitesimally small mass elements. If forces are
applied to an element, the element will accelerate according to Newton's law. Therefore, a
finite time is required for the element to change its position. To maintain the continuum
(compatibility) neighbouring particles also undergo change of position. This causes stresses to
be progressively transmitted through the media, and these propagating waves are simply
termed stress waves.

Lamé's constants A and | completely define the elastic stress-strain behaviour of the material.
In engineering applications Lamé's constants are usually replaced for convenience by four
related elastic constants:

A+
\Y =_7»___ 2.4)
2[A + (]
K-> ;2” 2.5)
G=pn 2.6)

Where E is the modulus of elasticity, v is Poisson's ratio, K is the bulk modulus and G is the
modulus of rigidity.

The equations which describe motion in a solid may be obtained by considering stress
variations across an element (see for example Timoshenko 1982), are applicable regardless of
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the stress-strain behaviour of the solid, and expressed in terms of the stress strain relations

are:
(X+u)%+uV2u-p%%u=O 2.7)
(?\.+u)3—$+uV2v-p%i—;= (2.8)
(x+u)%zé+uV2w-p%= 2.9)
where
V2=jx—22+c?—yzz+% and A =gxx+Eyy+ €z

V2 is the Laplace operator in cartesian coordinates and A represents the change in volume, and
is termed the dilatation. They are linear homogeneous partial differential equations for which
the principle of superposition holds. It is shown by, for example, Kolsky (1963) that by
integration and manipulation of the above three equations, two independent effects may be
obtained.

Firstly, if it is assumed that any deformation produced is such that no volume changes take
place, then in the x direction eqn 2.7 becomes:

2
uVZu-piT;=o (2.10)

This is a wave equation, which describes a disturbance of constant shape, travelling with
constant velocity, in the positive x direction. Similar equations may be deduced in the y and z
directions, the resultant propagating wave being termed shear or distortional, and may be
shown to travel with constant velocity c; given by:

=AY =—\/9 =1/—’—3———— 2.11)
Y p 2p(1 +v)

If we consider the situation without rotation, in the x direction eqn 2.7 becomes:

A +wV2u-p

2
BT; -0 (2.12)

d
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This equation is mathematically identical to eqn 2.10 and describes a propagating disturbance
which may be either called a dilatational or longitudinal wave. This wave propagates with
constant velocity c; given by:

o= /l_ﬂﬁ =—\/ E(-v) (2.13)
p p(l +v)(1-2v)

The shear and longitudinal waves propagate independent of one another. Therefore, any plane

wave propagating through an infinite medium must travel with a constant velocity (c or ¢3),
which is a function of material properties only. The velocity ¢ is associated with displacement
components parallel to the direction of propagation, while ¢ is associated with displacement
components normal to the direction of propagation. Investigations of these uncoupled waves
in infinite media were first carried out by seismologists.

A perfect liquid cannot sustain shear, therefore =0 and only longitudinal waves may exist,
their velocity being given by:

cL=’\’& =—\/5 (2.14)
P P

A shear wave with an arbitrary polarisation vector may be considered as consisting of a
combination of shear waves with polarisation vectors in the vertical and horizontal planes. The
effects due to these waves are investigated separately and superposition is used to obtain the
total effect. For vertically polarized waves the displacement vector u may be completely
defined in the x z plane (see Fig. 2.1), and expressed in terms of a scalar, ¢, and vector, V,
potential relation,

u =grad ¢ + curl y (2.15)
where ¢ and y are the potentials associated with the longitudinal and shear waves
respectively, which satisfy the wave eqns 2.12 and 2.10. The potentials may be written as
follows:

o = A(w)€ilk(xsindy +zcos6,) - wt] (2.16)

and,

v = B(w)eilka(xsind; + zcos0,) - wt] 2.17)
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where A(w) and B(w) are the potential amplitudes, i=v-1, kj=w/c; and ko=w/cy are the
angular wavenumbers of longitudinal and shear waves respectively and are proportional to the
momentum of the wave, and w=2xf is the angular frequency.

2.4 Reflection from a free elastic half space

In any real medium a propagating wave will interact with a boundary, where boundary stress
and strain conditions must be satisfied. In the following, continuous wave propagation and
infinite wave fronts in the x and y Cartesian directions shown schematically in Fig. 2.1 will be
assumed. For details of the analysis when the wavefront is of finite dimension and duration
see Pialucha (1991).

A solid-air interface is a very good approximation to the generally analysed case of a solid-
vacuum interface. In this section we will consider the reflection of longitudinal and shear
waves at a plane boundary parallel to the x axis. Shear horizontal waves are reflected from
plane boundaries (see Fig. 2.2(a)), without a change of angle or amplitude.

2.4.1 An incident longitudinal or shear wave

If a longitudinal wave is incident at the boundary (Fig. 2.2(b)), two waves, a longitudinal
wave and a shear wave are generally reflected, the shear wave being generated by mode
conversion. The angles of reflection of the longitudinal and shear wave are given by Snell's
law: ‘

oSl _ €2 (2.18)
sinB; sinB;
where cp is the phase velocity, which is the rate at which points of constant phase travel along
the boundary. Snell's law expresses the fact that the phase velocity of the longitudinal and
shear waves must be the same if one is generated from the other. Rigorous proofs of the-
equality of the phase velocity of bulk waves, may be obtained in Brekhovskikh (1980).

The reflection coefficients of the longitudinal and mode converted shear waves are giVen by,
for example, Graff (1975) and are dependent only on the Poisson's ratio of the solid,



Wave propagation and boundary interaction 19

& -2
SEIR)

At normal incidence, no mode conversion takes place, and the reflected longitudinal wave is

(2.19)

180° out of phase with the incident one.

If only a shear wave is incident, as illustrated in Fig. 2.2(c), in general there will be mode
conversion to a longitudinal wave to satisfy boundary conditions. Reflection coefficients of
the shear and longitudinal waves are presented by Graff (1975), and are dependent only on
Poisson's ratio. No mode conversion occurs at normal incidence, or when the shear wave is
incident at 45°. Because cy is always greater than c,, Snell's law relates the angle of the
reflected waves such that, 6,>0,, and there will be a critical angle of incidence 61=0, at
which 6;=90°, as shown in Fig. 2.2(d). For 6,>6, total internal reflection of the shear
vertical vertical wave takes place, 0, is replaced by a complex angle o, and plane wave
theory is not applicable to the non-uniform or inhomogenous longitudinal wave reflected. The
amplitude of the inhomogeneous longitudinal wave decays exponentially in the z direction
with depth from the surface.

2.5 Reflection from a liquid-solid half space

It is necessary to model wave interaction at liquid solid interfaces as they are encountered
frequently in ultrasonic NDT. An ideal liquid will always be assumed. At the interface, the
relative amplitudes of the reflected and transmitted waves, will depend on the wave mode, the
acoustic impedance of the liquid and the solid and the angle at which the incident wave
approaches the interface; again, boundary conditions of stress and strain must be satisfied.

The general reflection and transmission equations given by, for example, Brekhovskikh
(1980) in terms of impedance are derived by imposing the boundary conditions and using the
elastic relations. ‘

In fluids, only longitudinal waves can exist, but in the solid, longitudinal and shear waves
may be present. Here, we will only consider waves of vertical polarization.
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2.5.1 A longitudinal wave incident from the liquid

If a longitudinal wave is incident from the liquid, the reflection coefficient of the generated
longitudinal wave in the liquid denoted by the suffix L, and the transmission coefficient of the
longitudinal and shear wave generated in the solid by mode conversion may be computed
from expressions given by, for example Brekhovskikh (1980). The angles of the respective
waves to the normal to the interface are given by,

CL Cl 2

sinf,  sinB;  sinBg

Cp

At normal incidence all the angles are zero, no mode conversion takes place and we obtain the
simple expressions for the reflection and transmission coefficients at normal incidence,

721 -7
R=7.%7 (2.20)
and
27
T=yt7 2.21)

where Z and Zj, are the impedence in the solid and fluid respectively. In almost all practical
NDT applications the longitudinal wave velocity in the fluid is less than the shear wave
velocity in the solid so (8 < 6,<0,). This causes 8,, 8, and hence their associated
impedances to become complex over certain ranges of incident angle. In the range 0< sin 8; <
(cy/cy) all the angles are real.

When (ci/c,) > sin 8> (¢ /c,), 0, is real and the shear wave in the solid will be plane.
However, 0; will be complex, physically this means that the longitudinal wave in the solid
will be inhomogeneous and travel along the surface. Plane wave concepts no longer apply to
the longitudinal wave and the energy of the incident wave (normal to the surface component)
is divided between the reflected longitudinal and transmitted shear wave in this an gui‘ar region.

When shear waves are used for NDT inspection, angular regions where the longitudinal wave
is inhomogeneous are preferable, as all the transmitted ultrasonic energy will be taken by the
shear wave.

Finally, for (%/2) 2 sin 8, > (¢ /c,) both 8, and 6, will be complex. This signifies that there

are local surface disturbances in the solid (inhomogeneous waves). The boundary will present
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a purely reactive impedance to the incident wave. The modulus of the reflection coefficient is
unity in this range. Total internal reflection takes place and this phenomenon is analogous to
the optical situation.

2.5.2 A longitudinal or shear wave incident from the solid

Longitudinal or shear waves may be incident on the boundary from the solid. Expressions for
the reflection and transmission coefficients are given by Brekhovskikh (1980). For all incident
angles of the longitudinal wave (0< 6; <90°), all the angles of the reflected or transmitted
waves are real. When a shear wave is incident, if (c,/c,) < sin6, < 1 the reflected longitudinal

wave in the solid will be inhomogeneous.

2.6 Wave propagation characteristics in bounded media

If the elastic medium is made finite in the z direction then a plate or elastic layer results. Plates
cause plane waves to be guided between their boundaries, and hence are sometimes called
waveguides. The assumptions previously applied, relating to the properties of the medium,
will also be employed here as will the coordinate system in Fig. 2.3, with the origin of the z-
axis at the mid-plane of the plate. Both free and fluid loaded plates will be considered in this
section.

2.6.1 Shear horizontal waves in a free plate

This is the simplest situation and hence will be analysed to illustrate some of the effects
present in the more complex situations to follow. It is shown by Redwood (1960) that shear
horizontal waves in plates or waveguides are analogous to longitudinal waves in a fluid
waveguide.

The solution for this case is given in Graff (1975). Two particle displacement modes are-
observed, one symmetric and the other antisymmetric with respect to the middle plane of the
plate. These two modes of propagation may be examined in terms of propagating plane
waves. The phase velocity of a particular mode is a function of frequency, and this is called
velocity dispersion. |
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Energy propagates at the group velocity cg, which may be though of in terms of the velocity
of a small packet of waves of slightly differing phase velocities. Group and phase velocity are
equal if the phase velocity is nondispersive. The group velocity is given by Redwood (1960)
as:

Cg =3 (2.22)

A plane wave solution exists, which represents a shear horizontal wave travelling parallel to
the boundaries with constant velocity c,. This is known as a Love wave. All other modes
possess cut off frequencies which are observed when the phase velocity tends to infinity; for
any mode this occurs when:

2d _

ncy
ky=—=1 =—= 2.23
2= feo=74 (2.23)

where f., is the cut off frequency of a particular mode, which happens when half
wavelengths are an integer multiple of the plate thickness. This phenomenon may be
understood by considering plane wave reflections. At f, 0,=0, and the wave no longer
progresses in the x direction but simply reflects between the boundaries; the wavenumber
kp=0, therefore, at the cut off frequency for any propagating mode the momentum is zero. As
0,—(m/2), the phase velocity tends to the shear wave velocity. This demonstrates that at the
higher frequencies the plane waves that make up a particular mode tend asymptotically to
propagate parallel to the boundaries. Another way of explaining this is to realize that as f tends
to infinity the thickness/wavelength ratio tends to infinity.

2.6.2 Longitudinal and shear waves in a free plates

When either shear or longitudinal waves are incident on a free boundary of the plate, reflection
and mode conversion will occur as detailed previously in the case of a free half space. The
bulk waves will interact, their combined effect under certain conditions of frequency and
incidence angle creating a system of plate waves.

In subsequent sections these free wave modes, first investigated by Lamb (1917), and
subsequently referred to as Lamb waves, will be analysed in detail.
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2.6.3 Reflection and transmission from a fluid loaded plate

If we assume a semi-infinite liquid lying on either side 6f an elastic plate of thickness 2d (see
Fig. 2.3), then this situation is of practical interest because it models the ultrasonic immersion
testing of plates.

Suppose that a longitudinal wave at an oblique angle to the plate normal is incident from the
fluid. In general, there will be reflected and refracted waves in the fluid and the elastic layer,
and a transmitted wave in the lower fluid. When the fluid on either side of the plate is the same
the coefficients of reflection and transmission may be found from a solution due to Reissner
(1938), and given by Brekhovskikh (1980). It is worthwhile noting an effect relating
wavelength and thickness. For a thickness equal to an integral number of half wavelengths,

2d nA
=5 (2.24)
cosf 2
the reflection coefficient will be zero. Complete transmission will occur, the layer having no
effect on the incident wave. This effect is frequently applied in transducer coupling and
frequency filtering applications.

2.7 Inhomogeneous waves

The equations given previously describing reflection and refraction coefficients for various
boundary conditions apply formally only in specific angular regions. As a consequence of
Snell's law, substitutions are required when the incidence angle is greater than a critical angle,
defined previously.

Graff (1975) and others describe the physical nature of the resultant refracted wave when the
incident wave is at an angle greater than the critical angle, by looking at the assumptions in the
original differential wave equations and making the necessary substitutions to the wave
potentials.

An explanation by Brekhovskikh (1980) will be followed here. It is assumed that ky , , are
three complex numbers,

ky =k'x +ik" (2.25)
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ky =k'y +ik"y (2.26)

ky =k'z +ik", | (2.27)
Substitution of these definitions into eqns 2.16 gives:

o= A(@)elik'xx+ kyy+ k';z-ot) -k"yx -k"yy - k" z] (2.28)

where A(m) is an amplitude constant which is a function of frequency. A wave of this form is
usually called an inhomogeneous or non-uniform wave, which propagates in the direction
parallel to the boundary and its amplitude decays in the direction perpendicular to the
boundary. Planes of constant phase (ie wave fronts) are given by the equation,

k'xx +kyy +k',z=C (2.29)
and planes of constant amplitude are given by,
k"yx +k"yy +k",z=C" (2.30)

where C' and C" are contants. If the coordinate system is chosen such that k'y=k",=0, as

with plane waves we may set,
kx =ksin®@  k; =kcosO (2.31)

but since ky and k, are complex wavenumbers and k is real, the angle 0 must be complex.
From the above we may redefine k, , as,

kx =kcoshaa and k; =iksinha (2.32)

The plane wave equation may then be expressed as,

¢ = A(w)ei(kcoshox - ksinhaz - o) | (2.33)

This equation decribes a wave propagating in the x direction with an amplitude which decays
exponentially in the z direction. Since k = ®/c it may be seen from eqn 2.33 that the velocity
of the wave in the x direction is reduced by 1/cosha. Therefore the greater o the greater the
decay coefficient of the wave in the z direction and the greater the velocity reduction in the x
direction.



Wave propagation and boundary interaction 25

It is worthwhile noting that on refraction at an interface, inhomomogeous waves may result
from plane waves and vice versa.

2.8 Energy considerations

It is sometimes useful to consider energy relations as they can aid physical understanding of
wave reflection and transmission at boundaries. They may also be used to calculate the
coefficients of reflection or transmission.

An ideal material which does not dissipate energy is always assumed. For an arbitrary incident
angle (0<0<90°) there will be symmetry regarding the passage of energy or energy flux
(normal to the boundary) from one medium to another and vice versa. For conservation of
energy, the energy carried to the boundary by an incident wave must be equal to the energy
carried away from the boundary by the reflected, refracted and transmitted waves, ie.,

(Elincident = [Elrefiected + [Elrefracted * [Elransmitted (2.34)

The energy relations between bulk waves may be deduced by expressing the particle velocities
in terms of the scalar and vector potentials. The kinetic energy per unit volume is
0.5p[(du/at)2 + (dw/3t)2], and the total energy multiplied by the velocity of propagation gives
the flow of energy in a plane perpendicular to the direction of propagation. For a unit area of
the free surface the energy in all the waves must balance. The important characteristics of
these relations may be seen from curves presented by Ergin (1952) describing the energy
partition when bulk waves are incident on interfaces separating different materials.

2.9 Rayleigh waves
Rayleigh waves are free modes which can propagate on half spaces. In this section the

theoretical derivation of these wave modes will be discussed.

It is shown by Viktorov (1970) that the scalar, ¢, and vector, v, potentials describing
propagation in the x direction may be given as:

o= Aeilkix - gz - wt] (2.35)
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v = Beilkix - sz - ot (2.36)

where, g2 =k2 - k42 and s2 =k2 - k,2. Particle displacements and normal and shear stresses in
Cartesian coordinates may be defined in terms of the potentials as follows:

=2 (2.37)
w= g_‘i’ s . (2.38)
Oy = g_fg i 3%421] +2 giqz) g:—a"’z] (2.39)
a5 ] w32 - ] @40

]

The scalar potential is associated with dilatation and the vector potential is associated with
distortion. It may be seen that for q and s to be real thenk2 > k,2 > k;2, as for an isotropic
elastic solid ¢, 2 c,. A and B are arbitrary constants which may be determined from the

boundary conditions.

The wavenumber k corresponding to a surface wave may be determined from the

characteristic equation which is given by Viktorov (1970) as:
4k2qs - (k2 +52)2=0 (2.42)

This may be manipulated into the usually quoted form,

[2} [kz]“ 8{3 2{02] }[kz] 6{1 []} | (2.43)“

The roots of eqn 2.43 depend only on Poisson's ratio. The Rayleigh wave corresponds to one
root, (kp/k)g, the suffix R denoting the Rayleigh wave. For solids, 0 < v < 0.5, and only one
root exists; the resultant Rayleigh velocity cg is nondispersive and monotonically dependent
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on Poisson's ratio. Rayleigh waves are composed of inhomogeneous longitudinal and shear
waves, 90° out of phase, propagating along the surface at the same velocity, therefore,

co=—ol €2
R kcosha;  kcoshoy

(2.44)

where o is as defined in section [2.7]. An approximate expression given by, for example,
Krautkrimer and Krautkrimer(1983) as,

ch(Z _ 0.87 + 1.12v (2.45)

1+v

is often used to calculate the phase velocity of Rayleigh waves. Eqn 2.45 computes k/k for

solids to an accuracy of +0.5%.

The particle displacements of Rayleigh waves are elliptical and localized close to the surface,
with amplitudes which decay exponentially in the z direction. The wave vector k' of Rayleigh
waves is parallel to the boundary surface. Expressions are given in for example, Viktorov
(1970) for displacement and stress as a function of through-thickness position, which may be
obtained by substituting eqns 2.35 and 2.36 into eqns 2.37 to 2.41. The normalised
displacements of the Rayleigh wave in steel as a function of distance from the surface are
given in Szilard (1982).

Investigations of these surface waves were first carried out by Rayleigh (1885) who was
interested in describing seismic phenomena, where large amplitude surface waves are
observed, remote from the epicentre of the earthquake, after the arrival of the bulk waves. He
argued that because these waves were essentially two-dimensional, less of their energy was
radiated into the body of the earth, causing their amplitudes to be greater than bulk waves at
points distant from the earthquake source. |

2.9.1 Leaky Rayleigh waves

When the elastic half space is bounded by an infinite fluid, surface waves similar to Rayleigh
waves can exist. In this case their wave vectors k' will not be parallel to the boundary,m
indicating a flow of energy from one medium to the other. The characteristic equation which
determines the leaky Rayleigh wavenumber k' may be obtained in the same manner as in the
previous section and is given by Plona et al (1975) as:
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4Kk2%gs - (K2 + $2)2 = i PL: gyt ——1

o '—kLZ — (2.46)
Given that c'R > cr, for almost all real media, the previous equation has two roots, one
complex and one real. The real solution occurs when c'r/cy.>1 and strictly speaking is an
undamped interface wave, the Stoneley wave, where most of the energy propagates through
the fluid and therefore, in general is of no use in NDT. When the wavenumber k is complex,
most of the energy propagates through the solid and the amplitude of the wave in the solid
decreases as it travels along the boundary. This solution corresponds to a system of two
inhomogeneous waves in the solid and a plane wave in the fluid. These waves are generally
termed leaky Rayleigh waves and have velocity ¢'r. The complex solution of k is related to
the wavenumber of the wave by;

k'R = {Re(k)} : (2.47)

The velocity of these waves tend to the Rayleigh wave velocity in the case when the
impedance of the liquid approaches zero. Physically, this system of waves may be described
in terms of energy being leaked to the liquid from the surface wave. The magnitude of the
imaginary part of k depends on the density ratio of the liquid and the solid. Typical ratios of
metal to liquid density vary between 0.1 and 0.2, and the difference between the Rayleigh and
leaky Rayleigh velocities is less than 1%. However, for low density solids, for example,
polymers this approximation is not applicable. The above phenomena may be described in
terms of coupling between two systems, one fluid the other solid. For density ratios much
less than one, the fundamental modes of each system are almost unaffected.

The liquid has a critical effect on the damping of the leaky Rayleigh wave in the x direction.
The amplitude of the leaky wave decreases exponentially in the x direction due to the continual

radiation of energy into the liquid. Even for small density ratios the attenuation in the x
direction is considerable, significantly reducing propagation distances.

2.10 Lamb waves
2.10.1 Dispersion curves and mode shapes

Lamb (1917) proved theoretically that under certain conditions a finite number of vibrational
wave modes could propagate independently in a plate. Lamb waves represent two-
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dimensional propagating vibrations in plates. Sometimes they are referred to as normal or free
modes, because they are the eigen solutions of characteristic equations.

The method of analysis followed here will be in keeping with the original paper by Lamb
(1917) and subsequently adopted by Viktorov (1970).

If we consider a Lamb wave propagating in a plate of thickness 2d, all particle displacements
may be described by the vector u, which by definition is zero in the y direction. As before we
may define scalar and vector potentials, ¢ and y, respectively, which satisfy the boundary

conditions. The potentials are given by Viktorov (1970) as,
¢ = Acoshqz + B,sinhsz €ilkx - o] (2.48)
y = Dgcoshqz + C,sinhsz €ilkx - wt] ' (2.49)
where A, B,, C, and Dy are arbitrary constants. The characteristic equations are obtained by

substituting the above equations into the stress relations (eqns 2.39, 2.40 and 2.41) and
applying zero stress boundary conditions, and are given by Viktorov (1970) in the following

form,
(k2 + s2)2 coshqd sinhsd + 4k2qs sinhqd coshsd = 0 (2.50)
(k2 + s2)2 sinhqd coshsd - 4k2qs coshqd sinhsd = 0 (2.51)

Phase velocity is the fundamental characteristic of the Lamb waves, as once it is calculated,
the stresses, displacements and group velocity may also be found. The phase velocity is
computed by numerically solving eqns 2.50 and 2.51, which are generally rewritten in a more
appropriate dimensionless form, given by Viktorov (1970) as,

w1 [ | [N [T
o TG L PR

The +ve and -ve signs in the above transcendental equation relate to symmetric and

=0 (2.52)

antisymmetric Lamb waves respectively. The velocities of all Lamb waves are a function of
fregency and in any plate of thickness, 2d, at a particular frequency, f, there will be a finite
number of propagating modes, which may be determined from the number of real roots of eqn
2.52. The positive and negative real roots of eqn 2.52 correspond to propagating harmonic
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waves in the +ve and -ve directions, while the imaginary or complex roots relate to non-
propagating spatially varying vibrations, which are of importance in forced or transient wave
motion. The group velocity, c;=0w/dk, of Lamb waves is the velocity at which energy is
propagated and may be calculated once the phase velocity or wavenumber as a function of

frequency is known. Group velocity may be expressed in terms of phase velocity and
frequency-thickness product (€2 = 2fd) by,

cg=—P— (2.53)
.29
% 0Q

Fig. 2.4 shows the predicted Lamb wavenumber dispersion curves for the first five symmetric
and antisymmetric Lamb waves of a steel plate, where ¢;=5960 m/s and ¢;=3260 m/s. The
predicted phase and group velocity curves are shown in Fig. 2.5 and 2.6 respectively. The
phase and group velocity dispersion curves show pronounced velocity dispersion, which is
typical for all solids.

The displacement components in the x and z directions and the direct and shear stresses may
be calculated by substituting eqns 2.48 and 2.49 into eqns 2.37 to 2.41. The through
thickness displacement components of the symmetric modes are obtained from the following

equations,

e S T ot o ass
and

wom Aq. { ssiirrllllllzifl _ kSZZIiszssz ssllrrllllllsssS }el[ksx wt] | (2.55)

where ug and wy are the displacements in the x and z directions respectively and kg is the
wavenumber of the symmetric Lamb modes. The through thickness stress components of the
symmetric modes are obtained from the following equations '

coshqg.z coshs.z

Oxx(s) =A»{ (SSZ-kSZ_quZ) COSthd - (k52+ss ) coshs, § }el[ksx wt] (2.56).
coshq.z coshs.z .

Oz2(s) = AP{ (ksz'*‘ssz)ﬁ - (kg2+542) mgia }el[ksx - ot] (2.57)

and
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. sinhqgz sinhsgz | 4: }
Oxz(s) = Al»“{ ZkSqS—si—nl'?Zd_ - 2ksqs m } eilksx - wt] (2.58)

Similar relations for the displacement and stress components of the antisymmetric Lamb
modes may be obtained by changing the subscripts s to a and replacing sinh-by cosh and vice
versa. Fig. 2.7(a-f) and Fig. 2.8(a-f) show the deflected displacement and stress mode shapes
of ag, sg, a; and s at a variety of frequency-thickness values. The displaced shape of a and
sp at 0.5 MHzmm are dominated by out of plane and inplane motion rcspectively,bas may be
seen from Fig. 2.7(a and b). At 15 MHzmm however, aj and s combine to form the quasi-
Rayleigh wave as can be seen from their displacement and stress mode shapes in Fig. 2.7(e
and f) and Fig. 2.8(e and f) respectively. At the cut-off frequency-thickness product, for a;
and s;, there is only one component of displacement (Fig. 2.7(c and d)), as these represent

reflecting shear and longitudinal waves respectively.

The above relations describe two groups of waves, each of which independently satisfies the
wave equation and free boundary conditions. These waves may thus propagate independently
of one another. As for Rayleigh waves, the particle motion of Lamb waves is elliptical. The
particle motion eccentricity depends on whether the mode is symmetric or antisymmetric, the
order number of the mode, the position in the plate thickness and the Poisson's ratio of the
solid.

When the frequency thickness product tends to zero, the characteristic equations each have
only one root. These are called the zeroth order antisymmetric and symmetric modes, ag and
sg» respectively. As the frequency thickness product increases the roots of ag and sq will vary
until at specific frequency thickness products new roots will appear; these frequency thickness
values are the cut-off values for the new modes a;, and s, (higher frequency modes), n being a
positive integer. At the cut-off frequencies assuming constant plate thickness the wavenumber
of the Lamb waves will be zero (see Fig. 2.4). The new symmetric or antisymmetric Lamb
waves describe non-propagating standing longitudinal or shear waves being reflected at
normal incidence within the plate. If the frequency-thickness product is less that the cut-off
value for any particular mode then the phase velocity of the mode will be imaginary. This may
be physically interpreted as non-propagating particle vibration.

In the limit when 2d tends to infinity the plate becomes a half space, and the phase velocity of-
all non-zero order Lamb modes, tend to the shear wave velocity. Particle displacements of the
ap and sy modes become localized near the free boundary and combine to form the Rayleigh

wave.
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The zero order modes are different from the other modes, in that they exist at the lowest
frequencies. As the frequency-thickness product becomes small it is worthwhile looking at
them in detail, because a great deal of Lamb wave NDT testing is carried out in this range.

The symmetric mode, sg, which possesses a finite phase velocity at low frequency-
thicknesses, represents a longitudinal (or extensional) wave in a plate as may be seen from the
displacement and stress mode shapes in Fig. 2.7(b) and Fig. 2.8(b). The phase velocity of the
longitudinal plate wave may be derived by assuming that the stress Oy, is constant over the
plate thickness. Kolsky (1963) shows that as the frequency-thickness product tends to zero
the phase velocity of sy tends to the velocity of the longitudinal plate wave c(, which is given

by.
°2 v 2.59
‘/p(l-vz) \/ Cl (2.59)

At low frequency-thicknesses the zeroth antisymmetric mode may be interpreted as a flexural
(ie bending) wave. The Timoshenko-Mindlin approximation takes into account the transverse
shear and rotary inertia, the free flexural wave velocity cf as a function of frequency, being
given by Freedman (1978) as:

cé -%t—z(fd)z{l ; [gﬂz }{A[E—ﬂz(cﬂ-cf)-cg}= 0 (2.60)

The lower of the two roots of c¢ represents the ag mode almost exactly and the other root
represents the a; mode.

2.10.2 The zig-zagging wave model of Lamb waves

A great deal is known about transmission and reflection coefficients of incident waves at
boundaries. Therefore, it is sometimes useful from a practical NDT viewpoint to consider
Lamb waves as the resultant of bulk waves interacting with the plate boundaries.

The standard method of exciting Lamb waves is by an incident longitudinal wave on one of
the plate boundaries. This causes longitudinal and shear waves to propagate in the plate along
zig-zagging paths. Lehfeldt (1962) and Krautkrimer and Krautkrimer (1983) consider Lamb
waves in terms of bounded zig-zagging waves propagating within a plate. Assuming the bulk
waves are of infinite extent in the x and y directions Graff (1975) and Auld (1973) showed
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that Lamb waves may be derived by considering the reflection of longitudinal and shear

waves.

In section [2.6.1], shear horizontal dispersion curves were considered in terms of a
combination of plane shear horizontal waves travelling in a zigzag path within the plate.
However, in the case of vertically polarized waves, the waves within the plate will not always
be plane.

Consider for simplicity the situation when the Lamb wave phase velocity is always greater
than the longitudinal velocity. The resultant bulk waves within the plate will travel at either ¢;
or C», their phase velocities being equal. The combined effect of incident and reflected waves
throughout the plate thickness will be a sinusoidal stress variation typical of Lamb modes. The
incident angles (8;, 8,) of the longitudinal and shear waves have to be such that in
combination the boundary conditions are satisfied. As the frequency-thickness product is
increased from the critical value, the Lamb wave phase velocity (Fig. 2.5) will decrease from
infinity for all modes. In order to satisfy boundary conditions for a particular mode the angles
of incidence of the reflected bulk waves must increase, to satisfy Snell's law. At some
frequency-thickness value different for each Lamb mode, the incident angle of the longitudinal
wave will be 90° and the Lamb wave phase velocity will be equal to c;.

If the frequency-thickness product is further increased the longitudinal wave will become
inhomogeneous. This causes the particle displacements of the inhomogeneous longitudinal
wave to be localized near the surface. The effect is more pronounced the greater the phase
velocity retardation of the longitudinal wave, as described in section [2.7]. Displacements
through the depth of the plate will become almost entirely a function of the shear wave. As the
frequency-thickness product is further increased, the propagation direction of the shear wave
will rotate until in the limit of a half space, the shear wave will be travelling parallel to the
boundary. The displacement components of the symmetric and antisymmetric modes are a
function of the shear wave. In the body of the material the displacements will be parallel to the
z axis and the Lamb wave phase velocity will be equal to c,.

If Cp = V2 cq, for a particular material, the shear waves will travel at 45° to the z axis, the

Lamb waves for this case are pure shear waves, and are called Lamé wave.

Only the ag and sy Lamb modes have phase velocities which may be less than the bulk shear
velocity. The phase velocity of a; increases monotonically from zero to the Rayleigh velocity

as the frequency-thickness product is varied from zero to infinity. The wavenumbers of the
bulk waves that combine to form ag are imaginary in the low frequency-thickness limit, but as

the frequency-thickness product increases, the imaginary components of the wavenumber
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decrease. In the low frequency-thickness range, the phase velocity of s is greater than the

bulk shear wave velocity, and as the frequency-thickness product increases the phase velocity
of sy will decrease monotonically to cg.

2.10.3 Leaky Lamb waves

A Lamb wave propagating in a plate which is bounded by a liquid will leak some of its energy
into the liquid under steady-state conditions, in an analogous way to leaky Rayleigh waves.
NDT using Lamb waves, where immersion coupling is employed, makes this situation of
considerable practical importance.

As in the case of leaky Rayleigh waves, it is possible to compare the free plate with a plate
loaded by a liquid. For a fluid loaded plate the velocities of the leaky lamb waves may be
deduced from characteristic equations given by Plona et al (1975). These relations are
different from eqns 2.50 and 2.51 in that they have a term on the right-hand side, which
accounts for the liquid, where the influence of the liquid is a function of the liquid-solid
density ratio.

Assuming the density ratio to be small (less than 0.2), Viktorov (1970) shows that the phase
velocity of the leaky Lamb waves will be effectively the same as the Lamb wave velocity.

The attenuation of the leaky Lamb modes, due to energy leaking to the liquid is far more
pronounced than the velocity change, the attenuation being heavily dependent on the ratio of
vertical and horizontal surface displacements. For example, Viktorov (1970) shows that for an
aluminium plate at 1.02 MHzmm, s'y is attenuated by 77% over a distance of approximately
5\,, where A, is the shear wavelength, while the change in phase velocity is minimal. The
attenuation is greatest for those modes which have significant vertical displacement (w'g and
w'y) components.

In free plates the Lamb wave phase velocity is either real or imaginary. This follows from
energy considerations since no energy may be radiated to or from the surrounding space
(vacuum). The energy flux along the plate must be either constant or zero, which relates to
real or imaginary phase velocity. When the plate is bounded by a liquid then waves
propagating in the plate will generally leak energy to the fluid, which corresponds to complex
phase velocities.
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Therefore, if a free half space or plate is bounded by a fluid, the effect on the Rayleigh or
Lamb wave velocity is minimal and it will be assumed throughout the rest of the thesis that the
solutions derived for the wave velocity in a vacuum are applicable when fluid loading is
applied.

2.11 The effect of bounded waves

Hitherto the wave fronts have been assumed to be of infinite extent in both the x and y
directions, which implicitly allows steady-state conditions to be assumed. If we retain the
assumption of plane wave fronts, in real situations the wave will be bounded in the x and y
directions and be of a finite duration.

The amplitude of spatially bounded Lamb waves will decrease as the wave propagates in the x
direction, as energy is distributed spatially by the wavefront spreading out. As the wave
dimensions are increased from zero to infinity, the amplitude of the Lamb wave monotonically
increases from zero to infinity for a free plate, and to a steady-state amplitude for a fluid
loaded plate. Using the zig-zagging bulk wave model the amplitude of the Lamb wave in the
plate is finite because it will not be reinforced by the incident wave continuously in the x
direction, as is the case if a wave of infinite extent is assumed.

2.12 The excitation of Rayleigh and Lamb waves

In many NDT applications, Rayleigh or Lamb waves are produced by mode conversion of a
longitudinal wave incident at the boundary of the testpiece, piezoelectric transducers being
used to both excite and receive the waves.

A detailed account of resonant and nonresonant methods of exciting Rayleigh waves is given
by Viktorov (1970). Nonresonant methods excite all wave modes, while resonant methods are
discriminating and will theoretically only excite the Rayleigh wave. Resonance methods are
thus preferred in practical applications. The principles of exciting Rayleigh and Lamb wave
are analogous and will be dealt with together below. .

It is shown by Viktorov (1970) that Lamb waves may be excited in a plate by the introduction
of a stress system on the plate surface. The stresses on the plate may be induced by a
transducer in physical contact with the plate (solid coupling) or indirectly by an ultrasonic
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wave from a transducer which is not in contact with the plate (thin film and immersion
coupling).

The most commonly used technique to excite Lamb waves is by a longitudinal wave incident
on the plate surface at an oblique angle, as was used by Worlton (1961) to experimentally
confirm the exsistence ultrasonic Lamb waves by measuring their velocity. Maximum
transmission will occur at an angle of incidence such that the phase velocities of the incident
longitudinal wave and a Lamb wave coincide. Cremer (1942) called this the coincidence rule
and it is expressed by Freedman (1981) for immersion coupling as:

0, = sin'l(%) 2.61)

where Gp, is the coincidence angle of the required Lamb wave, Cp is the Lamb wave velocity
and cp, is longitudinal velocity in water. This allows Lamb waves to be selectively excited, by
varying frequency and 6,

The dispersion curves of Fig. 2.5 in terms of phase velocity may be replotted in terms of
incidence angle for water coupling, and this is shown in Fig. 2.9. The angle at which
maximum transmission and reception of acoustic energy will occur at a particular frequency-
thickness may be obtained from Fig. 2.9.

The excitation of Lamb waves by a finite sized transducer using the coincidence principle is
one example of the general method of the excitation of Lamb waves by a localised surface
driving force. This was first investigated theoretically by Lyon (1955) and subsequently
adopted by Viktorov (1970). Scalar and vector potentials which satisfy the wave equations
may be separatcd.into symmetric and antisymmetric components, and expressed as Fourier
integrals. Expressing the driving stresses in terms of these potentials and applying the
boundary conditions allows the integrals to be determined by the calculus of residues. The
motion of the plate in the z and x directions is shown by Lyon (1955) to be the sum of
eigenmodes. These modes represent the symmetric and antisymmetric motion of the plate, ie
Lamb waves.

In NDT applications it is the surface motion which is important as this is detected by
transducers. Viktorov (1970) expresses the surface motion of the plate in the z and x direction.
when subjected to a driving force as a function of three dimensionless factors. The first term
represents the dependence of the Lamb wave amplitude on the normal stresses. The second
factor demonstrates the coincidence requirement and its effect on the amplitude of the excited
Lamb waves. The surface amplitudes are a maximum when the coincidence rule (eqn 2.61) is
satisfied, and one Lamb mode is then predominantly excited. The last factor demonstrates the
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linear dependence of the maximum amplitude, on the spatial extent of the excitation zone. As
the spatial extent of the excitation zone increases the situation tends to that of an infinite wave
incident on the plate boundary.

Excitation at a point by a Dirac function of force will have a continuous and constant spectrum
both in the spatial and frequency domains and will excite all possible Lamb ;Jvaves. However,
the spatial and frequency domain bandwidths of real signals is always finite. Long tone bursts
may be used to reduce the frequency domain bandwidth, but the spatial or angular bandwidth
is generally dependent solely on the properties of the transducer. An expression for the
pressure field in the far field of a round ultrasonic transducer acting as a piston source is given
in Krautkrdmer and Krautkrimer (1983) The angular pressure distribution is shown in Fig.
2.10, from which it will be seen that the angular bandwidth may be reduced by increasing the
frequency or diameter of the transducer. Therefore, the acoustic energy will be distributed
over a finite region in Fig. 2.9, the position and dimensions of which are dependent on the
excitation signal and the properties and orientation of the transducer.

The ratio of the phase to group velocity n¢ of Lamb waves,

Ne =2 | (2.62)

is a measure of the degree of dispersion of a particular Lamb mode. The different frequencies
of a Lamb wave signature will travel at different velocities. In order to reduce the spread of
energy it is best to use of frequency-thickness values where 1 is a maximum (ie a point of

maximum or minimum group velocity), as dispersion is then in general a minimum.
2.13 Discussion

Rayleigh (1885) and Lamb (1917) first showed that propagating vibrational modes existed in
free elastic half spaces and plates respectively. In the last 30 years, Rayleigh and Lamb waves
have been applied increasingly to ultrasonic NDT applications.

Rayleigh waves are non-dispersive; their phase velocities are a function of Poisson's ratio of-
the solid and, strictly speaking, they exist only on a free half space. The amplitude of their
particle displacements decays exponentially in the z direction and is only significant at depths
of less than AR, and may be considered in terms of longitudinal and shear inhomogeneous

waves, propagating at equal phase velocities along the boundary.
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In practice, half spaces do not exist, and in many NDT applications a solid of finite thickness
is bounded by a fluid, on at least one surface. However, If the thickness of the solid is greater
than SAg, Viktorov (1970) shows that the zero order Lamb modes, ag and sg, will combine to
form a quasi-Rayleigh wave which is almost indistinguishable from the Rayleigh wave. It was
also shown that for liquid-solid density ratios of less than 0.2 the velocity of the leaky
Rayleigh wave does not differ by more then 1% higer than the Rayleigh wave velocity.

Lamb waves have dispersive phase velocities, which may be calculated as a function of the
frequency-thickness product from two characteristic equations given in section [2.10]. Lamb
(and Rayleigh) waves represent the eigen solution (eigenvalue and eigenvector solution) of
characteristic equations and for this reason they are sometimes referred to as normal modes.

The particle displacements of Lamb waves may be symmetric or antisymmetric with respect to
the middle plane of the plate and Lamb waves are identified as being symmetric or
antisymmetric. The strain field within the plate may be considered in terms of the
superposition of longitudinal waves of equal amplitudes propagating at angles 6, and (n—~8;)
to the plate normal, and shear waves propagating at 8, and (x —0,) to the plate normal, as
shown by Graff (1975). The resultant of all the waves interacting with the boundary must
satisfy the boundary conditions of zero stress.

Assuming a harmonic force of infinite extent in the x and y directions, equivalent to an
incident longitudinal wave incident at the boundary of the plate, when the coincidence rule is
satisfied, a free mode will be excited and its amplitude will tend to infinity if the amplitude of
the incident wave is finite. If the plate is bounded by a fluid then the Lamb wave amplitude
will be finite as energy will be continuously leaked to the fluid. However, it should be noted
that two conditions must be satisfied in order to excite only one Lamb wave by the
coincidence (resonant) method. Firstly, the frequency of the harmonic force must be identical
to the Lamb wave frequency being excited (assuming a plate of constant thickness). Secondly,
the spatial distribution of the amplitude of the force input, and hence stress on the plate
surface, must match the spatial distribution of the stress amplitude on the plate surface of a
particular Lamb mode. Therefore it is not possible to excite a pure Lamb wave with a finite
sized transducer. In practice the strain distribution on the surface of the testpiece produced by
the longitudinal wave from the transducer will not be identical to that of the Lamb wave
required in the plate, and all the Lamb waves that can be excited by the incident wave will in
general be excited simultaneously. However, in general if the excitation signal is applied for
sufficient time the response of the plate will be dominated by a single mode

It is extremely difficult to obtain the coincidence effect, as frequency and incidence angle have
to be absolutely correct and transducers have finite bandwidths in the angular and frequency
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domains. More importantly the pressure field produced by the transducer will not be plane
(see Krautkrdmer and Krautkrdmer 1983), and it will not exactly match the surface strain
distribution of one Lamb wave, which is a function of the frequency-thickness product.
Therefore, the mismatch of the the spatial distribution of the strain amplitudes (between that
produced by transducer and that of a Lamb mode) on the plate surface will cause other modes
to be excited. This may be considered in terms of the response of the plate to an arbitrary
forcing function, which will be the modal summation of all the propagating and
nonpropagating Lamb waves.

2.14 Conclusions

Rayleigh and Lamb waves represent resonance conditions in a half space and plates, and as
they are the solution to characteristic equations they are generally termed normal modes. There
are basically two methods of deriving the Rayleigh and Lamb wave equations. Firstly, as
special cases when bulk waves interact at the boundary of a half space or plate
(Brekhovskikh, 1980), or in terms of potentials associated with dilatation and distortion as
shown by Viktorov (1970).

Rayleigh waves are the limiting case of Lamb waves, and when 2d>5Ag, a, and s, will have
almost identical velocities and will be indistinguishable from the Rayleigh wave.

Strictly speaking Rayleigh waves exist on a free half spaces, and Lamb waves exist in free
plates. However, if the acoustic impedance of a loading fluid is small compared to the acoustic
impedance of the solid, than the leaky Rayleigh and Lamb wave velocities can be
approximated by the Rayleigh and Lamb wave velocities respectively.

Leaky Lamb or Rayleigh waves will not generally propagate over large distances as most of
their acoustic energy will be leaked to the surrounding fluid.

In order to excite one Lamb mode using the coincidence method (assuming constant plate
thickness), the frequency and the phase velocity of the incidence wave must match the
frequency and phase velocity of the Lamb wave required. The through-thickness mode shape
caused by the application of the excitation signal must also match the through-thickness mode
shape of the Lamb mode to be excited.
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Figure 2.1 Schematic representation of a plane wave approaching an interface.
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Figure 2.2 Schematic representation of the reflection of bulk waves from free boundaries.



Wave propagation and boundary interaction 42

Liqui

Figure 2.3 Schematic representation of the plate geometry and the coordinate system used.
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Figure 2.4 Lamb wave wavenumber dispersion curves for steel, where ¢1=5960 m/s and
¢2=3260 m/s.
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Figure 2.5 Lamb wave phase velocity dispersion curves for steel, where ¢1=5960 m/s and
¢2=3260 m/s.
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Figure 2.6 Lamb wave group velocity dispersion curves for steel, where ¢1=5960 m/s and
¢2=3260 m/s.
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Figure 2.7 The through-thickness deflected mode shapes of Lamb waves, where c; and ¢
are the same as in figure 2.4: .x direction displacements; ------- z direction
displacements. (a) ap at 0.5 MHzmm (b) sg at 0.5 MHzmm (c) ag at 1.63
MHzmm(d) s; at 2.98 MHzmm (e) ag at 15 MHzmm (f) sg at 15 MHzmm.
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Figure 2.8 The through-thickness stress mode shapes of Lamb waves, where c; and c; are

the same as in figure 2.4: .Oxx; -—===-- Ozz ; - - - - Oxz. () ap at 0.5 MHzmm
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Figure 2.9 Lamb wave coincidence angle (water cL.=1500 m/s) dispersion curves for steel,
where ¢1=5960 m/s and c2=3260 m/s.
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Figure 2.10 The theoretical pressure distribution generated by a one inch diameter transducer
acting as a piston source.



CHAPTER 3

The measurement of the properties of propagating Lamb modes

3.1 General

The key problem associated with the quantitative measurement of the characteristics of
propagating Lamb modes is that more than one mode can exist at any given frequency.
Excitation via transducers of finite dimensions inevitably means that all the modes possible at
any particular frequency of excitation are produced so it is not possible to separate the modes
simply by transforming from the time domain to the frequency domain. Also, since the
excitation will not be single frequency, dispersion will also be present leading to complicated
time domain signals. Therefore, the time history of the response of the plate is usually multi-
mode and dispersive. In such cases the shape of the Lamb wave response wave packet is
strongly dependent on propagation distance.

Conventional time domain methods of measuring the amplitudes and velocities of Lamb
waves generally require minimal signal processing and are often the easiest to apply. If the
time history of a wave packet consisting of a single mode can be resolved separately from
other wave packets in the time domain then its amplitude may be measured, and its group
velocity may be determined by measuring the time it takes to propagate between two positions
a known distance apart. Time domain techniques may be adopted to measure the amplitude
and velocities of ag and sg in low frequency-thickness regions (see Fig. 2.6) where only these
two propagating modes are possible and since their phase velocities are very different they
may be easily decoupled from one another by the orientation of the transducer.

When the time record is composed of a number of superimposed wave packets, it is not
usually possible to measure the amplitude or group velocity of individual Lamb waves.
Hence, many workers have used time domain correlation methods (for example Bartle 1987
and Avioli 1988), where the received signal is processed to obtain a signal envelope. Rose et
al (1983) have developed a method using a similarity coefficient, where the spectrum of
received signals is compared with a reference or good spectrum. However, none of these
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methods have been able to obtain reliable results at frequency-thickness products above the
cut-off value for the a; mode (1.63 MHzmm in steel).

Mal et al .(1988), Chimenti and Nayfeh (1985) and others have used a reflection coefficient
technique to measure the dispersion curves of leaky Lamb waves to determine material
properties. However, the relative amplitudes of the Lamb waves present (mode purity) cannot
easily be determined.

The first part of this chapter will briefly introduce standard spectral methods of measuring the
velocities of Lamb waves, when only one mode is present. Then a two-dimensional Fourier
transformation method will be presented, which can be used to measure the amplitudes and
velocities of Lamb waves when many propagating modes are present.

3.2 Frequency domain methods

Early investigations to detect different echoes in seismic signals deconvolved the time record
using a cepstrum analysis, which is a logarithmic conversion of the spectrum of the time
record (see, for example, Randall 1987). More recently, spectral methods developed by
Sachse and Pao (1978) have been used by, for example, Pialucha et al (1989) to measure
phase and group velocity by transforming the time domain data to the frequency domain,
where data interpretation may be easier. To measure the dispersion curve of an individual
Lamb wave we may Fourier transform the time record containing a series of echoes, from a
single position. Alternatively, the time records of the response of a plate at two or more
positions a known distance apart may be summed and Fourier transformed. The resulting
amplitude spectrum will have resonance peaks, from which the phase velocity of the Lamb
wave at discrete frequencies may be calculated using a relation given by Pialucha ez al (1989)

as,

c=L—f; n=1,2.. - (3.1)

where c is the Lamb wave phase velocity and L is the distance between the measurement
positions. If the echoes may be separated in the time domain, a phase spectrum method may _
be used in which two time records or echoes are Fourier transformed separately and a relation
given by, for example, Pialucha (1989) as

_ 0 (3.2)
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may be used to calculate the phase velocity, where A@ is the difference in the phase spectrum
of the two signals. Pialucha et al (1989) have measured the phase velocity of the longitudinal
wave in steel to an accuracy of better than 0.1% using spectral methods. The result of carrying
out a discrete temporal Fourier transform of a time history of the response of the plate is that a
plot of amplitude versus frequency is obtained but there is no information about which Lamb
modes are present. Because of the multi-mode dispersive nature of Lamb waves, and the
probability of more than one propagating mode being excited by broad band excitation
signals, amplitude and phase spectrum methods of measuring the dispersion curves are not
usually applied in frequency-thickness regions above 1.63 MHzmm.

3.3 The two-dimensional Fourier transform method

The two-dimensional Fourier transformation method (2-D FFT) discussed in this section is an
extension of the one-dimensional Fourier transformation method developed by Sachse and
Pao (1978) and is an alternative method of measuring the properties of Lamb waves. It
overcomes the problems of multiple modes and dispersion by transforming the received
amplitude-time records to amplitude-wavenumber records at discrete frequencies, where
individual Lamb waves may be resolved and their amplitudes measured. The major advantage
of the 2-D FFT method, which is of great importance in NDT applications, is that Lamb wave
amplitudes and velocities are measured. Propagation distances may be large and are limited
only by the signal-to-noise ratio.

Assuming a harmonic wave propagating in a plate with the coordinate system shown in Fig.
2.3, the displacement on the surface, u(x,t), from section [2.10] may be described by a
general analytic expression, *

u(x,t) = A(w) el(kx-0t-) (3.3)
where A(®) is a frequency dependent amplitude constant and 9 denotes the phase. :

From eqn 3.3 it may be seen that propagating Lamb waves are sinusoidal in both the time and
spatial domains. Therefore, the normalised amplitude of the steady-state response of a plate at
a given point on the plate surface as a function of time, for an individual Lamb wave would be
a single sinusoid as shown in Fig. 3.1(a), where T = 1/f, is the period of the wave. The
normalised amplitude of the steady-state response of a plate at a given instant in time as a
function of position on the plate surface would, again, be a single sinusoid, shown in Fig.
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3.1(b) for a single propagating mode, where A is the wavelength of the mode. Therefore, a
temporal Fourier transform may be carried out to go from the time to frequency domain, then
a spatial Fourier transform may be carried out to go to the frequency-wavenumber domain,
where the amplitudes and wavenumbers of individual modes may be measured.

Applying spatial Fourier methods in practice to data gained experimentally or numerically
requires us 1o carry out a two-dimensional Fourier transform of eqn 3.3 giving

4+ 00 + 00
HkH= | [Juyeilx+on dgxd (3.4)

The discrete two-dimensional Fourier transform may be defined in a similar way to the one-
dimensional DFT given in, for example, Newland (1984). The result of this transformation
will be a two-dimensional array of amplitudes at discrete frequencies and wavenumbers. As in
the one-dimensional case, aliasing must be avoided by sampling the data at a sufficiently high
frequency in time, and wavenumber in space. Window functions such as the Hanning
window may be used to reduce leakage, and zeros may be padded to the end of the signal to
enable the frequency and wavenumber of the maximum amplitude to be determined more
accurately. Details of the fast Fourier transform algorithm, aliasing, leakage, zero padding and
other effects associated with discrete Fourier transforms may be found in standard texts (see
for example, Press et al 1988).

The two-dimensional Fourier transform method is applied by carrying out a Fourier transform
of the time history of the response at each position monitored to obtain a frequency spectrum
for each position. At this stage, an array with the spectral information for each position in its
respective column is obtained. A spatial Fourier transform of the vector (row) formed by the
components at a given frequency then gives the amplitude-wavenumber-frequency
information. In practice a two-dimensional fast Fourier transform algoﬁthm (2-D FFT) may
be used. In contrast to the method developed by Sachse and Pao (1978) this method enables
the amplitude and velocity of different modes propagating at the same frequency to be
determined. ‘

3.4 Initial test of the spatial transform

The use of temporal transforms are well established but spatial transforms are less well known
in ultrasonics so it was decided to check the operation of the spatial transform to determine the
wavenumber content of signals. This was done using theoretically computed data of the
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essentially non-dispersive sp mode at 63.6 and 127.2 kHz in a 1.0 mm thick plate, where the
phase velocity was 5.45 km/s (see Fig. 2.5).

Let g(x) be the displacement of the surface of an infinite plate as a function of position due to a
harmonic travelling wave of phase velocity c, frequency ® and unit amplitude.Then

io
gx)=€eC " (3.5)

and a spatial Fourier transform of g(x) may be defined as

+ oo

Hk) = [gx)eikxdx (3.6)

- OC

or

+ oo
HEk) = [eik-Qxdx, -oo<x<oo (3.7)

- 0O

where Q=w/c. Therefore,

+ oo
Hk) = [e-ilx dx (3.8)

- OO
where { =k - Q, and
H(k) = 8(0) = 8(k-2) (3.9)
where 8 is the Dirac delta function. In practice, g(x) is in the form of sampled data and is
known at N points x,, where,
where,

x,=mdéx m=0,12,..,N-1

and Ox is the sampling interval, the amplitude at point m being g,,. Therefore, the discrete

transform corresponding to the continuous transform of eqn 3.6 is
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N-1
Ho= 3 gpei2rmn/N (3.10)

nmn=
The sampling wavenumber, kgam, and Ak, the resolution in wavenumber, are defined as

2% , ksam
k =— and Ak=—TF[— 3.11
sam = N (3.11)

The DFT produces estimates of the continuous Fourier transform at discrete wavenumbers
km, where

K ==S22  m=0,12,..N/2 (3.11)

A consequence of sampling continuous data at discrete intervals is that spatial aliasing may
occur if a sufficiently high spatial sampling rate is not chosen. The Nyquist wavenumber

k
Ky = 52 (3.12)

defines the critical sampling wavenumber. Another potential pitfall of DFTs is leakage, which
occurs if the amplitudes and slopes of the sampled signal are not the same at the start and end
of the sampled data. This may be reduced by windowing the data using, for example, a
Hanning window.

In the first example, the steady-state response of the sg mode, at 63.6 kHz was calculated at
64 equally spaced discrete positions within the spatial window 0 < x < 5) shown in Fig.
3.1(b), where A was 85.6 mm. Fig. 3.2(a) shows the result of carrying out a 64 point spatial
Fourier transformation of the resulting spatial record, where &x = 6.8 mm, kpy =462 m-! and
Ak = 14.4 m-1, In Fig. 3.2(a) the result of the spatial FFT is plotted in terms of amplitude
versus wavenumber at the single frequency (63.6 kHz) and is correct with a single peak atk =
71 m-1, the points relating to different wavenumbers being joined by straight lines. Fig.
3.2(b) shows the result of carrying out a spatial FFT, when the steady-state response of the sg
mode was calculated at 1024 equally spaced discrete positions within the spatial window 0 < x
< 100X, where the frequency was 63.6 kHz and 100\ = 8.56 m. Fig. 3.2(c) shows the result
of carrying out a 1024 point spatial FFT at 127.2 kHz, where the spatial record extended form
x = (0 to x = 4.28 m (ie over 100 wavelengths). In both Fig. 3.2(b) and (c) there is a single
peak at the correct wavenumbers of 73 m! and 147 m-! respectively. Fig. 3.2(b) also shows
that increasing the spatial extent of the record by twenty has increased the resolution (the
ability to identify different peaks close to one another) by twenty and confirms that resolution
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between closely spaced peaks is inversely proportional to the spatial extent of the sampled
records.

In practice the spatial extent of the sampled signal will not be an integer number of
wavelengths and leakage occurs, which cause sidelobes around the maximum value as shown
in Fig. 3.3(a), which was obtained by carrying out a discrete 256 point spatial FFT of 64
equally spaced positions within the spatial window 0 < x < 5.2A, where the frequency and
number of computed points points used was as in Fig. 3.2(a), and 192 zeros were padded to
the end of the spatial record. Again the correct wavenumber of 73 m-! was obtained, but the
sidelobes present could obscure the presence of other wavenumber components in the signal.
The leakage evident in Fig. 3.3(a) may be reduced by using a Hanning window function to
smooth the data as shown in Fig. 3.1(c). Fig. 3.3(b) shows the result of performing a spatial
FFT on the data used to produce Fig. 3.3(a), after applying a Hanning window to reduce the
effect of leakage. The Hanning window has reduced the amplitude of the sidelobes, but has
also broadened the peak significantly.

3.5 Conclusions

The tests on the spatial transform have shown that it can be successfully used to determine the
wavenumber content of signals and they have shown that standard techniques such as
windowing and zero padding are applicable.

The initial tests described in this chapter have only concerned the spatial Fourier transform at a
single frequency. In practice, many frequencies will be present so the full two-dimensional
transform will be required. This has being applied to the results of numerical modelling in
chapter 4 and 5 and to experimental data in chapters 6 and 7.
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Figure 3.1  (a) Steady-state response of an infinite plate, at a single frequency as a function
of time; (b) as a function of position in the x direction. (c) The steady-state
response in (b) modified by the application of a Hanning window.
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Figure 3.2 (a) Analytically calculated spatial FFT of the sgp mode in a 1.0 mm thick plate at
63.6 kHz, when the spatial record was related to sg at 63.6 kHz, which was
sampled at 64 equally spaced points over 5 wavelengths . (b) as in (a) but when
the spatial record extended from x = 0 to x = 8.56 m (100 whole wavelengths)
and a 1024 point FFT was used. (c) When the spatial record extended from x =
0 to x = 4.28 m (100 whole wavelengths), the frequency was 127.2 kHz and a
1024 point FFT was used.
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(a) Spatial FFT of the sp mode in a 1.0 mm thick plate at 63.6 kHz, when the
sampled spatial record was at 64 equally spaced points over 5.2 wavelengths and
a 256 point FFT was carried out, by padding the end of the spatial record with
192 zeros. (b) spatial FFT when the simple sinusoidal spatial record used in (a)
was modified by the application of a Hanning window function.



CHAPTER 4

Numerical modelling of propagating stress waves

4.1 An introduction to numerical modelling

For all but the simplest boundary conditions, analytical solutions of the partial differential
wave equations are at best very complicated, and at worst impossible. Therefore, rather than
carry out tedious and complicated analysis an approximate numerical approach may be
applied. Two numerical methods well known to engineers are the finite difference and finite
element schemes. These numerical modelling methods have become very attractive methods of
obtaining predictions of the behaviour of stress waves in a variety of situations of importance
in NDT, particularly with the advent of cheap and fast digital computers. These methods offer
idealized controlled conditions under which wave propagation tests may be carried out. It is
also possible to obtain information which cannot be measured in experimental situations, for
example, through-thickness stresses, strains and displacements. Consequently, numerical
methods have become very popular over the last few decades.

Both the finite difference and the finite element schemes transform the partial differential
equations which describe motion into a set of coupled ordinary differential equations of the
form

d2u

M87+KU=F 4.1)

in the absence of damping, where M is the mass matrix, K is the stiffness matri_x, u is the
displacement vector and F is a forcing vector. |

In this chapter theory relating to the finite difference and finite element numerical methods is.
presented. The results of an initial numerical investigation to validate the finite element
approach are presented, and the merits of the finite element and finite difference methods are
discussed. Finally, the results of finite element modelling of Lamb wave propagation and
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reflection from the end of plates are presented together with conclusions concerning the
usefulness of the numerical models.

In all of the numerical investigations reported here, plane strain conditions are assumed, the
material properties and coordinate system previously defined apply and temporal discretization
is carried out using a central difference scheme. In all the numerical modelling investigations,
free boundaries will be assumed unless otherwise stated.

4.1.1 The}finite difference method

Explicit finite difference (FD) schemes were the first numerical methods to be applied to solve
propagating stress wave problems, for example, by Bertholf (1967) and Alterman (1968).
However, finite difference schemes were not applied to NDT problems until the early 1970's
when investigators such as Harumi et al (1973) modelled the pressure fields created by real
transducers in the near field. More recently FD schemes have been used to model ultrasonic
wave scattering from impedance mismatches, by for example, Bond (1982), Saffari and Bond
(1983) and Harker (1985); and to study wave propagation in inhomogeneous material by
Temple (1988). Kriz and Gary (1989) have used FD methods to study wave propagation in
composites. Many standard texts are available which give detailed theoretical descriptions of
FD methods, for example and Smith (1985). Here only the essential aspects of the FD
methods will be discussed.

Finite difference methods work by transforming the differential form of the wave equations
for a continuum into a discrete set of algebraic equations in which the field variable (usually
displacement in the body node formulations used by most investigators) are defined at points
of intersection of the grid. The partial derivatives in the wave equations are approximated by
combining Taylor expansions (to a given accuracy, depending on the number of terms taken)
of a function defined over the grid. Most workers in the field who use FD schemes (for
example, Bond and his co-workers and Harker) employ algorithms which are derived from
the wave equations in their second order form (eqn 2.7 to 2.9). It is also possible to express
the problem in terms of coupled first order equations, using velocity and stress as the field
quantities (see, for example, Duncan 1985). '

The wave equations for a homogeneous, isotropic medium were given in eqn 2.7 to 2.9, and
assuming plane strain conditions reduce to

02 02 02 02
ﬁl =c2 87‘; +(2-ch) 3o+ ﬁ (4.2)
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02 02 82 02
a_t;v = 021 87121 + (021 - 022 ) axc';lz + 022 glzl (43)

The partial derivatives in the differential equations can be approximated by Taylor series
expansions. The forward Taylor expansion of the longitudinal component of the displacement
is '

o .. 02u A292y A393u AR gny
u(1+1,],k) = u(l,],k)+A—aT+Ta—xi+ﬁa?+ .t Hré;ﬁ (4.4)

where i,j,k are node indices, which have been dropped from the differential terms for clarity,
A is the mesh spacing and n is an integer. Rearranging terms and combining the above
expression with the backward Taylor series obtained in the same manner, gives the central
difference quotient

au _ u(1+ 1 ,j ,k)_u(i- 1 ,j ,k)
2A

+ 0(A2) (4.5)

&1
»

where the term 0(A2) represents the truncation error, ie the terms neglected in the Taylor series
expansion. It may be seen that the truncation error in the central difference quotient is of the
order of the grid spacing squared. Quotients for higher order and mixed derivatives may be
obtained in a similar manner, for example,

2 uli+1j0-2u(,jk)+ul-1jK)
ox2 A2

+0(A2) (4.6)

In most FD schemes employed to solve propagating stress wave problems the partial
differential equations are replaced by their central difference quotients resulting in a body node
formulation (in the form of eqn 4.1). However, in these formulations stress free boundaries
may not be modelled and in order to cater for boundary nodes in these schemes special surface
node formulations have to be developed. One example is the pseudo-node scheme (for details
see Blake, 1988) in which a row of imaginary nodes are placed just outside the free boundary,
the displacements of these nodes being altered to achieve a stress free boundary.

The spatial discretization error is a function of the mesh spacing and as the mesh spacing-is
refined, the FD solution converges to the exact solution in the absence of rounding errors.
However, in transient wave propagation problems the solution must also converge
temporally. To avoid spatial aliasing a single sinusoidal wave requires at least 2 nodes per
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wavelength to be represented. The theoretical percentage velocity error ce of the FD method
for a wave of velocity c, propagating in the x direction is given by Harker (1989) as,

R |
ce={ I‘% S sin! (C% sin & ) ) 1} 100 A7)

where N is the number of nodes per wavelength. If N is greater than eight, ce will be less than
0.5%, therefore, for an accurate solution more than eight nodes per wavelength is required.
Using a very refined mesh where N is very large only increases the computational cost
excessively.

Central difference quotients, derived in the same manner as eqn 4.6 are generally used to
obtain the temporal discretization in FD schemes. As the procedures are essentially the same
for FD and FE schemes their details will be presented later (see section 4.1.3).

4.1.2 The finite element method

The advent of cheap and fast digital computers has made finite element (FE) methods very
attractive for solving difficult and/or tedious engineering problems. It seems that FE methods
were first employed by Courant in 1945. Since then they have become remarkably popular
and over the last few decades they have been used to solve a variety of problems where there
are, for example, discontinuities in the boundary conditions, the system is geometrically
complicated or the the applied loading is complicated. In the FE method the system is first
divided into a finite number of elements of finite size, which are connected to one another at
nodal points, which are generally situated at the boundary of the element. A hypothesis of the
displacement field is made, enabling the kinetic and potential (strain) energies to be calculated
as a function of the nodal point displacements (assuming that there is no dissipation of
energy). The energy is then summed through all the elements and the generalized forces are
calculated using virtual work. Finally, Lagrange's equations are applied, which allow the
differential equation of motion of the assembly to be obtained. More details on the theoreﬁcal
basis of FE methods may be obtained in standard text books, for example Zienkiewicz (1971)
and Bathe (1982).

The finite element method reduces a problem of an infinite number of unknowns to one of a
finite number of unknowns by dividing the continuum (solution region) into finite elements
and expressing the unknown field variables (usually displacements for solid mechanics
problems) in terms of an assumed interpolation (shape) function within each element. This is
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generally a polynomial expression which may be easily differentiated. The interpolation
function is defined in terms of the field variables at the nodal points. The discrete nodal values
of the field variables can be used to express the continuous behaviour within each element,
and the full problem for the continuum is formulated by' summing the contributions from each
element.

Early investigators who used FE techniques for NDT applications include Alsop and
Goodman {1972} who investigated Rayleigh wave scattering and Smith (1975) who modelled
compression wave scattering. At present many investigators who employ numerical methods
to predict the characteristics of propagating stress waves are using FE methods. Indeed many
workers who previously used FD techniques are now turning to FE methods (for example,
Bond and his co-workers). Blake and Bond (1989) and You and Lord (1988) have used FE
methods to model the propagation and interaction of stress waves with impedance changes.
Ludwig et al (1988) have carried out tests to compare FE and analytical results. Recently some
workers in the field, for example, Datta and Shah (1987) have used a combination of FE and
analytical models, where a finite elements approach is used in discontinuous regions and is
coupled to an analytical model which applies in regions with constant geometries. These
coupled FE analytical models have been used to predict effect that defects (cracks) have on
propagating Rayleigh and Lamb waves.

The general expression for the strain energy of an element is
U= 1 tog d (4.8)
=5 |yetody .

where € and ¢ are the strain and the stress matrices respectively and the integral is over the
volume v of the element. The element stiffness matrix K, may be obtained by equating the
(internal) strain energy to the work done on the element by external forces.

Ke=ijtDde (4.9)

where B is a matrix relating strain and nodal displacements, D is a square symmetric matrix
which represents the material stiffness of the continuum, and the superscript t indicates the
transpose of the matrix.

The general expression for the kinetic energy of an element is

1
T=§J'vpv2dv (4.10)
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where V is a velocity vector. This may be related to the nodal displacement vector of the
element by means of the shape function matrix N. By substituting these expressions into the
above equation the following expression for the consistent mass matrix M, is obtained,

Me=jvatN dv (4.11)

The assembled global stiffness and mass matrices are the sum of all the element stiffness and
mass matrices, and are defined as

Q
K=Y K¢ 4.12)
i=1
and
Q
M= _ZlMe (4.13)
1=

respectively and Q is the number of elements.

The FE scheme employed in the work reported here used a central difference approximation,
which is explained in the following section, to obtain a time marching solution.

4.1.3 Method of temporal discretization

The finite element and finite difference spatial discretization procedures both result in a set of
coupled differential equations in the time variable (see eqn 4.1). The temporal discretization or
time marching may be achieved by using a finite difference approximation. Implicit or explicit
schemes may be employed, and details of various methods are given in, for example, Bathe
(1982). Some investigators have used a mixture of both in their work, notably Bond and co-
workers (see for example, Georgiou and Bond, 1985). |

In implicit schemes the modelled system is assumed to be in equilibrium at a given time in the
future and the displacements are obtained by solving the simultaneous equations. For more
details see Bathe (1982). The major drawback of implicit schemes is that a matrix of the order
of the number of displacements has to be inverted. This is a very restrictive condition when
the model is large. However, there is no critical time step when implicit methods are applied,
and the time step can in general be much larger than in explicit methods.
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Explicit central difference schemes are attractive because they enable numerical integration to
be performed with a minimum of information. They also have the largest stability region of
any second order algorithm, (Nickell, 1973). Explicit schemes do not require any matrix
inversions provided that a diagonal mass matrix is employed. In the work reported here only
explicit time marching methods were used as the models were too large for implicit methods to
be employed efficiently with the available computing resources. Explicit schemes assume that
the system is in equilibrium at the present time interval or step and use this and information
from the previous time step to compute the state of the system at the next time step. However,
the major disadvantage of this method is that it is only conditionally stable. Stability may be
defined in both FD and FE methods as the requirement that the growth of an initial disturbance
be bounded. Lax's equivalence theorem (see Smith, 1985) states that if a solution is stable,
this is generally a sufficient condition for convergence. Physically the restriction is that no
energy may be propagated through a mesh spacing in under a time step. The critical time t;
step may be defined for a regular mesh in FD schemes by a relation given by Alterman and
Loewenthal (1972) as,

o=—— (4.14)

‘\jC12 + C22

Therefore the time step At, must always be less than or equal to tc. This is a statement of the
Courant-Fredrichs-Lewy condition (Courant ef al, 1967).

Blake (1988) showed that the critical time step for a regular FE mesh of two-dimensional

elements is
A _
tc = EI (4.15)

These stability limits apply to square spatial grids and the critical time step for FE schemes is
greater than for FD schemes. Blake (1988) has shown that this is because the 'domain of
dependence’ in the FE method (effective A) is greater than in FD method. Physically, this is
so because the shape function in FE schemes relates the displacement of position (i,j) to the
displacement of position (i+1,j) and (i,j+1), which is not the case in FD schemes.

In FE schemes the acceleration derivative terms in eqn 4.1 are replaced with a central
difference time approximation similar to eqn 4.6 to obtain the following explicit algorithm

1 2M M
AR Mu(t) = F(t-At) - {K - A_tf} u(t-At) - A—t2u(t-2At) (4.16)
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by using the explicit central difference quotient

0%u _ u(t+At) - 2u(t) + u(t-At)
o2 At

+ o(At2) ’ (4.17)

where the error in the expansion is of the order of At2. Because M has to be inverted before
solving for u(t) in eqn 4.16 and the consistent mass matrix is not diagonal, the computation
requirement for problems with many degrees of freedom becomes very large. Alternatively the
consistent mass matrix may be diagonalised and its diagonal elements multiplied by a factor
such that

aM;i; if i=j
MH= . (418)
0 if i

q==bi=l (4.19)

and P is the number of element nodes. This produces a diagonal mass matrix such that,

[Mi]" = [1\7115] | (4.20)

where My is the diagonalised consistent mass matrix, which replaces the consistent mass
terms My; with its scaled nodal values. Using a consistent mass matrix My it may readily be
shown that eqn 4.16 reduces to

A2 } 4.21)

u(t) = R{ My

where R is the effective load vector and is equal to the right hand side of eqn 4.16. The.
computation can be started with initial conditions u(0) = 0 and u(-At) = 0, which implies that
the system is dormant before zero time. The disadvantage that only a diagonal mass matrix
may be used is generally not of importance because the accuracy of the solution may be
improved by refining the finite element mesh. In wave propagation problems the mesh is
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generally very refined to ensure that ce 20.5% for the slowest wave possible, therefore
diagonal mass matrices are almost always applied.

In practice, it is found (see Krieg and Key, 1973) that the lumped mass approximation works
well with the finite difference quotient used for the temporal discretization because errors in
the temporal and spatial approximations tend to cancel one another out. The advantage of
incrementing the FE solution temporally is that the computations may be calculated on an
element level. Although more numerical computations are carried using an element by element
approach this method is still much more efficient than using the global mass and stiffness
matrices if they cannot be held in RAM memory because the model has a large number of
degrees of freedom. This is because input-output operation are very slow, typical 20-30 times
slower than numerical operations; hence, slow input and output operations should be
minimised when the number of degrees of freedom of the problem are large. When all the
elements in the mesh are identical, it is more efficient to retain the element mass and stiffness
matrices in memory throughout the computations. Using the lumped consistent mass matrix
with a central difference temporal scheme thus enables very large FE models to be analysed
(see Moore et al 1988). In the FE tests reported in this thesis the analysis was carried out at
the element level by summing the force contributed from each element to obtain the effective
load vector. An explicit time marching procedure was used in all the tests.

4,1.4 Discussion

The FE and FD numerical methods may be used to model stress wave propagation problems.
Finite difference algorithms require less storage space than FE algorithms and are
considerably faster (in general more than ten times faster). However, the FE methods are
more flexible and will easily cope with stress free boundaries, which are common in almost all
NDT investigations.

Blake (1988) carried out an extensive comparison study between FE and FD techniques to
solve wave propagation problems and showed that the displacement errors when using FE
schemes were smaller than when a FD scheme was employed for the same mesh refinement.
Intuitively this could be deduced by recognising that the displacement functions in the FD
schemes are linear (therefore stress is constant between adjacent nodes), whereas in FE
methods the shape function usually is a higher order polynomial; most popular two-
dimensional elements used in FE analysis include terms which are a function of the square of
the node spacing. This results in linear stress variation throughout the element and the
truncation error is hence of the order of the node spacing cubed. Blake also showed that the
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critical time step for a regular mesh of two-dimensional elements is greater than in FD
schemes, therefore, the solution can be advanced more rapidly (ie the time step is increased);
this results in less computation, which reduces rounding errors.

In order to obtain an accurate solution the wavelength per node spacing ratio should be greater
than eight. However, too fine a mesh increases the number of arithmetic operations necessary
(At is reduced and to get to a particular future time there are more intermediate time intervals).
This increases the run time unnecessarily while only marginally reducing the predicted
velocity error. Excessively refined meshes also increase rounding errors significantly, bearing
in mind that the spatial and temporal truncation errors are of the order of the discretization the
intervals squared. Therefore, for most applications it is best to use mesh spacing where 8 <N
<20 and time steps close to the critical time step t.

4.2 Initial test case modelling investigations

4.2.1 Introduction

Initially since in the past most workers have used FD schemes for wave propagation problems
the numerical work was attempted using PR2D, a commercially available finite difference
package. However these results were not satisfactory and following the publication of Blake's
thesis, (Blake (1988) which reported detailed comparison tests of the FE and FD methods for
bulk and Rayleigh wave propagation and reflection it was decideded to carry out a comparison
study to verify his results. Crucially, Blake could not obtain stable Rayleigh wave propagation
along sloping boundaries using any FD scheme. This led to concern that it might not be
possible to obtain satisfactory results with the PR2D finite difference code as a high
proportion of the nodes in plates are at free boundaries.

Several test cases were run using both PR2D and Finel, a finite element package developed
at Imperial college (Hitchings 1987), where the propagation of pulses and sinusoidal tone
bursts in bars and plates, using plane strain models were used as verification and comparison
tests of the finite element and finite difference schemes. In each test case the correct velocities
were predicted. However, in the FD results there was considerable boundary node instability,
whereas the FE results were excellent and indicated that boundary node stability was not a
problem when using FE methods. In this respect the results were in agreement with those of
Blake's and showed that the surface displacement errors of the FD methods are greater than
those of the FE method. Moreover, the source of PR2D was not available at Imperial college
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and therefore, the implementation of new ideas into the program was not convenient. In
contrast, the Finel source code was available and this allowed for great flexibility and
program development, for example in the method of data input and output. The finite element
program Finel, was therefore used in all the following numerical studies, principally because
of the flexibility of FE methods to deal with different boundary conditions.

In all the FE modelling studies, ¢; and ¢y were the same values used to calculate the
dispersion curves of Fig. 2.4 and the density, p = 8000 kg/m3. Square meshes with a
constant distance A between nodes were used throughout to avoid spurious reflection from the
boundaries between adjoining elements. The time step At = B(A/c), where 0.8 < 3 < 0.9 was
used. In order to obtain a phase velocity error ¢, of less than 0.5% meshes in which the

wavelength per node spacing ratio was kept between 10 and 25 were used throughout.

In the following sections the results of finite element modelling investigations on a 0.5 mm
thick steel plate 200 mm long and a 50 mm thick steel block, which was 100 mm long will be
presented. These results were used to validate the FE model. Eight noded quadrilateral
elements were used, with a 0.5 mm square mesh and the FE predictions of the velocities of
propagating waves will be measured by using the time of flight between two points a known
distance apart.

4.2.2 Excitation signals

Two excitation signals were used in the initial tests a 5 cycle, 1.0 MHz sinusoidal tone burst
modulated temporally by a Hanning window function to limit the bandwidth and a a 5 ps
duration sine squared pulse. These are shown in Fig. 4.1(a) and (b) respectively. The
amplitude spectra derived from (a) and (b) are shown in (c) and (d) respectively, from which
it may be seen that smoothly varying the amplitude of the excitation signal in the time domain
limits the signal bandwidth.
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4.2.3 Finite element results of initial test cases

Steel block results

The steel block extended from 0 < x £ 100 mm and from -50 < z £ 50 mm and a plane strain
model was used so it was effectively infinite in the y direction. It was excited by applying the
input signal shown in Fig. 4.1(b) in the x direction at the single node at z = 0, x = 0. The
problem was therefore symmetrical about the z axis so only the region z > 0 was analysed, the
nodes at z = 0 being fixed in the z direction. A square 0.5 mm mesh was employed. Fig. 4.2
shows the amplitude of strain energy as a function of position 16 us after the application of
the excitation signal the amplitude being plotted vertically on the 3-D plot. This scale is linear
and is not shown for clarity. In Fig. 4.2 the longitudinal, shear and Rayleigh are clearly
visible and are marked L, S, and R respectively. Using the position of the wavefronts after a
known time interval the group velocities of the longitudinal, shear and Rayleigh wave were
calculated as 5.98, 3.28 and 3.03 km/s respectively. In the 3-D plot it may be seen that the
amplitude of the Rayleigh wave is greater than the bulk waves, since the energy of the bulk
waves spreads out two-dimensionally away from the source. This fact is of importance in
seismology were most of the damage caused by earthquakes is caused by the Rayleigh wave.

Steel 'plate' results

A further set of tests was carried out to check the velocity predictions obtained using the FE
program on an extremely simple system. This was a 0.5 mm thick steel plate with all the
surface nodes pinned in the z direction, the coordinate system being as defined in Fig. 2.3.
The 'plate’ was therefore effectively infinite in the y and z directions, so simple plane wave
propagation could be expected. A 0.5 mm square mesh was used and the plate was excited by
applying the signal shown in Fig. 4.1(a) in the x direction to all the nodes at x = 0. This
should excite the bulk longitudinal wave. Fig. 4.3 shows the response of the top surface of
the plate in the x direction at x = 100 mm. The shape of the waveform is the same as the input
shown in Fig. 4.1(a) indicating that the numerical scheme has not introduced dispersion.
Using the time of flight between the two monitored points the group velocity was calculated as
5.98 km/s.

The model was then amended by releasing the surface nodes in the z direction and pinning
them in the x direction. This should allow a pure shear wave to propagate along the 'plate’. A
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z direction displacement of the form shown in Fig. 4.1(a) was applied to each of the nodes at
x = 0 and the resulting predicted waveform at x =100 mm is shown in Fig. 4.4. Again, no
dispersion is evident and using the time of flight between the two monitored points the group
velocity was calculated as 3.28 km/s. '

In all the above cases, the FE predictions are excellent and the velocities differed from the
theoretically predicted ones by less than 0.5% confirming the applicability of the finite element
program FINEL.

4.3 Initial modelling of Lamb wave propagation

The modelling ultrasonic Lamb waves is problematic because,

. Dispersion is always present
. Gross dispersion is present near cut-off frequencies
. More than one mode always exists

. The velocity of ap may be less than the Rayleigh wave velocity
. The through-thickness deflected shape is a function of the frequency-thickness
product (see, Fig. 2.7(a) to ()

The velocity of the longitudinal velocity (c1), which is the fastest wave that can be propagated
in the plate, controls the computational time step that must be chosen so that a disturbance
cannot propagate through a grid spacing in under one time step, while the lowest phase
velocity, and hence the shortest wavelength, sets the maximum permissible grid spacing that
must be chosen so that spatial aliasing due to the finite element discretization does not occur. It
is adequate to keep the nodes per wavelength ratio between 10 and 25 to obtain errors in the
predicted velocity of less than 0.5%

Selective excitation of a single Lamb wave is in general not straightforward, because of the
reasons given above. In the results reported in this section an individual Lamb wave was
launched from the edge of the plate at x = 0 by applying the 5 cycle 1.0 MHz tone burst,
modulated by a Hanning window function to limit the bandwidth, which was shown in Fig.
4.1(a). The amplitude of the x and z displacement components at each node on the plate edge
was given by the through thickness deflected shape calculated for the required mode from
eqns 2.54 and 2.55, at the frequency-thickness product corresponding to the plate thickness
and the centre frequency of the tone burst. When the 2-D FFT method was used to compute
the properties of the propagating Lamb waves the time history of the response in the z
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direction on the plate surface at 64 equally spaced points in the x direction was recorded. In all
the studies the sampling frequency was 10 MHz.

In this section the results of finite element modelling investigations on 0.5 mm, 2.0 mm and
3.0 mm steel plates will be présented. These results will be used in particular to show how the
2-D FFT method may be used to quantitatively analyze Lamb wave signals. In all the
following FE investigations the boundary nodes were free.

4.3.1 Results of the initial modelling of propagating Lamb waves

Fig. 4.5(a) shows the normalised time histories of the response of the top surface of the 0.5
mm thick plate in the x direction at x = 100 mm, when the form of the input signal at x =0
was shown in Fig. 4.1(a) and was appropriate to excite only the sg mode. The shape of
response signal indicates that the propagating wave is almost nondispersive, and the group
velocity was calculated as 5.44 km/s using the time of flight between the two monitored
points. Fig. 4.5(b) shows the result of carrying out a two-dimensional Fourier transform on
the 64 monitored time histories between x = 100 mm and x = 163 mm when the spatial
sampling interval was 1.0 mm. The 2-D FFT results are presented in the form of a three-
dimensional plot of amplitude versus frequency and wavenumber. The amplitude scale is
linear and the units are arbitrary. (This scale is not shown to improve the clarity of the plot.)
At each frequency, the amplitude is only significant at a single wavenumber, indicating that
only one mode, in this case, s, is present. The amplitude reaches a maximum at a frequency
of 1.0 MHz which is the centre frequency of the excitation tone burst. A comparison of the 2-
D FFT results and the theoretically predicted wavenumber dispersion curve for s is shown in
Fig. 4.6. The numerical results are represented by squares and are the wavenumber-frequency
points at which the amplitudes in Fig. 4.5(b) are a maximum. The agreement is seen to be
very good, the maximum error in wavenumber being less than 0.5%.

Fig. 4.7(a) shows the normalised time history of the response of the top surface of the 2.0
mm thick plate in the x direction at x = 100 mm, when the form of the input signal at x =0
was shown in Fig. 4.1(a) and was appropriate to excite only sg. The response of the plate at x
= 100 mm shows that the propagating wave is grossly dispersive. Using the time of flight of
the arrival of the leading edge of Fig. 4.7(a) the maximum group velocity was calculated as’
5.1 km/s. It may be seen that the duration of the response signal has been increased
significantly by dispersion and it is difficult to determine if more than one propagating mode is
present. However it may be seen that the lower frequency components of the response are at
the front of the signal, indicating that their group velocities are higher (see Fig. 2.6 sg curve).



Numerical modelling of propagating stress waves . 74

Fig. 4.7(b) shows the normalised three-dimensional view of the amplitude wavenumber-
frequency information, which was obtained by carrying out a two-dimensional Fourier
transformation of the time histories of 64 equally spaced points from x =0 to x = 63 mm for
the case shown in Fig. 4.7(a). The maximum amplitude of the response of the plate is at 1.0
MH?z, which is the centre frequency of the excitation tone burst. At each discrete frequency in
Fig. 4.6(b) the amplitude reaches a maximum at only one wavenumber which corresponds to
the sy mode, showing that it is the only propagating Lamb wave.

The FE model of the 3.0 mm plate was 125 mm long. The input at x = 0 was of the form
shown in Fig. 4.1(a), and was appropriate to excite ag. Fig. 4.8(a) shows the amplitudes of
the applied displacements used to launch ag. The normalised time history of the response at x
= 50 mm is shown in Fig. 4.9(a). The shape of the response is very similar to the excitation
signal shown in Fig. 4.1(a). This indicates that ag is essentially nondispersive at this
frequency-thickness value and the maximum group velocity measured from the leading edge
of the signal was 3.27 km/s. Fig. 4.9(b) shows the normalised three-dimensional view of the
amplitude wavenumber-frequency information, which was obtained by carrying out a two-
dimensional Fourier transformation of the time histories of 64 equally spaced points from x =
30 mm to x = 67.8 mm. The maximum amplitude of the response of the plate is at 1.0 MHz,
which is the centre frequency of the excitation tone burst. At each discrete frequency in Fig.
4.9(b) the amplitude reaches a maximum at the wavenumber corresponding to a; and ag.
However, at the centre frequency of the excitation the response is almost pure ag and
throughout the frequency-thickness range the amplitude of the ag mode dominates the
response of the plate, the amplitude of the a; mode being less than 2% of the ag mode. Fig.
4.10 shows a comparison of the 2-D FFT results and the theoretically predicted wavenumber
dispersion curve, where the numerical results obtained from Fig. 4.9(b) relating to the ag
mode are represented by circles (the points relating to a; were obtained in a later test). The
agreement with the theoretical curve is excellent, the maximum error in wavenumber being
less than 0.5%.

The finite element model of the 3.0 mm thick plate when a; was launched at x = 0 was 125
mm long and the spatial sampling interval was 0.6 mm. Fig. 4.8(b) shows the amplitudes of
the applied displacements used to launch a; at x = 0. Again the input at x = 0 was a 5 cycle
1.0 MHz tone burst of the form shown in Fig. 4.1(a). The normalised time history of the
response at x = 50 mm is shown in Fig. 4.11(a), from which the maximum group velocity
measured from the leading edge of the signal is 3.84 km/s. The time history of the response of
the plate to the excitation at x = 0 changes shape as the wave packet propagates from x =0 to
x = 50 mm (see Fig. 4.1(a)), indicating that if the only propagating mode is a;, then it is
dispersive. Fig. 4.11(b) shows the results of carrying out a two-dimensional Fourier
transform on the time histories of 64 equally spaced points between x = 30 mm and x = 67.8



Numerical modelling of propagating stress waves 75

mm. Again, the maximum amplitude of the response of the plate is at 1.0 MHz, the centre
frequency of the excitation tone burst. At each discrete frequency in Fig. 4.11(b), the
maximum amplitude is seen at the wavenumbers corresponding to a; and ag, but in this case
the response is dominated by the a; mode, the amplitude of the ag mode being always less
than 2% of a;. Fig. 4.10 shows the comparison between the 2-D FFT results and the
theoretically predicted wavenumber dispersion curve, where the numerical results obtained
from Fig. 4.11(b) relating to the a; mode are represented by squares. Again the agreement
with the theoretical curve is excellent, the maximum error in wavenumber being less than
0.5%.

The finite element model of the 3.0 mm thick plate when ag and a; were launched at x = 0 was
125 mm long and the spatial sampling interval was 0.6 mm. The modes were launched by
superposing the displacement components shown in Fig. 4.8(a) and (b), and using the
method of excitation discussed above. Fig. 4.12(a) shows the normalised time history in the z
direction of the response at the surface of the plate at x = 50 mm. Again the input at x =0 was
a 5 cycle 1.0 MHz tone burst of the form shown in Fig. 4.1(a). The maximum group velocity
measured from the leading edge of Fig. 4.12(a) was 3.84 km/s, the group velocity of a,. Fig.
4.12(b) shows the results of carrying out a two-dimensional Fourier transform on the time
histories of 64 equally spaced points between x = 30 mm and x = 67.8 mm. Again, the
maximum amplitude of the response of the p'late is at 1.0 MHz, the centre frequency of the
excitation tone burst. At each discrete frequency in Fig. 4.12(b) there are two distinct
wavenumbers at which the amplitude is a maximum. These correspond to ag and a;. Hence,
there are two propagating modes and their relative amplitudes on the surface in the z direction
at 3.0 MHzmm was 1:0.65, the ratio of the two components of the displacements on the
surface of the ay and a; modes respectively. Fig. 4.12(c) was obtained from Fig. 4.12(b) and
shows the relative surface amplitudes in the z direction of the two modes ag and a; as a
function of the frequency-thickness product, from which it may be seen that the relative
amplitudes are a strong function of the frequency-thickness product. At each frequency-
thickness value in Fig. 4.12(c) the ratio of the two amplitudes is in good agreement (less than
2% difference) with the theoretically predicted ratios calculated using eqns 2.54 and 2.55.

The FE results have shown that the 2-D FFT method may be used to measure both the
velocity and the amplitude of propagating Lamb waves when more than one mode is present
and the 2-D FFT method has being used to determine mode purity very accurately in FE
modelling studies. .
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4.4 Further modelling of propagating Lamb waves

Careful inspection of the three-dimensional plots shown in Fig. 4.9(b) and Fig. 4.11(b)
reveals that the modes were only pure at the centre frequency of the imposed excitation signal.
This is to be expected as the imposed displacement deflected shapes shown in Fig. 4.8(a) and
(b) were correct only at 3.0 MHzmm and as may be deduced from eqns 2.54 and 2.55 the
mode shapes are slightly different either side of this frequency-thickness product. Hence, the
frequency dependence of the mode shapes means that excitation signals of the form shown in
Fig. 4.1(a) will generally excite more than one mode away from their centre frequencies. Pure
ag and sy modes may be excited at frequency-thickness products below the frequency
thickness products of the first non-zero propagating modes a; and s; respectively if the input
signal is symmetric in the x direction and antisymmetric in the z direction for sy and vice versa
for ag. '

In order to excite a pure Lamb wave two conditions have to be simultaneously satisfied.
Firstly, the frequency of the harmonic excitation signal must be identical to the Lamb wave
frequency being excited and secondly, the variation of the excitation with z at the excitation
position (x = 0 in the tests reported here) must correspond to the exact mode shape of the
Lamb wave being excited. Assuming a single frequency input, the required excitation f(z,t) is
of the form

f(z,1) = B(z) &'t (4.22)
and ®(z) = [u,w]" may be calculated from eqns 2.54 and 2.55.

However, in almost all modelling applications single frequency excitation is not desirable or
possible, for example in explicit time marching FE methods the duration of the input signal
has to be finite. It is therefore very advantageous to be able to excite single modes with a
wideband excitation signal f(t). This can be achieved by summing the required inputs over a
range of frequencies. For a single frequency component @, the required input is

fi(z,t) = Dj(z) €'} (4.23)

If all the significant energy components in the excitation signal are over a range of frequencies
from j =1 to k then

Fk o
f(z,t) ="y, @j(z) Aje'® (4.24)
Fl
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where,
=k ¢ r
Aj = A) = [ty et ar (4.25)
=1 -0

Here, A(®) is the complex amplitude of the Fourier transformation of the excitation signal (t),
where in the tests reported here f(t) was a tone burst modified by a Hanning window. Fig.
4.13(a) to (f) were calculated using eqn 2.24 and show the x and z direction deflected shape
time histories of the ag mode, when f(t) was the 5 cycle 1.0 MHz tone burst shown in Fig.
4.1(a), and the time histories are for z/2d = 0, 0.5, and 1.0 respectively.

The finite element model of the 3.0 mm thick plate was 125 mm long, the spatial sampling
interval was 0.6 mm and the input signal corresponded to the time histories shown in Fig.
4.13. The time history of the response at the surface of the plate in the z direction at x = 50
mm is shown in Fig. 4.14(a), from which the maximum group velocity was 3.27 km/s. The
time history of the response of the plate to the excitation at x = 0 is almost the same as the
response shown in Fig.4.9(a) apart from the fact that in this case the amplitude has not been
normalised to a maximum of 1.0. It may be seen that shape of the wave packet is almost
unchanged from x = 0 to x = 50 mm (see Fig. 4.13(d)), indicating that if the only propagating
mode is a,, then it is nondispersive. Fig. 4.14(b) shows the results of carrying out a two-
dimensional Fourier transform on the time histories of 64 equally spaced points between x =
30 mm and x = 67.8 mm. Again, the maximum amplitude of the response of the plate is at 1.0
MHz, the centre frequency of the excitation tone burst. At each discrete frequency in Fig.
4.14(b), the maximum amplitude is seen at the wavenumber corresponding to ag, and in
contrast to Fig. 4.9(b) no other maximum is seen, indicating that ay is the only propagating
mode. The amplitude of the agmode is over 40 dB above the 'noise floor' in Fig. 4.14(b)
over the full bandwidth of the excitation signal, which was from 0.65 to 1.35 MHz (20 dB
down points from the centre frequency of 1.0 MHz). Since no other modes are present in Fig.
4.14(b), it shows that in numerical studies, pure Lamb waves may be launched successfully
in frequency-thickness regions where many modes with complicated mode shapes exist. This
is of great importance in NDT, where for example, the sensitivity of individual Lamb waves
to different defects may be studied separately. This method of exciting Lamb waves in the
numerical investigation was hence adopted in all the FE investigations that follow.
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4.5 The modelling of Lamb wave reflection from the free end of a plate

The finite element models used in the investigation of Lamb wave reflection from the free end
of the plate were 3.0 mm thick and the material properties were the same as in the previous
finite element studies. In the results reported below the 2-D FFT method will be used to
quantitatively measure the amplitudes of Lamb waves after reflection from plane and stepped
edges of plates.

4.5.1 Results of Lamb wave reflection from the plane edge of a plate

In any real plate a propagating wave will strike an edge, where the boundary conditions must
be satisfied. The simplest case is that of a single Lamb wave propagating in a semi-infinite
plate incident on the free end of the plate, the end being normal to the upper and lower plate
surfaces. From eqns 2.56 and 2.57, 6xx and 0 are even functions of kg whereas Gy is an
odd function; therefore, a simple reflection of the incident wave (corresponding to a change in
sign of kg) will not satisfy the zero stress boundary conditions. Therefore, all the propagating
(real roots of the Rayleigh-Lamb equation) and the nonpropagating modes (imaginary or
complex roots of the Rayleigh-Lamb equation) have to be considered and the acoustic energy
of the incident mode will in general be divided between all the possible propagating modes.
From the displacement equations, wg is an odd function of z and w, is an even function,
therefore on reflection a symmetric mode cannot be mode converted to an antisymmetric mode
and vice versa. For all modes, when ¢ = 2 Vca, the Lamb wave degenerates to the Lamé
wave, which only has one component of stress, and is therefore totally reflected at the free
edge.

Gazis and Mindlin (1960) were the first to consider the nonpropagating modes in their
theoretical analysis of the reflection of the first propagating symmetric mode. Auld and Tsao
(1977) used the variational principal to obtain upper and lower bound solutions and more
recently Zhang et al (1988) have used the principle of least squares in a series expansion to
calculate the reflection coefficients of Lamb waves from the edge of a plate.

The theoretical analysis derived by Torvik (1967) was used to calculate the theoretical results”
presented here. In his analysis, solutions to the Rayleigh-Lamb equations (propagating and

nonpropagating Lamb modes) are used as elements of an expansion, in which the modes are

combined to satisfy the normal and shear stress boundary conditions. This allows the stress

and displacements within the plate to be determined.
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It was decided to study the reflection of the ag and a; modes from the free end of a plate when
the frequency-thickness value was between the cut-off values of a; and ay. Fig. 4.15(a)
shows the ratio of the energy in ag and a; in the signal reflected from the end of the plate to
that of the energy in the indent wave when this was a pure ag mode. Fig. 4.15(b) shows the
corresponding plot when the incident wave was a pure a; mode. The theoretically calculated
points are represented by a continuous line and illustrate the reciprocal nature of the energy
reflection coefficients of propagating Lamb waves.

Fig. 4.16(a) shows the normalised time history of the response of a 125 mm long finite
element model at x = 50 mm, when the input at x = 0 was appropriate to excite only ag. The
duration of the test was long enough to include the response of the plate after reflection from
the end of the plate. When t < 40 s the response is identical to that of Fig. 4.14(a), aj is
essentially nondispersive and the maximum group velocity is 3.27 km/s. On reflection from
the end of the plate (t 2 40 us) more then one propagating mode is present (a, is mode
converted), but the modes are superimposed and their amplitudes cannot be determined from
the time history of the response of the plate. Fig. 4.16(b) shows the result of carrying out a
two-dimensional Fourier transform on the time histories of the 64 equally spaced positions
from x = 30 mm to x = 67.8 mm, when the incident signal (t < 40 ys) was gated out. The
maximum amplitude of the response of the plate is at 1.0 MHz, which is the centre frequency
of the excitation tone burst. However, at each discrete frequency in Fig. 4.16(b) there are two
distinct wavenumbers at which the amplitude is a maximum. These correspond to ag and a;.
Hence, there are two propagating modes and the amplitudes of the two modes are a function
of frequency.

The amplitudes of aj and a;, seen in Fig. 4.16(b) depend not only on the reflection
coefficients of the waves at the end of the plate, but also on the frequency content of the
excitation tone burst and on the amplitude of the z component of the deflected shape compared
with the x component (only the z component is monitored). In order to be able to compare
these results with analytically calculated reflection coefficients, it is necessary to normalise the
amplitudes by dividing by the theoretically calculated z component at the surface. The
reflection coefficients are then obtained in the normal way by dividing the response by the
input. In Fig. 4.15(a) the amplitude of the relative energies in the two modes calculated from
the data of Fig. 4.16(b) is represented by squares. The agreement between the numerical
results and theoretical predictions obtained using the theoretical approach described by Torvik
(1967) are excellent, the maximum difference being less than 2%.

Fig. 4.17 shows the normalised time history of the response of a 125 mm long finite element
model at x = 50 mm, when the input at x = 0 was appropriate to excite only a;. The duration
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of the test was long enough to include the response of the plate after reflection from the end of
the plate. When t < 40 ps the response is almost identical to that of Fig. 4.11(a), a; being
dispersive with a maximum group velocity of 3.84 kmy/s. On reflection from the end of the
plate (t = 40 ps) a; is mode converted and more then one propagating mode is present after
reflection. Again the modes are superimposed and their amplitudes cannot be determined from
the time history of the response of the plate. The amplitude of the relative criergies in the two
modes represented in Fig. 4.15(b) by squares was calculated by carrying out a two-
dimensional Fourier transformation of the time histories of the 64 equally spaced positions
from x = 30 mm and x = 67.8 mm, when the incident signal (t < 40 ps in Fig. 4.17) was

gated out. Again, the agreement with the theoretical curve is excellent.’

The FE and theoretical results illustrate the reciprocal nature of the energy partition of
propagating Lamb waves on reflection from a plane edge. For example, when a is incident at
a frequency-thickness product of 2.5 MHzmm the fraction of energy in the ag mode after
reflection is 0.18 and that in and a; is 0.82; If a; is incident, the fraction of the energy in a
and a; is 0.82 and 0.18 respectively.

4.5.2 Results of Lamb wave reflection from a stepped edge in a plate

A 1.0 mm thick plate 126 mm long was used in all the finite element tests reported in this
section. The geometry of the symmetric and non-symmetric (with respect to the middle of the
plate), steps at the end of the plate at x = 120 mm are shown in Fig. 4.18(a) and (b), where
the length of the step L = 6 mm = A}, the wavelength of the longitudinal wave, c;. In all the
tests reported in this section the input at x = 0 was appropriate to excite only s, the sampling

frequency was 10 MHz and the sampling interval was 0.625 mm.

Fig. 4.19(a) and (b) show the normalised time history of the response of the plate in the x
direction at x = 75 mm and 95 mm respectively, The duration of the test was long enough to
include the response of the plate after reflection from the symmetrical step shown in Fig.
4.18(a) located at the end of the plate. When t < 26 ps the response is that of sg'only. On
reflection from the end of the plate, t 2 26 ps, the signal is complicated and the identity of the
mode(s) present cannot be determined solely from the time history of the response of the plate
at one position. Fig. 4.20(a) shows the result of carrying out a two-dimensional Fourier
transform of the time histories of 32 equally spaced positions from x =75 mm to x = 95 mm,
when the incident signal (t < 26 ps) was gated out. The maximum amplitude of the response
of the plate is at 1.0 MHz, which is the centre frequency of the excitation tone burst and at
each discrete frequency in Fig. 4.20(a) there is one wavenumber at which the amplitude is a
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maximum. This corresponds to s(, confirming that, as expected, on reflection from a
symmetric step, no mode conversion between s and ag occurs. Therefore, from Fig. 4.19(a)
and (b) it may be seen that the two superimposed disturbances, are travelling at the same
velocity because the shape of the reflected wave packet does not change, and are both the s
mode, reflected from the shoulder of the step and the free end. Fig. 4.20(b) shows the
reflection coefficient of the sy mode, plotted as a function of the frequency-thickness product
and was obtained in the normal way by dividing the response 2-D FFT by the input 2-D FFT.
This is unity at all frequencies confirming that the signal is totally reflected and no mode
conversion has occurred.

Fig. 4.21(a) and (b) shows the normalised time history of the response of the plate in the x
direction at x = 75 mm and 90 mm respectively, when the input at x = 0 was appropriate to
excite only sq. The duration of the test was long enough to include the response of the plate
after reflection from the step shown in Fig. 4.18(b), located at the end of the plate. When t <
26 ps the response is that of sg only. On reflection from the end of the plate, t = 26 ps, the
signal is again more complicated. By comparing the responses shown in Fig. 4.21(a) and (b)
it may be seen that the two superimposed disturbances are travelling at different velocities
because the shape of the reflected wave packet changes, and are therefore sq and ag, ag being
caused by mode conversion at the end of the plate when s interacted with the step. Fig. 4.22
shows the result of carrying out a two-dimensional Fourier transform of the time histories of
64 equally spaced positions from x = 75 mm to x = 95 mm, when the incident signal (t <26
Ks) was gated out. The maximum amplitude of the response of the plate is at 1.0 MHz, which
is the centre frequency of the excitation tone burst and at each discrete frequency in Fig. 4.22
there are two wavenumbers at which the amplitude is a maximum. This correspond to sy and
ag hence, on reflection from a non-symmetric step, there is in general mode conversion
between sg and ag, in which the relative amplitudes of the two modes is strongly frequency-
thickness dependent.

4.6 Conclusions

Both FD and FE schemes may be used to model stress wave propagation problems accurately.
However, FE methods are more accurate and flexible and most importantly free boundaries
are readily accommodated by FE scherhes, whereas in the FD 'body node’ formulations”
special boundary node routines have to be incorporated to deal with free surfaces. Blake
(1988) has shown that even with some of the most sophisticated boundary node routines FD
schemes still exhibited numerical stability problems coping with models of Rayleigh waves



EI Numerical modelling of propagating stress waves 82

propagating along sloping boundaries. As numerical models of plates have a high proportion
of surface nodes FE schemes are preferred.

A finite element scheme using an explicit central difference temporal discretization scheme and
a diagonal mass matrix was employed in all the numerical tests, enabling large FE models to
be solved using an element by element approach. Wavelength per node spacing ratios of
between 8 and 20 gave results in which the predicted velocity error was always less than
0.5%, which was accurate enough for the purposes of this investigation.

The 2-D FFT method can be used to measure the amplitudes and velocities of Lamb waves
over a wide range of frequencies and phase velocities in a single test. It has been shown in a
number of FE tests that this technique may be used when there is multi-mode propagation
and/or dispersion.

A method has been developed to excite a single Lamb mode in FE investigations using
broadband input signals. This is important as it will facilitate the modelling of the interaction
of individual modes with defects in NDT application. This will allow Lamb wave interactions
with defects to be investigated quantitatively.

The reflection of Lamb waves reflected from plane and stepped edge was modelled
successfully using the finite element method. Quantitative results of the amplitude of the
reflected waves were obtained using the 2-D FFT method.
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Figure 4.1 (a) Time history of the 5 cycle 1 MHz tone burst used in the numerical tests. (b)
Time history of the 5 us duration sine squared pulse used in the numerical test.
(c) Amplitude spectrum of the time history shown in (a). (d) Amplitude spectrum
of the time history shown in (b).
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Figure 42 Normalised 3-D plot of a snapshot of strain‘energy distribution in a steel block

as a function of position 16 ps after the application of the sine squared pulse at
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Figure 4.3 Predicted time history at x = 100 mm, when the input at x = 0 was designed to
excite only the longitudinal wave cj.
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Figure 4.4 Predicted time history at x = 100 mm, when the input at x = 0 was designed to
excite only the shear wave c3.
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Figure 4.5 (a) Predicted time history at x = 100 mm in a 0.5 mm thick plate when the input
at x = () was designed to excite only sg. (b) Normalised 3-D plot of the 2-D FFT
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Figure 4.6 A comparison of the finite element predictions with the analytically generated
dispersion curves for sg: analytical predictions; (2] finite element
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Figure 4.7 (a) Predicted time history at x = 100 mm in a 2.0 mm thick plate when the input
at x = 0 was designed to excite only sg. (b) Normalised 3-D plot of the 2-D FFT
results of the case given in (a), showing a single propagating mode, sg.
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Figure 4.9 (a) Predicted time history at x = 50 mm in a 3.0 mm thick plate when the input at
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Figure 4.10 A comparison of the finite element predictions with the analytically generated
dispersion curves for ag.and aj: analytical predictions; @ finite element
predictions for aj,[*Ifinite element predictions for aj.
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Figure 4.11 (a) Predicted time history at x = 50 mm in a 3.0 mm thick plate when the input at
x = 0 was designed to excite only aj. (b) Normalised 3-D plot of the 2-D FFT
results of the case given in (a).
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Figure 4.12 (a) Predicted time history at x = 50 mm in a 3.0 mm thick plate when the input at
x = 0 was designed to excite ag and aj. (b) Normalised 3-D plot of the 2-D FFT
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plate. —— theoretical predictions using the method of Torvik (1967); ©
numerical results. (a) when only ag was incident, (b) when only a1 was incident.
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Figure 4.16 (a) Predicted time history at x = 50 mm in a 3.0 mm thick plate, showing the
first passage of the ag wave and the reflection containing both ag and aj from the
free end of the plate, when the input signal at x = 0 was designed to excite only
ag. (b) Normalised 3-D plot of the 2-D FFT results from the reflected wave

packet shown in (a).
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Figure 4.17 (a) Predicted time history at x = 50 mm in a 3.0 mm thick plate, showing the
first passage of the aj wave and the reflection containing both aj and ag from the
free end of the plate, when the input signal at x = 0 was designed to excite only
aj.
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Figure 4.18 Schematic representation of the geometry of the steps at the end plate. (a)
symmetric step (with respect to the middle of the plate) and (b) non-symmetric
step (with respect to the middle of the plate).
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Figure 4.19 Predicted time history of the 1.0 mm thick plate when the input signal at x =0
was designed to excite only sg, showing the first passage of the sy wave and the
wave packet reflected from the free symmetric step at the end of the plate. (a) at x
=75 mm and (b) at x =95 mm.
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Figure 4.20 (a) Normalised 3-D plot of the 2-D FFT results of the case shown in Fig. 4.19

when the incident wave (t £ 26 {s) was gated out. It shows that the signal
reflected from the symmetric step contains only one propagating mode sg. (b)
Predicted reflection ratio of the so mode as a function of frequency-thickness in
the 1.0 mm thick plate after reflection from the symmetric notch.
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Figure 4.21 Predicted time history of the 1.0 mm thick plate when the input signal at x = 0

was designed to excite only sg, showing the first passage of the sg wave and the
wave packet reflected from the free non-symmetric step at the end of the plate.
(a) at x =75 mm and (b) at x =95 mm.
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Figure 4.22 Normalised 3-D plot of the 2-D FFT results of the case shown in Fig. 4.21

when the incident wave (t £ 26 us) was gated out, showing that the signal

reflected from the non-symmetric step contains two propagating modes sg and
ag.



CHAPTER §

Finite element modelling of Lamb wave interaction with idealised
defects

5.1 Objectives and introduction

The problem of Lamb wave interaction with arbitrary defects is extremely complicated and for
all but the simplest boundary conditions analytical solutions are not feasible. For details on the
application of analytical methods to solve wave scattering problems, see Merkulov and
Rokhlin (1970), Auld and Tsao (1977) and Harker (1989). In the majority of cases in
nondestructive testing and monitoring of plates we are interested in defects above a critical
dimension, which in many situations is of the order of 10 to 50% of the plate thickness. It has
been pointed out by, for example, Bond et al (1984) that in the frequency-thickness regions
where defect dimensions and wavelength are comparable, analytical methods break down
altogether, or are extremely restrictive. Therefore, most of the work to predict Lamb wave
defect interaction has been carried out numerically. For example, Al-Nasser and Datta (1990)
have presented numerical predictions of Lamb wave scattering from surface breaking cracks in
plates using a combination of finite element and analytical models while Harker (1985) and
Georgiou and Bond (1985) have modelled Lamb wave interacting with cracks in plates using
finite difference methods.

The finite element (FE) modelling investigations reported in this chapter were undertaken to
predict the sensitivity of symmetric and antisymmetric Lamb waves to simulated defects. The
aim of the FE modelling studies was to quantitatively characterise Lamb wave defect
interactions in terms of the wave mode, (symmetric or antisymmetric), mode order and
frequency-thickness product.

In real structures or components defects are arbitrary in geometry, size, orientation and
position within the plate. However, in the finite element studies reported here, straight sided
notches in steel plates will be investigated as they are a reasonable idealisation of a type of
defect (cracks) commonly found in engineering structures. Schematic diagrams of the FE
- model used and details of the notch geometry are shown in Fig. 5.1. The model allows

-104 -
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variation of depth, width, position and angle with respect to the normal to the plate surface.
However, in a large number of applications very thin cracks, for example, fatigue cracks,
which are initiated at free surfaces and grow in a direction normal to the surface are of primary
importance. Therefore, surface breaking, straight sided notches of a constant width running
normal to the plate surface were used in most of the FE predictions reported here. This was
also the simplest simulated defect to machine in the 3.0 mm thick steel plates used in the
experimental investigations that will be reported later, so the predictions could readily be
verified experimentally.

All the modelling was carried out using 4 noded quadrilateral elements and a uniform square
mesh with more than 10 nodes per wavelength, which proved to be adequate. The bulk wave
velocities, ¢ and ¢ used in the FE models were the same values as used in the Lamb wave
dispersion curves for steel presented in chapter 2 (see Fig. 2.4 to 2.6) and the density, p was
8000 kg/m3. The two-dimensional Fourier transformation method (2-D FFT) developed
during the project and presented in chapter 3 was used to analyse the response of the plate.
The sensitivity of individual Lamb modes to different defects was studied separately, by
launching individual modes from the edge of the plate using a method developed during this
thesis, and described previously in section [4.4].

A 10 cycle tone burst modified by a Hanning window was used in all the tests reported in this
section, and in each case energy was available over a narrow range of frequencies 0.8fo < f =
1.2f( (40 dB down points), where f( was the centre frequency of the tone burst.

Most of the results presented in this chapter are of Lamb wave interaction with straight sided
notches in steel plate, where the width of the crack was 0.5 mm. However, predictions
showing the effect of varying the width, and orientation of the notch are also presented. The
FE studies concentrated on the prediction of the transmission amplitudes of Lamb waves after
interaction with a defect, as only transmission experiments were undertaken, though, in
several cases the reflection amplitude ratios of Lamb waves are presented for completeness.
Conclusions based on the FE predictions and relating to the best way of utilising Lamb waves
in NDT and monitoring are also presented.
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5.2 Lamb wave interaction with straight sided notches

5.2.1 Modes and frequency-thickness regions used

Since thin cracks are the defects which are of most interest in NDT, the critical dimension in
Fig. 5.1(a) is the depth (h) of the notch. The majority of the tests reported below were carried
out to investigate the sensitivity of the antisymmetric and symmetric modes a;, a; and s, to
notches of varying depths. The principal reason for using the a; and'sy; modes was that they
can be readily excited and received experimentally at low frequency-thickness products, where
their group velocities are a maximum. The a; mode was chosen in order to obtain predictions
for a non-zero order mode in a dispersive region. The FE studies were conducted in two
frequency-thickness regions, which are labelled on the group velocity ’dispersion curves for
steel shown in Fig. 5.2, from which it may be seen that the modelling was carried out away
from the cut-off frequency-thickness value of a; where dispersion is a maximum. The FE
predictions are presented in terms of the Lamb wave amplitudes as a function of the
frequency-thickness product and the Lamb wave amplitudes as a function of notch depth at
particular frequency-thicknesses, this being the more useful format in NDT applications.
Here, the emphasis is on the practical applications of Lamb waves in NDT, therefore, the time
histories of the response of the FE models in the z direction on the plate surface are recorded,
as this is the component of displacement measured when immersion or grease coupling is
used.

5.2.2 Lamb waves ajp and sg at 0.45 MHz

ag incident

The tests reported in this section were carried out to determine the sensitivity of the first
symmetric and antisymmetric modes, ag and sq, respectively, to notches of varying depths in
region 1 of the dispersion curves shown in Fig. 5.2. All the FE models were 395 mm long
and 3.0 mm thick, the spatial sampling interval was 1 mm and the sampling frequency was
3.125 MHz. In the reflection tests the notch was located at x = 250 mm and in the
transmission tests the notch was located at x = 150 mm. The deflected mode shapes of ag and
s at 1.35 MHzmm are shown in Fig. 5.3 and it may be seen that at low frequency-thickness
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products the ag and sg modes are essentially plane flexural and extensional waves with simple
mode shapes.

Fig. 5.4(a) and (b) show the time histories of the response of the top surface in the z direction
at x = 150 mm, when the signal applied at x = 0 was appropriate to excite only ag, where the
duration of the test was long enough to include the response of the plate after reflection from
the 0.5 mm deep and 2.0 mm deep notches respectively, but not from either end of the plate.
Fig 5.5 shows that a single mode, ag, was launched at x = 0 and was obtained by carrying out
a two-dimensional Fourier transform on the time histories of 64 equally spaced positions from
x = 120 to x = 183 mm, when the reflected signal (t 2 80 ps) was gated out. The maximum
amplitude of the response is at 0.45 MHz, the centre frequency of the input signal. On
reflection from the notch (Fig. 5.4(b)) more than one mode is present. Fig. 5.6 shows the
result of carrying out a two-dimensional Fourier transform on the time histories of the same
positions, when h was 2.0 mm, see Fig. 5.4(b), and the incident signal (t < 80 us) was gated
out. Again the maximum amplitude of the response is at 0.45 MHz. However, at each discrete
frequency in Fig. 5.6 there are two distinct wavenumbers, relating to ag and sq, at which the
amplitude is a maximum. Fig. 5.7 shows sections of Fig. 5.6 at 1.26 MHzmm and 1.36
MHzmm. From the two-dimensional plots the variation of amplitude with wavenumber is
clearly shown and it is easily possible to measure the relative amplitude of the two modes. It
can be seen that, as expected from the dispersion curves, the wavenumber at which the
amplitude is a maximum changes with frequency and in this particular case, the relative
amplitude of the two modes is not a strong function of frequency.

Fig. 5.8(a) to (d) show the reflection ratios of ag and sg for h = 0.5, 1.0, 1.5 and 2.0 mm
respectively, and were obtained by dividing the 2-D FFT results from the reflected response
signals by the input 2-D FFT shown in Fig. 5.5. Fig. 5.8 therefore shows the ratio of the
amplitude of the surface motion in the z direction in the two modes in the signal reflected from
the defect to the amplitude of the z direction surface motion in the ag mode in the incident
signal. It should be noted that the vertical scales on Fig. 5.8(a) and (b) are different from
those used in (c) and (d).

Fig. 5.9 shows normalised reflection ratios, Qp, which were obtained from

Q. (5.1)

_Un

where Q is the un-normalised reflection ratio and uy and uj are the z direction displacement
components on the plate surface in the mode being normalised and the incident mode
respectively. Hence, for the incident mode Qy and Q are equal. From Fig. 5.9 it may be seen
that the normalisation increases the apparent amplitude of sg because in region 1 (see Fig. 5.2)
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the surface motion in the z direction is only around 37% of the maximum motion (which
occurs in the x direction at the middle of the plate), whereas in ag, the motion in the z direction
at the surface is close to the maximum motion in this mode. It may be seen that with the 0.5
mm deep notch, there is little variation of the modal amplitude with frequency but significant
variation with frequency is observed with the deeper defects, indicating that by measuring
over a wide frequency range, it may be possible to size the defects. However, this has not yet
been investigated.

Fig. 5.10(a) shows the FE prediction of the time history of the response of a 3.0 mm thick
plate at x = 215 mm, when the input at x = 0 was appropriate to excite only ag, h was 2.0 mm
and the defect was located at x = 150 mm; the duration of the test was not long enough to
include reflections from either end of the plate. After interaction with the notch, more than one
propagating mode is present (ag is mode converted), but in the time domain the modes are
superimposed and their amplitudes may not be determined from the time histories of the
responses of the plate. Fig. 5.10(b) shows the result of carrying out a two dimensional
Fourier transform on 64 equally spaced signals from x = 152 to x = 215 mm (ie from 2 to 65
mm beyond the notch), from which the two propagating modes ag and sqg (sg is caused by
mode conversion at the 2.0 mm deep notch), may be identified and measured. Fig. 5.11(a) to
(d) show the transmission amplitudes of ag and sg, when h was 0.5, 1.0, 1.5 and 2.0 mm
respectively, and were obtained from results corresponding to the those of Fig. 5.10(b) and
dividing by the input 2-D FFT shown in Fig. 5.5. The normalised transmission amplitudes
are presented in Fig. 5.12(a) to (d), from which it may be seen that the relative amplitude of
the sop mode is again increased if normalised ratios are considered.

Frequency-thickness h/2d

[MHzmm] 1/6 1/3 1/2 2/3

125 @®) 0.11 0.11 0.51 0.81
135 ([R) 0.11 0.11 0.63 0.81
145 (R) 0.10 0.14 0.74 0.76
1.25 (T) 0.98 0.90 0.66 0.18
1.35 (T) 0.98 0.89 0.54 0.22
145 (T) 0.97 0.88 0.33 0.35

Table 5.1 Predicted reflection (R) and transmission (T) ratios of ag.

The data of Fig. 5.8 may be presented in the form of a relation between reflection amplitude
and notch depth at particular frequencies. This shown in table 5.1 at 1.25, 1.35 and 1.45



Finite element modelling of Lamb waves interacting with idealised defects 109

MHzmm. It can be seen that the relation between reflection amplitude and notch depth is
complicated and is a strong function of frequency. For example, the reflected amplitude of ag
at notch depths of 0.5 mm and 1 mm (h/2d = 1/6 and 1/3) is the same at 1.25 and 1.35
MHzmm, while at 1.45 MHzmm there is a 40% difference between the two.

s¢ incident

Fig. 5.13 shows the transmission ratios of the ag and sg modes when only sg was launched
from the end of a 310 mm long plate. Again a reference 2-D FFT of the input signal was taken
and the transmission ratios were obtained in the usual way by dividing the 2-D FFT of the
transmitted signals after the notch by the reference 2-D FFT. The transmission amplitude
ratios are given as a function of h/2d in Table 5.2. In this case, at all notch depths the results
are very similar.

Frequency-thickness h/2d
[MHzmm] 1/6 1/3 1/2 2/3
1.25 0.98 0.84 0.63 0.42
1.35 0.98 0.83 0.61 0.40
1.45 : 0.97 0.81 0.57 0.36

Table 5.2 Predicted transmission ratios of sg.

5.2.3 Discussion of transmission and reflection results

The reflection and transmission ratios shown in Fig. 5.8 and Fig. 5.11 respectively when ag
was incident show that the for notches where h/2d is bigger than around 0.5 the ratios are not
monotonic functions of frequency but there are minima and corresponding maxima, which are
a function of the incident mode, the frequency-thickness product and the notch dimensions
(and geometry); these local minima and maxima could potentially be used for defect sizing.
However, the transmission ratios shown in Fig. 5.13 when sg was incident are not a strong
function of frequency and are monotonic. The results indicate that the wavelength (velocity) of
the Lamb waves is not the only factor which affecting sensitivity. For example, at 1.35
MHzmm the wavelengths of sg and ag are around 12 mm and 5.7 mm respectively, but the
amplitude of their transmission ratio across a 0.5 mm deep notch was the same.
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The time domain responses shown previously (see Fig. 5.4) indicate that when the group
velocities of the modes are very different, it is possible:to measure the relative amplitudes in
the time domain since the wave packets will separate after a relatively short distance past the
notch. The FE predictions have also shown that the amplitudes of the Lamb waves caused by
mode conversion at the notch is measurable (greater than 5% of the amplitude of the incident
wave) when the notch depth is greater than about one sixth of the plate thickness (see Fig.
5.8, 5.11 and 5.13). However, the monitored amplitude in the z direction of ag when sp was
launched is greater than that of sp when ag was launched. This effect is due to the relative
amplitudes of the z and x components of displacement in the deflected mode shapes at the
surface, see Fig. 5.3, and would have been reversed if x direction displacements had been
monitored. This shows the importance of monitoring modes which have a large proportion of
their deflections at the surface in the z direction, as in most NDT applications it is the z
direction surface displacement which is measured. '

5.2.4 Lamb wave sy at 0.225 MHz

In order to verify that the interaction of individual Lamb modes with defects is frequency-
thickness dependent, tests were carried out with sg incident on a 6.0 mm thick plate at 0.225
MHz, rather than the 3.0 mm thick plate at 0.45 MHz shown previously. The plate was 650
mm long and notches 0.5, 1.0, 1.5, 2.5, 3.5 and 5.0 mm deep were investigated, the notches
being located at x = 325 mm. The 1.0 mm deep notch giving h/2d = 1/6 corresponding to the
0.5 mm deep notch in the 3.0 mm thick plate discussed earlier. The spatial sampling interval
was 2 mm and the sampling frequency was 3.125 MHz.

Fig. 5.14(a) and (b) show the predicted time history of the response of the 6.0 mm thick plate
5 mm and 55 mm respectively, beyond a 0.5 mm deep notch.

The amplitude of the transmission ratios as a function of the frequency-thickness product are
shown in Fig. 5.15. The results of Fig. 5.15(b) and 5.13(a), at h/2d = 1/6 are the same,
demonstrating that for a given defect and Lamb mode, the sensitivity is dependent on the
frequency-thickness product. Fig. 5.16 gives the transmission amplitude ratios as a function
of h/24 at three discrete frequencies over the bandwidth of the input signal. Here, the results )
obtained previously at h/2d = 1/3, 1/2 and 2/3 shown in Fig. 5.13 are also included. It may be
seen that they fall on a smooth curve giving further confirmation that the sensitivity is
frequency-thickness dependent. The wavelength of the sg mode in this frequency-thickness
region is about 24 mm and from Fig. 5.15(a) a 1.5 mm deep notch produces a reduction of
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over 5% in its transmission ratio, indicating that it is possible to detect defects of dimensions
greater than 1/16 of the wavelength if changes in amplitude of this order can reliably be
measured. However, from Fig. 5.15(b) for a 0.5 mm deep notch the amplitude of the ag mode
produced at the notch over 10% of the incident sgp mode. This indicates that in this case it is
possible to detect defects of dimensions less than 1/40 of the wavelength of the incident wave
if the change in amplitude of the wave caused by mode conversion at the notch is measured.

5.2.5 Lamb waves ag and a; at 0.75 MHz

The tests reported in this section were carried out to determine the sensitivity of antisymmetric
modes in region 2 of Fig. 5.2 to notches of varying depths. In this frequency-thickness
region, ag is essentially nondispersive, but a; is grossly dispersive. The FE models were 410
mm long and the notches, where w was 0.5 mm and h was 0.5, 1.0 1.5 and 2.0 mm were
located at x = 210 mm in the reflection tests and at x = 180 mm in the transmission tests. In all
the tests the spatial sampling interval was 1 mm and the sampling frequency was 4.167 MHz.

Fig. 5.17(a) shows the predicted time history of the response of the plate in a reflection test at
x = 105 and Fig. 5.17(b) shows the predicted time history of the response of the plate in a
transmission test at x = 275 mm. In each case the excitation at x = (0 was appropriate to launch
only ag and the duration of the test was long enough to include the response of the plate after
interaction with the 0.5 mm deep notch. The first wave packet seen in Fig. 5.17(a) is the ag
mode which was launched at x = 0 and its shape has hardly changed from the input 10 cycle
tone burst in a Hanning window, indicating that the wave is essentially nondispersive in this
frequency-thickness region. After interaction with the notch ag is mode converted and the
response shown in Fig. 5.17(a) for t > 80 us and in Fig. 5.17(b) beyond the notch indicate
the presence of more than one mode, the increased duration of the signal indicating velocity
dispersion.

The reference 2-D FFT of the ag mode shown in Fig. 5.18 was the result of carrying out a
two-dimensional Fourier transform on the time histories of 64 equally spaced positions from x
= 105 to 168 mm, when the signal due to reflection from the slot seen in Fig. 5.17(a) for t 2
80 us was gated out. Fig. 5.19 shows the amplitude versus wavenumber and frequency-
thickness product information obtained by carrying out a two-dimensional Fourier transform
of the response of 64 spatial positions from x =212 mm to x = 275 mm in a transmission test,
when h was 1.5 mm. Three propagating modes, a; and ag and sg are present, the a; and sg
modes being caused by mode conversion at the notch.
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The reflection and transmission ratios as a function of frequency-thickness are shown in Fig.
5.20 and 5.21 respectively and in Table 5.3 the reflection and transmission amplitude ratios
for the incident mode, ap, are given as a function of h/2d at at 2.25 and 2.55 MHzmm.

Frequency-thickness h/2d
[MHzmm] 1/6 1/3 1/2 2/3
225 (R) 0.06 0.41 0.52 0.52
255 (R) 0.08 0.66 0.74 0.76
225 (D) 0.93 0.59 0.29 0.25
255 (D 0.92 0.23 0.20 0.24

Table 5.3 Predicted reflection (R) and transmission (T) ratios of ag.

Comparing the results presented here with those obtained in section 5.2.2 it may be seen that
as expected at this higher frequency-thickness product, the sensitivity of ag to defects is
improved. For example, after interaction with the 1.0 mm deep notch the amplitudes of the
reflected and transmitted ag mode at 1.35 MHzmm were (.11 and 0.89 respectively, whereas
at 2.25 MHzmm the corresponding amplitudes were 0.41 and 0.59 respectively. However,
the wavelength of the Lamb waves does not appear to be the only factor affecting sensitivity.
For example, at 1.35 MHzmm the wavelength of ag is around 5.7 mm and the amplitude of its
transmission ratio across a 2.0 mm deep notch (h/2d = 1/2) was 0.22, whereas the
transmission ratio for ag at 2.25 MHzmm where its wavelength is 3.7 mm was 0.25.
Therefore, the smaller wavelength has not produced a significant shift in the transmission ratio
indicating that appropriate mode selection can sometimes remove the need to go to higher
frequencies where the waveform could be more complicated.

Fig. 5.22(a) and (b) show the predicted time histories of the response of the plate at x = 182
and 245 mm respectively, after interaction with the 0.5 mm deep notch, when the excitation at
x = ( was appropriate to launch only the aj mode. The shape of the response is radically
different from the input 10 cycle tone burst in a Hanning window, indicating that the response
signal is multi-mode and/or dispersive. From Fig. 5.22 it may be seen that the amplitude at x
= 182 mm is smaller than at x = 245 mm. This is due to the destructive and constructive
superposition of the individual modes in the response wave packet produced after the incident
a1 mode has interacted with the notch. This plot shows clearly why it is not reliable to use
time domain methods to measure the amplitudes of Lamb waves at frequency-thickness
products above the cut-off value of the a; mode. The amplitudes of the transmission ratios as
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a function of the frequency-thickness product are presented in Fig. 5.23 and the transmission
ratios are given as a function of h/2d, at 2.25 and 2.55 MHzmm in Table 5.4.

Frequency-thickness h/2d
[MHzmm] 1/6 1/3 1/2 2/3
2.25 - 0.91 0.58 0.35 0.23
2.55 0.82 0.03 0.61 0.75

Table 5.4 Predicted transmission ratios of aj.

Again, when ag or a; is incident the transmission ratios vary with frequency with maximum
and minimum values located at distinct frequency-thickness products, which are dependent on
the size of the notch and the modal properties of the Lamb waves. However, comparing Fig.
5.21 with 5.23 it may be seen that the transmission amplitude of the all the response mode
when a; was incident (Fig. 5.23) is far more oscillatory especially for notches where h/2d is
bigger than 0.5 than when the ag mode was incident (see Fig. 5.21). This effect has not been
studied further here but is probably due to the dispersive nature of the a; mode in this
frequency-thickness region, where its wavelength and mode shape are changing rapidly. It
may also be seen from Table 5.3 and 5.4 that at 2.25 MHzmm and notch depths of 0.5 and
1.0 mm (h/2d = 1/6 and 1/3) the sensitivity of the ag and aj modes are comparable, the higher
order mode being slightly more sensitive. For example, at 2.25 MHzmm the transmission
ratios of the a; and ag modes after interaction with a 1.0 mm notch are 0.58 and 0.59
respectively. However, the wavelength of the a; mode is more than twice that of the ag mode.
The transmission amplitudes of the modes differ markedly at 2.55 MHzmm and it may be
seen from Fig. 5.23 and 5.21 that this is due to the pronounced dips and peaks of the
transmission curves in Fig. 5.23.

The results indicate that at higher frequency-thicknesses the transmission ratios are not related
to the wavelength in a simple manner, but are dependent on mode type, order and frequency-
thickness product. Therefore, appropriate mode selection can sometimes remove the need to
go to higher frequencies where the waveform could be more complicated. For example, after
interaction with the 0.5 mm notch the amplitude of the transmitted ag mode at 2.55 MHzmm_
was 0.92, whereas at the same frequency-thickness the transmitted amplitude of the a; mode
was (.82. Hence the change in the transmission amplitude has been more than doubled by
mode selection.
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It should be noted that the amplitudes of the mode converted Lamb waves ag and sg, when a;
was incident were large when h/2d was bigger than around one sixth, and therefore in many
practical NDT applications it may be beneficial to focus the receiving transducer on one of
these modes. Comparing Fig. 5.23 with 5.21 it may be seen that the amplitudes of the mode
converted waves is larger when the a; mode was incident.

5.3 Lamb wave interaction with notches of varying width

One set of tests was carried out to check the effect of notch width on Lamb wave propagation.
The incident wave was the sp mode in a 3.0 mm thick plate in region 1 of the dispersion
curves shown in Fig. 5.2. The notch was 1.0 mm deep and the tests were carried out using 5
different notch widths (see Fig. 5.1(a), w = 0.25, 0.75, 1.0, 2.0 and 4.0 mm). Again 4
noded quadrilateral elements were used, the spatial sampling interval was 1 mm and the
sampling frequency was 3.125 MHz. The plate was 350 mm long, the notch was located at x
= 150 mm and time history of the response of the plate at 64 equally spaced positions from x
= 170 to 233 mm was captured in order to perform the 2-D FFT analysis.

Fig. 5.24 shows the transmission amplitude ratios of the two modes for the different notch
widths as a function of the frequency-thickness product. The amplitude ratios of ag and sp
seen in Fig. 5.24(a)-(f) were obtained by dividing the 2-D FFT results from the transmitted
response signals by a reference 2-D FFT computed before interaction with the notch when
only the s) mode was propagating. Here, the transmission amplitude ratio relating to w = 0.5
mm, previously presented in Fig. 5.13(b) was included for completeness and comparison
purposes. Fig. 5.25 shows the transmission ratios as a function of w/2d, at three frequency-
thickness values. The results indicate that in this case the amplitudes of the transmitted sg
mode is not sensitive to the notch width. The wavelength of sg in this'frequency-thickness
region is about 12 mm and the maximum defect width investigated was 4 mm. Therefore, the
lack of sensitivity to notch width in test tests is not unexpected. However, the wavelength of
ag in this frequency-thickness region is about 5.7 mm and significant frequency dependence
of the transmitted amplitude of the ag is seen at the higher widths in Fig. 5.24. The main focus
of this thesis is on crack like defects and these results confirm that when the notch width is
small compared to the wavelength, as is usually the case with real cracks, the important
parameter is the defect depth.
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5.4 Lamb wave interaction with an inclined notch

In many practical situations notch like defects are oriented at an arbitrary angle to the surface
of the plate see, Fig. 5.1(b). The tests reported in this section were carried out to determine
the sensitivity of the symmetric Lamb mode sq in region 1 of the dispersion curve shown in
Fig. 5.2 to a 1.0 mm deep surface breaking notch lying at an angle of 45° relative to the plate
surface (ie h = 1.0 mm and 6 = 45°). The plate was 3.0 mm thick and 350 mm long and a 4
noded 0.25 mm square element was used. The centre frequency of the 10 cycle tone burst
used was 0.45 MHz, the spatial sampling interval was 1 mm and the sampling frequency was
3.125 MHz.

Modelling a notch inclined at an angle using finite elements represents a problem if wave
propagation is to be modelled accurately, as a propagating wave will be reflected from any
boundary across which there is a change in impedance, and any changes in shape or size of
the element will cause a change in the effective impedance of the element and result in
spurious reflections from the element boundaries. Hence, the 45° inclined notch was modelled
by removing pairs of elements in a 'staircase’ pattern which was not shown in Fig. 5.1(b) for
clarity. However, this created an angled notch with stepped edges, the width of the step being
one element.

The time history of the response of the top surface of the plate in the z direction at x = 210
mm, when the inclined notch was located at x = 150 mm is shown in Fig. 5.26(a). Fig.
5.26(b) shows the transmission ratios of the ag and sg modes as a function of the frequency-
thickness product. The trend of the transmission ratio of the sy mode in Fig. 5.26(b) has
slightly changed from the transmission ratio for the 1.0 mm deep slot normal to the plate
surface (see Fig. 5.13(b)); the amplitude in this case increases slightly at higher frequency
thickness values. However, the average transmission ratio of sq in region 1 is approximately
0.85 in both cases.

However, there are significant changes in the amplitude of the ag mode produced by mode
conversion at the notch (Fig. 5.2(b)), the transmission at 1.1 MHzmm is larger than that with
the notch normal to the surface (Fig. 5.13(b)), but at higher frequencies the transmission is
significantly reduced. The reasons for this have not been investigated although it may be
connected with the length of plate over which the notch runs which may be thought of as an’
effective notch width and this width is of the same order as the wavelength of ag in this
frequency-thickness region.
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5.5 Conclusions

The interaction of individual Lamb waves with a variety of simulated defects has been
modelled successfully using finite elements. The results of the finite element study have been
quantitatively analysed using the 2-D FFT method; in all cases the z direction displacements
were recorded as this is the displacement measured in experimental tests when grease or
immersion coupling is employed.

The FE results have shown that the sensitivity of individual Lamb waves to particular notches
is dependent on the frequency-thickness product, the mode type (symmetric or
antisymmetric), the mode order, and the geometry of the notch. The sensitivity of the Lamb
modes ajy, ag and sg to simulated defects in different frequency-thickness regions has been
determined as a function of the defect depth and plate thickness ratio (h/2d). The results have
indicated that Lamb waves may be used to find notches when the wavelength to notch depth
ratio is of the order of 40.

The tests with an inclined notch have indicated that the reflection and transmission of Lamb
waves is largely dependent on the notch depth (ie distance of penetration normal to the plate
surface) rather than overall notch length.

The tests on notches of different widths have indicated that provided the width is small
compared to the wavelength the transmission and reflection amplitudes are insensitive to
changes in width so the depth of the notch is the major parameter.

The amplitude ratios of the Lamb wave after interaction with notches are not monotonic
functions of frequency-thickness and have indicated that the frequency of the minimum or
maximum in the amplitude ratios may be used as the basis of a defect sizing technique.
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Figure 5.1 Schematic diagram of the notch geometry used in the finite element models.
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Figure 5.2 Lamb wave group velocity dispersion curves for steel showing the frequency-
thickness regions in which the finite element modelling was carried out.
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Figure 5.4 (a) Predicted time history at x = 150 mm in a 3.0 mm thick plate showing the
first passage of the ag mode and the reflection from the 0.5 mm deep notch, and
(b) the predicted time history when the notch was 2.0 mm deep.
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Figure 5.5 Normalised 3-D plot of the 2-D FFT results of the case given in Fig. 5.4 when
the signal reflected from the notch was gated out and shows a single propagating
mode, ag.
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Figure 5.6 Normalised 3-D plot of the 2-D FFT results from the reflected wave shown in
Fig. 5.4(b).
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Figure 5.8 Predicted reflection ratio of the ag mode as a function of frequency-thickness in a
3.0 mm thick plate after interaction with (a) the 0.5 mm deep notch, (b) the 1.0
mm notch, (c¢) the 1.5 mm notch and (d) the 2.0 mm notch.
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Figure 5.9 Predicted normalised reflection ratio of the ag mode as a function of frequency-
thickness after interaction with (a) the 0.5 mm deep notch, (b) the 1.0 mm notch,
(c) the 1.5 mm notch and (d) the 2.0 mm notch.
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Figure 5.10 (a) Predicted time history in a 3.0 mm thick plate 50 mm after interaction with
the 2.0 mm deep notch, when the input signal was designed to excite only ap.
(b) Normalised 3-D plot of the 2-D FFT results for the case given in (a).
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Figure 5.11 Predicted transmission ratio of the ag mode as a function of frequency-thickness
after interaction with (a) the 0.5 mm deep notch, (b) the 1.0 mm notch, (c) the
1.5 mm notch and (d) the 2.0 mm notch.
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Figure 5.12 Predicted normalised transmission ratio of the ap mode as a function of
frequency-thickness after interaction with (a) the 0.5 mm deep notch, (b) the 1.0
mm notch, (¢) the 1.5 mm notch and (d) the 2.0 mm notch.
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Figure 5.13 Predicted transmission ratio of the sg mode as a function of frequency-thickness
after interaction with (a) the 0.5 mm deep notch, (b) the 1.0 mm notch, (c) the
1.5 mm notch and (d) the 2.0 mm notch.
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Figure 5.14 (a) Predicted time history in a 6.0 mm thick plate 5 mm after interaction with a
0.5 mm deep notch, when the input signal was designed to excite only sg. (b) at

55 mm after the notch.
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Figure 5.15 Predicted transmission ratio of the sy mode as a function of frequency-thickness
in the 6.0 mm thick plate after interaction with (a) the 0.5 mm deep notch, (b) the
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Figure 5.17 (a) Predicted time history in a 3.0 mm thick plate 105 mm before the 0.5 mm
deep notch, when the centre frequency of the input tone burst was 0.75 MHz
and was designed to excite only ag. (b) at 65 mm after the notch.
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Figure 5.18 Normalised 3-D plot of the 2-D FFT results of the case given in Fig. 5.17(a)
when the signal reflected from the notch was gated out, showing a single
propagating mode, ag.
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Figure 5.19 Normalised 3-D plot of the 2-D FFT results of the case shown in Fig. 5.17(a)

when the incident wave (t < 70 ps) was gated out. It shows that the signal
reflected from the notch contains three propagating modes aj, sg and ag.
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Figure 5.20 Predicted reflection ratio of the ag mode as a function of frequency-thickness in
the 3.0 mm thick plate after interaction with (a) the 0.5 mm deep notch, (b) the
1.0 mm notch, (c) the 1.5 mm notch, (d) the 2.0 mm notch.
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Figure 5.21 Predicted transmission ratio of the ag mode as a function of frequency-thickness
in the 3.0 mm thick plate after interaction with (a) the 0.5 mm deep notch, (b) the
1.0 mm notch, (c) the 1.5 mm notch, (d) the 2.0 mm notch.
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Figure 5.22 (a) Predicted time history in a 3.0 mm thick plate 5 mm after the 0.5 mm deep

notch, when the centre frequency of the input tone burst was 0.75 MHz and was
designed to excite only aj. (b) at 70 mm after the notch.
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Figure 5.23 Predicted transmission ratio of the a; mode as a function of frequency-thickness
in the 3.0 mm thick plate after interaction with (a) the 0.5 mm deep notch, (b) the
1.0 mm notch, (c) the 1.5 mm notch, (d) the 2.0 mm notch.
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Figure 5.24 Predicted transmission ratio of the sg mode as a function of frequency-thickness
in the 3.0 mm thick plate after interaction with a 0.5 mm deep notch which was
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case given in (a).



CHAPTER 6

The measurement of propagating Lamb waves in plates

6.1 Introduction

The propagation velocity of individual Lamb waves, once known, may be used as a means of
identifying them. However, the measurement of velocity is generally made difficult by the
dispersive, multi-mode nature of Lamb waves when excited by commercially available
ultrasonic probes.

The aim of the experimental investigations reported in this chapter was to excite a single Lamb
wave and to study its propagation. The experimental equipment and the practical methods
which were used to excite and receive Lamb waves are discussed. Then the results of the
measurement of the properties of propagating Lamb waves using time and frequency domain
techniques, and the 2-D FFT method are presented.

6.2 Experimental procedure and equipment

The instrumentation used is shown schematically in Fig. 6.1. A pulse from the pulse
generator was used to simultaneously trigger the oscilloscope and a function generator which
delivered a tone burst to the power amplifier. The function generator delivered tone bursts of
an integer number of cycles. However, in some tests an arbitrary function generator was
used, which delivered a tone burst modified by a Hanning window function. The power
amplifier delivered the input signal to the transmitting transducer with a gain of 50 dB. The
ultrasonic waves excited by the transmitting transducer propagated along the plate and were
received by the receiving transducer, the received signal being amplified and transferred to the
oscilloscope for digital capture and display. The signals from the oscilloscope were
transferred to the computer via the GPIB bus to be edited and then transferred to the spectrum
analyser, which was used to carry out the digital Fourier transformation. The resulting
transformed data was then transferred back to the computer for redisplaying and editing.

- 143 -
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In order to increase the signal-to-noise ratio, successive response signals captured by the
digital oscilloscope may be averaged. This was achieved by repeating the input signal, by re-
triggering the system once the response of the plate to the previous input had decayed to zero,
and averaging the successive responses of the plate.

When more than one spatial record was required, a dial gauge measured the movement of the
receiving transducer to obtain an accurate spatial sampling interval. The resolution in
positioning the transducer in the experiments was better than +0.02 mm.

The steel plates used in the experimental investigations were approximately 300 mm wide and
1 m long, and the propagation distance was restricted to under 400 mm in order to keep the
signal-to-noise ratio high. Individual Lamb waves were selectively excited by applying the
coincidence principle. The angle of incidence, 0, required for the excitation of the desired

mode was calculated using eqn 2.61.

6.3 Practical methods of exciting and receiving Lamb waves

Lamb waves can be excited conveniently by a variety of methods. However, as in the case of
bulk waves it is preferable to excite only the Lamb waves which are to be used in the NDT
investigation. This not only simplifies the analysis of the data received from the testpiece, but
also increases the resolution and sensitivity of the ultrasonic NDT technique.

Many workers in the field including Bottger et al (1987) have reported exciting Lamb waves
using Electro-Magnetic-Acoustic-Transducers (EMATS). The main advantage of EMATS is
the elimination of the need for a liquid couplant. But, as they work.by producing eddy
currents in the testpiece they are generally limited to NDT applications in metals. Also the
distance between the EMAT and the surface of the testpiece has to be accurately controlled to
maintain constant electromagnetic coupling conditions.

In the work reported here Lamb waves were excited and received using the coincidence
principle. Firestone and Ling (1951), Worlton (1957), Lockett (1973), Perdijon (1985) and_
many others have applied this technique to excite Lamb waves for NDT purposes. The angle
at which maximum transmission and reception of acoustic energy occurs at any particular
frequency-thickness product may be obtained from egn. 2.61 (see Fig. 2.9 for coupling in
water).
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Standard immersion coupling was not employed because propagation distances are greatly
reduced due to the continual leakage of energy to the surrounding fluid. This effect is more
pronounced the greater the z component of displacement at the surface of the plate (see Fig.

2.7(a)-()).

The standard way of exciting Lamb waves using piezoelectric transducers is to employ a
variable angle probe such as those shown in Fig. 6.2(a) and 6.2(b). In the direct wedge
method shown schematically in Fig. 6.2(a), the transducer is usually mounted in a block of
perspex, which is generally coupled to the plate by the thin film method. The angle of
incidence of the transducer element can be varied by sliding it around a curved block (see Hall
1977). The indirect wedge method shown schematically in Fig. 6.2(b) substitutes a liquid for
the perspex wedge, (see Hall 1977), immersion coupling enabling the acoustic energy to be
transferred from the transducer to the plate. Again the angle of the transducer relative to the
plate may be varied, allowing the appropriate coincidence angle to be obtained.

In almost all practical NDT applications it is the surface motion which is important as this is
detected by the transducers. The displacement mode shapes (Fig. 2.7) have x and z
components, which are dependent on whether the Lamb wave is symmetric or antisymmetric,
its mode order and the frequency-thickness product. Any coupling method which employ
fluids only measures the z component of the displacement of the Lamb waves at the plate
surface (z = +d). Therefore, if a Lamb wave has very little displacement in the z direction at
the plate surface, for example, sg at 0.5 MHzmm, it will be more difficult to excite and
measure than a mode in which z direction displacements at the surface are large, for example,
ag at 0.5 MHzmm.

The variable angle, constant emission point broadband transducer used during the
experimental investigation and shown schematically in Fig. 6.3(a), incorporated a damping
wedge at the front of the probe body to attenuate the face reflection from the base of the
transducer body. The transducer element was 10 mm in diameter and was mounted in a small
perspex holder which was clamped to the probe body, which was also made of perspex.
Grease coupling (thin film layers, typically less than 0.1 mm thick) enabled acoustic
transmission between the transducer element and its housing, and between the transducer
holder and the probe body. Therefore, a wave going to or coming from the transducer has to
propagate through three thin film coupling layers, shown schematically in Fig. 6.3(b), where.
the layers are highlighted for clarity.

The response of the variable angle probe in air when excited by a broad band pulse is shown
in Fig. 6.4(a), and the spectrum of the probe response is shown in Fig. 6.4(b). The multiple
interfaces cause serious disadvantages in this type of probe design. From Fig. 6.4(a) it can be
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seen that two large face reflections are observed, (labelled B1 and B2 respectively in Fig.
6.4(a)). The reflection labelled B1 was from the base of the perspex transducer body and the
reflection labelled B2 was a reverberation of this reflection. From the spectrum of the
response shown in Fig. 6.4(b) it may be seen that the available acoustic energy is in the
frequency range between 0.5 MHz and 5 MHz, (20 dB down points). The reflection from the
transducer element holder (labelled B2 in Fig. 6.4(a)) causes the undulations in the amplitude
spectrum. Fig. 6.4(a) and (b) have shown using the simple case of a non-dispersive
compression wave, where the two reflections B1 and B2 are separate and may be easily
deconvolved from one another in the time domain that the response of direct wedge probes
invariable contains reverberations (multiples of the response signal), which are produced
within the probe body. In Lamb wave testing where in general the response of the plate is
dispersive and more than one mode is present, it is not usually possible separate these
reverberations in the time domain and they cause the response of the plate to be further
complicated.

The advantage of the indirect wedge method (see Fig. 6.2(b)) or immersion coupling methods
over the direct wedge method is that there are no interfaces between the testpiece and the
transducer element (see Fig. 6.2(b)). Any reverberation within the coupling fluid may be
easily decoupled from the response signal by increasing the delay by moving the transducer
element further from the testpiece. Therefore, it is simpler to carry out Lamb wave testing by
employing the indirect wedge method using standard immersion transducers.

The Lamb wave test rig shown in Fig. 6.5 was built to overcome the problems encountered in
Lamb wave testing when using the 'direct wedge' variable angle probes. In operation the rig
was clamped to the surface of the plate and the transducers held in place in the holders, which
were filled with water. The orientation angle of the transducers was finely adjusted by slightly
moving the transducers by hand until the response of the plate was maximised.

The rig was designed to use immersion transducers up to 33 mm in diameter. It is basically a
frame that holds two transducer holders in line with one another, one holder being fixed, and
the other moveable. The transducer holders are essentially a block of aluminium with a 33 mm
diameter hole drilled through at 16° to the normal. On the under faces of the holders thereis a
43 mm diameter groove which locates a 3.5 mm diameter o-ring. A column of water in the
transducer holders allowed acoustic energy transfer between the transducer and the plate.
Because there is only one interface at the water testpiece boundary, multiple reflections of the-
response signal do not occur. Spring loading on the moveable transducer holder was
incorporated to obtain a water tight seal between the plate and the transducers, the o-rings on
the base of the transducer holders providing the water tight seal. The immersion coupling area
was localised in the transducer holders (the coupling area was less than 0.001 m2). Hence,
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only a small part of the plate is immersed. Attenuation due to leakage into the coupling fluid,
which is the major objection to using immersion coupling was therefore kept to a minimum.

Fixed angle transducer holders were incorporated becauée they simplified the design of the rig
and reduced the size of the coupling area. However, there is no reason why the transducer
holders could not incorporate a mechanism which would allow the transducer incidence angle
to be adjusted. A 16° angle was chosen because from Fig. 2.6 and 2.9 it may be seen that
around 16° the group velocities of all the modes except ag is a maximum, dispersion is
minimised and the propagation distances are therefore maximised. The four immersion
transducers (two matched pairs) used in the experimental investigations were standard off-the-
shelf items. The pair of 0.5 MHz immersion transducers were 31.5 mm in diameter and a
spectrum of the face reflection when the transducer was excited by a broad band pulse is
shown in Fig. 6.6 It may be seen that the energy is spread over the frequency range 0.25
MHz to 0.8 MHz (20 dB down points). The 1 MHz immersion transducers are 25.5 mm in
diameter. A spectrum of the face reflection when the transducer was excited by a broad band
pulse is shown in Fig. 6.7 from which it may be seen that the energy is spread over the
frequency range 0.5 MHz to 1.5 MHz (20 dB down points). The diameter of the immersion
transducers was large in order to reduce the angular bandwidth of the excitation signal.
However, from Fig. 2.10 it can be seen that the 1.0 MHz and the 0.5 MHz transducers will
deliver energy over an angular bandwidth of approximately +6° and +12° respectively. (The
small difference in diameter between the 0.5 MHz and 1.0 MHz transducers does effect the
angular spread of energy so the angular bandwidth of the 1.0 MHz transducer will not be
exactly half that of the 0.5 MHz transducer). Hence, efficient excitation and reception could be
achieved from 10° to 22° with the 1.0 MHz transducer and from 4° to 28° with the 0.5 MHz
transducer. This is sufficient in many Lamb NDT applications where testing is usually carried
out in regions of maximum group velocity, where the coincidence angle in water is always
between 10° and 22° (except for the ag mode).

The major advantage of fluid coupling is that only longitudinal waves exist in fluids,
therefore, irrespective of the coincidence angle, only displacement components associated
with re-radiated longitudinal waves will be incident at the face of the transducer. When the
direct wedge type probe was used, the re-radiated signal incident on the face of the transducer
element is in general due to both longitudinal and shear waves in the perspex wedge since
shear waves are generated by mode conversion at the surface of the perspex. This is a
disadvantage as it further complicates the transducer response signal. The coupling conditions-
at the interface between the perspex wedge and the plate is also very sensitive to variations in
the applied pressure and the thickness of the thin film layer; therefore, when the probe is
indexed in the x direction it is difficult to maintain constant coupling conditions and the quality
of the coupling between the transducer and the plate probably varied, which introduced errors
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in the 2-D FFT analysis. In the Lamb wave test rig, the water column ensured constant
coupling conditions even when the moveable probe was indexed in the x direction.

6.3.1 Pulse excitation

Pulse excitation is not generally used with Lamb waves because many modes tend to be
excited. For example, the 10 mm diameter variable angle probe shown in Fig. 6.3(a) delivers
most of its energy between 0.5 MHz and 5 MHz (see Fig. 6.4(b)) and within £15° of the
angle of incidence of the transducer the frequency-thickness range being controlled by the
frequency response characteristics of the transducer and measurement system, and the angular
range being controlled by the physical dimensions of the transducer. If the plate is 1 mm thick
and the coincidence angle in the perspex is 30° all the Lamb waves in the rectangular region in
Fig. 6.8 will be excited. This plot was obtained by combining a graph similar to that of Fig.
2.10 for a 10 mm diameter transducer and Fig. 6.4(b) with the dispersion curves. Such
wideband excitation generally results in low signal-to-noise ratios because of the multi-mode
dispersive nature of Lamb waves. The resulting time domain signal at 100 mm from the
transmitter shown in Fig. 6.9(a) is complicated and is strongly dependent on the propagation
distance. The amplitude spectrum shown in Fig. 6.9(b) was derived from Fig. 6.9(a) and
shows that there is significant frequency content of the response of the 1 mm thick steel plate
up to around 5 MHz. In practice if the excitation signal delivers energy over a wide frequency-
thickness range, which includes many propagating modes then the signal-to-noise ratio will be
reduced to a unacceptable level over any significant propagation distance.

Since propagation distances greater than 150 mm were required in the tests reported here,
pulse excitation methods were not used.

6.3.2 Tone burst excitation

The initial response of a plate to an incident wave is transient, all the Lamb waves possible in
the plate being excited as in the case of pulse excitation. If tone bursts of suitable duration, _
which depends on the attenuation rate of the excited Lamb waves, are tuned to a particular
frequency-thickness, this will cause the amplitude of a particular Lamb wave to build up with
time provided the angular bandwidth of the excitation is narrow (see Fig. 6.8), which
assumes the transducers are very large. The amplitudes of the other modes excited will either
be very small, or decay exponentially with time, as very little or none of the incident wave
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energy will be available to them. Hence, the most important factor when exciting Lamb waves
using tone bursts is to maintain the correct excitation frequency, for a sufficient time. This
enables the amplitude of the Lamb wave to build up to a steady-state value, and the amplitude
of the other modes excited initially to have sufficient time to be attenuated.

This suggests that the most effective way of increasing the signal-to-noise ratio is to reduce
the angular and/or frequency bandwidth of the excitation signal. In practice reduction of the
frequency bandwidth is usually achieved by using tone burst excitation signals of an integer
number of sinusoids. The bandwidth may be further reduced by smoothing the the tone burst,
by for example, applying a Hanning window function.

6.4 Time domain measurements of Lamb wave velocities
Initial tests with variable angle probe in perspex block

Before the Lamb wave rig shown in Fig. 6.5 was built, initial tests were carried out using two
variable angle transducers shown in Fig. 6.3(a), as the transmitter and the receiver (see Fig.
6.1), the transmitter being driven by the 5 cycle tone burst shown in Fig. 6.10(a) at a pre-
selected frequency. In all the tests the incidence angle of the variable angle probes was 28°,
which was appropriate to excite sy and a; in different frequency-thickness regions.

Fig. 6.10(b) shows the response of a 0.5 mm thick steel plate at 200 mm from the transmitter,
where the frequency of the excitation tone burst was 1.2 MHz.and the incidence angle of the
variable angle probes was appropriate to excite and receive sy The incident angle required for
the efficient excitation and reception of ay at this frequency-thickness product is about 80°, so
by the coincidence principle it was only very weakly excited and received. Fig. 6.10(c) shows
the amplitude spectrum of the response 200 mm from the transmitter. The sidelobes in the
spectrum are due to the excitation signal applied to the exciting transducer which was a simple
five cycle tone burst from the function generator. The amplitudes of the sidelobes are
significant only up to a frequency of around 3 MHz, so the excitation signal did not have
significant energy above 1.63 MHzmm (the cut-off frequency of a;). Therefore, since ag is _
only very weakly excited and received, sy should be the only mode observed and its group
velocity measured using the time of flight between two points was found to be 5.35 kmy/s.

The normalised response of a 2 mm thick steel plate 200 mm from the transmitter when the
excitation was a five cycle 1 MHz tone burst from the function generator, is shown in Fig.
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6.11. Again, the input signal was intended to excite only sg. The amplitudes of the sidelobes
in this case were significant up to a frequency-thickness product of around 4 MHzmm, so it
was possible for the excitation signal to excite higher order modes (see Fig. 6.8). The time
history of the response of the 2.0 mm thick plate indicates that the propagating Lamb wave
signals are multi-mode and/or dispersive. Hence, the duration of the response signal is long
and from measurements at two points it is difficult to determine mythiné but a maximum
group velocity of 5.1 km/s, which corresponds to the sop mode in this frequency-thickness
range. It is difficult to determine whether more than one propagating mode is present from the
time history plot. However, it can be seen that the lower frequency components of the
response signal are at the front of the signal, indicating that their group velocities are larger.

Fig. 6.12 shows the time history of the response of a 3 mm thick steel plate 200 mm from the
transmitter. The frequency of the five cycle tone burst tone burst from the function generator
was 1 MHz, which was intended to excite only a,. In this case the amplitudes of the sidelobes
were significant up to a frequency-thickness product of around 6 MHzmm, so again it was
possible for the excitation signal to excite higher order mode (see Fig. 6.8). The shape of the
response signal indicates that there is gross dispersion and more than one propagating mode is
present. However, a discrete wave packet with a large amplitude is present and its group
velocity of 3.8 km/s indicates that it is the a; mode.

Tests with immersion probe and arbitrary function generator

These tests were carried out using the Lamb wave test rig described previously and shown in
Fig. 6.5 and 0.5 mm and 3.0 mm thick steel plates.

The first test was carried out on a 0.5 mm thick steel plate using the Lamb wave test rig with
the pair of 1 MHz immersion transducers. The input signal from the arbitrary function
generator was a five cycle tone burst modified by a Hanning window function and is shown
in Fig. 6.13(a). The measured time history of the response of the 0.5 mm thick steel plate at
200 mm from the transmitter is shown in Fig. 6.13(b). As in Fig. 6.10 the frequency of the
tone burst was 1.2 MHz and the transducer angle was appropriate to excite and receive only
so- The amplitude spectrum shown in Fig. 6.13 (c) was derived from Fig. 6.13(b). It may be
seen that the bandwidth of the response is substantially less than in Fig. 6.10(c), the sidelobes
in Fig. 6.10(c) being effectively eliminated by using an excitation tone burst which was
modified by an applied Hanning window. Comparing the time domain responses it may also
be seen that the shape of the response in Fig. 6.13(b) closely resembles the shape of the input
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signal (see Fig. 6.13(a)), indicating that the wave is essentially nondispersive over the angular
and frequency bandwidths of the input signal.

In all the remaining time domain tests, the bandwidth of the input signal was further reduced
by using a twelve cycle tone burst from the arbitrary function generator smoothed by a
Hanning window.

Fig. 6.14(a) shows the response of a 0.5 mm thick steel plate at 150 mm from the transmitter,
where the transducer angle of 16° was appropriate to excite and receive only sq. The frequency
of the excitation tone burst was 1 MHz. The incident angle required for the efficient excitation
and reception of ag at this frequency-thickness product is about 40° in water, so it was only
very weakly excited and received. The receiving transducer was then indexed 100 mm, and
Fig. 6.14(b) shows the response 250 mm from the transmitter. Comparing the two time
domain responses it may be seen that the shape of the response does not change, showing that
the wave is effectively nondispersive. Fig. 6.14(a) and 6.14(b) are summed in Fig. 6.14(c),
where the time it takes the Lamb wave to travel between the two transducer positions (marked
T in the diagram), may be used to determine group velocity. The group velocity measured
using the time of flight between the two points was 5.35 km/s.

Fig. 6.15(a) shows the response of a 3 mm thick steel plate at 150 mm from the transmitter,
where the incident angle of 16° was appropriate to excite and receive only sg. The frequency
of the excitation tone burst was 0.45 MHz. The incident angle required for the efficient
excitation and reception of ag at this frequency-thickness product is about 36° in water, so it
was only very weakly excited and received. The receiving transducer was then indexed 100
mm, and Fig. 6.15(b) shows the response 250 mm from the transmitter. Comparing the two
time domain responses it may be seen that the shape of the response envelope does not change
greatly. However, there is some change between the two signals. For example, the peak of
the wave packet (labelled R in Fig. 6.15(a)) is significantly higher than the amplitude of the
two adjacent peaks. However, in Fig. 6.15(b) there are two adjacent cycles with very similar
peak values. This indicates that a small amount of dispersion is present. The group velocity
measured using the time of flight between the two maximum points was 5.15 km/s. However,
this is an approximate group velocity as the shape of the wave packet is changing.

Fig. 6.16(a) shows the response of a 3 mm thick steel plate at 150 mm from the transmitter,
where the incident angle of 16° was appropriate to excite and receive only sg. The frequency
of the excitation tone burst was 0.6 MHz. The incident angle required for the efficient
excitation and reception of ag at this frequency-thickness product is about 32°, so again it was
only very weakly excited and received. The receiving transducer was then indexed 100 mm
and Fig. 6.16(b) shows the response 250 mm from the transmitter. Comparing the two time
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domain responses it may be seen that the duration of the response signal has increased
appreciably in Fig. 6.16(b), changing the shape of the response envelope. This indicates that
dispersion is present. The maximum group velocity. measured, using the time of flight
between the two points of first arrival, was 4.5 km/s. However, it is not feasible in a single
test to measure the variation of velocity with frequency using time domain data only

Fig. 6.17(a) shows the response of a 3 mm thick steel plate at 150 mm from the transmitter,
where the incident angle of the was appropriate to excite and receive s. The frequency of the
excitation tone burst was 0.75 MHz. The incident angle required for the efficient excitation
and reception of ag at this frequency-thickness product is about 30°, so again it was only
weakly excited and received. The receiving transducer was then indexed 100 mm, and Fig.
6.17(b) shows the response 250 mm from the transmitter. The two response signals both
exhibit gross dispersion and the maximum group velocity, measured using the time of flight
from the leading edge of the signal was 3.7 km/s.

Fig. 6.18(a) shows the response of a 3 mm thick steel plate at 150 mm from the transmitter
when the frequency of the excitation tone burst was 1 MHz. The angular bandwidth of the
input signal was appropriate for the sq, a; and sy modes in the frequency-thickness range of
the excitation signal. The receiving transducer was then indexed 100 mm and Fig. 6.18(b)
shows the response 250 mm from the transmitter. The two response signals both indicate that
there is more than one propagating mode. Gross dispersion is present and beating between the
different modes is taking place. As in Fig. 6.12 a discrete wave packet with a large amplitude
is present, and its group velocity measured using the time of flight between the points of
maximum amplitude was 3.8 km/s indicating that it is a;.

The time domain measurements have shown that the Lamb wave velocities and amplitudes
may be measured readily if the wave is essentially nondispersive and can be decoupled from
other propagating modes. The other modes can be removed either by gating out the unwanted
signals in cases where the modes of interest have significantly different group velocities from
the other modes, or by using the coincidence principle to reduce the amplitude of the signals in
the unwanted modes. However, the coincidence effect requires the angular bandwidth of the
transducers to be small and the phase velocities of the modes to be significantly different.
Therefore, in practical applications using commercially available transducers, the dispersive
multi-mode nature of Lamb waves, usually restricts the use of time domains methods to low
frequency-thickness products where only ag and sg may propagate. )



El The measurement of propagating Lamb waves in plates 153

6.5 Frequency domain measurements of Lamb wave velocities

Tests were carried out using the amplitude and phase spectrum methods discussed previously
in chapter 3 to measure the velocity of propagating Lamb waves in the 0.5 mm and 3 mm
thick steel plates. The excitation signal was a five cycle tone burst modified by a Hanning
window function and the pair of 0.5 MHz immersion transducers were used unless otherwise
stated.

As an example of a nondispersive frequency-thickness region, the velocity of sg around 0.5
MHzmm was measured using both the phase and amplitude spectrum methods. The response
of the steel plate at 200 mm from the transmitter is shown in Fig. 6.13(b). If the response of
the plate at 250 mm is captured, the response at 200 mm inverted, and then the two responses
summed, Fig. 6.19(a) will be obtained. The amplitude spectrum shown in Fig. 6.19(b) was
obtained by Fourier transforming Fig. 6.19(a). The dips in the spectrum occur at frequencies
where eqn 3.1 is satisfied. The velocity of the sp mode was calculated using the mode
numbers shown in Fig. 6.19(b). The signal in Fig. 6.13(b) was inverted in order to produce
minima in Fig. 6.19(b) rather than maxima. This was because it is easier to read the discrete
frequencies of minima. For further discussions of this, see Pialucha et al (1989).

Fig. 6.20 shows the results of measuring the velocity of sg at 0.5 MHz in the 0.5 mm thick
plate using the phase spectrum method (the continuous line). The responses of the plate at 200
mm and 250 mm from the transmitter were Fourier transformed separately in this case, and
then eqn 3.2 was used to calculate the wave velocity. The amplitude spectrum results
discussed above are denoted by squares in Fig. 6.20. It may be seen that the agreement is
excellent, the error between the two methods being less than 1%.

As an example of a dispersive mode, the velocity of sg at 0.6 MHz in the 3 mm thick plate
was measured using both the phase and amplitude methods. The summed responses of the
plate at 200 mm and 250 mm from the transmitter is shown in Fig. 6.21(a). Carrying out a
Fourier transform of Fig. 6.21(a) gives the amplitude spectrum shown in Fig. 6.21(b). Again
the response at 200 mm was inverted and the dips in the spectrum were used to calculate the
velocity from eqn 3.1.

Again, the velocity calculated using the amplitude spectrum method were compared with those
obtained using the phase spectrum method. Fig. 6.22 shows that the agreement is excellent
the error between the two methods being less than 1%.
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In order to show the effect of using one-dimensional spectral methods when more than one
mode is present, the amplitude spectrum method was applied at 1 MHz in the 3 mm thick plate
using the pair of 1 MHz immersion transducers. The summed responses of the 3 mm thick
steel plate at 200 mm and 250 mm from the transmitter is shown in Fig. 6.23(a) the response
at 200 mm being inverted. Fig. 6.23(b) was obtained by carrying out a Fourier transformation
of Fig. 6.23(a). The dips in the spectrum correspond to the frequencies where eqn 3.1 was
satisfied. However, in this case the results are not clear because more than one mode is
present and the mode number associated with each dip is difficult to determine.

The results shown in Fig. 6.20 and 6.22 demonstrated that one-dimensional spectral methods
(phase and amplitude spectrum) may be used to measure the velocity of Lamb waves when
dispersion is present. However, because they implicitly assume that only one propagating
mode is present they are not reliable when more than one mode is propagating. For more
details on the use of one-dimensional spectral methods of measuring velocity see for example,
Pialucha et al (1989).

6.6 The measurement of propagating Lamb waves using the 2-D FFT
method

In this section the results of measuring the properties of propagating Lamb waves in 0.5 mm,
2 mm and 3 mm thick steel plates using the 2-D FFT method will be presented. Results using
both the variable angle probe and the Lamb wave test rig will be presented.

Tests with variable angle probes

These test where carried out using the variable angle probes and the simple 5 cycle excitation
tone bursts that was not modified by a Hanning window (see Fig. 6.13(a)), from the function
generator.

Fig. 6.24 shows the normalised three-dimensional view of the amplitude-wavenumber-
frequency information, which was obtained by carrying out a two-dimensional Fourier
transformation of the time histories from 64 equally spaced positions between x = 175 mm
and x = 238 mm on the 0.5 mm thick steel plate. The time history at x = 200 mm was shown
previously in Fig. 6.10(b). The spatial sampling interval was 1 mm and ag was decoupled by
the coincidence angle. This is essential, as a, has a low wavelength which would result in
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spatial aliasing for the above spatial sampling interval. The maximum amplitude of the
response of the plate is between 0.8 MHz and 1.8 MHz. At each discrete frequency in Fig.
6.24 the wavenumber at which the amplitude is a maximum corresponds to the sy mode, and
no other peak is evident confirming that only the sp mode is observed. The dips in the
amplitude of the wavenumber-frequency information seen in Fig. 6.24 are due to two effects.
The deep dips (which may be seen more clearly in Fig. 6.10(c)), are due to the abrupt nature
of the tone burst employed. The shallow dips are caused by the reflection B2, (see Fig. 6.3),
from the transducer holder of the variable angle probe.

The amplitude of the excitation signal, the spatial pressure distribution of the transducer, and
the modal properties of sy, which are functions of frequency, all contribute to the
determination of the proportion of energy available to excite the mode at a particular
frequency. The mode shape and phase velocity of sg are almost constant in the frequency-
thickness range of the excitation, so the amplitude of the mode is effectively only a function of
the frequency content of the excitation signal as can be deduced from Fig. 6.24.

Fig. 6.25 shows the normalised two-dimensional view of the amplitude wavenumber-
frequency information for the 2 mm steel plate, where the response at x = 200 mm was shown
previously in Fig. 6.11. Fig. 6.26 was obtained by carrying out a two-dimensional Fourier
transformation of the time histories of 64 equally spaced positions between x = 175 and
222.25 mm. Two modes, s and ay, are present in Fig. 6.25; sq is the dominant mode and has
its maximum amplitude at a frequency of 1 MHz, the centre frequency of the excitation. The
response reduces rapidly away from this frequency, and side lobes similar to those of Fig.
6.10(c) are seen. The sy mode is seen over a much narrower frequency range in Fig. 6.25
than in Fig. 6.24 because the frequency-thickness value is higher and the phase velocity of s;
(and hence the coincidence angle) varies rapidly with frequency-thickness in this range (see
Fig. 2.9). Therefore, the excitation signal is only appropriate over a narrow range of
frequencies where the wavenumbers of the incident beam and the Lamb waves being excited
are matched. The a; mode observed at higher frequencies has been excited mainly by the
sidelobes of the excitation signal. The duration of the response in Fig. 6.11 was very long due
to the dispersive nature of sg in this frequency-thickness range and the 'ridge’ parallel to the
wavenumber axis at 1 MHz in Fig. 6.25 was due to truncation of the time domain signals after
200 ps (see Fig. 6.11). In order to calculate the true amplitudes of the two modes present, the
frequency content of the input signal, the pressure distribution of the transducer, the method
of coupling and the mode shapes on the plate surface must be considered.

Fig. 6.26 shows the normalised three-dimensional view of the amplitude-wavenumber-
frequency information for the 3 mm plate, where the response at x = 200 mm was shown
previously in Fig. 6.12. Fig. 6.26 was obtained by carrying out a two-dimensional Fourier
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transformation of the time histories of 64 equally spaced positions between x = 175 mm and x
= 222.25 mm. Three modes, sy, S1, and a; are present. The different modes are observed in
the frequency-thickness regions where their wavenumbers and mode shapes are appropriate
for their excitation and reception; a; dominates the response of the plate, its maximum
amplitude being measured at 1 MHz, the centre frequency of the excitation. The sy mode is
seen only at frequencies below 1 MHz while s, is seen at higher frequencics;t both modes have
been excited by the sidelobes of the excitation signal.

A comparison of the 2-D FFT results and the theoretically predicted wavenumber dispersion
curve for sq is shown in Fig. 6.27. The 2-D FFT results are represented by squares and are
the wavenumber-frequency points at which the amplitudes in Fig. 6.24 are a maximum. From
Fig. 6.27 it may be seen that the agreement between the theoretical predictions and
experimental results was excellent, the maximum difference between the measured results and
the theoretical predictions being less than 1%. V

Fig. 6.28 shows a comparison of the theoretically predicted wavenumber dispersion curves
for sp and a;, with experimental results obtained by locating the wavenumber(s) at particular
frequencies at which the amplitude shown in Fig. 6.25 reaches a maximum. Again the
agreement between the theoretical and experimental results is seen to be excellent, the
maximum difference between the measured results and the theoretical predictions being less
than 1%.

Test with immersion probes and arbitrary function generator

In this test the Lamb wave rig was used and the excitation was a five cycle 1.2 MHz tone
burst modified by a Hanning window, from the arbitrary function generator.

Fig. 6.29 shows the normalised three-dimensional view of the amplitude-wavenumber-
frequency information for the 0.5 mm thick steel plate, where the time history at x = 200 mm
was shown previously in Fig. 6.13(b). Fig. 6.29 was obtained by carrying out a two-
dimensional Fourier transformation of the time histories from 64 equally spaced positions,
between x = 200 mm and 263 mm where the spatial sampling interval was 1 mm. The
maximum amplitude of the response of the plate is at 1 MHz, and the single peak indicates that
only one propagating mode, s, is present. There are no large dips present in Fig. 6.29
(unlike in Fig. 6.24). because the sidelobes of the bandwidth of the excitation signal has been
significantly reduced by the application of the Hanning window. The shallow dips due to the
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reverberations in the transducer holder block shown in Fig. 6.24 have also been eliminated by
using the water column coupling in the Lamb wave test rig.

Since use of immersion transducers and the arbitrary function generator produce more
satisfactory signals, this system was used in the subsequent tests on the interaction of Lamb
waves with defects which are presented in chapter 7. f

6.7 Conclusions.

Localised immersion coupling, using a water column and standard immersion probes has been
shown to be more satisfactory for the generation of single Lamb modes than standard variable
angle probes. This is because it eliminates reverberations and shear waves in the coupling
media, which are commonly encountered when using standard variable angle probes.

However, even using the localised immersion Lamb wave test rig, the results have shown that
it is very difficult to obtain a pure mode using transducers of finite dimensions because the
plate is excited over a range of frequencies and wavenumbers, the frequency range being
mainly dépendent on the number of cycles in the excitation tone burst and on whether a
smoothing window is applied. The wavenumber range is mainly dependent on the angle
required and on the size of the transducers.

Time domain methods can be used to measure the group velocity of Lamb waves. These
methods are simple to implement and require minimal signal processing, but they can only be
applied in restricted frequency-thickness regions due to the dispersive multi-mode nature of
Lamb waves.

The amplitude and phase spectrum methods have been used to measure the phase velocity of
so at low frequency-thickness products, where it could be decoupled from other modes. It has
been shown that these one-dimensional spectral methods can cope with dispersive 51gnals but
they may only be used reliably when there is one propagating mode.

The 2-D FFT method has been used to measure the amplitudes and velocities of propagating
Lamb waves over a range of frequencies and phase velocities in a single test. It has been
shown that this technique may be used when there is multi-mode propagation and/or
dispersion. The experimental and numerical results are in excellent agreement with theoretical
predictions, the maximum difference in wavenumber being 1%. Although the results
presented here have been for Lamb waves, the technique is equally applicable to the
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measurement of other propagating waves, for example, a mixture of longitudinal and shear
waves.

The 2-D FFT method can be used with any Lamb wave propagation distance, subject to
signal-to-noise ratio considerations. Multi-element array transducers are now available, which
will greatly simplify the experimental implementation of the method. This makes the method
very attractive for many NDT applications where Lamb waves are used.
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Figure 6.2 Schematic representation of (a) the direct 'wedge' method and (b) the indirect
‘wedge’ method.
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Figure 6.3 Schematic representation of (a) the variable angle probe and (b) the interfaces of
the variable angle probe shown in (a).
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Figure 6.4 (a) Normalised time history of the response of the variable angle probe in air
when excited by a broad band signal. (b) Amplitude spectrum of the time history
shown in (a).
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Figure 6.5 Schematic representation of the Lamb wave test rig.
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Figure 6.6 Amplitude spectrum of the response of the 0.5 MHz immersion probe when
excited by a broad band signal.
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Figure 6.7 Amplitude spectrum of the response of the 1.0 MHz immersion probe when
excited by a broad band signal.
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Figure 6.8 Lamb wave coincidence angle dispersion curve for steel for a variable angle

probe mounted in a perspex block (perspex cp = 2550 m/s). The rectangle
shows the region of excitation for the variable angle probes used in the initial
experiments with pulse excitation.
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Figure 6.9 (a) Normalised time history of the measured response at x = 100 mm in a 1.0
mm thick plate when broad band pulsed excitation was used. (b) Amplitude
spectrum of the time history shown in (a)



@ The measurement of propagating Lamb waves in plates 168

Amplitude [Linear Scale]
h

0 Time [ps} 50

Amplitude {Linear Scale]

8

0.0
Time [us]

Amplitude [Scale 10dB/div]
0.01

"0 Frequency [MHz) ] 3

Figure 6.10 (a) Normalised time history of a simple 5 cycle excitation tone burst at 1.2 MHz.
(b) Measured response at x = 200 mm in a 0.5 mm thick plate when the
excitation signal shown in (a) was appropriate for sg. (c) Amplitude spectrum of
the time history shown in (b).
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Figure 6.11 Normalised time history of the measured response at x = 200 mm in a 2 mm
thick plate when the frequency of the excitation signal shown in Fig. 6.10(a)

was 1.0 MHz and was appropriate for sg.
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Figure 6.12 Normalised time history of the measured response at x = 200 mm in a 3 mm
thick plate when the frequency of the excitation signal shown in Fig. 6.10(a)

was 1.0 MHz and was appropriate for a;.
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Figure 6.13 (a) Normalised time history of the 5 cycle 1.2 MHz excitation tone burst
modified by a Hanning window. (b) Measured response at x = 200 mm in a 0.5
mm thick plate when the excitation signal shown in (a) was appropriate for sg.
(c) Amplitude spectrum of the time history shown in (b).
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Figure 6.14 (a) Normalised time history of the measured response at x = 150 mm in a 0.5
mm thick plate when the excitation signal was a 12 cycle 1.0 MHz tone burstin a
Hanning window and the angle was appropriate for sg; (b) at x = 250 mm and
(c) the sum of the time histories shown in (a) and (b).
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Figure 6.15 (a) Normalised time history of the measured response at x = 150 mm in a 3.0
mm thick plate when the excitation signal was a 12 cycle 0.45 MHz tone burst in
a Hanning window and the angle was appropriate for sg; (b) at x = 250 mm.
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Figure 6.16 (a) Normalised time history of the measured response at x = 150 mm in a 3.0
mm thick plate when the excitation signal was a 12 cycle 0.6 MHz tone burst in a
Hanning window and the angle was appropriate for sg; (b) at x = 250 mm.
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Figure 6.17 (a) Normalised time history of the measured response at x = 150 mm in a 3.0
mm thick plate when the excitation signal was a 12 cycle 0.75 MHz tone burst in
a Hanning window and the angle was appropriate for sg; (b) at x = 250 mm.
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Figure 6.18 (a) Normalised time history of the measured response at x = 150 mm in a 3.0
mm thick plate when the excitation signal was a 12 cycle 1.0 MHz tone burstin a
Hanning window and the angle was appropriate for sy, aj, and sg; (b) at x =250
mm.



@ The measurement of propagating Lamb waves in plates

177

Amplitude [Linear Scale]

0 Time [s]

40

0.0

Amplitude [dB]

10

13

-60.0
7
o

0.5 . Frequency [MHz]

1.5

Figure 6.19 (a) Normalised time history of the measured summed responses at x = 200 mm
and x = 250 mm in a 0.5 mm thick plate when the excitation signal was a 5 cycle
1 MHz tone burst in a Hanning window and the angle was appropriate for sg; (b)

Amplitude spectrum of the time history shown in (a).
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Figure 6.20 A comparison of the phase and amplitude spectrum results obtained from the
time record shown in Fig. 6.19, where the amplitude spectrum results are

denoted by squares.
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Figure 6.21 (a) Normalised time history of the measured summed responses at x = 200 mm
and x = 250 mm in a 3.0 mm thick plate when the excitation signal was a 5 cycle
0.6 MHz tone burst in a Hanning window and the angle was appropriate for sp;
(b) Amplitude spectrum of the time history shown in (a).
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Figure 6.22 A comparison of the phase and amplitude spectrum results obtained from the
time record shown in Fig. 6.21, where the amplitude spectrum results are
denoted by squares.
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Figure 6.23 (a) Normalised time history of the measured summed responses at x = 200 mm
and x = 250 mm in a 3.0 mm thick plate when the excitation signal was a 5 cycle
1.0 MHz tone burst in a Hanning window and the angle was appropriate for sj,
a1, and sg; (b) Amplitude spectrum of the time history shown in (a).
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Figure 6.24 Normalised 3-D plot of the 2-D FFT results for the case of Fig. 6.10(b).
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Figure 6.25 Normalised 3-D plot of the 2-D FFT results for the case of Fig. 6.11.
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Figure 6.26 Normalised 3-D plot of the 2-D FFT results for the case of Fig. 6.12.
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Figure 6.27 A comparison of the experimental results () obtained from Fig. 6.24 with the
analytically generated dispersion curve for sg.
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Figure 6.28 A comparison of the experimental results (A) obtained from Fig. 6.25 with the
analytically generated dispersion curve sg.
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Figure 6.29 Normalised 3-D plot of the 2-D FFT results for the case of Fig. 6.13(b).



CHAPTER 7

The measurement of Lamb wave interaction with notches

7.1 Introduction

The major objective of the experimental program reported in this chapter was to validate the
finite element (FE) predictions presented in chapter 5. This was achieved by exciting an
individual Lamb wave and measuring its amplitude after it had interacted with straight sided
notches of varying depths in 3.0 mm thick steel plates. The experimental testing procedure
when the 2-D FFT method was used is shown schematically in Fig. 7.1(a) and (b), where in
(a) the reference 2-D FFT was obtained over a region of the plate without a notch. The
transmission ratios were then obtained by dividing the 2-D FFT of the response of the plate
after the Lamb wave had propagated through the notch, see Fig. 7.1(b), by the reference 2-D
FFT.

The cold rolled mild steel plates used in the 2-D FFT tests were approximately 300 mm wide
and 1 m long. The individual Lamb waves were selectively excited by applying the
coincidence principle described previously. The experimental procedure, testing equipment
and Lamb wave test rig described in chapter 5, were used throughout. In all the tests the
coincidence angle of the transmitter and the receiver was 16°. In the 2-D FFT tests, the
receiver was indexed from 350 to 413 mm from the transmitter, and at least 100 successively
captured signals were averaged to keep the signal-to-noise ratio high. The sampling frequency
was 5 MHz and a 1024 by 1024 (1k) point two-dimensional FFT was used (the 64 spatial
points were padded with 960 zeros). The tests were carried out approximately in the middle of
the plate so that any reflections from the edge of the plate were not included in the captured
signals.

The measured properties of the plates used in the experiments are given in Table 7.1. The bulk
velocities were measured using the amplitude spectrum method discussed in chapter 3 and 6
and in both cases the measurement accuracy was about £0.2%. The density value was
obtained from measurements of the weight and volume of the plates, where the measurement
accuracy was of the order of about +0.5%. Poisson's ratio was calculated from the measured
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values for ¢ and c3 using eqn 2.19. Comparing the values given in Table 7.1 with those used
in the FE studies (¢ = 5960 m/s, c¢2 = 3260 m/s and p = 8000 kg/m3) it may be seen that the
values used for c1, ¢ and v in the FE studies are almost the same as those obtained from the
steel plates, but that there is a difference of 2.4% in the density values. This was because
majority of the FE modelling was carried out before the experimental qusﬁgaﬁon and the
values given by Krautkramer and Krautkrimer (1983) were used.

p [kg/m3] v c1 [mys] c2 [ny/s]
7810 0.2839 5927 3256

Table 7.1 Measured properties of the steel plates

The first part of this chapter presents the experimental results of the transmission ratios of the
Lamb waves sg and aj to notches in different frequency-thickness regions (shown previously
in chapter 5, see Fig. 5.2), and the experimental results are then compared with the numerical
predictions presented in chapter 5. Finally the results of qualitative tests carried out to
determine the presence of defects in the weld region of a butt welded plate are presented.

7.2 Measurements of Lamb wave interaction with straight sided notches

The tests reported in this section were carried out to measure the sensitivity of the symmetric
and antisymmetric Lamb waves sp and a; in regions 1 and 2 (see Fig. 5.2) respectively, to
notches of varying depths.

The response of the 3.0 mm thick steel plate at 350 mm from the transmitter is shown in Fig.

7.2(a), when the centre frequency of the 12 cycle excitation tone burst modified by a Hanning
window was 0.48 MHz, which was appropriate to excite only the sg mode. The amplitude

spectrum shown in Fig. 7.2(b) was obtained from the time history shown in (a) and shows

that the signal is narrow band, the working range being from 0.41 MHz to 0.55 MHz, (20dB

down points). The wave packet seen in Fig. 7.2(a) was identified as the sgp mode from-a.
measurement of its group velocity using the time of flight method. The shape of the response

wave packet indicates that very little dispersion is present over the frequency-thickness

interval of the input signal.

Fig. 7.3(a) to (d) show the response of the plate at 350 mm from the transmitter after
interaction with 0.5, 1.0, 1.5 and 2.0 mm deep notches respectively, which were located 250
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mm from the transmitter, when the excitation was the same as in Fig. 7.2. The signals in Fig.
7.3(a) to (d) are dominated by the so mode, though some evidence of ag is seen, particularly
with the deeper notches. The predictions of chapter 5 indicated that significant amplitudes of
ag could be generated by mode conversion. However, the observed amplitudes are small
because the coincidence angle for ag is 36° in this frequency-thickness region so it is
ineffectively received by the transducer oriented at 16°. The ag mode is therefore partially
'decoupled’ by the orientation of the receiving transducer. The transmission ratios given in
Table 7.2 were obtained by dividing the maximum amplitudes of the signals shown in Fig.
7.3 by the maximum amplitude of the reference signal shown in Fig. 7.2(a).

h/2d 1/6 1/3 12 2/3

FE predictions 0.97 0.81 0.57 0.36
Time domain 0.98 0.82 0.59 0.39
2-D FFT 0.98 0.82 0.58 0.37

Table 7.2 Measured transmission ratio of sg at 1.45 MHzmm

The FE predictions have been included for comparison purposes and it may be seen that the
agreement between them and the time domain measurements is very good, the maximum
difference being 3%. From Fig. 7.3(b) to (d) it may be seen that the amplitude of the ag mode,
which has partially separated from sg and is seen when t > 25 s is significant. Therefore, the
difference between the FE predictions and the measured results is probably due to the
measured sg signal containing some of the ag mode which was mode converted from sy when
it interacts with the notch. |

The reference 2-D FFT shown in Fig. 7.4(a) was obtained by carrying out a two-dimensional
Fourier transform on the response of the plate at 64 equally spaced positions, when the
receiving transducer was indexed from 350 to 413 mm from the transmitter. Fig. 7.4(b)
shows the result of carrying out a 2-D FFT on the response of the plate over the same
propagation distances after interaction with the 1.0 mm deep notch located 250 mm from the
transmitter. In both cases the maximum amplitude of the response is at 0.48 MHz. However,
at each discrete frequency in Fig. 7.4(b) there are 2 wavenumbers relating to the incident s =
mode and the ag mode, which was caused by mode conversion at the notch, at which the
amplitude is a maximum. The wavenumber of ag is greater than that of the sg mode so it is
partially hidden in the 3-D plot. Here, as in the time domain responses presented in Fig. 7.3,
the magnitude of the ag mode is very small when compared with the FE predictions presented
in Fig. 5.13(b) due to the decoupling effect discussed above. In Fig. 7.5 the measured
amplitude versus wavenumber information from the 2-D FFT results at 1.35, 1.45 and 1.55
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MHz is given. From these two-dimensional plots the variation of the amplitude with
wavenumber may be clearly shown and it is possible to measure the relative amplitude of the
sp mode after it has propagated through the notch. In Fig. 7.5 the curve that reaches the
largest amplitude at the wavenumber relating to the sp mode was obtained from the 2-D FFT
results of the reference signal, which was a pure sg mode. The other curves are from the 2-D
FFT results after the sg mode had propagated through one of the notches, the results relating
to each of the 4 notches being labelled in Fig. 7.5. It may be seen that, as expected from Fig.
2.4, the wavenumber at which the amplitude is a maximum changes with frequency and in
this particular case, the amplitude of the sy mode decreases monotonically with increasing
h/2d as predicted in the FE results. From table 7.2 it may be seen that at 1.45 MHzmm the 2-
D FFT results are in excellent agreement with the FE predictions. Comparisons of the results
at 1.35 and 1.55 MHzmm with the FE predictions in Fig. 5.13 showed that these
measurements are also in excellent agreement with the theoretical predictions.

Fig 7.6(a) shows the response of the 3.0 mm thick steel plate at 350 mm from the transmitter
when the centre frequency of the excitation tone burst was 0.83 MHz. The wave packet was
identified as the a; mode by measuring the time of flight of the leading edge of the signal. A
25 cycle excitation tone burst modified by a Hanning window was used because the a; mode
is very dispersive in this frequency-thickness region, see Fig. 2.5. The amplitude spectrum of
Fig. 7.6(a) is shown in Fig. 7.6(b), from which it may ‘be seen that acoustic energy is
available in the frequency range between 0.78 MHz and 0.88 MHz, (20dB down points). Fig.
7.6(c) shows the response of the plate at 350 mm from the transmitter after interaction with a
1.0 mm deep notch, which was located 250 mm from the transmitter, when the excitation was
the same as in Fig. 7.6(a). In this frequency-thickness range three propagating modes (aj, ag
and sg) are possible, and the incidence angle of the receiving transducer was appropriate for
the a; mode although small components of the sg and ag modes will also be measured. The
shape of the response time history in Fig. 7.6(c) indicates that Lamb waves with similar group
velocities (the wave packets have not separated) are present. Therefore, it is not possible to
measure the amplitude of the a; mode in the time domain unless the propagation distance (after
the notch) is considerably increased so that the modes can separate.

Fig. 7.7 show the transmission amplitudes of the a1, sg and ag modes versus wavenumber at
2.5 MHzmm. In Fig. 7.7 the curve that reaches the largest amplitude at the wavenumber
relating to the a; mode was obtained from the 2-D FFT result of the reference signal, which
was a pure a;j mode. The other curves are from the 2-D FFT results after the a; mode had
propagated through one of the notches, the results relating to each of the 4 notches being
labelled in Fig. 7.7. The 3-D plots of the 2-D FFT results are not presented because the
amplitudes of the sp and ag modes, which are caused by mode conversion at the notch and are
small due to their coincidence angle not being correct, and in the plot they are hidden behind
the much larger amplitude of the a; mode, which has the smallest wavenumber (see, Fig.
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7.7). In fig. 7.7 it may be seen that the transmission ratios are non-monotonic with respect to
notch depth. For example, the transmission amplitude is greater after interaction with the 2
mm notch than after interaction with the 1.5 mm notch.

Fig. 7.8(a) to (d) show the transmission ratios of the a; mode obtained frpm the 2-D FFT
results as a function of the frequency-thickness product after interaction with the 0.5,1.0,1.5
and 2.0 mm deep notches respectively. The measured transmission amplitude ratios are
represented by squares and the numerical predictions are represented by a continuous line and
are included for comparison purposes. It may be seen that the trend of the experimental results
follow the FE predictions very well, but that the FE predictions are shifted to the right (to
higher frequency-thicknesses). This shift represents a 2% change in frequency or thickness
(about 0.05 MHzmm) and is probably due to the properties of the FE model not exactly
matching the steel plates used in the experimental investigations. It is particularly interesting to
note that the minimum in the transmission curves predicted in Fig. 7.8(b) is reproduced in the
experiments, confirming that this effect is readily measurable and so could be used for defect
sizing. The minima predicted in the other curves are not seen because after allowing for the
2% shift in frequency-thickness, these occurred outside the measurement bandwidth.

frequency-thickness h/2d
[MHzmm)] 1/6 1/3 172 2/3
2.35 0.90 0.38 0.19 0.38
2.45 0.84 0.19 0.50 0.69
2.55 0.76 0.20 0.79 0.82
Table 7.3 Measured transmission ratio of the a; mode

The transmission ratio of the a; mode is presented in Table 7.3 as a function of h/2d at various
frequency-thickness values. It may be seen that the transmission ratio does not decrease
monotonically with increasing h/2d, as, for example, sg does around 1.45 MHzmm (see Table
7.2), but is a non-monotonic function as predicted in the FE results in Table 5.4. |

7.2.1 Discussion

The experimental results are in excellent agreement with the numerical predictions presented in
chapter 5 and have shown how the 2-D FFT method may be used to quantify Lamb wave
defect interactions. At 1.45 MHzmm the results obtained using a time domain approach and
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the 2-D FFT method were in good agreement. The results have indicated that even below the
cut-off frequency-thickness product of the a; mode (1.63 MHzmm for steel), when the
amplitude of the mode converted wave is significant (see Fig. 7.3(b) to (d), it is not generally
possible to completely decouple it from the incident wave or vice versa using the coincidence
principle, therefore the propagation distance after the defect must be sufficient to allow the
modes to separate spatially if time domain methods are to be applied. This is a restrictive
limitation to using time domain methods in quantitative NDT because in general a defect can
be located anywhere along the propagation path. Moreover, in region 1 (see Fig. 5.2) for
grease or liquid coupled transducers which measure only the z component of displacement,
the ap mode is strongly coupled because its motion in the z direction at the surface is around
93% of the maximum motion (which also occurs in the z direction just below the surface, see
Fig. 5.3(a)), whereas for the sg mode, the motion in the z direction at the surface is only
around 37% of the maximum motion. Therefore, the measuring system is effectively biased
towards measuring the ag mode in this frequency-thickness range.

The results relating to the transmission ratio of the a; mode have verified the FE predictions of
local minima in the the transmission ratios, which are a function of frequency-thickness. They
have also indicated that when more than 2 propagating modes are present and their group
velocities are similar, which is usually the case, see Fig. 2.6, the wave packets of each mode
will not be separated unless the propagation distance (after the notch) is considerable.
Therefore, if a quantitative analysis is required the 2-D FFT method must be used.

The form of the experimental measurements and the FE predictions of the transmission of the
aj mode through notches of varying depth at around 2.5 MHzmm where the predicted ratios
are non-monotonic and a strong function of frequency-thickness have been in very good
agreement, though the experimental results are shifted by about 0.05 MHzmm (2%) on the
frequency-thickness axis. This is approximately the difference between the density used in the
model and that of the plates used in the experiments. Another possible cause of the difference
in the results is that the plates were cold rolled mild steel, in which ¢ and c3 in the plane of
the plate (the rolling direction) are different to c; and ¢y normal to the plane of the plate.
However, measurements of the velocities ¢ and ¢ to the degree of accuracy required in the
plane of the plate are extremely difficult, so the values from measurements normal to the plate
were used. These errors are not seen in the results for the transmission of the sg mode in
region 1, because the transmission ratios are almost constant for all the notches over the
frequency-thickness range tested so the shift would not be seen. i
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7.3 Defects in a butt welded plate

These tests were carried out to demonstrate that Lamb waves can be used as a quick and
simple qualitative inspection method, the shape of the response signal being used to detect the
presence of defects. A schematic representation of the butt welded 3.12 mm thick steel plate
and the positions of the transmitting and receiving transducers relative to the butt weld region
is shown in Fig. 7.9. In all the tests the input signal was a 0.325 MHz 10 cycle tone burst
modified by a Hanning window. The propagation distance was 250 mm and the weld region
was 125 mm from the transmitter. The frequency-thickness region (1 MHzmm) was chosen
because both the ag and sp modes are effectively nondispersive and their group velocities
differ by a considerable amount. At around 1 MHzmm the wavelength of the sg is
approximately 16 mm. Many workers, for example, Duncumb and Keighley (1987) have
reported using the sp mode below 1.63 MHzmm in steels and being able to detect defects with
dimensions of the order of 25% of the plate thickness. In this case we would like the Lamb
wave to be sensitive to defects of a significant depth (greater than 20% of the plate thickness)
in the weld region, but insensitive to the small changes in thickness and material properties in
the weld region. The plate thickness increased by up to around 1 mm over the 7 mm length of
the weld region. This change in thickness is of the same order as the predicted detection
threshold for notches using the sg or the ag mode in low frequency-thickness regions. Hence,
a good weld would be expected to have little effect on the propagation of these modes.

This is confirmed in Fig 7.10(a) which shows the response of a good region of the plate at
250 mm from the transmitter. The first and second wave packets in Fig. 7.10(a) were
identified as the sg and ag modes, respectively, from measurements of the time of flight of the
leading edge of the individual wave packets. Both modes are excited by the excitation
transducer (confirmed by the arrival time of the individual wave packets in Fig. 7.10(a))
because of the finite size of the transducers (see section 2.12). Therefore, if mode conversion
occured at the weld, which was equidistant from the two transducers, the ag mode produced
by sg at the defect in the weld region and the sy mode produced by the incident ag mode would
artive at the receiver at the same time. Fig. 7.10(b) to (d) show the response of the plate at
250 mm from the transmitter after interaction with defective butt welds where the defects in
the weld region were approximately 30%, 40% and 60% of the plate thickness respectively
and the excitation signal was the same as in Fig. 7.10(a). The ap and sy modes, caused by
mode conversion in the butt welded region can clearly be seen at the trailing edge of the sp
wave packet in Fig. 7.10(b), (c) and (d) and have changed the shape of the response signals
considerably. From the time histories of the measured responses shown in Fig. 7.10 it may be
seen that the shape of the Lamb wave response signal at low frequency-thickneses, where
only ag and sq are possible may readily be used to determine the presence of defects in the butt
welded region when the defect depth is of the order of 30% or more of the plate thickness.
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Although the Lamb wave testing rig was used in the experiments reported in this section,
similar results (the reference response signal would not be as good) may be obtained using the
variable angle probes. The variable angle probes are well suited for use in qualitative methods
because they are easy to use especially when dealing with practical problems such as uneven
surfaces, restrictive access and obstacles in the propagation path, for example ribs and
stiffeners on plates.

7.4 Conclusions

The experimental results have validated the finite element predictions presented in chapter 5,
the agreement between the measured and the FE predictions of the transmission ratios being
very good in the series of tests carried out around 1.45 MHzmm to determine the sensitivity of
the sp mode to notches. The experimental investigations have shown that at frequency-
thickness products below the cut off value of the aj mode it is possible to decouple the ag and
so modes so that the amplitudes of individual wave packets can be measured in the time
domain.

The 2-D FFT method has been used to determine the transmission ratio of the a; mode in a
frequency-thickness region were the wave is dispersive and more than one other mode is
possible. At around 2.5 MHzmm the form of the experimental results and the FE predictions
of the transmission of the a; mode through notches of varying depth, where the predicted
ratios are non-monotonic and are strong function of frequency-thickness, have been in very
good agreement. The experimental results have validated the FE predictions which indicated
the presence of minima in the amplitude of the transmission ratios at particular frequency-
thickness products, although the experimental results have been shifted by about 0.05
MHzmm (2%) on the frequency-thickness axis.

The tests on the butt welded steel plates have shown that fast, qualitative inspections may be
carried out using Lamb waves by simply monitoring the change in shape of the response
signal.
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Figure 7.1 Schematic representation of experimental procedure; (a) to obtain reference 2-D
FFT; (b) to obtain 2-D FFT after interaction with a notch.
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Figure 7.2 (a) The time history of the measured response at x = 350 mm from the
transmitter in a 3.0 mm thick steel plate, when the excitation was appropriate for
so. (b) Amplitude spectrum of the time history shown in (a).
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Figure 7.3 (a) The time history of the measured response at x = 350 mm from the
transmitter in a 3.0 mm thick steel plate, when the excitation was appropriate for
so and a 0.5 mm deep notch was located at x = 250 mm; (b) a 1.0 mm notch ; (¢)
a 1.5 mm notch; (d) a 2.0 mm notch.
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7.2(a). (b) Normalised 3-D plot of the 2-D FFT results after the sp mode had

Figure 7.4 (a) Normalised 3-D plot of the reference 2-D FFT results for the case of Figure
interacted with the 2.0 mm deep notch.



The measurement of Lamb wave interaction with notches . 200

Amplitude {Linear Scale]

Amplitude {Linear Scale]

0 Wavenumber [1/m] 1570

Amplitude {Linear Scale]

0 Wavenumber [1/m] 1570

Figure 7.5 Normalised plot of the measured amplitude versus wavenumber information
from the 2-D FFT results, obtained after the transmission of sp across notches of
different depths; (a) at 1.35 MHzmm, (b) at 1.45 MHzmm and (c) 1.55
MHzmm.
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Figure 7.6 (a) The time history of the measured response at x = 350 mm from the
transmitter in a 3.0 mm thick steel plate, when the excitation was appropriate for
aj. (b) Amplitude spectrum of the time history shown in (a). (c) Time history of
the response when a 1.0 mm deep notch was located at x = 250 mm and the
excitation was the same as in (a).
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Figure 7.7 Normalised plot of the measured amplitude versus wavenumber information
from the 2-D FFT results, obtained after the transmission of a; across notches of
different depths at 2.5 MHzmm.
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Figure 7.8 Transmission ratio of the aj) mode as a function of frequency-thickness after
interaction with (a) the 0.5 deep notch, (b) the 1.0 mm notch, (c) the 1.5 mm
notch and (d) the 2.0 mm notch.
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Figure 7.9 Schematic representation of a 3.12 mm thick 350 mm long butt welded steel
plate.
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Figure 7.10 Normalised time history of the measured response at x = 500 mm from the

transmitter in a 3.12 mm thick butt welded steel plate, when the excitation was
appropriate for sg and the weld region was located at x = 250 mm. (a) good weld
(b) poor weld (c) bad weld and (d) very bad weld.



CHAPTER 8

The practical implementation of Lamb waves in standard NDT
methods ‘

8.1 General

Since Worlton (1957) used Lamb waves to non-destructively test plates there has been a great
deal of interest in the application of Lamb waves in nondestructive testing and monitoring and
for the evaluation of material properties, especially non-metals. Much of the early work in the
field relied as much on empirical experience gained through experimental investigations as on
scientifically based ideas. However, in the last few years the potential of Lamb wave methods
has been broadened considerably by the introduction of cheap and fast personal computers
and workstations coupled with the availability of electronic devices and instrumentation, for
example, digital oscilloscopes and arbitrary function generators.

The major practical advantages of using Lamb waves in NDT and monitoring applications are
firstly that they are two-dimensional (a stress field is produced throughout the plate thickness,
although stress nodes are generally present and have to be considered). Therefore, the entire
thickness of the plate may be interrogated. This is an important advantage, as in many NDT
and monitoring applications coverage of the entire thickness of the plate is required in order to
find defects which may be initiated at either surface or internal sites, for example, fatigue
cracks. Secondly and more importantly, information about the integrity of the plate along the
propagation path of the Lamb wave, rather than at a single point as is the case in standard
ultrasonic NDT using bulk waves, is obtained. This allows us to carry out fast long range
two-dimensional scanning of large plates; the same approach may be used in pipe inspection
when the wall thickness to pipe diameter is less than 0.1 (see Harker 1988). Fast, long range
testing is generally less sensitive than standard high frequency ultrasonic NDT, but it has great
potential in the routine inspection of large, defect-tolerant structures, for example, oil rigs and
pipe lines where NDT inspections have to be carried out periodically.

The multi-mode dispersive nature of Lamb wave means that measurement of their amplitudes
and velocities over significant propagation distances is the key problem in NDT applications.

-206 -
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Therefore, most NDT using Lamb waves in frequency-thickness regions above the cut-off
value of the a; mode has been qualitative and in the majority of cases the Lamb wave(s) signal
is simply compared in the time or frequency domains with a reference or 'good’ signal; any
difference between the two may then be used to identify the presence of a defect. These NDT
and monitoring systems can hence be thought of in terms of simple "GO/NO GO" tests, the
simplicity of these techniques being their biggest advantage. The dispersive multi-mode nature
of Lamb waves means that in practice the response signal is very complicated. Dispersion, the
presence of many propagating modes and their interaction with boundaries or other features
which are not of interest generally mean that the duration of the time domain signal is also
very large. Hence, these comparison methods usually have to store a very large amount of
data (see Bartle 1987) if a significant duration of the response is to be compared with the
reference. This is costly in terms of hardware and the testing process is generally slow. These
restrictions have ensured that comparison methods have not been developed for NDT
applications where on line results are required, but instead have concentrated on
nondestructive monitoring applications. A further restriction of comparison techniques is that
the response signal is very sensitive to changes in the testing conditions, especially
propagation distance and coupling.

This chapter will deal with the practical difficulties associated with using Lamb waves in NDT
and ways in which these problems may be circumvented. In particular, a comparison method
in which the signal-to-noise ratio is maximised is presented, together with preliminary finite
element predictions and experimental results to demonstrate its use.

8.2 Signal-to-noise considerations

8.2.1 Standard techniques for maximising the signal-to-noise ratio

Lamb waves are usually dispersive so the response signal of a mode will spread out spatially
as it propagates along the plate, and the change in shape of the response signal will be a
function of the degree of dispersion of the wave. This results in a reduction of the maximum
amplitude of the signal and, after a short propagation distance, the maximum amplitude may
reduce towards the noise level. ' “

The simplest way of improving the signal-to-noise ratio over any given distance is to increase
the amplitude of the excitation signal by, for example, using a power amplifier, or by reducing
the bandwidth of the excitation signal. This is generally achieved by increasing the number of
cycles in the excitation tone burst. The signal-to-noise ratio may also be improved by using
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the coincidence principle to preferentially excite a single mode, and hence to minimise the
amount of energy distributed among other modes which are not of interest (especially if they
are highly dispersive). The signal-to-noise ratio may be further enhanced by exciting
individual modes in frequency-thickness regions where dispersion is a minimum, which in
most cases correspond to regions in which the group velocity is a maximum. Recently, with
the widespread introduction of digital capture systems, the signal-to-niose ratio is usually
improved by averaging successive response signals.

Many workers, for example, Bartle (1987) and others at The Welding Institute and Rose et al
(1983) have tried to overcome signal-to-noise problems by using long duration tone burst
excitation signals and bonding piezoelectric elements to the testpiece to maximise the transfer
of acoustic energy. However, they have been unable to report obtaining good results in
frequency-thickness regions above the cut-off value of the a; mode.

In the next section a novel qualitative comparison approach in which the signal-to-noise ratio
is maximised is presented. The results of finite element (FE) predictions to check the validity
of the method will be presented, as will the results of a preliminary experimental investigation.

8.2.2 Signal regeneration

Background

The fundamental idea of the method described here is to launch a signal that by superposition
of its frequency components will recombine to form a signal with a simple shape (a pulse or
tone burst) at the measurement position. A major benefit of employing this method is the
analysis may be carried out in the time domain, where signal processing is kept to a minimum.

Suppose, for example, that a simple windowed tone burst of the type shown in Fig. 8.2(a) is
used to excite a dispersive Lamb mode. Due to dispersion the signal received at a remote
position along the plate will have a different shape and will in general have a lower peak
amplitude (see, for example, Fig. 8.2(b)). Therefore the frequency components of the signal
corresponding to the highest group velocities will be at the front of the signal, the slower
components appearing later. If the received signal is reversed in time and is used to excite the
transmitter, the new received signal should than be of the same form as the original excitation.

The advantage of this method is not only that the comparison of the reference and the response
signal is made trivial, but the signal-to-niose ratio is maximised at the measurement position.
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This is because at the measuring point the wave is focussed spatially, the maximum amplitude
there being greater than at the excitation position, and as resolution (the ability to separate
signals at closely spaced positions, eg a defect close to a boundary) is a function of the spatial
extent of the ultrasound, this is also maximised. This method is therefore akin to using
focussed probes in standard ultrasonic NDT to improve the signal-to-noise ratio and enhance
resolution.

‘General theory

Let the excitation signal of the plate at a location defined as x = 0 be given by

+ oo ‘
[F@)lxeo = ] £(r) €719t d¢ 8.1

If damping is negligible the response signal at a position x =L is

+ oo
[F@)lxr = | f(t) e7i(@t-KL) g | 8.2)

-0

where the wavenumber k = w/c is a function of ®. These two functions are related by the
transfer function H(w), where

- [F(@)]x=L

H =
@ [F(®)]x=0

(8.3)

Suppose we wish to obtain a signal g(t), whose Fourier transform is G(®), at x = L. Then
from eqn 8.3 the required input, I(w), at x = 0 is given by

G(w)
o) = — = H(w)}-! : 8.4
() H(®) G(o) [H(m)] : (8.4)

The time domain signal I(t), which must be applied at x = 0 to obtain G(w) at x = L, may be

obtained by inverse Fourier transforming eqn (8.4), ie

+ oo

I = 1 Jﬂ")—ei“" do (8.5)
on H(w)

- 00
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In the simple case when a single wave packet is present

[H(w)]! = ek = giol/c ' (8.6)
and
+ oo
1 = 21_n [ Glw) et g 8.7)

If the time domain signal g(t) is applied at x = 0 then the response, I*(t), at x = L is

+ oo
T*(t) = 51— [ 6w eiote+ 1 44 v (8.8)
T -o0

The proposed technique is to use the reverse of the signal I*(t) as the excitation signal. The
function I*(-t) has the desired property that the components of I*(t) which arrive at the tail of
the signal will be present at the front of I*(-t). Now,

+4 oo
T*(1) = 2—1— [ G() et -1 4o (8.9)
T -o0

and by comparing eqn 8.7 and 8.9 it may readily be shown that in this simple case I(t) is equal
to I*(-t) if G(w) is even. Therefore, if the desired signal g(t) is symmetrical, the simple signal
reversal approach is valid. This class of signal, for example, a tone burst comprising an
integer number of cycles enclosed in a window function was used in the most of the
experimental and numerical tests presented in this thesis.

Numerical study

A finite element and experimental study was carried out by Décobert (1990) to investigate the
validity of the signal regeneration method and to determine if it could be used as a reliable
method of detecting defects using the Lamb mode ag at very low frequency-thickness
products.
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The finite element results reported in this section are from Décobert (1990), where the ag was
launched from the edge of a 2 mm thick plate at x = 0 by applying a 3 cycle 60 kHz tone burst
excitation signal, f(t), modulated by a Hanning window function to limit the bandwidth. The
amplitude of the x and z displacement components at each node at the plate edge may be
calculated from

£(0,0) = Y, ®j(z) A;j el®jt - KL (8.10)
. j

which was obtained from eqn 4.24, where ®j(z) and Aj were defined in chapter 4, L = 340
mm and k is the frequency dependent wavenumber of the ag mode (see Fig. 2.4). In the case
reported here, the mode shape, @(z), of ag is effectively independent of frequency and the z
direction through-thickness displacement components are constant, therefore eqn 8.10 was
simplified to

f0,0) = O, Ajelejt - ikt (8.11)
j

The time domain input signal f(0,t), was applied at the edge of the plate in the z direction only
since in this frequency-thickness region ag is the only antisymmetric mode and a pure ag mode
may be excited by applying an input signal which is symmetric in the z direction with respect
to the middle of the plate.

Fig. 8.1(a) to (d) from Décobert (1990) show the normalised time histories of the response of
the top surface of the plate in the z direction at x = 0, 200, 260 and 340 mm respectively,
when the signal applied at x = 0 was appropriate to excite only ag and to recombine into the 3
cycle tone burst at x = 340 mm. From (a) it may be seen that the input is distorted and its
duration is increased in comparison to a 3 cycle tone burst, the lower frequency components
are at the front of the signal and the higher frequency components are at the tail. In (b) and (c)
it may be seen that the signal is progressively recombining into the 3 cycle tone burst; and in
(d) at x = 340 mm it may be seen that the response is a 3 cycle tone burst modified by a
Hanning window function. The result of the summation at x = 340 mm is that all of the
frequency components of the excitation signal spread out at x = 0 in Fig. 8.1(a)) arrive in
phase at the monitoring position x = 340 mm. The spatial extent of the response at this
position is a minimum; therefore, the signal-to-noise ratio is a maximum and as can be seen in
Fig. 8.1(d) the maximum amplitude at x = 340 mm is greater than at x = 0, (Fig. 8.1(a))
where the wave was launched.
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Experimental results

The aim of the experimental investigation was to excite s in a dispersive region, capture the
response signal, reverse the response and then excite the system with the resulting signal and
see if the new response was of the same form as the original input signal shown in Fig.
8.2(a). This would test the feasibility of the signal regeneration method under experimental
conditions. The instrumentation used was shown previously in Fig. 6.1, where a digital
arbitrary function generator was used to apply the reversed response signal.

The excitation signal shown in Fig. 8.2(a) was a 12 cycle 0.65 MHz tone burst modified by a
Hanning window. Fig. 8.2(b) shows the response of the 3.0 mm thick steel plate at x = 200
mm from the transmitter, where the incident angle at x = 0 was appropriate to excite only sy.
The change in shape of the time history indicates that the sg mode is dispersive in this
frequency-thickness region (see Fig. 2.6). Fig. 8.3(a) shows the result of reversing the
response signal shown in Fig. 8.2(b). The response of the 3.0 mm thick steel plate at x = 200
mm from the transmitter is shown in Fig. 8.3(b), when the excitation at x = 0 was the
reversed response signal shown in Fig. 8.3(a), from which it may be seen that the response in
this case is of the same form as the tone burst shown in Fig. 8.2(a).

Fig. 8.4 shows the response of the 3.0 mm thick steel plate at 200 mm from the transmitter,
when the excitation at x = 0 was shown in Fig. 8.3(a). However, in this case there was a 1.0
mm deep and 0.5 mm wide straight sided notch, normal to the plate surface (see, Fig. 5.1(a))
at x = 100 mm. Comparing the responses in Fig. 8.4 and 8.3(b) it may be seen that there has
been a discernible change in the shape of the response in Fig. 8.4, which is caused by the
presence of the notch. The mode conversion of the incident wave, sq, to ag after interaction
with the notch has significantly increased the duration of the response signal in Fig. 8.4 and
has also changed its shape. |

The FE and experimental results reported here and by Décobert (1990) have shown that the
signal regeneration method enables us to use grossly dispersive Lamb waves in NDT
applications without the signal-to-noise being reduced to an unacceptable level after small
propagation distances.
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8.3 Transducers, coupling and excitation signals

8.3.1 Transducers

Here, the excitation and reception of Lamb waves will be considered separately and comments
on the effects of the size and orientation of the transducer will be given.

Excitation transducer

In the past, the standard way of exciting and/or receiving Lamb waves has been to use
piezoelectric elements and some variation of the 'direct wedge' type of probe design.
However, in chapter 6 it was shown that the 'direct wedge' transducer invariably causes the
measured signal to be complicated by the convolution of the response of the plate with the
response of the transducer. In general, multiple reverberations may take place within the body
of the probe where shear, longitudinal and Rayleigh waves may exist. This can be overcome

by using immersion transducers.

To excite a pure Lamb mode using finite piezoelectric transducers the input must not only be at
the correct frequency-thickness product (this being controlled by the excitation signal), but
must also be appropriate so that only the surface displacement pattern (ie phase velocity or
wavelength) of the mode required is imposed. Other modes may be decoupled by reducing the
angular bandwidth of the excitation signal. This may be achieved by using a large transducer
and by orienting the transducer to the coincidence angle of the required mode.

In array element transducers such as those used by for example, Jitsumori et al (1986),
selective excitation of individual modes is achieved when the element spacing is equal to the
Lamb mode wavelength, each element acting as a piston source. The wavelength of the
excitation signal is constant because the element spacing is fixed, and transducers that use this
principle are inflexible as individual transducers have to be manufactured for different
wavelength ranges. However, in array transducers with large numbers of active elements it is_
possible to modify the phase of the excitation signal to each element in order to change the
wavelength of the excitation signal.

Some investigators, notably Béttger et al (1987), have employed Electro-Magnetic-Acoustic-
Transducers (EMATS) in Lamb wave NDT applications on metal tubes. The major advantange
of using these transducers is that they are non contacting. However, lift-off (variation of the
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distance between the EMAT and the surface of the testpiece), is a major problem and the
transducers tend to be very large compared to piezoelectric transducers and the output is in
general lower than that of piezoelectric transducers. EMATS are also inflexible in that they will
only excite Lamb waves over a fixed range of wavelengths

When EMATS or array element transducers are used, the spatial bandwidth of the excitation
signal is reduced by increasing the size of the transducer.

Reception transducer

The requirements of reception and excitation are very similar, but obviously if two transducers
are employed (see Fig. 6.1) the receiver transducer has to aligned with the excitation
transducer. When piezoelectric transducers are used the coincidence angle of the receiving
transducer is opposite to the excitation angle (see Fig. 6.1). The advantage of having a
separate receiving transducer in Lamb wave testing is that it may be focussed (using the
coincidence principle) on a mode which is not (strongly) excited but which is produced by
mode conversion at the defects; as the finite element results presented previously indicate that
in some cases defect sensitivity may be substantially improved by measuring the amplitude of
modes produced at the defect. Practical implementation of the 2-D FFT method requires the
use of array element transducer where each element may act as a point receiver.

8.3.2 Couplipg

Although Luukala and Merilainen (1973) have excited Lamb waves using air coupling, for
efficient acoustic energy transfer between the plate and a piezoelectric transducer, a couplant is
required or the transducer has to be bonded to the plate surface. However, when the
transducer is bonded to the plate surface it is difficult to obtain a single mode so coupling is
usually achieved through a plastic wedge (usually perspex) or a water path.

Immersion coupling is generally not used in long range applications because of the large
amount of leakage of energy from the Lamb wave to the surrounding fluid that takes place and
thin film grease coupling is generally employed. However, problems are invariably
encountered when the probes are moved as it is difficult to maintain constant coupling
conditions. Localised coupling using a fluid column offers the constant and reliable coupling
conditions of immersion coupling but avoids the disadvantage of the rapid reduction in the
signal-to-noise ratio caused by the surrounding fluid. The results from the Lamb wave testing
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rig (see Fig. 6.5) developed during the project has shown the advantages of using localised
immersion coupling methods, where standard off-the-shelf broad band immersion transducers
were used.

The main advantage of using EMATS: is the elimination of the need for a couplant, which is
sometimes necessary in special applications, for example, when testing very hot components
or components where surface contamination is a problem.

8.3.3 Excitation signals

In all NDT applications, efficient methods of exciting Lamb waves are crucial. This not only
simplifies the analysis of the data received from the test piece, but it also increases the
resolution and sensitivity of the ultrasonic NDT technique. The amplitude of the excitation
signal, the spatial distribution of the pressure field and the modal properties of the mode
required, which are all functions of frequency, contribute to the determination of the
proportion of energy available to excite the required mode at that frequency.

When pulsed excitation signals are used it is very difficult to obtain a single mode and the
signal-to-noise ratio is reduced towards the noise level over short propagation distances. Tone
bursts reduce the bandwidth of the excitation signal and make the excitation of individual
modes easier. However, as was shown in chapter 6, tone burst excitation signals modified by
a smoothing window function (in all the tests reported in this thesis a Hanning window was
used) further reduce the bandwidth of the excitation signal by eliminating the high and low
frequency content of simple sinusoidal tone bursts. This enables individual modes to be
excited more efficiently. In practice, windowed tone burst excitation signals may be applied
using an arbitrary function generator.

8.4 Decoupling boundaries and other impedance mismatches

The best way of decoupling unwanted signals is to gate out the unwanted response signal(s)_
in the time and frequency domains. In the time doamin this is only possible if one mode is
propagating or the individual Lamb modes have separated, which requires that dispersion is a
minimum. Frequency domain gating is possible if the frequency content of the mode required
may be separated from other propagating modes. Therefore, in the past it has not usually been
possible to isolate the wave packets of individual Lamb modes in frequency-thickness regions
above the cut-off value of the a; mode. However, the availability of arbitrary function
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generators, which allow the input signal to be specially tailored to selectively excite individual
modes more efficiently means that it is possible to reduce the bandwidth (frequency domain)
and to excite Lamb waves in regions where time domain gating may be possible (ie regions of
maximum group velocity where the fastest modes (generally the the symmetric modes) will
separate out quickly (see Fig. 2.6).

8.5 The implementation of the 2-D FFT method

The implementation of the 2-D FFT method is more costly than using time or frequency
domain techniques as it requires a digital oscilloscope, a computer and an array transducer (the
tests reported here were carried out by indexing a standard transducer, but this would not be
practical in industrial NDT and initial tests carried out using a multi-element array transducer
have indicated the applicability of these transducers as receivers). However, the method may
be used to measure the amplitudes and velocities of Lamb waves in frequency-thickness
regions where many propagating modes are possible. Crucially, the 2-D FFT method may be
used with any propagation distances subject to signal-to-noise considerations and the location
of the defect relative to the measuring transducer is not important. Therefore, fast, long range,
quantitative Lamb wave testing or monitoring may be carried out using the 2-D FFT method.

8.6 Choice of time or frequency domain methods or the 2-D FFT method

Conventional quantitative NDT methods use the amplitude and the velocity of bulk waves to

determine the size and location of a defect. These methods, as mentioned briefly in chapter 1,

are generally relatively easy to apply and require a minimum of signal processing, for

example, the setting of time gates and amplitude thresholds in C-scanning. The complicated

nature of Lamb wave signals in high frequency-thickness regions, where more than two

modes are possible has meant that very little quantitative NDT using Lamb waves has been
carried out in frequency-thickness regions where more than two modes may propagate.

Practically, this is a serious restriction; for example, if a 12 mm thick steel plate was being

tested the excitation signal would have to be less than 136 kHz, the cut-off frequency of aj.

Lamb wave testing may be carried out in low frequency-thickness regions, where the only
propagating modes are ag and sg which may be easily decoupled from one another, using
standard ultrasonic testing time domain techniques. The analysis may be carried out by
measuring the time lag or amplitude of the wave packet, or by comparing the shape of the
response signal with a reference signal. Use of the signal regeneration method described in
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section 8.2.1 can simplify the comparison method significantly and the availability of digital'
devices, such as arbitrary function generators and oscilloscopes make the implementation of

this method practically feasible. An important advantage of this method is that it maximises the

signal-to-noise ratio of the signal at the measurement position and it also allows Lamb wave

testing to be carried out in the time domain when a dispersive mode is used.

One-dimensional spectral methods involving the Fourier analysis of the response of a single
point may sometimes give more accurate measurements of the velocity of propagating Lamb
waves than simple time domain techniques, and they may also be used to filter out some
modes if the frequency content of the mode required may be separated from the other
propagating modes. However, they do not allow the amplitudes of modes at a particular
frequency to be measured.

Defect detectability is related to mode order, type and frequency-thickness product, but in
general defect detectability is improved by increasing the frequency-thickness product.
Therefore, it would be advantageous to carry out Lamb wave testing in frequency-thickness
regions above the cut-off value of the a; mode. However, in these frequency-thickness
regions standard time domain methods may not generally be used. A variety of comparison
methods have been developed in order to overcome this problem, but they have generally been
unsuccessful. Therefore, in general the 2-D FFT method must be used to carry out
quantitative NDT analysis at frequency-thicknesses above the cut-off value of the aj mode. As
stated previously the computational requirements of the 2-D FFT method are quite modest and
can be easily handled by a fast microcomputer or workstation. It should be noted that the
resolution in the temporal FFT's does not have to be good, and in reality, spatial FFT's will
only be required at a few discrete frequencies, since when tone burst excitation is used, the
bandwidth of the excitation signal is fairly narrow. This means that a full two-dimensional
Fourier transform algorithm need not be implemented and the analysis could be carried out in
real time. This gives the method great potential, particularly in fast, long range Lamb wave
testing or monitoring applications.
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Figure 8.1 (a) Predicted time history at x = 150 mm in a 2.0 mm thick plate, when the
excitation signal was a 3 cycle 60 kHz tone burst modified by a Hanning
window and was designed to excite only ag and recombine at x = 340 mm to
form the 3 cycle tone burst. (b) at 200 mm, (c) at 260 mm and (d) at 340 mm.
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Figure 8.2 (a) Time history of the 12 cycle 0.65 MHz tone burst in a Hanning window
excitation signal applied to the transmitter. (b) Normalised time history of the
measured response at x = 200 mm in a 3.0 mm thick plate when the excitation

signal was shown in (a).
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Figure 8.3 (a) The reverse of the response signal shown in Fig. 8.2(b) used as the
excitation signal. (b) The time history of the measured response at x = 200 mm
from the transmitter in a 3.0 mm thick steel plate, when the excitation signal was
shown in (a).
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Figure 8.4 (a) The time history of the measured response at 200 mm from the transmitter in
a 3.0 mm thick steel plate, when the excitation was shown in Fig. 8.3(a) and a
1.0 mm deep and 0.5 mm wide notch was located at 100 mm from the

transmitter,



CHAPTER 9

Conclusions

9.1 General

The main conclusion of the thesis is that Lamb waves may be used very successfully for the
NDT of plates or plate-like structures. Since they produce stresses throughout the thickness of
the plate (in some cases there may be stress nodes which must be carefully considered), the
entire thickness of the plate is interrogated. This means that it is possible to find defects that
are initiated at either surface or at internal locations. However, the behaviour of Lamb waves
on interaction with defects is very complicated and in general defect sensitivity is a function of
mode type, mode order and the frequency-thickness product, and is not simply wavelength
dependent.

There are two distinct areas where propagating Lamb waves may be applied in NDT
applications. In localised, detailed NDT applications, the detectability of a defect may be
optimised by choosing the most suitable mode at the appropriate frequency-thickness product.
In these cases the propagation distances are small so in most frequency-thickness regions
dispersion does not cause the signal-to-noise ratio to deteriorate to an unacceptable level.
Testing may therefore be carried out in almost any region using immersion coupling. In the
long range NDT of plates and plate-like structures, a fast, coarse inspection may be carried
out. Here, the two-dimensional nature of Lamb waves means that in maximum group velocity
regions they may be propagated further than bulk waves. In these cases maximising the
propagation distance is generally more important than optimising defect detectability.
Therefore, immersion coupling methods should be avoided as energy is continually leaked to
the surrounding fluid and localised coupling methods in which energy leakage is minimised
are preferable.

-222 -
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9.2 Signal processing

The complicated multi-mode dispersive nature of Lamb wave signals means that the major
problem when using them in NDT applications has been signal interpretation. The major
achievement of the thesis was the development of quantitative methods of applying Lamb
waves in industrial nondestructive testing (NDT). The key problem of measuring the
amplitudes and velocities of individual Lamb waves when more than one mode is present at
any given frequency has been solved by the development of a method which uses a two-
dimensional Fourier transformation. This has made possible the interpretation and quantitative
measurement of the complicated Lamb wave signals which are commonly found in NDT
applications when plates are excited by commercially available transducers.

Although the 2-D FFT method has been used here to measure the properties of Lamb waves,
the technique is equally applicable to the measurement of other two-dimensional modes, for
example, a mixture of longitudinal and shear waves. The computational requirements of the 2-
D FFT method are fairly modest and it is anticipated that the method could readily be
implemented on a microcomputer interfaced to a data capture system. The multi-element
transducers which are now available make the implementation of the 2-D FFT method feasible
in industrial NDT applications.

9.3 Numerical modelling

Finite element modelling of Lamb wave propagation in a variety of frequency-thickness
regions has been carried out successfully. A method has been developed to launch a single
Lamb mode in a finite element model using broadband input signals. This facilitated the
quantitative modelling of the interaction of individual Lamb waves with notches in steel plates,
and the 2-D FFT method could then be used to measure the amplitudes of the different
propagating Lamb waves.

A major finding from the finite element predictions and experimental results has been that
Lamb wave techniques may be used to find notches with depths of around 8% of the plate
thickness (assuming a 5% change in amplitude can be detected). This is substantially better
than reported previously by other researchers. The finite element tests have shown that the
transmission and reflection coefficients of Lamb waves when they interact with notches are
non-monotonic and are a strong function of the of the notch depth, mode type and order and
the frequency-thickness product. The potential of using the frequency-thickness locations of
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the minima and maxima in the amplitude of the reflection and transmission ratios for sizing
purposes has been highlighted.

The numerical tests have indicated that the implementation of quantitative Lamb wave
techniques where the amplitude(s) of modes caused by mode conversion are measured can
increase the sensitivity of these techniques considerably. ‘

9.4 Practical applications

Efficient methods of selectively exciting Lamb waves are essential if meaningful results are to
be obtained in frequency-thickness regions above the cut-off value of the first non zero order
mode, aj. This usually requires that the frequency and angular bandwidths of the excitation
signal should be tightly controlled. The first requirement may be met by using an arbitrary
function generator to produce long duration tone bursts modified by suitable smoothing
window functions (for example, a Hanning window). The second requirement may be
achieved by using large transducers and orienting them using the coincidence angle to
decouple unwanted modes. In order to minimise the spatial extent of the signal (maximise
signal-to-noise) and to obtain the reasonable propagation distance Lamb wave testing is
carried out in frequency-thickness regions away from the cut-off values.

An experimental test rig incorporating localised immersion coupling which use standard
immersion transducers, which are driven by an arbitrary function generator has been
manufactured and procedures have been developed to validate the finite element predictions.
The results of investigations on a variety of plates with straight sided notches have been in
excellent agreement with the numerical predictions.

Standard time or frequency domain qualitative or quantitative methods can be applied in low
frequency-thickness product regions, where the only propagating modes are ag and sp, as they
may be easily decoupled from one another by gating in the time domain or by transducer
orientation. Time domain tests carried out on a butt-welded steel plate have shown that fast
qualitative inspections in which the shape of the response wave packet at low frequency-
thickness values is monitored may be used.

A signal regeneration method has been developed which maximises the signal-to-noise ratio of
a Lamb wave response signal at the measurement position. The adoption of this method
potentially allows dispersive Lamb waves (especially the the ag mode at low frequency-
thicknesses) to be used in long range testing applications.
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In higher frequency-thickness regions, application of the 2-D FFT method allows quantitative
results to be obtained. However the excitation signal must be controlled so that, for example,
unwanted signals from boundaries or other impedance changes not of interest may be gated
out or decoupled. The computational requirements of the method are reasonably modest and in
most situations my be readily handled by a PC or workstation computer interfaced to a digital
data capture system.
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