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R. Chalis, Professeur, Nottingham University (UK)

P.P. Delsanto, Politecnico di Torino (Italie)

—————————–
— 2000 —



Ce travail est le résultat d’une collaboration entre le Laboratoire de Mécanique Physique
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d’avoir pu en profiter. Sans parler de l’apprentissage de l’anglais qui de nos jours est indis-
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capitaine” lors d’une conférence organisée dans le cadre du GESPA, je tiens tout de même
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par la même occasion pour ces bons moments passés ensemble.
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Chapter 1

Introduction

Acoustics is a science which nowadays appears in a large number of domains. Really

developed in town planning (for all audible noises), it also deals with domains which are

much more disparate such as the biomedical domain (imaging processes), solid mechan-

ics (characterisation of material properties), the sorting process on production lines, the

military domain (sonar, radar), non destructive testing in general (which can cover a wide

range of structures, from hull of a ship to a soldered spot on a printed circuit). It is how-

ever obvious that all those applications do not use the same working frequencies since one

can go from the hertz (Hz) range in the building domain up to the tera-hertz (1012 Hz)

range in electronics for example. The frequency range used in this thesis will vary from

the Kilo-hertz up to the Mega-hertz.

In the domain presented here, nondestructive testing using ultrasonic methods is a key

research area. The techniques are based on the use of acoustic waves that propagate in the

material being tested. They normally rely on the analysis of short-duration signals and

their interactions with interfaces within the material. The structures are not always acces-

sible in an easy way and are not often transportable (boat hull, suspension bridge cables,

aircraft wings) and this has encouraged researchers to study waves called guided waves.

These waves can propagate over long distances in the guide (plates, tubes or cylinders in

general) and their intrinsic properties allow pertinent controlling techniques. They also of-

fer much faster inspection of large areas because there is no need for testing at every point

on the surface of the material. For these reasons, they have been used for the detection

of reflections from defects, for the characterization of material properties, to calculate the

plane wave reflection coefficient zeroes (a correlation is sometimes assumed), ... They are

described by dispersion curves (showing how their velocities vary with frequency) which

may of course dramatically change depending on the studied geometry. For example, if a

plate is immersed in a fluid, the guided waves can travel within the layer but also in the

surrounding medium in the form of outgoing waves, which does not happen if the plate is

in vacuum.
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The conventional approach when modeling guided waves in an immersed or embedded

plate is to assume a steady state condition with real frequency and complex slowness

(inverse of the velocity) [42]. This is easy to understand physically. As the waves propagate

along the layer, they can leak energy into the embedding material (liquid or solid) in the

form of outgoing waves. The amplitudes of the plate waves must then decay as they travel

and a complex parameter is needed to describe their spatial attenuation.

Thus the analysis has almost always been done in terms of real frequency and complex

wavenumber, which is also equivalent to a real frequency and a complex slowness. The

calculation of the dispersion curves for this problem then involves calculating the roots of

a function F of the form: F (ω, ∗S) where the prefix ∗ denotes a complex quantity.

However, in general, we should also consider the possibility of a complex frequency, al-

lowing, for the direct representation, waves that are transient in time. Thus the completely

general form of the wave function should have complex parameters for both frequency and

slowness, so that the characteristic equation is of the form F (∗ω, ∗S). This kind of transient

approach has already been considered in seismology and identified as an attractive model

for calculating the modal properties of the waves excited by an earthquake or explosion

point source [72, 60]. In that context the interest was focused on temporal solutions rather

than on the space. The complex frequency approach is different from the complex slowness

approach and there is no reason to expect that the dispersion curves should be the same.

Very recently, results have been obtained and examined by Poncelet and Deschamps

[69, 23, 24] for the propagation of transient heterogeneous waves in a fluid loaded plate using

the concept of complex frequency. They showed that, since in practice the excitation signals

are bounded both spatially (by the size of the transducers) and temporally (by the switching

on and off of the electric source), the use of transient (time attenuation) heterogeneous

plane waves (spatial attenuation) seems to allow a more realistic modeling; the complex

slowness models the space effects and the complex frequency models the time effects. They

argue that it is preferable to represent the spatial properties by the slowness rather than

the wavenumber because the slowness is truly independent of the frequency whereas the

wavenumber contains a dependence on frequency: ∗K= ∗ω∗S. Their work in this topic has

shown that waves which are characterized by amplitudes which decay in time are of key

importance when Lamb waves are excited by transient signals in an immersed isotropic

or anisotropic plate [69, 68, 23, 24]. One of the findings of their studies of fluid loaded

plates is that there is a very good correlation between the dispersion curves calculated in

complex frequency and the zeroes of the reflection coefficient which is not evident if the

dispersion curves are calculated in real frequency and complex slowness. Their results are

quite interesting since there has been much discussion [17, 18, 54, 55] on how the modal

properties of a plate, calculated in real frequency and complex slowness, correspond to the

reflections of obliquely incident plane waves. Although this correspondence, known as the

coincidence angle principle [81], is not verified when the surrounding medium impedance

is of the same order than that of the layer, Poncelet and Deschamps found that better
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agreement can be found in complex frequency. Their results tend then to suggest that the

coincidence angle principle, which postulates that the zeroes of the plane wave reflection

coefficients should agree with the dispersion curves, is still valid for fluid loaded plates if

the attenuation is described by complex frequency. The modal properties of the plate can

then still be linked directly with the zeroes of the reflection coefficient.

Moreover, a fundamental feature of waves is their capability of carrying energy and

information over long distances. The velocities which are of interest are the phase velocity,

the group velocity and the energy velocity. The phase velocity is the velocity at which

the wave fronts or crests travel, the group velocity is the derivative of the frequency wave-

number dispersion relation, Vg = ∂ω/∂kx (where ω is the angular frequency, and kx is the

wave-number in the direction of propagation), and the energy velocity is the velocity at

which the wave carries its potential and kinetic energy along the structure. Long range

testing usually makes use of finite tone bursts or wave packets and optimally exploits waves

at frequencies where there is little dispersion, thus the different frequency components

within the wave packet propagate at the same velocity and so the wave packet retains its

shape as it travels. Naturally we would expect the energy to be transported at the speed

of travel of the wave packet, and typically in practice it is true to take this to be equal

to the group velocity. This is in fact a most useful property to consider in the context of

long range propagation because in such work the focus tends to be on the behaviour of the

wave packet rather than the phase information within it, and the wave packet velocity is

very readily measured simply by recording the arrival times of the packet.

It is interesting in such applications that the energy appears to propagate at a speed

given so simply by the group velocity derivative. However such a relationship does not

always hold, a clear example being attenuating waves. If an attenuating harmonic wave

is described, as is conventional, by a complex wavenumber and real frequency, then the

group velocity calculation yields non-physical solutions such as infinite velocities at some

locations on the dispersion curves.

The aim of this work is then firstly to demonstrate that experimental results may agree

with theory only if complexity of frequency and slowness, which are appropriate to the

setup, are taken into account. The studied geometry being an embedded layer, the results

generalize the case of an immersed plate studied by Poncelet in his thesis [68] and confirm

the importance of the choice of the experimental setup related to the Lamb wave equation

resolution: transient homogeneous plane waves excitation corresponds to one experiment

whereas harmonic heterogeneous plane waves excitation corresponds to another. Secondly

the Lamb waves energy velocity will be studied in order to compensate for the lack of

accuracy of the group velocity definition in some circumstances.

The thesis is divided into the following parts:

Chapter 2 presents the global equations used in this work as well as the general struc-

ture of the transient heterogeneous plane waves in order to settle good bases for the next
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chapters. The temporal as well as the spatial properties of those waves is clearly dis-

tinguished and the notion of the complex slowness bivector ∗S is introduced in order to

separate them.

Chapter 3 presents analytical solutions of Lamb wave functions for symmetric and

antisymmetric elasto-dynamic modes propagating within a solid layer embedded in an

infinite medium. Alternative theoretical analyses of such modes are performed, first in

terms of the usual approach of harmonic heterogeneous plane waves (real frequency and

complex slowness) and then in terms of transient homogeneous plane waves (complex

frequency and real slowness). An example structure of a 0.1-mm thick “Alpha Case”

(an oxygen-rich phase of Titanium that is relatively stiff) layer embedded in Titanium is

used for the study. A large difference between the usual dispersion curves calculated in

real frequency and complex slowness and those calculated in complex frequency and real

slowness is shown. Thus the choice between a spatial and a temporal parameter to describe

the imaginary part of the guided waves is shown to be significant. The minima and the

zeroes of the longitudinal and shear plane wave reflection coefficients are calculated and

are compared with the dispersion curves. It is found that they do not match with the

dispersion curves for complex slowness, but they do agree quite well with the dispersion

curves for complex frequency. This implies that the complex frequency approach is better

suited for the comparison of the modal properties with near-field reflection measurements.

The two extreme approaches (harmonic heterogeneous plane waves and transient homo-

geneous plane waves) having been presented in Chapter 3, Chapter 4 presents the calcula-

tion of the response of an isotropic plate, immersed in water or embedded in another solid,

to an incident beam which is bounded both spatially and temporally. For several angles

of incidence, at a fixed spatial position of the receiver, the frequency spectrum is studied

and dispersion curve-like images are built-up. It is shown that depending on whether the

receiver is positioned in the specular reflected field or not, the sets of images correspond to

the dispersion curves calculated in complex frequency and real slowness or to the dispersion

curves calculated in real frequency and complex slowness.

Chapter 5 presents calculations of the energy velocity for lossless Lamb waves, leaky

Lamb waves in a plate which is immersed in a fluid, and damped Lamb waves in an

absorbing plate in vacuum, using integrals of the energy velocity vector. Analytical studies

show that in the case of the lossless waves the velocity calculated in this way agrees exactly

with the group velocity. Then numerical studies using the same integral expression show

significant differences between the group velocity and the energy velocity in both of the

attenuating wave cases. An experimental study of an attenuative mode demonstrates

good agreement between the predicted energy velocity and measurements of the velocity

of a wave packet at locations on the dispersion curve where the group velocity differs

substantially. The energy velocity vectors are also shown in the various model studies, and

some interesting phenomena relating to their directions are discussed.
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Finally, experimental results using interdigital transducers (finger transducers) which

are bonded to a plate are presented in Chapter 6 for an aluminum plate immersed in water.

All the fingers being independent (disconnected from the others), the same Lamb mode is

excited in two different ways. First, all the fingers receive the same intensity: the source is

rectangular in space. Second, the fingers receive an intensity repartition corresponding to

the predicted spatial exponential decrease of the mode. It is then shown that the amplitude

of the excited mode is greater when the source takes into account the imaginary part of

the mode rather than it does not.
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L’acoustique est une science qui intervient aujourd’hui dans un très grand nombre de

domaines. Très développée en urbanisme (pour tout ce qui concerne les bruits audibles), elle

touche aussi des milieux beaucoup plus hétéroclites tels que le milieu biomédical (imagerie

en général), la mécanique des solides (caractérisation des propriétés des matériaux), le

tri sur des chaı̂nes de production, le domaine militaire (sonar, radar), le contrôle non

destructif en général (qui peut aller, en ce qui concerne la taille des structures, d’une coque

de pétrolier par exemple jusqu’au point de soudure d’un circuit imprimé). Il est cependant

évident que toutes ces applications n’utilisent pas les mêmes fréquences de travail puisque

nous pouvons aller du hertz (Hz) dans le domaine du bâtiment jusqu’au tera-hertz (1012

Hz) en électronique par exemple. En ce qui concerne cette thèse nous nous placerons dans

des bandes de fréquences allant du Kilo-Hertz jusqu’au Méga-Hertz.

Dans le domaine présenté ici, le contrôle non destructif par des méthodes ultrasonores

est un des points clé de la recherche en acoustique. Les techniques sont basées sur l’utilisation

d’ondes acoustiques qui se propagent dans le matériau en cours de test. Elles reposent en

général sur l’analyse de signaux de courtes durées et sur leurs interactions avec les in-

terfaces du matériau. Le fait que les structures ne soient pas toujours accessibles d’une

manière évidente ou qu’elles ne soient tout simplement pas transportables (coques de bateaux,

cables de suspension de ponts, ailes d’avions) a conduit les chercheurs à étudier des ondes

dı̂tes guidées. Ces ondes pouvant se propager durant de longues distances dans le guide

(plaques, tubes ou cylindres le plus souvent), offrent de part leurs propriétées intrinsèques

des moyens de contrôle pertinents. Elles permettent de plus d’inspecter de larges surfaces

beaucoup plus rapidement puisqu’il n’est pas nécessaire de faire un test sur une multitude

d’endroits de la surface du matériau. Pour ces raisons, elles ont été utilisées pour détecter

les réflexions sur des défauts, pour la caractérisation des propriétés des matériaux, pour

calculer les zéros de coefficients de réflexion en ondes planes (une corrélation est de temps

en temps suposée). Elles sont décrites par des courbes de dispersion (montrant comment

leur vitesse de phase varie avec la fréquence) qui peuvent changer dramatiquement suivant

la structure étudiée. Par exemple, si une plaque est immergée dans un fluide, les ondes

guidées peuvent se propager dans la plaque mais aussi dans le milieu environnant sous

forme d’ondes dı̂tes fuyantes, ce qui n’arrive pas si la plaque est dans le vide.

L’approche conventionelle pour la modélisation d’ondes guidées dans des structures im-

mergées ou prises en sandwich dans une autre structure solide est de considérer un état

entretenu ou la fréquence est réelle et la lenteur (inverse de la vitesse) est complexe [42].

Ceci est facile à comprendre physiquement. Alors que les ondes se propagent le long de la

structure, elles réémettent de l’énergie dans le milieu environnant (liquide ou solide) sous

forme d’ondes fuyantes. L’amplitude des ondes de plaques doit donc décroitre pendant la

propagation et un paramêtre complexe est alors nécessaire pour décrire leur atténuation

spatiale.

Ainsi, l’analyse a presque toujours été faite en termes de fréquence réelle et de nombre

d’onde complexe, ce qui revient à considérer une fréquence réelle et une lenteur complexe.
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Le calcul des courbes de dispersion pour ce problèmes implique alors le calcul des racines

d’une fonction F de la forme : F (ω, ∗Sx) où le préfixe ∗ indique que la quantité est complexe.

Cependant, en général, nous devons aussi considérer la possibilité d’une fréquence com-

plexe, permettant, pour la représentation directe, des ondes qui sont transitoires en temps.

Ainsi, la forme la plus générale de la fonction d’onde doit avoir des paramètres complexes

pour décrire la fréquence et la lenteur, et l’équation caractéristique est donc de la forme

F (∗ω, ∗Sx). Ce type d’approche transitoire a déjà été considéré en séismologie et identifié

comme un modèle attractif pour le calcul des propriétés des modes excités lors de trem-

blements de terre ou d’explosions [72, 60]. Dans ce contexte, l’intérêt était porté sur des

solutions temporelles plutôt que sur des solutions spatiales. Ainsi l’approche en fréquence

complexe est différente de l’approche en fréquence réelle et il n’y a aucune raison de penser

que les courbes de dispersion doivent être identiques.

Trés récemment, des résultats ont été obtenus et examinés par Poncelet et Deschamps

[69, 23, 24] pour la propagation d’ondes transitoires hétérogènes dans une plaque immergée

en utilisant le concept de fréquence complexe. Ils ont montré que, puisque dans la pratique

les excitations sont bornées à la fois en temps (par la mise hors ou sous tension de la source

électrique) et en espace (par la taille des traducteurs), l’utilisation d’ondes planes transi-

toires (atténuation en temps) hétérogènes (attenuation en espace) semble permettre une

modèlisation plus réaliste; la lenteur complexe modélise les effets spatiaux et la fréquence

complexe modélise les effets temporels. Ils soutiennent qu’il est préférable de représenter les

propriétés spatiales par la lenteur plutôt que par le nombre d’onde car la lenteur est claire-

ment indépendante de la fréquence alors que le nombre d’onde contient une dépendance

fréquentielle : ∗K= ∗ω∗S. Leur travail sur ce sujet a montré que les ondes charactérisées

par des amplitudes qui décroissent en temps sont trés importantes lorsque des ondes de

Lamb se propageant dans des plaques isotropes ou anisotropes immergées sont excitées par

des signaux transitoires [69, 68, 23, 24]. Une des découvertes de leurs études des plaques

immergées est qu’il y a une trés bonne corrélation entre les zéros du coefficient de réflexion

en ondes planes et les courbes de dispersion calculées en fréquence complexe et en lenteur

réelle, ce qui n’est pas évident pour celles calculées en fréquence réelle et en lenteur com-

plexe. Leurs résultats sont trés intéressants puisqu’il y a eu énormement de discussions

[17, 18, 54, 55] sur la correspondance des propriétés des modes de plaques, calculées en

fréquence réelle et lenteur complexe, et les zéros du coefficient de réflexion. Même si cette

correspondance, connue comme étant le principe de coı̈ncidence angulaire [81], n’est pas

vérifiée quand l’impédance du milieu environnant est du même ordre que celle de la plaque,

Poncelet et Deschamps ont trouvé une meilleure concordance en fréquence complexe. Leurs

résultats tendent donc à prouver que le principe de coı̈ncidence angulaire, qui postule que

les zéros du coefficient de réflexion en ondes planes doit être en accord avec les courbes

de dispersion reste valide si l’atténuation est décrite par une fréquence complexe. Les pro-

priétés des modes de plaques peuvent alors toujours être directement liées avec les zéros du

coefficient de réflexion.
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De plus une caractéristique fondamentale des ondes est leur pouvoir de transporter

de l’énergie ainsi que de l’information durant de longues distances. Les vitesses qui nous

intéressent sont la vitesse de phase, la vitesse de groupe et la vitesse de l’énergie. La vitesse

de phase est la vitesse à laquelle les fronts d’ondes ou les crêtes de propagent, la vitesse

de groupe est la dérivée de la relation de dispersion liant la fréquence au nombre d’onde,

Vg = ∂ω/∂kx (où ω est la fréquence angulaire, et kx est le nombre d’onde dans la direction

de propagation), et la vitesse de l’énergie est la vitesse à laquelle l’onde transporte son

énergie potentielle et cinétique le long de la structure. Les tests sur de grandes distances

se font généralement en utilisant des paquets d’ondes et exploitent de manière optimale

les ondes à des fréquences où il y a peu de dispersion, ainsi les differentes composantes

fréquentielles à l’intérieur du paquet se propagent à la même vitesse et alors le paquet

d’ondes garde sa forme durant la propagation. Naturellement, nous pourrions penser que

l’énergie est transportée à la même vitesse que celle du paquet d’ondes, et typiquement d’un

point de vue pratique cela est juste de la considérer comme égale à la vitesse de groupe.

Ceci est en fait une des propriétés des plus utile dans un context de propagation sur de

longues distances puisque, dans de tels travaux, l’intérêt est porté sur le comportement du

paquet plutôt que sur l’information de la phase qui se trouve à l’intérieur de celui-ci, et

la vitesse du paquet est trés rapidement et simplement mesurée en enregistrant son temps

d’arrivée.

Il est intéressant dans de telles applications que l’énergie semble se propager à une

vitesse ayant une définition aussi simple que celle de la vitesse de groupe. Cependant,

une telle relation n’est pas toujours vraie, un exemple clair étant celui des ondes amorties.

Si une onde harmonique atténuée est décrite de manière conventionelle par un nombre

d’onde complexe et une fréquence réelle, le calcul de la vitesse de groupe conduit alors à

des solutions qui ne sont physiquement pas acceptables comme par exemple à des vitesses

infinies sur certaines parties des courbes de dispersion.

Le but de ce travail est tout d’abord de démontrer que des résultats expérimentaux,

concernant les modes propres de plaques, ne peuvent être en accord avec la théorie que si

la fréquence et la lenteur sont considérées comme des quantités réelles ou complexes, ce

choix dépendant bien évidemment de la configuration expérimentale. La géométrie étudiée

étant un solide pris en sandwich dans un autre solide, les résultats généralisent le cas de la

plaque immergée étudiée par Poncelet dans sa thèse [68] et confirment le choix de la con-

figuration expérimentale par rapport à la résolution de l’équation de dispersion de Lamb :

l’excitation d’ondes transitoires homogènes correspond à une configuration expérimentale

alors que l’excitation d’ondes inhomogènes harmoniques correspond à une autre configura-

tion. Enfin, la vitesse de l’énergie des ondes de Lamb sera étudiée afin de compenser le

manque d’exactitude de la définition de la vitesse de groupe dans certaines circonstances.

La thèse est divisée de la manière suivante :

Le chapitre 2 présente les équations générales utilisées dans ce travail ainsi que la
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structure des ondes planes hétérogènes transitoires afin de poser de bonnes bases pour

les chapitres suivants. Les propriétés temporelles ainsi que spatiales de ces ondes sont

clairement distinguées et la notion de bivecteur lenteur complexe ∗S est introduit afin de

les séparer.

Le chapitre 3 introduit les solutions analytiques des fonctions symétriques et anti-

symétriques des ondes de Lamb se propageant dans un solide pris en sandwich dans un

autre solide. Une analyse théorique de tels modes est faite en utilisant l’approche usuelle

en considérant des ondes planes harmoniques inhomogènes (fréquence réelle et lenteur com-

plexe) puis en considérant des ondes planes transitoires homogènes (fréquence complexe et

lenteur réelle). Un exemple de plaque de 0.1-mm d’épaisseur d’“Alpha Case” (dérivé rela-

tivement rigide du Titanium dont la phase est riche en oxygène) pris en sandwich dans du

Titanium est utilisé pour cette étude. Une grande différence entre les courbes de dispersion

usuelles calculées en fréquence réelle et lenteur complexe et celles calculées en fréquence

complexe et lenteur réelle est montrée. Ainsi le choix entre un paramètre spatial ou un

paramètre temporel pour décrire la partie imaginaire des ondes guidées s’avère être signi-

ficatif. Les minima et les zéros du coefficient de réflexion pour une onde plane incidente

longitudinale ou transversale sont calculés et comparés avec les courbes de dispersion. Nous

montrons alors qu’ils ne correspondent pas aux courbes de dispersion calculées en fréquence

réelle et lenteur complexe mais qu’ils sont en très bon accord avec les courbes de disper-

sion en fréquence complexe. Ceci implique alors que l’approche en fréquence complexe est

mieux adaptée pour faire une comparaison des propriétés des modes avec la mesure des

coefficients de reflexion en champ proche.

Les deux cas extrèmes (ondes planes harmoniques inhomogènes et ondes planes transi-

toires homogènes) ayant été présentés au chapitre 3, le chapitre 4 présente le calcul de la

réponse d’une plaque isotrope immergée dans de l’eau ou prise en sandwich dans un autre

solide insonnée par un champ qui est borné à la fois en espace et en temps. Pour plusieurs

angles d’incidence, et pour une position fixe du récepteur, le spectre fréquentiel est étudié

et des images à l’allure de courbes de dispersion sont reconstruites. Nous montrons alors

qu’en fonction de l’emplacement du récepteur, c’est à dire dans la réflexion spéculaire ou

en champ lointain, les images correspondent ou bien aux courbes de dispersion calculées

en fréquence complexe et lenteur réelle ou aux courbes de dispersion calculées en fréquence

réelle et lenteur complexe.

Le chapitre 5 présente le calcul de la vitesse de l’énergie pour des ondes de Lamb non

amorties, pour des ondes de Lamb fuyantes dans une plaque immergée dans l’eau, et pour

des ondes de Lamb amorties dans une plaque viscoélastique dans le vide, en utilisant une

formulation intégrale du vecteur vitesse de l’énergie. Des études analytiques montrent que,

dans le cas où les ondes ne sont pas atténuées, la vitesse calculée de cette manière est

exactement égale à la vitesse de groupe. Puis des études numériques utilisant la même

formulation intégrale montrent des différences significatives entre la vitesse de groupe et la

vitesse de l’énergie pour les deux cas où les ondes sont atténuées. Une étude expérimentale
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d’un mode atténué démontre une bonne concordance entre la vitesse de l’énergie théorique

et les mesures des vitesses des paquets d’ondes à des endroits sur les courbes de dispersion

où la vitesse de groupe diffère substantiellement. Les vecteurs de l’énergie sont aussi étudiés

dans les divers modèles et des phénomènes intéressants en ce qui concerne leurs orientations

sont présentés.

Finalement, des résultats expérimentaux utilisant des traducteurs interdigitaux (tra-

ducteurs peignes) collés à une plaque sont présentés dans le chapitre 6 pour une plaque

d’aluminium immergée dans de l’eau. Tous les doigts étant indépendants (déconnectés les

uns des autres), le même mode de Lamb est excité de deux manières différentes. Tout

d’abord, tous les doigts reçoivent, de la part du générateur, la même énergie : la source

est rectangulaire en espace. Enfin, les doigts reçoivent une répartition d’énergie correspon-

dant à la décroissance exponentielle spatiale théorique du mode. Nous montrons alors que

l’amplitude du mode excité est plus grande lorsque la source prend en compte la partie

imaginaire du mode.



Chapter 2

Transient heterogeneous plane waves

This chapter introduces the structure of the modes that may propagate along the plates

studied in the following chapters because guided waves are a superposition of multiple

transient heterogeneous plane waves [42]. The description is done for waves that propagate

in a viscoelastic isotropic medium, and is also amenable to the simpler isotropic lossless

case by setting to zero the viscoelastic constants of the material. The main equations of

the linear acoustic theory are presented [29, 74, 1] and the particle displacement field, the

polarizations and the dispersion equations of such waves are examined.

2.1 Plane waves in an infinite viscoelastic medium

This work takes place in the linear acoustic domain and the assumption of small per-

turbations around an equilibrium state is made. The propagation medium is supposed to

be infinite in all horizontal directions, unconstrained and follows the classical laws of linear

acoustics. By application of Newton’s second law, equilibrium requires then:

ρ
∂2u

∂t2
= ∇ · σ, (2.1)

where u = u(t,M) is the displacement fields expressed in Euler variables (t is the time and

M the observation point), ρ is the density of the material, and ∇ · σ is the divergence of

the stress tensor of the second order. The strain tensor is defined by:

ε =
1

2
(∇u +∇Tu), (2.2)

where ∇u is the gradient of the displacement field and ∇T the transposed gradient.
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2.2 Hooke’s law

If the medium is non viscoelastic, Hooke’s law may be written:

σ = λθI + 2µε, (2.3)

where θ = ε11 + ε22 + ε33 is the change of volume of the element, I is the identity tensor of

the second order and λ and µ are the Lamé elastic stiffness constants related to Young’s

modulus (E) and Poisson’s ratio (ν) by the expressions:

λ = Eν
(1+ν)(1−2ν)

; E = µ(3λ+2µ)
(λ+µ)

µ = E
2(1+ν)

; ν = λ
2(λ+µ)

. (2.4)

Acoustic vibrations in such media are completely undamped and may propagate with-

out any decrease or attenuation of amplitude. Ideal materials of this kind do not exist in

nature, although weakly damped materials are often approximated in this manner, and it

is therefore necessary to look for a way of introducing damping into the elastic constitutive

relation. Elastic damping may be considered in a number of ways [61] and is usually de-

scribed by a viscous damping term which depends on the frequency. The chosen model in

this work is a Kelvin Voigt viscoelastic description in which a velocity dependent damping

force is added to the equation of motion. This model consists of a dashpot representing the

damping in parallel with the spring representing the elastic stiffness. The Lamé constants

are replaced by the operators:

λ becomes λ+ λ′∂t and µ becomes µ+ µ′∂t, (2.5)

where the constants λ′ and µ′ are the viscoelastic material constants, and ∂t is the partial

derivative versus time. The damped model clearly reduces to the elastic model if the

viscoelastic constants are zero. It is to be noted that a more appropriated model to plastic

structural materials would have been the Zener, or standard linear solid model, which

consists of a (spring) in parallel with (a spring in series with a dashpot). This usually

gives a low frequency modulus rising asymptotically to a high frequency modulus, and fits

the behaviour of many materials well. However, the Kelvin Voigt model appeared to be

enough for our purposes.

Substitution of Hooke’s law (Eq. 2.3) and strain-displacement relationship (Eq. 2.2)

into the equilibrium equation (Eq. 2.1) leads to the following equation of motion for

viscoelastic materials:
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ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u + (λ′ + µ′)∇(∇ · ∂u

∂t
) + µ′∇2∂u

∂t
(2.6)

where ∇2 is the operator ( ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 )

2.3 Transient heterogeneous plane waves as a solution

of the wave equation

The solutions of the wave equation (Eq. 2.6) cannot be directly found and a form of

solution must be assumed and checked for suitability. When the material is homogeneous

and non viscoelastic (λ′ and µ′ are set to zero), the simplest solution of the wave equation

may be defined as a progressive harmonic homogeneous plane wave. The wavefront is

assumed to be an infinite plane normal to the direction of propagation and the amplitude

of the wave remains constant over the whole space at any time. The frequency and the

wavenumber are real. In those conditions, it is possible to show that this equation has

two types of solution. The first describes bulk waves for which the particle displacement

is entirely in the direction of propagation. These waves are known as compressional,

irrotational, dilatational or longitudinal waves and satisfy:

∇∧ uL = 0. (2.7)

The second type describes bulk waves for which the displacement is normal to the prop-

agation direction. Those waves are known as rotational, shear or transversal waves and

satisfy:

∇·uT = 0. (2.8)

However, as explained in the introduction, harmonic homogeneous plane waves cannot

be used in all problems since they are infinite and uniform in space and in time.

In our problem we expect waves to leak energy into the surrounding medium in the

form of outgoing waves so they should attenuate in space (the wavenumber is complex) but

they are supposed to attenuate in time as well (the frequency is complex). Those waves

have the most general form of plane waves and are known as transient heterogeneous plane

waves. They are also solution of Eq. 2.6 and their acoustic field is given by:

uL,T = Re
{∗ξL,T

∗Pei(∗ωt−∗K.M)
}
, (2.9)
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Figure 2.1: Complex wavenumber representation of a: a) homogeneous plane wave, b)
homogeneous attenuated plane wave, c) evanescent plane wave and d) generalized hetero-
geneous plane wave at a fixed time.

where: ∗ξ is the complex amplitude and ∗P = P′ − iP′′ represents the unit length po-

larization vector (∗P.∗P = 1), ∗K = K′ − iK′′ stands for the complex wavenumber,
∗ω = ω′ + iω′′ = 2π∗f is the complex angular frequency with ∗f = f ′ + if ′′ the com-

plex frequency, M is the position vector in space, the notation Re{} denotes the real part

and the subscript L, T indicates if the wave is longitudinal or transversal respectively.

The real part of the wavenumber K′ is the propagation vector and the imaginary part

K′′ is the attenuation vector. As shown in Fig. 2.1, if K′′ = 0, part a), the wave is purely

homogeneous, if K′′ is collinear to K′, part b), the wave is homogeneous and attenuated,

if K′′ is orthogonal to K′, part c), the wave is evanescent and finally part d) shows the

generalized transient heterogeneous plane wave at a fixed time. However, as the frequency

is considered as a complex quantity, and in order to separate the information due to the

space from the information due to the time, as discussed earlier, a more convenient notation
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to express the wavenumber is to split it into ∗K = ∗ω∗S where ∗S is the slowness (inverse

of the velocity) bivector. In those conditions the real part and the imaginary part of the

wavenumber may be rewritten:

{
K′ = ω′S′ + ω′′S′′

K′′ = ω′S′′ − ω′′S′ , (2.10)

and therefore, the displacement field defined in Eq. 2.9 becomes:

uL,T = Re{∗ξL,T
∗Pei[ω′(t−S′.M)−ω′′S′′.M]} × e−ω′′(t−S′.M)−ω′S′′.M. (2.11)

The real positive scalar ω′ stands for the angular frequency. The parameter ω′′ is

the extinction coefficient (ω′′ > 0) or the switching-on coefficient (ω′′ < 0) of the source.

This coefficient describes the time dependence in terms of an exponential transient and is

illustrated in Fig. 2.2.

t t

ω">0 ω"<0

a) b)

Figure 2.2: Transient time signals: a) ω′′ > 0, b) ω′′ < 0.

This other notation of course leads to another classification of transient heterogeneous

plane waves, well described in Ref. [68], in terms of slowness bivectors and complex fre-

quency instead of wavenumber bivectors and complex frequency where the spatial effects

are completely separated from the time effects.

2.4 Dispersion equation for a viscoelastic medium

As explained in the previous section, the wave equation has two types of solutions:

longitudinal transient heterogeneous plane waves and shear transient heterogeneous plane

waves. The dispersion equations for a viscoelastic medium are obtained by introducing

the displacement field of a plane wave (Eq. 2.9) into the wave equation (Eq. 2.6). They

actually define a relation between the slowness bivector ∗S and the frequency ∗ω and may

be written:

∗SL,T .
∗SL,T = ∗S2

L,T = ∗C−2
L,T = c−2

L,T

(
1 + i

αL,T

2π

)2

, (2.12)
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where the subscript L, T indicates whether the waves are longitudinal or transversal, cL,T

is the velocity of the waves and αL,T is the attenuation of the waves expressed in Nepers

per wavelength: a wave of unit amplitude will be reduced to e−αL,T = e−2πS′′
L,T /S′

L,T after

travelling one wavelength.

2.5 Displacement field

The displacement field of transient heterogeneous plane waves described by Eq. 2.9

may be rewritten:

u = {P′ sin(ω′t−K′.M) + P′′ cos(ω′t−K′.M)} e−(ω′′t+K′′.M). (2.13)

If the frequency is real, the particle displacement field over a time period is characterized

by an ellipse centered in M whose major semi-axis is P′ and whose minor semi-axis is P′′

as shown in part a) of Fig. 2.3 [67]. However, when the frequency is complex, the particle

displacement field is an elliptic spiral (part b) of Fig. 2.3. In the simple case of harmonic

homogeneous plane wave (P′′ = 0) it would be rectilinear.

P'

P"

ω">0

ω"<0

P'

P"

a) b)

Figure 2.3: Particle displacement field for: a) harmonic heterogeneous plane wave, b)
transient heterogeneous plane wave

2.6 Conclusion

Transient heterogeneous plane waves structure has been studied and the different main

equations presented. The importance has been emphasized in differentiating the spatial
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from the temporal aspects of such waves by using the complex slowness bivector ∗S instead

of the complex wavenumber bivector ∗K.

Guided wave properties, as a superposition of several transient heterogeneous plane

waves, may be used to determine the modal properties of plates. For fluid loaded plates, the

coincidence angle principle, which postulates that an accordance between the plane wave

reflection coefficient zeroes and the dispersion curves calculated for harmonic heterogeneous

plane waves (ω, ∗S) should exist, is widely used in order to find the plate properties.

However, this apparently does not hold true when the impedance mismatch between the

materials is small. In the next chapter, we study the example of an embedded layer using

the notion of complex frequency and the notion of complex slowness and check if better

agreement is found with the zeroes of the plane wave reflection coefficients.



Chapter 3

Comparison between the dispersion
curves calculated in complex
frequency and the minima of the
reflection coefficients for an
embedded layer

3.1 Introduction

When ultrasonic waves are incident at oblique angles, then ultrasonic techniques can

include the generation and detection of guided modes within a layered structure. Within

this context, researchers have, for a number of years, studied the properties of guided waves

in plates and particularly Lamb waves. The well-known free (lossless) wave propagation

modes of an elastic plate in vacuum were first described by Rayleigh and Lamb [36].

Wave interactions and guided waves in the liquid/solid/liquid configuration have already

been studied by many authors, for example Chimenti and Nayfeh [17], Chimenti and

Rokhlin [18], Nafeh and Chimenti [55, 54], Plona, Behravesh et al. [64], Fiorito and

Überall [27], Fiorito, Madigosky et al. [26, 47], Worlton [81], Lenoir, Duclos et al. [37],

Izbicki, Maze et al. [33] and Junru and Zhemin [82]. The usual approach, relating the

excitation of guided modes to obliquely incident waves, assumes that the zeroes of the

plane wave reflection coefficient indicate directly the modal properties of the plate. Then

the reflection coefficients for an immersed plate in water are measured using the coincidence

angle hypothesis and it is concluded that each zero of the longitudinal plane wave reflection

coefficient corresponds to the generation of a plate mode. The dispersion curves for the

plate can thus be plotted from measured reflection coefficient minima over ranges of angle

and frequency. For many configurations this approach is accurate, for example for most of

the modes in an Aluminum plate immersed in water (Fig. 3.1).
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Figure 3.1: Comparison between the predicted reflection coefficient zeroes (◦) and dis-
persion curves (−) calculated in real frequency and complex slowness for a 1mm thick
Aluminum plate immersed in water.

However, it has been shown that the modal properties and the zeroes of the longitudinal

plane wave reflection coefficient for a fluid-coupled elastic layer are both modified under

fluid loading [17, 18, 55, 54] or solid loading [44, 42, 46, 45, 13] and are not in general

coincident. In fact the hypothesis that the minima of the plane wave reflection coefficients

correspond to the modal properties of the plate appears to be accurate only when the

impedance of the loading material is very much lower than that of the layer.

Multilayered plates such as adhesive joints and diffusion bonded joints are of great

interest in nondestructive testing, and Lamb wave properties could potentially be used

to detect defects including poor cohesion and poor adhesion, as considered by a number

of authors and reviewed by Lowe and Cawley [13]. However, Lowe and Cawley studied

such joints and showed that the zeroes of the reflection coefficient when an incident wave

in the adherent material reflects from the bond layer do not match the dispersion curves

(for the bond layer) calculated in the conventional real frequency and complex slowness

[44, 46, 45, 13].

The purpose of this chapter is therefore to investigate a bonded joint example using

the alternative complex frequency and real slowness to see whether better agreement is

obtained with this choice of solution. The geometry of the structure is similar to that

considered by Poncelet and Deschamps except that the plate, which is now the bond layer,
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Figure 3.2: Plate configuration: layer embedded in a solid medium, showing partial waves.

is “immersed” in a solid (the adherent material) instead of a fluid. The calculation will be

restricted to the two special cases in which the frequency is complex and the slowness is

real (the attenuation of the wave is then described in time) and in which the frequency is

real and the slowness is complex (the attenuation of the wave is then described in space).

In order to simplify, the two materials are supposed to be lossless (αL,T = 0 defined in Eq.

2.12 for the two media).

3.2 Theory

The theory for elastic waves in multilayered plates is well established and was for

example reviewed by Lowe [42]. Here we state the problem in summary and present

specific forms of solution that we have derived for a single loaded layer and which are

amenable to analytical study. We adopt the Cartesian coordinate system X(O,x, y, z) and

arbitrarily assign x to the direction of propagation of the guided waves along the plate, y

to the normal to the plate surface and z to form an orthogonal set, and we consider an

infinite plane parallel elastic isotropic plate of thickness 2h, density ρ2, longitudinal bulk

velocity cL2 and shear bulk velocity cT2, embedded in an elastic isotropic solid of density

ρ1, longitudinal bulk velocity cL1 and shear bulk velocity cT1 (Fig. 3.2).

Because the connections between medium 1 and medium 2 are assumed to be ideal,

the continuity of the displacements and of the stresses on the two boundaries must be

satisfied. The resolution of these limit conditions leads to a system of eight equations with

eight unknowns (represented by four partial waves in medium 2 and four outgoing waves

in the embedding medium: two in the top half-space and two in the bottom half-space).
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At this stage, two different problems can be examined: either the response problem which

consists in determining the reflection and the transmission coefficients of waves when a wave

is incident, or the modal problem which relates to the guided wave propagation properties

of the system in the absence of an incident wave.

It is to be noted that in this chapter all the different quantities being complex, apart

from the bulk velocities, the superscript ∗ on the top left hand side will now be omitted

for clarity.

3.2.1 Response problem

In this section, the longitudinal plane wave reflection coefficient for an incident longitu-

dinal plane wave and the shear plane wave reflection coefficient for an incident shear plane

wave are calculated, the incident wave characteristics being known. The following problem

has to be solved:

[A]{X} =

{
BL,T

0

}
, (3.1)

where

[A] =

[
L+

1 T+
1 −L−

2 −T−
2 0 0 −L+

2 −T+
2

0 0 −L−
2 −T−

2 L−
1 T−

1 −L+
2 −T+

2

]
, (3.2)

{X} = { ξ+
L1 ξ+

T1 ξ−L2 ξ−T2 ξ−L1 ξ−T1 ξ+
L2 ξ+

T2 }T . (3.3)

The first and the second line of Eq. (3.2) represent the boundary conditions on the top

and on the bottom interfaces of the embedded layer respectively, the vector BL,T stands

for the longitudinal or shear incident wave and L and T describe the longitudinal and shear

partial waves travelling within the embedded layer. The indices on the bottom right-hand

side of L or T indicate the medium in which the waves propagate and the sign ’+’ or ’-’ on

the top right-hand side shows whether the waves travel in the positive or in the negative

y-direction.

In this kind of problem, the orientation of the shear plane wave polarization vectors

is arbitrary. However, in order to simplify, we set the polarization vectors of the partial

shear waves within the plate such that their projection on the x-axis is positive and on

the contrary we fix the polarization vectors of the shear waves outside the plate such that

their projection on the x-axis is negative. Hence Eq. 3.2 can be expressed in terms of two

matrices of dimension 4× 4:
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[A] = [M] + [C] =

[
M 0
0 M

]
+

[
0 C
C 0

]
, (3.4)

where

M =


−SxΦ2 SyT1Φ4 SxΦ6 SyT2Φ8

−SyL1Φ2 −SxΦ4 SyL2Φ6 −SxΦ8

α1Φ2 β1SyT1Φ4 −α2Φ6 β2SyT2Φ8

β1SyL1Φ2 −α1Φ4 −β2SyL2Φ6 −α2Φ8

 , (3.5)

and

C =


0 0 SxΦ5 SyT2Φ7

0 0 −SyL2Φ5 SxΦ7

0 0 −α2Φ5 β2SyT2Φ7

0 0 β2SyL2Φ5 α2Φ7

 . (3.6)

The matrix M refers to each interface and the matrix C represents the coupling between

the two interfaces. It is to be noted that without the sign convention concerning the shear

polarization M and C would not have been symmetric. The incident wave components

(longitudinal or shear) are respectively defined by:

BL = Φ1


Sx

−SyL1

−α1

β1SyL1

 , BT = Φ3


−SyT1

−Sx

−β1SyT1

−α1

 , (3.7)

and all the variables used in these equations by:

Φ1 = eimh Φ5 = eiph p = ωSyL2

Φ2 = e−imh Φ6 = e−iph q = ωSyT2 α1,2 = iρ1,2(1− 2c2T1,2S
2
x)

Φ3 = einh Φ7 = eiqh m = ωSyL1 β1,2 = 2iρ1,2c
2
T1,2Sx

Φ4 = e−inh Φ8 = e−iqh n = ωSyT1

, (3.8)

where: Sx represents the projection of the slowness bivector on the x-axis, SyL and SyT

the projection of the longitudinal and shear slowness bivectors on the y-axis respectively

according to Snell’s laws, 1 and 2 indicate medium 1 and 2:

SyL1,2 = ±
√

1

c2L1,2

− S2
x and SyT1,2 = ±

√
1

c2T1,2

− S2
x (3.9)
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In the embedded medium, the sign ± is not really of importance since the waves are

trapped between the two interfaces. However, in the embedding medium, it will be chosen

in a such way that the wave amplitudes decrease as they travel away from the interfaces.

Because of the properties of the matrices M and C, a matrix R is then introduced to

simplify the reflection coefficients formulation as follow:

[A] = [M]([I]− [R]), (3.10)

where

[R] = −[M]−1[C] =

[
0 R
R 0

]
with R = −M−1C. (3.11)

Then, the problem reduces to:

{X} = ([I]− [R])−1{S}, (3.12)

with

{S} =

{
S1

0

}
, S1 = M−1BL,T , (3.13)

and

([I]− [R])−1 =

[
(I −R2)−1 0

0 (I −R2)−1

] [
I R
R I

]
. (3.14)

Finally, using the following relation, the solution of the equation can be immediately ob-

tained by:


ξ+
L1

ξ+
T1

ξ−L2

ξ−T2

 = (I −R2)−1S1, (3.15)


ξ−L1

ξ−T1

ξ+
L2

ξ+
T2

 = (I −R2)−1RS1, (3.16)
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where I stands for the identity matrix, ξ+
L1 is the longitudinal plane wave reflection coef-

ficient and ξ+
T1 the shear plane wave reflection coefficient, the incident wave having a unit

amplitude. This method ultimately requires only a division of two determinants of dimen-

sion 4x4 and is therefore substantially faster than using a full expansion using Cramers

method, which requires solution of two determinants of dimension 8x8.

3.2.2 Modal problem

The modal problem is defined by Fig. 3.2 without any incident wave. Because the

geometry is completely symmetric about the x-axis in terms of waves and layers, the

problem can then be reduced by half. The determinant of dimension 8x8 linked to the

matrix A [Eq. (3.2)], can then be transformed into a multiplication of two determinants

of dimension 4x4 by decomposition into symmetric and antisymmetric modes.

3.2.2.1 Equation for symmetric case

For the symmetric modes, the displacements in the plate are given by [1]:

{
ux = [−ikxA2 cos(py) + qB1 cos(qy)]eiω(t−Sxx)

uy = [−pA2 sin(py) + ikxB1 sin(qy)]eiω(t−Sxx) , (3.17)

where: A2 stands for the amplitude of the longitudinal partial wave and B1 defines the

amplitude of the shear partial wave. The displacements in the bottom half space are given

by:

{
ux = [kxCe

−imy − nDe−iny]eiω(t−Sxx)

uy = [mCe−imy + kxDe
−iny]eiω(t−Sxx) , (3.18)

where: C and D denote the amplitudes of the longitudinal and the shear plane waves,

respectively. The displacements in the top half space are the mirror image. Applying the

limit conditions on the interface located at y = h, that is the continuity of the displacements

and of the stresses, a system of 4 equations with 4 unknowns (amplitudes of the waves)

is obtained. The trivial solution to this system is to set the amplitudes of the waves to

zero: no waves propagate. The other solution is to find the couple (∗ω,∗ S) such that the

determinant of the matrix is zero. Thus, after expansion of the determinant, the analytical

solution for the symmetric Lamb function (Cs) propagating in a plate embedded in a solid

is presented:

Cs = A cot(ph) +B cot(qh) + C cot(ph) cot(qh) +D = 0, (3.19)



3.3 Results and discussion 33

with



A = 4S6
xU

2 + SyL1SyT1U
2(ρ2V + 2S2

x)
2 + S2

x(ρ1 − ρ2)U [(ρ1 − ρ2)V − 4S2
x]

B = SyL2SyT2U
2{4S2

xSyL1SyT1 + (ρ1V − 2S2
x)

2}
C = −iρ1ρ2SyT2SyL1

D = iρ1ρ2SyL2SyT1

U = ρ1c
2
T1 − ρ2c

2
T2

V = 1/U

. (3.20)

3.2.2.2 Equation for antisymmetric case

The antisymmetric Lamb function (Ca) propagating in a plate embedded in solid is

easily found by changing the cotangents into tangents and by taking the conjugates of C

and D. Therefore,

Ca = A tan(ph) +B tan(qh)− C tan(ph) tan(qh)−D = 0. (3.21)

3.2.2.3 Solution

The dispersion curves are the loci of solutions (∗ω, ∗Sx) of the transcendental equation

Cs = 0 or Ca = 0. Those curves theoretically link the variables ∗ω and ∗Sx and then

should be traced in a four dimensional space. However, as some quantities will be fixed

the dispersion curves are represented by two coupled plots, the first showing the real

part of the slowness versus the real part of the frequency and the second showing the

imaginary part of one of the two variables versus the real part of the frequency. The

dispersion curves in complex frequency and real slowness are calculated with a Newton-

Raphson algorithm providing fast computation. The dispersion curves calculated using

the conventional assumption of real frequency and complex slowness are calculated using

a general purpose model developed by Lowe [42] and Pavlakovic, Lowe, et al. [59].

3.3 Results and discussion

The example that has been chosen for study relates to diffusion bonded Titanium.

Previous work by Lowe and Cawley [44, 13] examined the reflection coefficient minima

and the real frequency dispersion curves for an idealized defective bonded joint, and those

results form a useful basis for comparison with the dispersion curves for complex frequency.

The idealized defective joint consists of a uniform layer of Alpha Case (or Hard Alpha) at

the bondline between the two Titanium adherents. The Alpha Case is brittle and may be
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established if oxygen or nitrogen is present during bonding. It has been shown that the bulk

velocities of the Alpha Case are about 5% to 10% faster than those of the Titanium but that

its density is roughly the same [75, 43]. The properties of those materials have therefore

been chosen to be, for Titanium, cL1 = 6.06 m/ms, cT1 = 3.23 m/ms, ρ1 = 4.46 g/cm3 and

for Alpha Case cL2 = 6.66 m/ms, cT2 = 3.553 m/ms, ρ2 = 4.46 g/cm3. In this section, the

dispersion curves calculated either in real frequency and complex slowness or in complex

frequency and real slowness will be compared to the minima and the zeroes of the shear

and longitudinal plane wave reflection coefficients.

3.3.1 Comparison between plane wave reflection coefficients and
dispersion curves for real frequency and complex slowness
(ω = ω′)

Predictions of the reflection coefficient results and the conventional complex slowness

dispersion curves for the layer of Alpha Case embedded in Titanium are shown in Fig. 3.3.

Part (a) of the figure shows the phase velocity (1/S
′
x) and part (b) presents the attenuation

factor K ′′
x = ωS ′′

x expressed in Nepers per millimeters (a wave of unit amplitude will be

reduced to e−K′′
x = e−ωS′′

x after travelling one unit length), both versus the frequency

[44, 46, 45, 13]. Two categories of reflection coefficient results are shown on part (a):

“zeroes” (2) correspond to the identification of zero values of the reflection coefficient;

“minima” (◦) correspond to the identification of locations where there is a clear dip of the

function but not to zero value. Empty symbols (2, ◦) correspond to the shear plane wave

reflection coefficient (shear incident, shear reflected), filled symbols (•) correspond to the

longitudinal plane wave reflection coefficient. The horizontal dashed lines show the bulk

velocities of the two materials. It should be noted that due to their very high attenuation

leading to non-physical solutions some modes have not been traced or pursued.

It can be seen that there is no region, in this frequency range, where the minima or

the zeroes of the reflection coefficients coincide with the dispersion curves, although they

show some similar trends and the leaky shear modes and the zeroes seem to correlate

reasonably well near the shear bulk velocity of the Titanium as the frequency increases.

The convergence of the zeroes towards the modes at high frequency is also accompanied

by a reduction in attenuation [Fig. 3.3(b)] and led Lowe and Cawley to suggest that the

separation of zeroes and modes is related to the rate of leakage. It is clear therefore that

the measurement of zeroes of the reflection coefficient do not reveal the (conventional)

harmonic heterogeneous modal properties.
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Figure 3.3: (a) Comparison between the dispersion curves (−) calculated in real frequency
and complex slowness [44, 13], the minima (◦) and the zeroes (2) of the shear plane wave
reflection coefficient and the minima of the longitudinal plane wave reflection coefficient (•)
for a 0.1-mm thick layer of Alpha Case embedded in titanium. (b) Attenuation (imaginary
wavenumber) of these curves versus frequency.
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Figure 3.4: (a) Comparison of the dispersion curves (−) calculated in complex frequency
and real slowness, with the reflection coefficient results as shown in Fig.3.3. (b) Attenuation
factor Ω = ω′′/ω′ versus the real part of the frequency for a 0.1-mm thick layer of alpha
case embedded in titanium.
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3.3.2 Comparison between plane wave reflection coefficients and
dispersion curves for complex frequency and real slowness

For the same configuration, let us now analyze the zeroes and the minima of both

the shear and the longitudinal plane wave reflection coefficients and the dispersion curves

calculated using the alternative approach of complex frequency and real slowness, shown

in Fig. 3.4. Again, part (a) shows the phase velocity (1/S
′
x) and part (b) presents the

dimensionless attenuation factor Ω = ω′′/ω′. Both are plotted versus the real part of the

frequency (ω′/2π). The imaginary parts of the different modes have been plotted just to

point out that Ω is always positive. Therefore, the transient parts of the signals will be

characterized by exponential decreases in time. The labels m1 to m6 are arbitrary. It is

interesting to observe that modes m2 and m4 exhibit a cut-off in frequency when Ω tends

to infinity. This characteristic was already observed in the case studied by Poncelet and

Deschamps [69]. From an experimental point of view, the hypothesis of real slowness is

satisfied if very large transducers are used such that an incident wave can be considered to

be a plane wave rather than a bounded beam. Also, the hypothesis of complex frequency is

satisfied if the signal presents a discontinuity in time. As a result, it is interesting to note

that if the slowness vector is real (S′′ = 0), and if a plane of constant phase is considered,

then the attenuation factor in the amplitude term of Eq. 2.11 disappears which means

that the waves do not leak.

Two different zones of the solution can be differentiated. Exactly below the longitudinal

bulk velocity of the Titanium (cL1), there only exists zeroes of the shear plane wave reflec-

tion coefficient (squares) and, contrary to Fig. 3.3, they agree very well with the dispersion

curves. The existence of zeroes instead of minima could be because one wave, and one only,

is reflected from the layer, the longitudinal plane wave being a surface wave beyond the

critical angle associated with cL1. This observation concerning the simultaneous existence

of the zeroes and of a single reflected wave would be in accordance with the liquid / solid

/ liquid geometry discussed earlier. In that case, only longitudinal plane waves can be

reflected, of course, and the zeroes exist for any incidence angle. The correlation between

the zeroes and the dispersion curves for a resolution in complex frequency is then always

observed, even when the immersed solid is anisotropic [69, 23, 24].

Returning to the present embedded solid case, above cL1 (second zone) the spectra of

the plane wave reflection coefficients do not present any zeroes but only minima (circles).

As an example, Fig. 3.5 illustrates the shear plane wave reflection coefficient versus the

frequency at a phase velocity of 8.4 km/s, where clearly the values are described by minima

instead of zeroes.

The agreement between the minima of both the shear and the longitudinal plane wave

reflection coefficients and the dispersion curves degenerates progressively as the phase ve-

locity increases, with the exception of just a few localized points. Above velocities of about

8 km/s, the minima and the dispersion curves are almost totally separated. The minima of
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Figure 3.5: Example of poor minima in the titanium/0.1-mm alpha case/titanium structure
for the shear plane-wave reflection coefficient at a phase velocity of 8.4km/s.

the longitudinal plane wave reflection coefficient (•), for example, do not correspond to any

dispersion curves. The presence of minima instead of zeroes above cL1 may be explained by

the fact that in general both shear and longitudinal plane waves are reflected when either

a shear or a longitudinal plane wave is incident.

3.3.3 Consideration of minima of the complex reflection coeffi-
cient, assuming complex frequency

The minima and zeroes of the reflection coefficients were obtained assuming, conven-

tionally, continuous plane waves (real frequency and real slowness). Let us now consider

the possibility of reflection coefficients calculated with complex frequency and real slowness

(transient incident waves). This will enable us to reduce the minima to zeroes by searching

in the (now) complex solution space. We study for example the modes labeled m1 and m2

in Fig. 3.4.

We consider first the mode m2. Fig. 3.6(a) and 3.6(b) present the comparison between

the real and the imaginary part (characterized by the dimensionless quantity Ω = ω′′/ω′)

of the zeroes of the shear plane wave reflection coefficient (dashed line), and the dispersion

curves (solid line) calculated in complex frequency and real slowness versus the real part
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of the frequency.

The two zones of solution identified earlier are clearly seen here since obviously the

zeroes plotted earlier in Fig. 3.4 must appear here with zero imaginary part, whereas the

minima must now appear with non-zero imaginary part. For example, in Fig. 3.6, the path

between A and B, above the longitudinal bulk velocity of the Titanium cL1, has a non-

null Ω. The roots of the reflection coefficients are therefore complex and do not correlate

with the dispersion curves. However, the path between B and D, below the longitudinal

bulk velocity of the Titanium cL1, has null imaginary parts. We can also observe that

despite now being able to identify loci of reflection coefficient zeroes (rather than minima)

throughout this solution space, we are still left with a divergence between the dispersion

curves and the zeroes when the velocity is greater than cL1. The difference is therefore

clearly a fundamental characteristic, and cannot simply be a result of poor identification of

minima. In addition, the larger the imaginary part of the roots, the greater the divergence

between the minima and the dispersion curves. Moreover, it can be observed that above

cL1, the point (E) which has a null Ω, that is when the sign of Ω is changing from positive

to negative values, is exactly on the dispersion curve even though both longitudinal and

shear plane waves are being reflected.

The same analysis can be drawn for the other mode, m1, shown in Fig. 3.7. Again, as

soon as the imaginary part of the root of the shear plane wave reflection coefficient becomes

non-null (path between F and G), the zeroes (dashed line) move away from the dispersion

curves (solid line). The two sets of curves have then only one point of agreement after

this separation, exactly when the imaginary part crosses the x-axis to go from positive

to negative values. The same phenomenon has been observed to occur for all the other

modes.

3.4 Conclusions

Computational solutions of symmetric and antisymmetric Lamb functions and reflection

coefficients have been presented for a plate embedded in a solid. A comparison between

the dispersion curves obtained either in complex slowness and real frequency or in real

slowness and complex frequency with the minima of the shear and longitudinal reflection

coefficient has been achieved. A better correlation with the resolution in complex frequency

has been shown although some regions still exhibit some disagreements. Those differences

occur where the minima are poorly defined. At such locations clearly defined zeroes of

the shear and longitudinal plane wave reflection coefficients may still be found by using a

calculation with real slowness and complex frequency. However, these solutions still exhibit

poor correlation with the dispersion curves in these regions. Regarding the implication on

experimental work, it seems that the coincidence angle principle may be used reliably to

measure the modal properties if the modes are calculated using complex frequency and real
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slowness and if measurements are restricted to velocities lower than cL in the embedding

medium.

As a consequence, Chapter 4 presents the calculation of the response for both a fluid

loaded plate and an embedded layer to an incident field which is bounded in time and in

space. The plate response is then studied at different positions along the plate, modelling a

receiver which would be either in or away from the specular reflected field. This has value

as a clear demonstration of the temporally transient and spatially transient behaviours,

and how each depends on the nature of the experimental setup.



Chapter 4

From complex frequency to complex
slowness

4.1 Introduction

As explained in chapter 3, solving a guided wave problem can become very delicate

since this actually depends on the variable (frequency or slowness) one chooses to fix. Har-

monic leaky guided waves with real frequency and complex slowness as well as transient

homogeneous guided waves with complex frequency and real slowness correspond to dif-

ferent sets of dispersion curves but are solutions of the same transcendental equation. For

these reasons, one should be able to differentiate them during an experiment since their

structure is different and they represent different physical behaviours. All the precautions

must be taken at this point. As a matter of fact, the hypothesis made in both cases must

be verified! This is why researchers started to think of modeling properly what they were

experimentally obtaining, therefore including bounded beam effects in their model since

the transducers are size-limited.

Starting from the coincidence angle principle which postulates that both zeroes and

poles of the plane wave reflection coefficient of a fluid loaded plate exist at the same time

for certain angles of incidence, Brekhovskikh [11] developed a detailed theory for the re-

flection of a bounded beam at a liquid-solid interface and showed for example that the

profile of the reflected beam was different from the profile of the incident beam, which cor-

responds to an “energy redistribution”. The profile used to model the incident beam was

rectangular. In 1973, Neubauer [56] experimentally demonstrated by means of Schlieren

visualization that the reflected field is composed of both specular reflection and Rayleigh

wave radiation at and near the Rayleigh angle. The same year, Bertoni and Tamir [5]

were the first to analytically approximate by contour integration the plane wave reflected

field for an incident Gaussian beam of a liquid-solid geometry near the Rayleigh angle of

incidence. In their paper, they analytically explained the nowadays well known shift of the
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reflected beam from the position predicted by the geometrical acoustics and theoretically

described the null or the minimum intensity in the reflected field as well as the weaker field

which accompanies the reflected beam and extends for a considerable distance downstream

of it. They also showed that at/or near the Rayleigh incident angle the incident beam in

fact produces a geometrical-acoustics field as well as a leaky Rayleigh wave which, both

superposed, create the distorted reflected field described earlier. In 1974, Breazeale et al.

[10] did the same study using an error function to express the reflected field and did a

comparison with experiments (Schlieren photographs) confirming again the distortion in

the collected field. It was in 1975, that Plona et al. [65] studied the case of immersed

plates. They experimentally showed that the results previously reported for the liquid-

solid geometry was also occurring for the liquid-solid-liquid geometry in the reflected field

but also in the transmitted field and that non specular effects depended on the imaginary

part of the pole: if S ′′
x is very small the shape of the reflected field remains the same.

After showing the theoretical similarities of Rayleigh and Lamb modes of vibration [62, 9],

Pitts et al. [63] used the poles and the zeroes of the infinite plane wave reflection coeffi-

cient to derive a theoretical prediction of the non specular reflection effects observed for

an ultrasonic beam incident on an isotropic plate in a liquid. Ng et al. [57] also stud-

ied the liquid/solid-plate/liquid configuration and solved the problem under consideration,

with an integration of an approximated transmission coefficient, from both single-pole and

multiple-pole formulations. Claeys and Leroy [19], however, built up the incident profile

with a superposition of inhomogeneous waves, all propagating in the same direction but

with different exponential decays. They showed that it is possible to obtain analytical

expressions for reflected and transmitted beams at any angle of incidence, whatever the

form of the incident profile. Nayfeh and Chimenti [53] presented calculations and measure-

ments on the reflection of finite acoustic beams from a fluid-solid interface either loaded or

stiffened by layers in welded contact with the solid. Some more work concerning bounded

beam effects and material characterisation with zeroes of the reflection coefficient can be

found in the following references [35, 73, 58, 34, 6, 16, 21, 76, 77].

All the previous studies showed how guided waves could be detected and/or excited by

a bounded incident beam: if the reflected field does not correspond to the geometrically

reflected incident field then a guided wave should be interacting with the plane wave

reflection coefficient. However, guided waves can also be studied with another method

called the Method of Isolation and Identification of Resonances (M. I. I. R). It consists of

sending a long sinusoidal train in order to establish a steady state in the studied object

which can then stock energy. Off a resonance, the reflected signal remains unchanged (its

shape is the same than the incident signal), but near a resonance, the structure of the

temporal signal exhibits the three following characteristics: the first part is an increasing

or a decreasing transient, the second shows the permanent regime and the third presents a

second transient regime exactly arising at the end of the forced regime and corresponding

to a free re-emission of the accumulated energy. The amplitude of this re-emission increases

or decreases exponentially with time like the first transient part. First used for the study

of cylinders [51, 70, 71, 49, 32], Izbicki et al. [33] and Delestre et al. [20] used it to study
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the resonances of an immersed plate, guided waves existence being considered as plate

resonances [47, 26, 27, 28]. In 1986, Maze et al. [50] explained that the distortion of the

shape of the wave train and the shape of the simultaneously appearing tail of the wave train

which represents the ringing of nearby plate resonances, are the result of the interference

of a directly reflected pulse with a series of multiply internally reflected pulses.

Although it is clear now that guided waves represent plate resonances, they can be

studied both in time and in space. The resonances in time are characterized by exponen-

tial transients whereas they are characterized by minima accompanied with a field which

becomes weaker and weaker away from the reflected field in space. As leaky guided waves

are excited by spatially bounded beams, transient guided waves are generated when the

emission of the source is finite in time. The aim of this chapter is then to present these

two different approaches in order to finally look at the effects of an incident beam which

would be bounded both in time and in space. After a quick recall of the Fourier theory,

the next sections will present the three following situations:

1. the frequency is complex and the slowness is real (transient Lamb waves)

2. the frequency is real and the slowness is complex (harmonic leaky Lamb waves)

3. transition between the two different situations

4.2 Fourier theory

The aim of this section is to briefly describe the field reflected by a plate immersed in

water or embedded in a solid. The studied geometry is the same as in chapter 3 shown

in Fig. 3.2. The incident field is supposed to be infinite in the z-direction. The plane

of incidence is defined by the axis (x,y), the central axis of the incident beam making an

angle θ with the normal to the plate. Using Fourier transforms, if the displacement field

is known on a given plane (y = y0), the potential field in an observation point (x, y) and

at a time t can be expressed by the bi-dimensional Fourier integral:

ϕ(x, y, t) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
Θ(ω, kx, y = y0)H(ω, kx, y)e

i(ωt−kxx)dkxdω (4.1)

where kx is the wavenumber projection on the interface, Θ(ω, kx, y = y0) is the transfer

function of the emitter and H(ω, kx, y) is the transfer function of the plate. In this study:

H(ω, kx, y) = e−ikylR(ω, kx) (4.2)
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where R(ω, kx) is the plane wave reflection coefficient of the plate defined in Eq. 3.15

(ξ+
L1,T1), ky = ωSyT1,L1 (T if the incident wave is shear, L otherwise), SyT1,L1 being defined

in Eq. 3.9. The exponential factor represents the propagation in the surrounding medium

from the emitter to the plate and from the plate to the receiver, the distance travelled

corresponding to l.

Although time and space are indissociable during an experiment, in order to simplify

the calculation, we make the assumption that the initial acoustic field in the emitter plane

is the product of a Fourier transform of a time function by a Fourier transform of a space

function:

Θ(ω, kx, y = y0) = A(kx)E(ω) (4.3)

where A(kx) and E(ω) respectively correspond to the spatial and to the temporal spectral

densities of the transducer. The incident acoustic field will be spatially assimilated to a

Gaussian function and temporally assimilated to a square function. The square function has

the benefit of containing both steady state and transient portions. It is to be noted that the

choice of other symmetrical spatial profiles will not appreciably affect the results provided

the other beams possess large effective cross-sections inside which the field intensity is very

strong compared to the exterior fields [5] (the Gaussian repartition is used to model most

transducers). Therefore, the spatial field is defined by:

a(x) = Ae−σ2(x−x0) (4.4)

where A is an arbitrary amplitude, σ is the width of the spatial field for a half amplitude

and x0 the initial position of the emitter. Its Fourier transform can easily be deduced:

A(kx) = A

√
π

σ2
e
−π2k2

x
σ2 eikxπx0 (4.5)

The time function used to simulate a square signal is defined by:

e(t) = [H(t− t0)−H(t− t0 − T )]eiω0(t−t0) (4.6)

where H(t) is the Heaviside function, t0 a time delay and T the duration of the signal. The

Fourier transform of the signal e(t) is then given by:

E(ω) =
i

ω − ω0

[
ei(ω−ω0)T − 1

]
e−iωt0 (4.7)
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Figure 4.1: Experimental configuration for the resolution in complex frequency and real
slowness.

4.3 Transient Lamb waves

As explained in the introduction it is of key importance to make sure that all hypotheses

made in a problem are satisfied. In this section, we want to study transient guided waves

which are waves whose amplitudes decay only in time but not in space (∗ω, Sx). Moreover,

we know that bounded beam profiles generate leaky guided waves. As a consequence

the hypothesis of real slowness is satisfied only if no spatial discontinuities arise. Hence,

experimentally speaking, the emitter should be very large in order to simulate an incident

plane wave which is infinite in space and the receiver should be placed in the specular

reflected field as shown in Fig. 4.1. In this model, the spatial acoustic field is then

considered as a unit function a(x) = 1, ∀ x and therefore the potential defined in Eq. 4.1

is reduced to a single integral over the frequency domain:

ϕ(t) =
1

2π

∫ +∞

−∞
R(ω,

sin θL,T

cL,T

)E(ω)eiωtdω (4.8)

From an experimental point of view such behaviour is achievable. Poncelet and De-

schamps [24, 68] obtained very good results with a rectangular plane wave emitter whose

dimensions are 80x40 mm and whose center frequency is about 3 MHz (this corresponds

to about 70 wavelengths at 2 MHz in the water). At 30 cm from the emitter they showed

that the wave front collected by a 3/4′′ typical broad-band transducer of 2.25 MHz is a

plane with a constant amplitude in an area of about 50 mm in width. Hence, at the center

frequency of the beam, the assumption of plane waves can be well justified and the spatial

bounded beam effects can be limited considerably.

As the response of a plate can be associated with the poles of the plane wave reflection
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coefficients in the frequency domain, we decided to numerically study the case of a 1-mm

thick steel plate embedded in aluminium to see if zeroes of the shear plane wave reflection

coefficient effectively coincide with the modal properties of the structure. This situation,

although similar to the previous studies for immersed plates, includes the presence of

a shear plane wave also reflected by the plate into the surrounding medium. Among

the large number of existing modes we only focus our attention on the modes S0 and

A0. Those two modes have been chosen because, as in the case studied by Poncelet and

Deschamps for a fluid loaded plate, a cut-off in frequency exists for the two modes and

A0 has a negative attenuation (the temporal exponential should be an increasing transient

instead of a decreasing transient). This is an interesting case to develop understanding

but unfortunately unsuitable for experimentation. As a matter of fact, also the thickness

of the adhesive, in order to bond the different solids, were very small compared to the

wavelength used in our experiments and compared to the plate thicknesses, the results

were unworkable and completely different from the solid/solid/solid model.

The properties of the media are the following: cL1 = 6.37 m/ms, cT1 = 3.1 m/ms,

ρ1 = 2.8 g/cm3 for the embedding medium and cL2 = 5.96 m/ms, cT2 = 3.26 m/ms,

ρ2 = 7.932 g/cm3 for the embedded layer. The phase velocity dispersion curves of the two

modes are shown in part a) of Fig. 4.2 while the attenuation factor Ω is illustrated in part

b).

Two numerical simulations have then been carried out at different angles of incidence.

The angle to excite A0 is 87.48◦ and corresponds to a phase velocity of 3.103 m/ms whereas

the angle to excite S0 is 65.27◦ which corresponds to 3.413 m/ms. In those conditions,

even if both a longitudinal and a transversal plane wave are reflected by the interface,

the longitudinal reflected wave remains an interface wave (we are above the critical angle).

Then as explained in Chapter 3 the plane wave reflection coefficient should only have zeroes

but no minima and the agreement with the complex frequency dispersion curves should be

ideal. The frequencies of the carrier wave, in order to excite A0 and S0, have been chosen

in such a way that they correspond to the frequencies labelled in Fig. 4.2(b). The incident

signal has 100 cycles and is 20 µs long for A0 but 15 µs long for S0. In fact, the length of

the signal depends on the imaginary part of the frequency of the mode we want to excite:

the lower Ω the longer is the signal. The numerical results are presented in Fig. 4.3. Part

a) and b) show the temporal responses of A0 and S0 respectively, while part c) and part d)

show the logarithm of their envelopes. It is to be noted that although a large number of

cycles is necessary in order to visualize the two transients at the beginning and at the end

of the steady state (we do not want any overlapping), they also contribute in the reduction

of the frequency spectrum bandwidth and then in the accuracy of the model (the angle of

incidence is fixed and the working frequency is almost unique).

As expected, the response of the plate for the two modes exhibits the two characteristic

behaviours: a transient part at the beginning and at the end of the steady state and a null

amplitude during the steady state (the infinite plane wave reflection coefficient is null for
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Figure 4.3: Predicted plate response to a long duration plane wave signal at a frequency of
(a) 3.856 MHz, (b) 2.983 MHz. Part (c) and (d) show the logarithm of the envelopes of the
response displayed in part (a) and (b). Ωsimulation refers to slope/(2π ∗ carrierfrequency)
whereas Ωtheoretical refers to the dispersion curves presented in Fig. 4.2.

these angles of incidence and for these frequencies).

As a matter of fact, the incident signal is a square signal which is null everywhere except

between a time t0 and a time t0 + T . In this zone, there only exists one frequency ω0 and

the signal is then harmonic. As the reflection coefficient is null for those particular values

of (ω, θ) the result is zero between t0 and t0 + T . The only information which appears are

the transient parts of the signal at t0 and t0 + T whose lengths depend on the value of

ω′′. The formation of the transient parts is schematically illustrated on the right hand side

of Fig. 4.1 for the nine first reflected waves and is the result of destructive interference

between all those multiple internal reflections. A full description can be found in Ref.

[50]. The transient parts are increasing exponentially for A0 but decreasing exponentially

for S0: in Fig. 4.2, Ω is positive for S0 but negative for A0. Moreover, the logarithm of

the envelopes of the two different responses have been calculated and are shown in Fig.

4.3(c,d). As expected, the two straight lines confirm the fact that the two plate responses

are exponential functions. Moreover, the slopes of the two straight lines, which correspond

to the parameter ω′′ for a wave which is attenuated in time, have been calculated. They
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are respectively equal to ' −0.317 MHz for ω′′S0
and to ' 1.9 MHz for ω′′A0

and are also

labelled on Fig. 4.3. They are rigorously equal to the predicted attenuation of the modes

calculated by the resolution of the modal problem (see Section 3.2.2). As a consequence,

the transient parts of the reflected signal contain information about the modal properties of

the plate. Finally, as explained in chapter 3 we can also observe that the modal properties

correspond to a zero of the reflection coefficient.

4.4 Harmonic leaky guided waves
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Figure 4.4: Experimental configuration for the resolution in complex slowness and real
frequency.

For this kind of experiments the aim is to look at Lamb waves which are leaking energy

in the surrounding media as they are travelling along the plate. Contrary to the previous

section, the attenuation is no longer in time but now in space. The frequency is real, the

signal is supposed to be a unit function: e(t) = 1, ∀ t but the beam is now bounded. In

those conditions, the double integral defined in Eq. 4.1 reduces to a single integral and the

potential field can be rewritten:

ϕ(x, y) =
1

2π

∫ +∞

−∞
R(ω, kx)A(kx)e

−i(kxx+kyl)dkx (4.9)

As explained in chapter 3, as the dispersion curves in complex slowness and real fre-

quency do not fit at all the zeroes of the plane wave reflection coefficient when the plate is

embedded, this section only presents the case of a steel plate immersed in water in order

to illustrate the phenomena induced by a bounded beam. Although this recalls the well

known results already presented by many authors and referenced in the introduction, this

section will later be useful in order to understand the behaviour of the reflected field when

both time and space are bounded. The experimental setup is shown in Fig. 4.4. Without
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loss of generality we can assume that the propagation length in the surrounding medium

is null (l = 0) since this only spreads the results but does not change the properties of the

spatial exponential decreases. The overlapping is then avoided and this assumption will

remain valid until the end of this chapter.
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Figure 4.5: Top: dispersion curves calculated in complex slowness and real frequency for a
1-mm steel plate immersed in water. Bottom: response of the plate to a bounded incident
beam whose frequency and angle of incidence (or phase velocity) are labelled with a black
circle (•) in parts a) and b).

The incident bounded beam is modelled by a superposition of planes waves correspond-

ing to a Fourier integral. The shape of the incident wave form being a Gaussian function,

its Fourier transform is a Gaussian function as well. The numerical results are obtained

after the following steps: for a given displacement field in the surrounding medium a(x)

centered in x0, we calculate the Fourier transform and get A(kx) with reference to the

coordinate system of the transducer R0(x0, y0) making an angle θ with the reference to the

coordinate system of the plate R1(x1, y1). Then, for each kx in the surrounding medium,

the other component of the wavenumber is calculated with the dispersion relation:

kz |R0
= ±

√
ω2

c2L1

− k2
x, (4.10)
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the sign of kz |R0
being chosen in such a way that the amplitude of the wave decreases as

its distance from the plate interface increases. The projection of the wavenumber on the

interface is easily deduced by a simple rotation over θ:

kx|R1
= kx|R0

cos(θ) + kz |R0
sin(θ) (4.11)

Hence, for each kx|R1
in the plane of the plate, the integral defined in Eq. 4.9 can be

evaluated. It is to be noted that the calculations are only made for real wave numbers

(|kx|R0
| <= kL1).

Our simulation is configured to excite S0 in a 1-mm thick steel plate immersed in

water. The different curves are illustrated in Fig. 4.5. Part a) shows the phase velocity

dispersion curves while part b) shows the attenuation (k′′x). On the black circle, S0 has

the following properties: (Vph = 3.975 km/s, f = 2.599 MHz, k′′x = 0.146 Np/mm and

the incident angle in the water corresponds to θ = 22.17◦. The Gaussian beam width

for a half amplitude is σ = 20 mm and the incident field is shown in dotted line in part

c) of the figure. The response of the plate to the spatially bounded beam is also traced

in part c) of the figure in solid line. The results are in accordance with the theory and

clearly indicate the three main effects caused by a bounded beam which are: the typical

shift, the minimum in the reflected beam and the trailing zone which becomes weaker

and weaker (this is a decaying function). Part d) shows the logarithm of the reflected

field and the value of the slope is also indicated. This slope, which represents the spatial

attenuation with reference to the coordinate system of the receiver, does not correspond

to the modal attenuation. As a matter of fact, the modal attenuation refers to the guided

waves attenuation along the plate. Then with a simple projection on the plate axis we

obtain k′′x = 0.1577 ∗ cos(22.17) = 0.146 Np/mm which exactly equals the predicted

attenuation labelled on part b) of Fig. 4.5.

4.5 Transient bounded beam

In this section we study the general case where both time and space are bounded.

As explained in section 4.2 the field reflected by a plate can be evaluated at any time

and at any position in the receiver plane as long as the incident field is known both in

time and in space. As the numerical calculations are done in the frequency space as well

as in the wavenumber space, the reflected field is the result of a double inverse Fourier

transform. The two limit cases being already presented in the two previous sections, we

intend to study the link that may experimentally exist between these two ways of solving

the guided wave problem. For a fixed incident angle and for a given temporal signal, it is

possible to look at the reflected field in the receiver plane at any position over the length of

study. This can be in either of the three zones described in section 4.4 that is the specular
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reflection, the null intensity zone or the spatially exponentially decreasing zone. Then,

for each position, the time signal can be evaluated and inversely the reflected field can be

obtained at any time. However, the modal analysis takes place in the frequency domain

and the most appropriated curves to describe the differences between the two methods are

the phase velocity dispersion curves. As a consequence, the frequency domain being more

suitable for comparisons with dispersion curves, we restrict our analysis to the space and

to the frequency domains. This method, faster because it only requires a single inverse

Fourier transform, allows us to study the frequency spectrum at any position in the receiver

plane for a fixed angle of incidence or inversely the reflected field can be obtained at any

frequency. The reflected field is then defined by:

ϕ(x, y = y0, ω) =
1

2π

∫ +∞

−∞
E(ω)A(kx)R(ω, kx)e

i(ωt−kxx)dkx (4.12)

The aim being to look at the reflected field spectrum over a wide range of frequencies

(from 0 to 10MHz/mm), we decide to use a delta function in time (e(t) = δ(t−t0)) in order

to excite all the frequencies with the same power. It is however important to understand

that this formulation is experimentally unrealistic. As a matter of fact, in most studies the

working frequency of the transducers is chosen in such a way that it corresponds to the

mode we want to excite which avoids the necessity to do any signal processing that might

be time consuming and sometimes very difficult to implement. In order to get nearer to

the reality, the length of study is then going to be frequency dependent. In such a way, the

wavelength remains constant at any frequency. From an experimental point of view this

is equivalent to changing the transducer in order to excite high frequency modes rather

than low frequency modes and that is what is done during an experiment! Low frequencies

require large spatial lengths of study (large wavelength) whereas high frequencies require

smaller lengths of study (small wavelength).

-h

h
x

1

y
1

Liquid

Liquid

Solid 2

x 0

y 0

θ

Receiver plane

Specular reflected position}other positions

Figure 4.6: Experimental configuration showing the different positions at which the fre-
quency spectrum is collected.

In this context, we then first study the case of a 1-mm thick steel plate immersed in
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water. The incident signal is set up in such a way that its frequency spectrum varies from 0

to 11.11 MHz. The incident beam is a Gaussian function whose width σ is 20 mm at half

amplitude. The incident angle varies from 8.627◦ which corresponds to a phase velocity

of 10 m/ms to 90◦ for 1.5 m/ms. For each angle of incidence, we store the frequency

spectrum at different positions along the receiver plane (see Fig. 4.6). The results are

presented in Fig. 4.7.

Each image represents the simulated modulus of the reflected field as a function of

frequency for different angles of incidence or phase velocities at a fixed position away from

the specular reflected ray. The dark regions refer to high amplitudes whereas the light

regions refer to low amplitudes and the color normalisation has been done according to

both the maximum and the minimum of the whole data contained in all eight plots . The

first image (a) describes the reflected field characteristics at the specular reflection whereas

the last image (h) describes the reflected field properties far away from the specular reflected

field. The different positions, for a frequency of 1 MHz, respectively correspond to 0 mm

for part a) (this is the geometrical specular reflected ray), 10, 20, 30, 40, 50, 60 mm for

parts b), c), d), e), f), g) and 100 mm for part h).

As expected, part a) illustrates well the modal properties of the plate also characterized

by zeroes or minima (white color) in the specular reflected field. Then, when one moves

away from the specular reflected field, minima start transforming into maxima and maxima

start transforming into minima but they still describe the same modal properties: the shape

of the dispersion curves, although described in some cases by minima and in other cases

by maxima do not change at all. They are neither shifted nor distorted.

Moreover, at the longitudinal bulk velocity of steel all the symmetric modes have an

attenuation which is almost zero: they cannot be excited because of the weak coupling

between the plate and the water [6]. As a consequence, while the modes are described by

minima in the whole picture of part a) for example, they are however described by maxima

at or near cL. The same behaviour of course occurs in all other cases where the amplitudes

near this velocity are inverted from the amplitude of the other modes.

In the last image (part h), that is when the field is calculated at the furthest distance

from the source, only a few parts of the modes remain visible. In order to understand why,

the phase velocity dispersion curves calculated in real frequency and complex slowness

with the corresponding attenuation are presented in Fig. 4.8 (we are far from the source

and so the resolution in complex frequency is not appropriate). The attenuation is shown

on the top of the figure and is also included in the thickness of the different lines. Thick

lines correspond to low attenuation whereas thin lines correspond to high attenuation.

As expected, the only remaining modes in part h) of Fig. 4.7 correspond to modes with

low attenuation. This is of course physically understandable since we are looking at the

reflected field far away from the source. Because the modes propagated and leaked all their

energy into the fluid they cannot be detected. On the other hand, the modes with low
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Figure 4.7: Dispersion curves-like images showing the modulus of the reflected field at
different positions on the receiver plane. Plate is 1-mm thick immersed in water and the
incident beam is bounded spatially.
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Figure 4.8: Dispersion curves calculated in real frequency and complex slowness for a 1-
mm thick steel plate immersed in water. Top is attenuation (ωS ′′

x) and bottom is phase
velocity (1/S ′

x) both versus the frequency. To aid comparison, the lines are plotted with
thicknesses which is inversely proportional to attenuation.

attenuation propagate over longer distances and are still detectable even far away from the

specular reflected field.

At this point, it is interesting to cite the work achieved by Lobkis et al. since 1996.

They presented an approximated but highly accurate analysis for the reflection of bounded

acoustic beams from fluid loaded structures demonstrating the relationship between the

plane wave reflection coefficient and the transducer voltage [41]. They showed that the

correspondence of the reflection coefficient zeroes, in both angle and frequency, with the

observed minima depends critically on the experimental geometry, especially the lateral

transducer placement. In their paper, they also demonstrated that minima in the reflected

field could become maxima depending on the position of the receiver. To validate their

work, they also did experiments in order to characterize an anisotropic plate immersed in

water [39, 40]. Our results are then in accordance with their theory.

Let us now study a case where the dispersion curves calculated in complex frequency and

real slowness and the dispersion curves calculated in real frequency and complex slowness

present much more differences, especially for S0 and A1. The studied material is now a
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Figure 4.9: Dispersion curves calculated in real frequency and complex slowness (dashed
lines) and in complex frequency and real slowness (solid lines) for a 1-mm thick anisotropic
plate immersed in water.

highly anisotropic material whose density is ρ = 1.578 g/cm3 and whose elasticity tensor

matrix expressed in the coordinates (x,y,z) is in (GPa):


13.92 6.92 6.44
6.92 13.92 6.44 0
6.44 6.44 100.73

7.07
0 7.07

3.5

 . (4.13)

The study is made for an azimuthal angle of 0◦, which corresponds to a propagation

plane in the coordinate system (x,y). The plate is 1-mm thick and still immersed in water.

The dispersion curves are presented in Fig. 4.9. Solid lines stand for solutions in complex

frequency and real slowness whereas dashed lines correspond to solutions in real frequency

and complex slowness. Although the curves seem to correlate quite well for high phase

velocities as shown in Fig. 4.10, strong differences appear for low phase velocities near

the longitudinal bulk velocity of the water. As in the previous example, the reflected field

modulus is displayed for several angles of incidence over a range of frequencies at several

positions along the receiver plane. Parts a), b), c), d), e) and f) correspond respectively

to the following distances from the specular reflected field: 0, 10, 20, 30, 40 and 50 mm.

Again, the dispersion curve-like images really describe the dispersion curves calculated in

complex frequency and real slowness as shown in part a) where the dispersion curves from

Fig. 4.9 are directly compared with the reflected field modulus in the specular reflection.

Far from the source, there only exist modes with very low attenuation (attenuation not

shown for simplicity).
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Figure 4.10: Reflected field modulus at different positions along the receiver plane for a
1-mm thick highly anisotropic plate immersed in water. Part a) also shows the dispersion
curves (solid and dashed lines).

4.6 Conclusion

The response of a plate to a spatially and temporally bounded beam has been numeri-

cally studied. The results for the simpler cases where only one or other of the two different

spaces is bounded have been analysed. In both configurations the modal properties of the

plate are linked to the zeroes of the plane wave reflection coefficient and the attenuation

of the modes can be evaluated in time or in space. However, when the two spaces are

bounded, the results clearly depend on the position of the receiver. Placed in the specular

reflected field, zeroes in the reflected field correspond to solutions calculated in complex

frequency and real slowness. Far away from the source the modal properties of the plate

are no longer described by zeroes but by maxima and they are still in accordance with the

two sets of dispersion curves. Moreover, the only remaining parts in the far field corre-

spond to modes with very low spatial or temporal attenuation. As a conclusion, complex

frequency and real slowness dispersion curves appear always to fit the zeroes of the plane

wave reflection coefficient. On the other hand, real frequency and complex slowness so-
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lutions only agree with the zeroes of the plane wave reflection coefficient for modes with

very low attenuation. In that case their phase velocity dispersion curves also correspond

to those for complex frequency and real slowness, although the attenuations are of course

different. Then the two kinds of mode may still exist even far from the source.

In most non destructive testing applications using guided waves, if the phase velocity

remains an important parameter to distinguish a mode from another at a fixed frequency,

the group velocity is also of key importance. However, this parameter is only valid and

usable for non viscoelastic isotropic plates when the modes are not attenuated. In the

next chapter the calculation of guided waves energy velocity is presented for different

configurations of lossless or viscoelastic plates immersed in a fluid or in vacuum.



Chapter 5

Guided waves energy velocity in
absorbing and non-absorbing plates

5.1 Introduction

The motivations which drove us to study the energy velocity concept instead of the

group velocity arose because of the discontinuities and the unacceptable values (greater

than the longitudinal bulk velocity of the material) obtained when calculating the group

velocity of attenuative guided waves propagating within an isotropic plate immersed in

a fluid. In fact, we will show that the group velocity definition is only valid in the non

attenuating cases when the wavenumber is real and can be substantially in error when the

waves are attenuative. This anomaly motivated us to perform a strict derivation for the

energy velocity in attenuating harmonic waves (ω′′ = 0) and then compare the results with

the simple group velocity expression.

A great deal of work has already been published concerning group velocity and energy

velocity. In 1951, Broer [12] considered when and why the rate of energy propagation

of waves, in a one dimensional conservative system without dissipation, equals the group

velocity. Using the method of stationary phase he demonstrated that everywhere in the

wave system the energy is propagated with the group velocity corresponding to the local

wavenumber. Biot [7], in 1957, showed that there is a rigorous identity between the group

velocity and the velocity of energy transport in non-homogeneous media with or without

anomalous dispersion. After a survey of the theory of group velocity for one-dimensional

and three-dimensional, isotropic and anisotropic, homogeneous and inhomogeneous, con-

servative and dissipative, linear and non-linear systems exhibiting wave propagation under

free and forced motion condition from Lighthill [38], Hayes [30] showed in 1977 in a simpler

way that the energy flux velocity vector for a single infinite train of elliptically polarised

harmonic small amplitude plane waves propagating in a homogeneous conservative, disper-

sive system is equal to the group velocity. Then it was in 1979 that Hayes and Musgrave
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[31] explained that the equivalence between group velocity and energy velocity does not

hold true in general for inhomogeneous waves. This was confirmed for example by Poirée

[66] in 1984, who demonstrated that the energy velocity of the spatially dispersive plane

evanescent wave solution of the linear acoustic equation in a perfect fluid is equal to the

phase velocity instead of the group velocity. It was also shown by Borejko [8] in 1987 and by

Mainardy [48] who postulated that when the energy is not conserved, the identification of

energy velocity with the kinetic concept of group velocity is not valid. Finally, Deschamps,

Poirée and Poncelet [22] showed that the energy velocity of complex harmonic plane waves,

characterized by a complex wave vector and a complex frequency, may be interpreted as

the phase velocity in the direction of the real part of the slowness bivector.

This chapter examines the calculation of the energy velocity in guided waves by inte-

grating the energy velocity vectors through the depth of the plate and over a temporal

cycle, as set out for example by Auld [4]. Results using this approach, which is general

in its applicability to guided waves, are then obtained for three specific guided wave cases

and compared to the group velocity solutions. First the Lamb waves in a non-absorbing

isotropic plate in vacuum are studied in order to demonstrate the agreement, in this loss-

less case, of the energy velocity with the group velocity. Then a non-absorbing isotropic

plate immersed in water is studied, revealing the departure of the energy velocity solutions

from the group velocities. Finally an absorbing plate in vacuum is studied, again showing

separate energy velocity and group velocity solutions. Experimental results for one of the

modes in the absorbing plate are also shown, confirming that a wave packet does indeed

travel at the predicted energy velocity.

5.2 Guided wave problem

We consider an infinite plane parallel absorbing plate of thickness 2h, density ρ2, longi-

tudinal velocity ∗CL2 and shear velocity ∗CT2 (where ∗C is defined in Eq. 2.12) immersed

in a fluid whose density is ρ1 and longitudinal bulk velocity is CL1. The simpler examples

of an absorbing (or not) plate in vacuum (or not) will easily be deduced from this general

case by annulling the viscoelastic constants in the solid as well as the waves amplitude in

the liquid for vacuum.

Starting from the linear system of equations, obtained by the continuity of the normal

displacements and of the stresses on each interface, the characteristic equation is obtained

by equating the determinant of this system to zero. The well known dispersion equation

of the symmetric Lamb wave function is for example given by [27]:

Cs(ω, ∗kx) = (ω2 − 2 ∗C2
T
∗k2

x)
2 cot( ∗ph) + 4 ∗C4

T
∗k2

x
∗p ∗q cot( ∗qh) + i ∗τ = 0 (5.1)
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with

∗τ =
ρ1

∗p

ρ2
∗m

(5.2)

where all the quantities are defined in Eq. 3.8.

The dispersion equation of the anti-symmetric Lamb wave function is obtained by

changing the cotangents into tangents and by taking ∗τ = − ∗τ .

Let us now consider the real part of the displacements in the plate at a given y0 position

given by Eq. (3.17), denoted by ux and uy. They can be expressed as follows

{
ux = f ′ cos(φ)− f ′′ sin(φ)
uy = g′ cos(φ)− g′′ sin(φ)

(5.3)

where f ′ and g′ stand for the real part of ux and uy respectively, f ′′ and g′′ for their

imaginary parts and φ for the common phase term (ωt − k
′
xx). The amplitude decay

term (e−k
′′
x ), being common to ux and uy, has voluntarily been omitted. After several

manipulations of Eq. (5.3) it can be shown easily that any Lamb wave displacements

describe an ellipse whose large axis is rotated by an angle ψ from the reference (O, x, y)

to (O, x1, y1) as presented in Fig.5.1. In fact, the displacements of the four partial waves

which constitute a Lamb wave, and their superposition to form the Lamb wave, are all

elliptical.

Figure 5.1: Lamb wave displacement over a time period where y0 describes the position
over the thickness of the plate.
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The angle of the axis of the ellipse is such that:

tan(ψ) =
g′′

f ′′
= −f

′

g′
(5.4)

It is clear from this equation that for the general case when ∗kx is complex, i.e., f ′, f ′′,

g′, g′′ are not null, tan(ψ) is neither zero nor infinite. Moreover, the simple case of a non

absorbing plate in vacuum (αL,T = 0, f ′′=0 and g′=0) is the only example for which ψ

is always π/2. In that case the axes of the ellipse, for each different y position inside the

plate, are collinear to the plate axes.

5.3 Non absorbing plate in vacuum

Here we consider the particular case of Lamb waves when there is no attenuation. This

is included here to confirm the agreement of the group velocity and energy velocity in such

cases, the simpler case of SH waves propagating in a non viscoelastic plate in vacuum being

presented in Ref. [4].

Now, since αL,T = 0 and ∗τ = 0, the non standing but propagating solutions of the

symmetric and anti-symmetric Lamb wave dispersion equations given by Eq. (5.1) are real

( ∗kx = kx).

5.3.1 Group velocity

This is the velocity of a modulated wave which is constructed by taking two waves with

slightly different values of ω and kx [4]. The propagation velocity of the carrier is the phase

velocity defined by:

Vφ =
ω

kx

(5.5)

and the propagation velocity of the envelope is the group velocity:

Vg =
∂ω

∂kx

(5.6)

With this definition, any dispersion relation linking the frequency ω and the wavenumber

kx is suitable to calculate the group velocity. Thus the symmetric Lamb function given

in Eq. (5.1) is considered and, as dCs(ω, kx) = 0, therefore the group velocity can be

expressed as:
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Vg = −∂Cs(ω, kx) /∂kx

∂Cs(ω, kx) /∂ω
(5.7)

Then, expanding this gives:

Vg =
kxc

2
L

ω

[
A

B

]
(5.8)

with:

A = −8pqc2T (ω2 − 2c2Tk
2
x) cot(ph)− 4c4T [k2

x(p
2 + q2)− 2p2q2] cot(qh)

+hq
(

(ω2−2c2T k2
x)2

sin2(ph)
+

4c4T k2
xp2

sin2(qh)

) (5.9)

and

B = −4pqc2L(ω2 − 2c2Tk
2
x) cot(ph)− 4c4Tk

2
x(c

2
Lp

2 + c2T q
2) cot(qh)

+hq
(

(ω2−2c2T k2
x)2

sin2(ph)
+

4c2T c2Lk2
xp2

sin2(qh)

) (5.10)

5.3.2 Energy velocity

The energy velocity vector is defined at a given y position in the plate by [4]:

Ve(y) =
〈P〉
〈E〉

(5.11)

where 〈(.)〉 denotes the time average over one period:

〈(.)〉 =
1

T

∫ T

0

(.)dt (5.12)

and where P stands for the Poynting vector and E for the total energy in the system

(potential and kinetic). Those quantities are real and defined as follows:

P = −σu̇ (5.13)

and
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E =
1

2
ρu̇ · u̇ +

1

2
λθ2 + µε : ε (5.14)

where u̇ is the particle velocity vector, λ and µ are the Lamé coefficients, σ and ε are the

stress and the strain tensor respectively, and θ = ε11 + ε22 + ε33 is the dilatation. In the

calculation of P and E all the different quantities have been calculated using the real part

of the displacements given in Eq. (3.17).

However, as we are dealing with Lamb waves, that is waves confined within a plate,

our interest is in the energy velocity flux in the whole plate. This requires additionally an

integral through the thickness of the plate and is defined by [1]:

Ṽe =
〈〈P〉〉
〈〈E〉〉

(5.15)

where 〈〈(.)〉〉 denotes an average over a time period as well as over the thickness of the

plate:

〈〈(.)〉〉 =
1

2h

∫ h

−h

〈(.)〉dy (5.16)

After long and non trivial calculations, it is found that, when Vφ > cL (that is p and q

are purely real), the component of the Poynting vector at any location following the y

direction is always null and the component of the flux in the whole plate following the x

direction is:

〈〈Px〉〉 = ρω3kx sin2(qh) sin2(ph)
q

{
− 4c2Tp

2(ω3 − 3c2T q
2) cot(qh)+

p
q
(ω2 − 2c2T q

2)(ω2 − 2c2T q
2 + 8c2Tp

2) cot(ph)+

hq
(

(ω2−2c2T k2
x)2

sin2(ph)
+

4c4T k2
xp2

sin2(qh)

)} (5.17)

Also:
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〈〈E〉〉 = ρω4 sin2(qh) sin2(ph)

qc2L

{
− 4c2T p2(ω3−c2T q2)(ω2−3c2T q2)

(ω2−c2T q2+c2T p2)
cot(qh)+

q(ω2−c2T q2)(ω2−2c2T q2)(ω2−c2T q2+8c2T p2)

p(ω2−c2T q2+c2T p2)
cot(ph)+

hq
(

(ω2−2c2T k2
x)2

sin2(ph)
+

4c2T c2Lk2
xp2

sin2(qh)

)} (5.18)

The energy velocity vector, expanded to its direction components, is thus:

Ṽe =

(
Ve

0

)
(5.19)

Making use again of the abbreviations A and B of Eq. (5.9) and (5.10), it is found that:

Ve =
kxc

2
L

ωB

(
A+

q

p
Cs

)
(5.20)

But by definition [Eq. (5.1)], Cs = 0 , so by comparing Eq. (5.20) with Eq. (5.8), it

follows that Ve = Vg.

The situations when cT < Vφ < cL and Vφ < cT have of course been explored too.

They also lead by the same process of analysis to the equality between energy and group

velocities but for brevity they are not presented. The only alteration in the algebra is that

hyperbolic functions appear in place of the trigonometric functions because p and/or q

become purely imaginary. The same demonstration can be made for the anti-symmetric

Lamb modes.

5.4 Non absorbing plate in a fluid

Let us now study the non absorbing plate immersed in a fluid for which the equality

between the group velocity and the energy velocity is known not to hold true. In this

configuration, solutions of symmetric and anti-symmetric Lamb functions are now complex,

which means that the x-wave-number becomes a complex quantity. The imaginary part of

the wave-number describes the attenuation of the guided wave due to leakage of energy by

radiation into the fluid.

If a calculation of the group velocity is now attempted according to Eq. (5.6, 5.7),

it becomes necessary to consider the complex wave-number, so Cs must be derived with
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respect to ∗kx. This would be possible mathematically, but it no longer makes physical

sense.

Consideration of the energy velocity calculation also leads to difficulty, in this case not

by a physical constraint but by algebraic complication. The relations given by Eq. (5.17)

and (5.18) would now have to contain complex wave-numbers (neither purely real nor

purely imaginary), and so would be a linear combination of trigonometric and hyperbolic

functions. It was decided realistically therefore that an analytical result for the energy

velocity vectors was unworkable, and so numerical computations were undertaken instead.

Figure 5.2 shows some computed dispersion curves for a 1 mm thick aluminium plate, in

vacuum (dotted lines) or immersed in water (solid lines). Part (a) shows the phase velocity,

indicating very little difference between the curves for the vacuum case and the immersed

case. Part (b) shows the attenuation of the immersed case, expressed in Nepers/m; of

course the attenuation of the vacuum case is zero. The properties of the materials are:

cL = 6.37 m/ms, cT = 3.1 m/ms, ρ = 2.8 g/cm3 for the aluminium and cL = 1.5 m/ms,

ρ = 1 g/cm3 for the water.

An obvious difference between the vacuum and immersion cases is with the mode S1.

In the immersion case this mode exhibits a cut-off in phase velocity which has already been

examined by Lenoir, Duclos et al. [37] for example. This behaviour is accompanied by an

increase of attenuation up to 4000 Np/m as the frequency tends to zero (for clarity, not

shown in part (b) of Fig. 5.2. This very high attenuation reduces the phase velocity of S1

instead of its rise to infinity as for a plate in vacuum. Such cut-offs are also observed if the

problem is solved not in real frequency and complex slowness but in complex frequency

and real slowness [24, 69]. In that case, again, the imaginary part of the frequency tends to

infinity and cut-offs in frequency instead of phase velocity appear for the modes commonly

labelled A0 and S0, confirming the idea that the high attenuation leads to cut-off either in

frequency or in phase velocity. We will consider now some more detailed results for this

mode, with the aim of studying the influence of the fluid loading.

5.4.1 Energy velocity vectors comparison

Since we know that the imaginary part of the wave-number indicates the leakage of

energy into the fluid, we should expect the energy velocity vectors to show some component

in the direction normal to the plate. This is of course in contrast with the plate in vacuum

for which it was shown earlier that the component in the normal direction is zero. We

have calculated the energy velocity vectors at four different frequencies (10, 8, 6, 4 MHz),

marked by filled circles in Fig. 5.2. The vectors, defined by Eq. (5.11), are shown over

a range of different y positions in Fig. 5.3. The plots on the left hand side of the figure

are for the aluminium plate in vacuum and on the right hand side for the aluminium plate

immersed in water. In the vertical direction each plot represents one of the four chosen
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Figure 5.2: Dispersion curves comparison between a 1 mm thick aluminum plate in vacuum
(- - -) and in water (—). Part a) Phase velocity (ω/k

′
x) and part b) attenuation (k

′′
x for the

leaky case) both versus the frequency. Black circles show the different positions for the
calculation of the energy velocity vectors presented in Fig. 5.3
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locations on the dispersion curve. In each plot the top and bottom of the plate are identified

by dotted lines and the energy velocity vectors are shown as solid lines. The vectors have

directions and lengths according to their actual directions and amplitudes. The amplitude

scale is arbitrarily normalised to the maximum in each plot.

Let us first consider the left column of Fig. 5.3. As explained in section 5.3, the solutions

of Lamb wave functions being real for the case in vacuum, the energy velocity vectors only

have a component along the x direction : 〈〈Py〉〉 is always null. However, regardless of the

direction of the global propagation of energy along the plate, it is permissible according

to the derivation that locally an individual vector may lie in either the positive or the

negative x direction. It is interesting to see that in fact vectors with negative x directions

are actually predicted at the 4 MHz and 6 MHz locations when clearly the global energy

direction is positive. There are also circumstances when the global energy propagation,

that is the sum of these vectors, is in the negative direction. For example this occurs for the

S1 mode when the phase velocity is greater than 11.44 mm/ms in the so-called backward

propagating or negative group velocity region. For example this has experimentally been

measured by Wolf, Ngoc et al. [80]. The energy velocity vectors for one position on the

curve in this case are presented in Fig. 5.4.

This raises the interesting observation that energy can travel in the negative direction

even though the mode is modelled by the superposition of four partial plane waves (two

longitudinal and two shear) whose wavenumber projections on the x direction are positive.

Clearly it is necessary to be very careful when dealing with the energy in waves, and issues

of the superposition of waves. Lamb waves exist because of constructive or destructive

interference between those partial waves. Therefore, what is seen is a consequence of those

interferences but does not express the exact contribution of each phenomenon. In fact, we

acknowledge that this is not really understood yet.

In contrast, the leaky case generally exhibits energy velocity components on the y-

direction. It is important to note that, in this second example, the orientations of the

energy velocity vectors are a consequence of the nature of kx which has become a complex

quantity. As for the elliptical displacements presented in section 5.2, an angle of rotation

function of the y position in the plate is observable and the energy seems to move towards

the fluid. However, there is no evidence that these angles correspond to the ellipse angles.

The global shape of the energy velocity vectors has been conserved and as in vacuum some

components are oriented toward the negative x direction. We also see that the extent

to which the vectors point in the y direction corresponds broadly to the strength of the

leakage. For example, at 4 MHz, the attenuation (the imaginary part of ∗kx), is almost

null, and correspondingly the components of the energy velocity vectors along the y axis

are rather insignificant compared to the components along the x axis, and the vectors in

general closely resemble those for the plate in vacuum.
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Figure 5.3: Local energy velocity vectors comparison between the aluminum plate in vac-
uum (left) and in water (right) calculated at different y-position for different frequencies
labeled • in Fig.5.2.
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Figure 5.4: Local energy velocity vectors for the mode S1 corresponding to a negative
group velocity and to a negative global energy velocity.

5.4.2 Energy velocity and group velocity comparison

The energy velocity concept instead of the group velocity has been studied because

of the discontinuities and the unacceptable values obtained when calculating the group

velocity of attenuative guided waves. One simple, but obviously approximate, approach

in such cases is to use the definition: Vg = ∂ω
∂Re(∗kx)

. This expression is of course correct

in the limit of reducing attenuation. Fig. 5.5(a) shows the predicted group velocity for

the S1 mode for the aluminium plate immersed in water, made using this expression. The

discontinuities which arise at around 3 MHz down to 0 MHz correspond to the location on

Fig. 5.2 where the phase velocity is decreasing back to zero, a region of the curve where the

attenuation is extremely large. They are in fact due to infinite slopes when representing

the solutions on a graph of frequency versus real wave-number, these slopes being a genuine

feature of this curve.

Fig. 5.5(b) shows the energy velocity prediction calculated numerically using Eq.

(5.15). It shows that the energy velocity and the group velocity are in good agreement in

the region where the attenuation is low but not where the attenuation is high. In the high

attenuation region the energy velocity curve is smooth and does not present any unaccept-

able values such as excursions above the longitudinal bulk velocity of the material. We can

also observe that it converges towards zero as the frequency decreases and the attenuation
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Figure 5.5: (a) Group velocity for S1, (b) Modulus of the energy velocity flux Ṽe for S1.
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increases.

5.5 Absorbing plate in vacuum

We now consider another attenuative system, but in this case the attenuation is due

to material damping rather than leakage. The system is a 12.7mm thick plastic plate

in vacuum. The plastic is a High Performance PolyEthylene (HPPE). This particular

material was chosen because it has been fully studied by Chan [14, 15] who measured

the following properties: cL = 2.344 mm/ms, αL = 0.055 Np/wl, cT = 0.953 mm/ms,

αT = 0.286 Np/wl, ρ = 953 kg/m3. His dispersion curves, some of which are reproduced

here in Fig. 5.6, were calculated using a general purpose model developed by Lowe [42]

and Pavlakovic, Lowe et al. [59].

5.5.1 Theoretical curves

The modes, shown in Fig. 5.6, are divided into two categories. The first, called shear

modes, have phase velocities which tend towards the shear bulk velocity of HPPE at high

frequency (solid lines) and the second, called longitudinal modes, have phase velocities

which tends towards the longitudinal bulk velocity of HPPE (dotted lines). It is interesting

to see in this example too that cut-offs in phase velocity occur, in this case for nearly all

of the modes. Again these correspond to locations where the attenuation is very large (for

clarity, not shown in Figure 6(b)). The modes which have a lower attenuation correspond

in fact to the longitudinal modes, all of the shear modes having an attenuation higher than

that of S0 and A0 (oblique lower line in Fig. 5.6(b)).

5.5.2 Energy velocity vectors comparison

In this section we calculate the local energy velocity vectors Ve(y) at different depths

through the thickness of the HPPE plate and compare them with the hypothetical vectors

for the same plate if the damping was not present. This should be a fundamentally different

study than was performed earlier for the immersed plate because in the present case the

energy is lost within the plate and there can be no radiation from the surfaces of the plate.

The mode chosen to do the comparison is S3. This mode, which has been studied

in detail by Chan [15], has relatively low attenuation and so was identified as being the

most amenable for practical work. We will present some experimental results using it in

section 5.6. Fig. 5.7 shows a comparison between the dispersion curve of S3 in HPPE

(solid line) and some of the modes for the same plate but without any material damping

(dotted lines). As explained by Chan, when material damping is absent plateauing regions
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Figure 5.6: Dispersion curves for a 12.7-mm thick HPPE plate in vacuum [14, 15]. Part a)
shows the phase velocity and part b) shows the attenuation both versus the frequency.
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Figure 5.7: Comparison between S3 dispersion curve (solid line) in HPPE plate and dis-
persion curves for same plate without material damping (dotted lines).

exist. By joining these regions together, it is possible to visualise a new set of dispersion

curves which tend towards the longitudinal bulk velocity of HPPE and these represent the

curves when the damping is included. In fact, S3, like all the other longitudinal modes,

can be understood to be a result of these regroupings between several different modes, in

this case the four dotted curves in the figure.

Energy vector plots for 5 locations on the dispersion curves are shown in Fig. 5.8. The

locations are identified by filled circles in Fig. 5.7. The arrangement for the plot follows

that which was explained in the earlier comparison in section 5.4.1. The left hand side

shows the vector plots for the HPPE without material damping and the right hand side

shows them for the HPPE with material damping. At 0.1 MHz there is no equivalent

mode in the undamped case and so no plot can be shown on the left hand side for this

frequency. Although the mode S3 results from an association of four different modes,

the comparison between the energy velocity vectors for the two configurations looks close,

with the exception perhaps at 0.4 MHz where some of the energy has negative components

for the HPPE without material damping but not for the HPPE with material damping.

However, the most interesting feature of this study is evident at 0.1 MHz. Here, where the

attenuation is relatively large, it can be seen that some of the vectors have components in

the y direction, despite the fact that the plate is in vacuum and there is no leakage. But

the vectors at the surfaces of the plate are parallel to the x-direction and so there is only
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internal transfer of energy. Closer examination at other frequencies shows that non-zero y

components exist also at higher frequencies but are very small.

5.6 Experiments

Finally, we present some results from an experimental study which was performed

in order to validate the energy velocity calculations. There is a fundamental difficulty

in designing a suitable experiment because the energy velocity and the group velocity

differ significantly only when the attenuation is relatively large, in which case the waves

decay rapidly as they propagate. The S3 mode in the HPPE plate presents an interesting

possibility because there are some locations where the group velocity rises while the energy

velocity falls, yet the attenuation is generally not excessive. Fig. 5.9 shows the predicted

group and global (using integral expression presented in Eq. 5.15) energy velocities of the

S3 mode in solid and dotted lines respectively; Fig. 5.10 shows the phase velocity. The

sharp rise of the group velocity at 0.25 MHz is typical of the singularity associated with

an infinite slope of the wave-number, as discussed earlier. The regions where the group

and energy velocities differ most are also, as expected, the regions where the attenuation

is highest.

The experiments were conducted using two wide band contact transducers (Panamet-

rics), one at each end of a HPPE plate, in a through-transmission arrangement. The

transducers were clamped to the ends of the plate with their axes aligned with the centre

line of the plate. Extensional motion of the faces of the transducers thus coupled directly

with the in-plane extensional motion of the S3 mode. A narrow band signal consisting of

50 cycles at a chosen frequency in a Hanning window was applied to the emitter, using a

Wavemaker Duet (Macro Design Ltd) signal generator. The received signal was captured

on a digital oscilloscope (LeCroy 9400), 300 averages taken, and stored on a PC. The

measurement was repeated for a range of frequencies and for two different lengths of plate.

The global energy velocity and the phase velocity were calculated separately at each test

frequency. The energy velocity was calculated by overlaying the envelopes of the received

wave packets for the two different lengths of plate, and measuring the difference between

their arrival times. Of course this was only possible when the shape of the wave packet

remained consistent so that an accurate overlay was possible. The signal was sufficiently

narrow band that in fact the envelope retained a reasonable shape at most frequencies, but

there remain some gaps in the results, principally at the locations where the attenuation

was high and the signals were correspondingly weak and distorted. The phase velocity

was calculated in a similar manner, but comparing instead the arrival times of the wave

cycles within the envelope. This required particular care in order to ensure that the correct

wave cycle was compared; several additional measurements using intermediate propagation

distances were used to confirm this.
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Figure 5.8: Energy velocity vectors comparison between HPPE plate without material
damping (left) and with material damping (right) calculated at different y-positions.
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The results are shown by filled circles in Fig. 5.9 and 5.10. The experimental measure-

ments can be seen to agree very well with the global energy velocity prediction. The good

agreement between experiment and prediction of the phase velocities, in Fig. 5.10, serves

also to confirm that the measurements of the S3 mode were obtained correctly.

5.7 Conclusions

The energy velocity of guided waves in flat plates has been calculated from the Poynt-

ing vector functions. In the case of the lossless Lamb modes in a vacuum-bounded non-

absorbing plate, the energy velocity integral has been shown analytically to equate to

the group velocity. In the cases of a non-absorbing plate immersed in water and of an

absorbing plate in vacuum it has been shown numerically that the energy velocity can

differ substantially from the group velocity, especially at locations on the dispersion curves

where the attenuation is high. In such cases the group velocity can show discontinuities

and unbelievably high values, but such features are not evident with the energy velocity.

An experimental study of the S3 mode in an absorbing plate has demonstrated good agree-

ment of the velocity of a wave packet with the predicted energy velocity at such locations

where there is divergence from the group velocity. The energy velocity should therefore be

preferred as the correct measure of velocity when predicting the propagation of wave pack-

ets of attenuative modes. However, the group velocity is very much quicker to calculate

and is likely to be acceptably accurate unless the attenuation is strong.

The Poynting vectors within the plate have also been plotted for these cases and demon-

strate some interesting phenomena. In the lossless plate the vectors never have components

in the direction normal to the direction of propagation; however the vectors in some lo-

cations in the plate can sometimes point in the opposite direction to the those at other

locations. In the immersed plate the vectors give clear evidence of the leakage of energy

into the fluid, while in the absorbing plate the vectors indicate transfers of energy across

parts of the plate but of course not across the surface boundaries.

Still in the context of harmonic attenuated guided waves, if energy velocity or group

velocity are important concepts in order to describe mode properties, it is of key importance

to know how those modes can be excited. Usual immersed plate approaches try to match

the frequency as well as the slowness of the mode. However, in such configurations, modes

are characterized by a third parameter, which is described by its attenuation: modes

leak energy into the water as they propagate along the plate. In the next chapter we

experimentally study the excitation of modes with a source that takes into account the

exponential decrease of the mode and we compare the results with a source which does

not.



Chapter 6

Lamb waves excitation with IDTs

As explained in the previous chapters, guided waves can be used to test very large

structures that can be monitored by transducers at only one or two fixed locations. The

problems of course arise when the geometry of the structure is complicated and when the

experimental setup needs to be properly adapted each time. For example, it is very trou-

blesome to arrange water immersion coupling for a structure like an aircraft wing. Thus,

if transducers are permanently attached or even integrated to the structure, then with the

appropriate telemetry and information processing, continuous monitoring of the structure

becomes possible. This research field concerning “smart material” has already received a

lot of considerations. For example, P. Wilcox et al. studied Lamb wave inspection of large

structures using Inter-Digital Transducers (IDTs) [79] which are low profile and can be

designed to have a minimal impact on both the appearance and mechanical performance

of the structure to which they are attached. The aim of this chapter is not to present the

whole theory concerning the modelling of IDTs, which can be found in Ref. [78], but just

to recall the most important features of these transducers and to look at some experimental

results which have been obtained conjointly within the laboratory while these transducers

were under investigation.

The challenge in developing a smart structure based inspection system was to de-

sign permanently attached sensors which would send a particular Lamb mode or modes

along the structure in controlled directions and to receive the resulting signals at the same

transducer and/or other receivers. Single mode generation can be achieved by carefully

controlling the frequency and wavenumber bandwidth of the excitation. The frequency

bandwidth can readily be limited by employing windowed tone burst excitation signals

[3] while the wavenumber bandwidth is controlled by the transducer geometry. The most

commonly used transducers for the excitation and the reception of Lamb waves are angled

piezoelectric transducers in which the wavenumber bandwidth is determined by the size of

the transducer and its angle to the structure surface [3]. As these standard transducers are

bulky and are unlikely to be suitable for incorporation into a structure, an alternative is to

deposit an “interdigital” electrode pattern on a piezoelectric substrate, the spacing between
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the electrodes being appropriate for the excitation of the desired mode in the substrate.

This was then achieved with piezoelectric polymer films such as PVDF (polyvinylidene

fluoride) which are relatively cheap and very flexible allowing a permanent attachment

even on curved structures. Interdigital transducers are described in details in Ref. [52].

They in fact consist of a layer of PVDF bonded to the structure under test. A flexible

printed circuit board (PCB) is bonded on the top of the PVDF, copper side down, the

PVDF being excited by a voltage difference between the PCB and the structure. The

PCB is printed with two interleaved sets of comb shaped electrodes. The finger spacing of

the combs defines the wavelength of the transducer and the individual finger widths are

used to provide a spatial window effect (Hanning, square, ...) over the region on which the

transducer is bonded (see bottom of Fig. 6.1).

As explained in the previous chapters, guided waves can attenuate either in time (∗ω, S)

or in space (ω, ∗S). In this chapter we focus our attention on harmonic attenuated guided

waves with real frequency and complex slowness. It is well known that in vacuum, guided

mode excitation can be achieved by controlling the frequency and the wavenumber (or

slowness). However, as long as the plate is immersed in water, the slowness becomes a

complex quantity. In this case, chapter 4 showed that guided waves could also be excited if

the frequency and the angle of incidence (or real part of the slowness) match the dispersion

curves. However, modes are now characterized by three parameters which are the frequency,

the real part of the slowness (S ′) and the imaginary part of the slowness (S ′′). Although

mode attenuation (or S ′′) is important in order to know if guided waves can propagate

over a long distance, the aim of this chapter is then to look at S ′′ as a potential parameter

for the excitation or the selection of a specific mode. In order to do so, the next sections

describe two different experiments using an interdigital transducer, whose fingers are all

disconnected from each other in order to be able to match S ′′, bonded on an aluminium

plate.

As a preliminary approach, the plate is studied in vacuum. The aim is to check that the

interdigital transducer has been properly both designed and bonded to the plate in order to

excite A0 in a region where this mode is not dispersive. The fingers being all independent,

this approach also allows us to quantitatively analyse separately each finger pair behaviour.

Then, the plate is immersed in a water tank. Although the frequency spectrum can be

reduced with a large number of cycles, the wavenumber spectrum regarding the number

of connected finger pairs is studied. Finally, a specific mode is excited with two different

types of input. The first input consists of a square input where all the fingers are excited

with the same amount of energy (ω and S ′ only are taken into account). This model is

the most commonly used because the fingers are usually all interconnected. Secondly, the

mode is excited with an exponentially decreasing spatial source corresponding to its spatial

predicted attenuation (ω, S ′ and S ′′ are taken into account). The amplitude of the received

signal in the two configurations is then discussed.
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Figure 6.1: Schematic diagram showing a typical ITD bonded to plate.

6.1 Plate in vacuum

In this experiment, all the fingers are disconnected. A thin wire being soldered on

each finger allows us to connect or disconnect any finger or finger pair from a prototype

board directly connected to the generator. As a consequence, the electric signal can go

through one, a pair or all the fingers at the same time. As the aim is to finally create an

exponential decrease in space, to experimentally take into account the attenuation of the

mode, by changing the amount of electric energy in the fingers, we then first want to study

each finger pair separately in order to know how they behave. Moreover, it is important

to make sure that our transducer is well designed to excite A0.

The plate is a 1.6-mm thick aluminium plate whose longitudinal and shear bulk veloci-

ties respectively correspond to: cL = 6.487 m/ms and cT = 3.076 m/ms. The density was

assumed to be 2.7 g/cm3 as usual for aluminium and the velocities were measured using

longitudinal and shear contact transducers. The plate and the IDTs are shown in Fig. 6.1

and 6.2. The fingers are periodically excited by positive and negative charges (mechanically

equivalent to normal forces) resulting in the excitation of a guided wave within the plate

whose wavelength is determined by the spacing between the fingers (1.87± 0.3 mm here).

It is to be noted that the fingers can also be apodised [52] or even radial [79]. However, in

our case the fingers are identical size and all independent. The experimental setup when

the plate is in vacuum is shown in Fig. 6.2. The different pairs of fingers are labelled

with the following letters also corresponding their respective colors: R (red), O (orange),

Y (yellow), G (green), B (blue), P (purple), Gr (grey). Moreover, as a convention, the grey
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Figure 6.2: Experimental setup for the aluminium plate in vacuum.

pair will always be the nearest from the receiver and the red pair the furthest.

The phase velocity dispersion curves for the 1.6-mm thick aluminium plate in vacuum

are shown in part a) of Fig 6.3 and part b) shows the corresponding group velocity. The

oblique middle line in part a) shows the constant wavelength at which the IDT has been

designed (λ = 1.87 mm) and the two others refer to wavelengths with an error of ±0.3 mm.

For a central frequency of 1.265 MHz with a 20 cycles tone burst modified by a Hanning

window, the mode which is most likely to be excited is A0 (dark grey zone in the figure).

At this frequency, the mode is non dispersive and then the shape of the signal should not

be distorted after a propagation over a long distance.
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Figure 6.3: Dispersion curves for a 1.6-mm thick aluminium plate in vacuum. Part a)
shows phase velocity and part b) shows group velocity, both plotted versus frequency.

For a given electric voltage on the Wavemaker Duet (Macro Design Ltd) signal gen-

erator, we look at the signals 70 cm away from the grey pair of electrodes. The receiver

is a conical piezoelectric transducer working as a point receiver and designed in Imperial

College [25]. The position of the receiver being fixed, each pair of electrodes was excited

one by one and the received signals were captured on a digital oscilloscope (Lecroy 9400),

10 averages taken and stored on a PC. The results are shown in Fig. 6.4. The left and the

right hand sides of the figure show the received signals coming from each pair of electrodes

while the signals in the bottom part show, on the left, the received signal when all the

fingers are connected, and on the right, the superposition of the signals of each pair of
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Figure 6.4: Received signals after a propagation of 70 cm along the aluminium plate. Left
and right hand side show signals for individual pair, bottom shows the superposition of all
those signals as well as the signal obtained when all the fingers are connected.

fingers. As a first conclusion, it is obvious that the signal, obtained with the superposition

principle, and the signal, received when all the fingers are connected at the same time, are

identical. As a consequence, the experimentation with a spatial exponential decrease of

the electric energy within the fingers is possible. However, as a second conclusion, it is

noteworthy that although multi-reflections occur between the different fingers, inducing a

loss of amplitude in the received signal (also due to the adhesive), this loss is not geomet-

rical! For example, the green pair of electrodes (G) has a voltage up to 6V when the blue

(B), which is nearer from the receiver, has a voltage up to 3V. The wave excited by the

blue pair (B) has a smaller distance to travel within the adhesive than the green (G) and

the voltage should therefore have been higher. The same phenomenon also occurs for the

yellow pair (Y) for example. These differences can be explained in two manners. First,

the adhesive thickness which is under each finger pair may not be the same, resulting in a

higher amplitude loss. Moreover, we also have to take into account that a finger or even

a finger pair can be very badly bonded to the plate resulting in a very weak coupling and

then again in an amplitude loss. Finally, the wave packet arrives after a propagation of
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70 cm at a time t ' 0.0228 ms. Then the velocity of the envelope, or group velocity,

is Vg = 0.07/0.0228 = 3.07 m/ms which is very near the predicted group velocity of A0

labelled on Fig. 6.3.

Although the fingers do not have the same behaviour for a given input of energy, A0

has been excited properly and a great care will have to be taken concerning the voltage

amplitude for the calculation of the correct spatial exponential decrease presented in the

following section.

6.2 Plate in water

Configuration in water

- ------Guided wave

Excitation of the fingers with
positive and negative charges.

+ ++++++z

y

x

Moving receiver
for the measurement

of leakage

Figure 6.5: Experimental setup for the aluminium plate in water.

In this section we study the same plate as in the previous section but which is now

immersed in water (Fig. 6.5). The experiments were conducted using a 5 MHz broad band

immersion transducer (KB-AEROTECH) as a receiver. The dispersion curves for the plate

in water are presented in Fig. 6.6. Although all the modes that belong to the dark grey

region can potentially be excited if they are not too attenuated and if the frequency is well

adapted, we decided to focus our attention on A2 because its attenuation is the smallest.

The corresponding incident angle is θ = 13.14◦ and the frequency is f = 3.476 MHz. It is

to be noted that A0 could not be studied because of its very high attenuation.

In the frequency domain, a large number of cycles reduces the frequency spectrum.

This is of course important in order to be selective regarding the mode one chooses to

excite. However, can the number of fingers reduce the wavenumber spectrum? To answer

this question, we perform several linear scans over 50 mm and sample the signals every

0.1 mm, each time disconnecting one pair of electrodes. The temporal signals stored

for each position of the receiver are then processed using a two dimensional fast Fourier

transform [2], giving the frequency versus wavenumber plots presented in Fig. 6.7. The

results are also projected as contour lines on the theoretical dispersion curves. Part a)

shows the results when all the fingers are connected and parts b), c), d), e), f) and g) show
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Figure 6.6: Dispersion curves for a 1.6-mm thick aluminium plate immersed in water. Part
a) shows phase velocity and part b) shows attenuation, both plotted versus frequency.

the results when the following pairs [O, Y, G, P, B, Gr], [Y, G, P, B, Gr], [G, P, B, Gr],

[P, B, Gr], [B, Gr] and [Gr] are respectively connected.

In all situations, S1, A2 and S2 are excited. A2 has the highest amplitude and S1

the lowest as predicted by the dispersion curves of Fig. 6.6. However, the number of

excited fingers does not seem to play a very important role. As a matter of fact, the

wavenumber spectrum does not really expand as and when the different pairs of electrodes

are disconnected. This can be understood if we consider the high amplitude loss due to

the propagation in the adhesive: the further the fingers are from the receiver, the greater

the propagation distance within the adhesive is. As a conclusion, the contribution of the

fingers that are far from the receiver is very weak and the number of connected fingers

cannot really reduce the wavenumber spectrum. Moreover, as the same amount of energy

has been sent through the different pairs of fingers and as the amplitude of the received

signals is higher when all the fingers are connected, we can then postulate that even if the

wavenumber spectrum is not reduced, a certain number of fingers is however necessary in

order to be mode selective. This is evident in part g) where more of the unwanted A3 mode

is excited than when all the fingers are connected.

As a final experiment, we now focus our attention on the attenuation of A2. At

3.476 MHz, the attenuation of A2 is 20.89 Np/m which means that if the amplitude

is 1 at x = x0 then after propagating 1 meter the amplitude will be e−20.89 = 0.846e−9 and

in order to be very mode selective, the signal now contains 100 cycles.

For a given voltage fixed at 1.5 V in the red pair of fingers, the theoretical voltages are

presented in table 6.1 for both the rectangular and the exponential excitation.

However, we have to remember that pairs of electrodes do not have the same behaviour

because of the damping in the adhesive. We therefore have to correct the theoretical

voltages with respect to the measured loss due to the adhesive. In order to calculate it, we

excite each pair of fingers in turn with an initial input of 1.5 V, moving the receiver by the

correct number of wavelengths in order that the distance of propagation along the plate
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red orange yellow green blue purple grey
exponential 1.5 1.44 1.39 1.33 1.28 1.23 1.19
rectangular 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Table 6.1: Theoretical voltages for each pair of electrodes for both an exponential and a
rectangular spatial input.

stays the same for each pair of electrode (the size of the transducer is small compared to

the distance propagated along the plate). The setup is described in Fig. 6.8. This simple

model does not of course take into account other phenomena that could also occur at the

same time and we assume that the reverberation between the fingers does not affect the

voltage. They should therefore be the same for both the exponential and the rectangular

excitation.

λ λλ λ λλ

R O Y G B P Gr

1 2 3 4 5 6 7

Corresponding positions 
of the receiver

λ λλ λ λλ
1 2 3 4 5 6 7

L1
L2

Distance of propagation >> Transducer length
L2 >> L1

Figure 6.8: Setup for the measurement of loss in the adhesive.

The maximum of each received signal at the locations numbered from 1 to 7 in Fig.

6.8, calculated in the frequency domain after a Fourier transform, is measured and shown

in table 6.2 for a constant input of 3 V. As the distance travelled along the plate is the

same for each pair of electrodes, and as only A2 is excited (with very narrow bandwidth),

the difference between the amplitudes gives us the percentage loss within the adhesive.

The attenuation coefficient of the adhesive (α) can be estimated from the factor required

to equalize the voltage contributions from each of the finger pairs to that of the grey pair,

taking account of the path length through the adhesive. This coefficient is also expressed

in table 6.2.

red orange yellow green blue purple grey
Amplitude 1961.29 2127.53 1670.49 2779.34 1155.41 2318.69 3160.75
α 1.611 1.486 1.892 1.137 2.736 1.363 1

Table 6.2: Maximum amplitudes (arbitrary units) within the Fourier transform spectrum
of each received signal at 3.476 MHz.
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Finally, table 6.3 shows the correct voltages to be applied in order to excite either an

exponential or a rectangular field, the aim being to have 1.5 V on the grey pair when the

excitation is rectangular.

red orange yellow green blue purple grey
Rectangular 2.42 2.23 2.84 1.71 4.1 2.04 1.5
Exponential 2.42 2.15 2.65 1.54 3.56 1.71 1.24

Table 6.3: Corrected voltages for both the rectangular and the exponential profiles in order
to excite A2.

We now have all the parameters in order to perform our two experiments. For each

voltage presented in table 6.3 we sample the signals, use the principle of superposition and

measure the amplitude of the peak, in the frequency domain, of the resulting spectrum.

When the source is rectangular, the maximum amplitude corresponds (in arbitrary units) to

Rrectangular = 1.1811, and when the source is exponential to Rexponential = 1.1509. Although

Rexponential is lower than Rrectangular we have to take into account the total amount of energy

that has been sent. As a matter of fact, the energy sent when the source is exponential is

lower than when it is rectangular as shown in Fig. 6.9.
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Figure 6.9: Energy distribution when the source is rectangular or exponential.

The surface for an exponential input is defined by:

SExponential = V0

∫ 6λ

0

e−k′′xdx =
V0

k′′

[
e−6λk′′ − 1

]
, (6.1)

whereas it corresponds to:

SRectangular = 6λV0, (6.2)

for a rectangular input. In our experiment, the initial input is V0 = 1.5 V and the dif-

ferent surfaces respectively correspond to SExponential = 15.003 V.mm and SRectangular =
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16.83 V.mm. As a consequence, if we had used the same amount of energy for the expo-

nential input as for the rectangular, the amplitude of the peak for the exponential input

would have been: R̃Exponential = 1.291 which corresponds to an increase of amplitude of

9.3% compared to the amplitude of the peak when the source is rectangular. Hence, the

amplitude of the response is greater when the experimental setup takes into account the

imaginary part of the slowness than when it does not.

In order to confirm this result we now focus our attention on S1. Although this mode

has a greater attenuation (53.44 Np/m at 2.98 MHz), it can however be well separated

from the other modes with a very narrow frequency bandwidth as shown in Fig. 6.6. The

correct voltages are given in table 6.4 below:

Input type red orange yellow green blue purple grey
Theoretical Rectangular 3 3 3 3 3 3 3

Exponential 3 2.71 2.46 2.22 2.01 1.82 1.65
Corrected Rectangular 4.83 4.46 5.68 3.41 8.21 4.09 3

Exponential 4.83 4.03 4.65 2.52 5.5 2.48 1.65

Table 6.4: Theoretical and corrected voltages for both the rectangular and the exponential
profiles in order to excite S1.

In this case, the different surfaces respectively correspond to SExponential = 25.32 V/mm

and SRectangular = 33.66 V/mm and the amplitudes to Rrectangular = 6.24 and Rexponential =

5.77. Again, if we had used the same amount of energy for the exponential input as for

the rectangular, the amplitude of the peak for the exponential input would have been:

R̃Exponential = 7.67 which corresponds to an increase of amplitude of 22.93% compared to

the amplitude of the peak when the source is rectangular. In this case, the amplitude gain

is greater because the attenuation of the mode is higher. This can be understood if we

consider that if the attenuation is low then the inputs are almost rectangular: the length of

the transducer is too small to take into account the exponential decrease. However, when

the attenuation is higher, the small length of the transducer allows a better modelling of

the exponential decrease.

6.3 Conclusion

In contrast to the modes which propagate in lossless plates surrounded by vacuum and

which are characterized by a frequency and a slowness, both real, modes which propagate in

immersed lossless plates leak energy into the surrounding medium. The leakage is modelled

by a complex slowness whose imaginary part corresponds to the attenuation during the

propagation along the plate. Usual experiments only take into account two of the mode

properties in order to excite them: the frequency and the real part of the slowness. In this

chapter we set up our experiment in such way that it takes into account all three properties



6.3 Conclusion 92

of the mode; that is the frequency, the real part of the slowness and also the imaginary

part of the slowness.

To do so, we used an interdigital transducer bonded on an aluminium plate and whose

fingers were physically independent. This condition was necessary in order to be able to

apply an exponential decrease in space. Although it is true that increasing the number

of cycles reduces the frequency spectrum, increasing the number of finger pairs does not

reduce the wavenumber spectrum. This is explained by the high loss of amplitude during

the propagation within the adhesive which damps the signals. However a certain number of

pairs seems to be necessary in order to be more mode selective. Finally, we demonstrated

that for the same energy contribution, the received signal amplitude was higher when the

input took into account the attenuation of the mode than when it was rectangular. Then,

if mode selection requires narrow frequency bandwidth as well as a narrow wavenumber

bandwidth in order to match the phase velocity dispersion curves, this also requires the

adequate exponential spatial field to match the imaginary part of the mode.



Chapter 7

Conclusion

The structure of transient heterogeneous plane waves has been studied as part of the

acoustic propagation in infinite isotropic media. Those waves are characterized by am-

plitudes which can decrease exponentially both in time and in space. If the complex

wavenumber bivector ∗K is well suited to describe harmonic heterogeneous plane waves

with real frequency, it turns out that it is not well suited to describe, in a satisfactory way,

the behaviour of transient heterogeneous plane waves with complex frequency. As a matter

of fact, this bivector, containing both spatial and temporal information, does not allow a

good quantification of each of these contributions. As a consequence, the complex slowness

bivector ∗S has been introduced in order to describe the spatial properties of these waves,

the complex frequency being directly linked to the temporal properties.

Then, the modes of an isotropic plate embedded in an infinite isotropic medium have

been studied and the corresponding symmetric and anti-symmetric Lamb wave functions

have been analytically calculated. While only a small difference existed, in the case of

an immersed plate in water, between these two sets of dispersion curves, the dispersion

curves for the solid embedded in solid are now completely different. In the framework of

the coincidence angle principle which postulates that dispersion curves are linked to the

zeroes of the plane wave reflection coefficient, when the impedance of the different media

are different, the response problem for the solid/solid/solid configuration has also been

considered. The longitudinal and the shear plane wave reflection coefficients have been

calculated and compared with the two sets of dispersion curves. Although no correspon-

dence exists between the plane wave reflection coefficient zeroes and the dispersion curves

for complex slowness, those calculated in complex frequency and real slowness describe per-

fectly the plane wave reflection coefficient zeroes in regions where their imaginary parts are

zero. Thus, plane wave reflection coefficient zeroes do not properly describe the structure

of harmonic inhomogeneous plate modes (ω,∗ S) for media which have similar impedance.

On the other hand, they seem to better describe the structure of transient homogeneous

plate modes (∗ω, S). As a conclusion, although modal properties with the complex slow-

ness approach could not be studied anymore using plane wave reflection coefficient zeroes
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when the impedance of the surrounding medium is very similar to that of the plate, the

complex frequency approach seems to enable a model that is still consistent.

In order to confirm those statements, we therefore studied the response of an isotropic

plate embedded in an infinite isotropic medium, for an incident wave that was supposed

to be plane and infinite in space but bounded in time: in these conditions the hypothesis

of real slowness is verified. For a fixed angle of incidence directly linked to the slowness

with the Snell-Descartes laws, the incident temporal signal is modelled by a long sine

wave modulated by a square function whose frequency corresponds to the real part of

the frequency of the mode we decided to excite. The temporal response of the plate is

then characterized by two transients which appear at the beginning and at the end of the

steady state and by a zone with zero amplitude. In fact, the transient parts are increasing

or decreasing exponential functions directly linked to the imaginary part of the frequency

of the selected mode. Moreover, the zone with zero intensity corresponds to the infinite

plane wave reflection coefficient: the incident plane wave is infinite (our first assumption)

and the steady state only contains a single frequency. As a conclusion, the plane wave

reflection coefficient zeroes are clearly directly linked to the transient homogeneous plate

modes.

In a second approach, we studied the response of an isotropic plate immersed in water

for an incident plane wave which is harmonic but bounded in space. The incident field is

modelled by a Gaussian function whose width is directly linked to the spatial aperture of

the transducer. For a fixed angle of incidence and a fixed frequency both corresponding to

the selected plate mode properties, the plate response is a deformed Gaussian field. This

field is characterized by a zone with zero amplitude but especially by a spatial exponential

decrease corresponding to the imaginary part of the slowness of the mode. Again, the

reflection coefficient properties are linked to the free modes of the plate.

The two extreme cases having been presented we finally looked at the general case

where both time and space are bounded. For several angles of incidence, the spectrum

of the temporal part of the reflected field has been studied at different positions along its

spatial part. This enabled us to build a cartography of the properties of the plate response

at a location where the reflection is known as “specular” but also at locations much further

away. Dispersion curves with complex frequency are again in perfect agreement with the

zeroes of the reflected field when we look for them in the specular reflection. However, as

and when we move further away, zeroes transform into maxima and maxima transform into

zeroes. These maxima then describe dispersion curves with complex frequency but also

with complex slowness and their intensities are directly linked to the spatial attenuation

of the modes. In this study, we confirmed that experimental results clearly depend on

the position of the receiver. In the specularly reflected zone, zeroes of the reflected field

correspond to the dispersion curves with complex frequency (in this zone there is no spatial

discontinuities and the slowness is real). Far from this zone, there are no more zeroes but

maxima which correspond this time to the two types of dispersion curves (with complex
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slowness but also with complex frequency) and whose intensities depend on the imaginary

parts of the modes.

Both the frequency and the slowness are useful parameters to describe accurately the

properties of plate modes, however we showed that group velocity, widely used experimen-

tally as a first approximation to describe the velocity of the wave packets, could lead to

some errors. As a matter of fact, its definition is only valid when modes are not attenuated.

On the other hand, we showed that a calculation of energy velocity could be substituted

satisfactorily. This velocity, based on the integration of the Poynting vector as well as on

the integration of the total energy of plate modes over a time period and over the thickness

of the plate, is rigorously equal to the group velocity when the modes are not attenuated

but describes perfectly the velocity of the wave packets when there is attenuation. As a

matter of fact, experimental results conducted on a highly viscoelastic plate in vacuum

showed a very good correlation between the energy velocity and the measurement of the

wave packet velocities in regions where modes were highly attenuated.

Finally, experimental results using interdigital transducers have been presented for

an aluminium plate in vacuum and immersed in water. The fingers being independent, a

quantitative analysis proved that if the number of cycles can reduce the frequency spectrum

of a temporal signal, in return the number of fingers does not allow a reduction in the spatial

spectrum relative to the wavenumber. This feature is the result of the high attenuation

within the adhesive used to bond the IDT to the plate. Moreover, we showed that in

addition to the (frequency, real part of the slowness), the spatial form of the input played an

important role too. As a matter of fact, the account of the imaginary part of the slowness,

corresponding to an exponentially decreasing energy distribution in space regarding the

different finger pairs, lead the response to have a greater amplitude than when the source

is rectangular.As a conclusion, we demonstrated that an experimental setup which takes

into account all three properties of a mode results in a received signal which has a greater

amplitude than an experimental setup which does not.

Although Lamb wave functions have extensively been studied for many years, this the-

sis, which is an extension of Dr Poncelet’s thesis [68], also confirms that the simple fact

to change the way of solving such equations results in solutions whose characteristics are

completely different. While harmonic attenuated guided waves decay in space, transient

homogeneous guided waves decay in time. As a consequence, the complexity which exists

in modelling mechanics problems has been clearly illustrated since these two solutions exist

physically and in fact depend on the experimental setup. Moreover, as in the case of an

isotropic plate immersed in water we also showed that a mode with negative attenuation

in time could also exist when the geometry is more complicated. Finally, we solved the

limitations to using group velocity as a description of wave systems in attenuating materi-

als by integrating energy velocity. These fundamental concepts helped us to have a better

understanding about guided waves in general and in fact have been included as new op-

tions in the general purpose model “Disperse” [59] (an interactive program for generating
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dispersion curves) developed by B. Pavlakovic and M. J. S. Lowe in the non destructive

testing laboratory of Imperial College.
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La structure des ondes planes hétérogènes transitoires a été étudiée dans le cadre de

la propagation acoustique dans des milieux isotropes infinis. Ces ondes sont caractérisées

par des amplitudes qui décroissent exponentiellement à la fois en espace et en temps. Si

le bivecteur complexe nombre d’onde ∗K est bien adapté pour décrire les ondes planes

harmoniques hétérogènes où la fréquence est réelle, il s’avère qu’il ne l’est pas pour décrire,

de manière satisfaisante, le comportement des ondes planes hétérogènes transitoires où la

fréquence est complexe . En effet, ce bivecteur, contenant les informations à la fois spatiales

et temporelles, ne permet pas de quantifier le poids de l’une ou l’autre de ces contributions.

En conséquence, le bivecteur complexe lenteur ∗S a été introduit pour décrire le caractère

spatial de ces ondes, la fréquence complexe étant directement liée au caractère temporel.

Ensuite, les modes propres d’une plaque isotrope prise en sandwich dans un solide

isotrope infini ont été étudiés et les fonctions symétriques et anti-symétriques de Lamb

correspondantes calculées analytiquement. Alors qu’une faible différence existait, dans le

cas d’une plaque immergée, entre une résolution en fréquence complexe et lenteur réelle

et une résolution en fréquence réelle et lenteur complexe, les courbes de dispersion sont

maintenant complètement différentes. Dans le cadre du principe de coı̈ncidence angulaire

qui postule que les courbes de dispersion sont liées aux zéros du coefficient de réflexion en

ondes planes, lorsque les impédances des milieux sont différentes, le problème en réponse

pour la configuration solide/solide/solide a donc lui aussi été considéré. Les coefficients de

reflexion longitudinaux et transverses ont été calculés et comparés aux courbes de dispersion

en fréquence complexe et aux courbes de dispersion en lenteur complexe. Alors qu’aucune

correspondance n’existe entre les zéros des coefficients de reflexion et les courbes de disper-

sion en lenteur complexe, celles calculées en fréquence complexe et lenteur réelle décrivent

cependant parfaitement les zéros des coefficients de réflexion dans des zones où leurs par-

ties imaginaires sont nulles. Ainsi, les zéros des coefficients ne décrivent pas correctement

la structure des modes de plaques harmoniques inhomogènes (ω,∗ S) lorsque les impédances

des milieux sont très proches les unes des autres. D’un autre côté ils semblent décrire la

structure des modes de plaques homogènes transitoires (∗ω, S). En conclusion, alors que

les propriétés des modes de plaques ne pouvaient plus être étudiées avec une approche en

lenteur complexe en utilisant les zéros du coefficient de réflexion lorsque l’impédance du

milieu environnant est très similaire de celle de la plaque, l’approche en fréquence complexe

semble permettre une modélisation plus consistante.

Afin de confirmer ces dires, nous avons donc étudié la réponse d’un plaque isotrope

prise en sandwich dans un milieu infini isotrope pour une onde incidente supposée plane

et infinie en espace mais bornée dans le temps: dans ces conditions l’hypothèse de lenteur

réelle est vérifiée. Pour un angle d’incidence fixé et directement lié à la lenteur par les lois

de Snell-Descartes, le signal temporel incident est modélisé par un long train de sinusoı̈des

modulé par une fonction porte dont la fréquence correspond à la partie réelle de la fréquence

du mode que nous avons choisie d’exciter. La réponse temporelle de la plaque est alors

caractérisée par deux transitoires qui apparaissent au début et à la fin du régime forcé et par

une zone d’amplitude nulle. En fait, les transitoires sont des exponentielles croissantes ou
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décroissantes directement liées à la partie imaginaire de la fréquence du mode sélectionné.

De plus, la zone d’intensité nulle correspond au module du coefficient de réflexion pour une

onde plane incidente harmonique infinie: l’onde incidente est par hypothèse infinie et le

régime forcé ne contient qu’une seule fréquence. En conclusion, les zeros du coefficient de

réflexion sont bien directement liés aux modes propres de plaques homogǹes transitoires.

Dans un deuxième temps, nous avons étudié la réponse d’une plaque isotrope immergée

dans l’eau pour une onde plane incidente harmonique mais bornée en espace. Le champ

incident est modélisé par une fonction Gaussienne dont la largeur est directement liée

à l’ouverture spatiale du traducteur. Pour un angle d’incidence et une fréquence fixés

correspondant aux propriétés du mode de plaque sélectionné, la réponse de la plaque est

alors un champ Gaussien déformé. Ce champ est caractérisé par une zone d’amplitude

nulle mais surtout par une décroissance spatiale correspondant à la partie imaginaire de

la lenteur du mode. De nouveau, les propriétés du coefficient de réflexion sont liées aux

modes propres de plaques.

Les deux cas extrèmes ayant été présentés, nous nous sommes finalement intéressés

au cas général où le temps et l’espace sont tout les deux bornés. Pour plusieurs angles

d’incidence, le spectre de la partie temporelle du champ réfléchi a été étudié à différentes

positions le long de la partie spatiale de ce même champ. Ceci nous a alors permis de

construire une cartographie des propriétés de la réponse de la plaque à l’intérieur même

de la réflexion dı̂te spéculaire ainsi qu’à des endroits beaucoup plus éloignés. Les courbes

de dispersion en fréquence complexe sont de nouveau en parfait accord avec les zéros du

champ réfléchi lorsque nous le regardons dans la partie spéculaire. Cependant, au fur et

à mesure que nous nous en éloignons, les zéros se transforment en maxima, et les max-

ima en zéros. Ces maximas décrivent alors les courbes de dispersion en lenteur complexe

et leurs intensités sont directement liées à l’atténuation spatiale des modes. Dans cette

étude, nous avons confirmé que les résultats expérimentaux dépendent clairement de la

position du récepteur. Dans la zone de réflexion spéculaire, les zéros du champ réfléchi

correspondent aux courbes de dispersion en fréquence complexe (dans cette zone il n’y a pas

de discontinuité spatiale et la lenteur est réelle). Loin de cette zone, il n’y a plus de zéros

mais des maxima qui correspondent cette fois-ci aux deux types de courbes de dispersion

(en lenteur complexe mais aussi en fréquence complexe) dont les intensités dépendent des

parties imaginaires des modes.

Si la fréquence et la lenteur sont des paramètres utiles pour décrire les propriétés des

modes de plaques, nous avons montré que la notion de vitesse de groupe, très utilisée

expérimentalement en première approximation pour décrire la vitesse des paquets d’ondes,

pouvait conduire à certaines erreures. En effet, sa définition n’est valide que lorsque les

modes ne sont pas atténués. Dans le cas contraire, nous avons montré que la vitesse

de l’énergie pouvait lui être substituée. Cette vitesse, basée sur l’intégration du vecteur

de Poynting et de l’énergie totale des ondes de plaques sur une période ainsi que sur

l’épaisseur de la plaque, est rigoureusement égale à la vitesse de groupe lorsque les modes
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ne sont pas atténués mais décrit parfaitement la vitesse des paquets des modes lorsqu’il y

a de l’atténuation. En effet, des résultats expérimentaux conduits sur une plaque de type

PVC fortement viscoélastique dans le vide ont montré une trés bonne corrélation entre la

vitesse de l’énergie théorique et la mesure de la vitesse des paquets des ondes à des endroits

où les modes étaient très atténués.

Pour finir, des résultats expérimentaux utilisant des traducteurs inter-digitaux ont été

présentés pour une plaque d’aluminium dans le vide puis immergée dans de l’eau. Les

doigts étant tous indépendants, une analyse quantitative a prouvé que si le nombre de

cycles permet de réduire le spectre fréquentiel d’un signal temporel, en revanche le nombre

de doigts ne permet pas quant à lui de réduire le spectre spatial relatif au nombre d’onde.

Ceci est le résultat d’une grande atténuation dans l’adhésif utilisée pour coller le traducteur

à la plaque. De plus, nous avons montré qu’en plus du couple (fréquence, partie réelle

de la lenteur), la forme spatiale de la sollicitation jouait aussi un rôle important. En

effet, la prise en compte de la partie imaginaire de la lenteur, correspondant à un apport

d’énergie exponentiellement décroissant en espace au niveau des différentes paires de doigts,

a entrainé une réponse de plus forte amplitude que lorsque la source était rectangulaire.

En conclusion, nous avons démontré qu’une configuration expérimentale, qui prennait en

compte les trois propriétés d’un mode, entraı̂nait un augmentation de l’amplitude du signal

reçu plutôt qu’une configuration qui n’en prennait en compte que deux.

Bien que les fonctions de Lamb aient été étudiées de manière extensive depuis un grand

nombre d’années, cette thèse, qui est une extension de la thèse d’Olivier Poncelet [68],

confirme que le simple fait de changer la manière de résoudre de telles équations peut nous

conduire à des solutions dont les caractéristiques sont complètement différentes. Alors

que les ondes guidées harmoniques et atténuées décroissent exponentiellement en espace,

les ondes guidées transitoires et homogènes décroissent en temps. En conséquence, la

complexité qui existe lors de la modélisation de problèmes mécaniques a clairement été

illustrée puisque ces deux solutions existent physiquement et qu’elles dépendent en fait de

la configuration expérimentale. De plus, comme dans le cas de la plate isotrope immergée

dans l’eau, nous avons montré qu’un mode possédant une atténuation négative en temps

pouvait aussi exister pour des géométries plus compliquées. Enfin nous avons comblé le

manque d’exactitude de la vitesse de groupe en introduisant la vitesse de l’énergie. Ces

concepts fondamentaux nous ont aidé dans la compréhension des ondes guidées en général

et ont, en fait, été introduits, en tant que nouvelles options, dans le logiciel “Disperse”

[59] (un programme interactif pour générer des courbes de dispersion) développé par B.

Pavlakovic et M. J. S. Lowe dans le laboratoire de contrôle non destructif de l’Imperial

College.
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Guided plate waves: temporal and spatial approach

Symmetric and antisymmetric Lamb modes propagating within a solid layer either embedded in an
infinite medium or immersed in a fluid are presented. Alternative theoretical analyses of such modes are
performed, first in terms of the usual approach of harmonic heterogeneous plane waves (ω,∗S) and then
in terms of transient homogeneous plane waves (∗ω,S). A large difference between dispersion curves for
these two kinds of waves is shown. The minima and the zeroes of the plane wave reflection coefficients
are calculated and are compared with the dispersion curves. It is found that they do not match with the
dispersion curves for complex slowness, but they do agree quite well with the dispersion curves for complex
frequency. In order to confirm those results, the response of a plate to a spatially and temporally bounded
beam is studied at different positions along the receiver plane. Placed in the specular reflected field, zeroes
in the reflected field correspond to solutions calculated in complex frequency and real slowness. Far away
from the source the modal properties of the plate are no longer described by zeroes but by maxima and they
are still in accordance with the two sets of dispersion curves (very low spatial or temporal attenuation).
On the other hand, the energy velocity of guided waves in flat plates has been calculated from the Poynting
vector functions. In the case of the lossless Lamb modes in a vacuum-bounded non-absorbing plate, the
energy velocity integral has been shown analytically to equate to the group velocity. In the cases of a non-
absorbing plate immersed in water and of an absorbing plate in vacuum it has been shown numerically
that the energy velocity can differ substantially from the group velocity, especially at locations on the
dispersion curves where the attenuation is high. An experimental study of the S3 mode in an absorbing
plate has demonstrated good agreement of the velocity of a wave packet with the predicted energy velocity
at such locations where there is divergence from the group velocity.

Keywords: heterogeneous plane waves; complex frequency; bounded beam; reflection coefficient; Lamb
wave energy velocity; interdigital transducers.

Ondes de plaques guidées : approche temporelle et spatiale

Les modes de Lamb symétriques et antisymétriques se propageant dans un solide pris en sandwich dans
un milieu infini ou immergé dans un fluide sont étudiés. Deux analyses théoriques sont alternativement
effectuées, tout d’abord en terme d’ondes planes harmoniques hétérogènes (ω,∗S) puis en terme d’ondes
planes homogènes transitoires (∗ω,S). Une grande différence entre les courbes de dispersion pour ces deux
types d’ondes est observée. Les minima et les zéros des coefficients de réflexion en ondes planes sont ensuite
calculés et comparés aux courbes de dispersion. Alors qu’ils ne correspondent pas aux courbes de dispersion
calculées en lenteur complexe, ils semblent correspondre assez bien à celles calculées en fréquence complexe.
Afin de confirmer ces résultats, la réponse d’une plaque soumise à un faisceau borné en temps et en espace
est étudiée différentes positions le long du plan du récepteur. Dans la partie spéculaire du champ réfléchi,
les zéros du coefficient de réflexion correspondent aux solutions en fréquence complexe et lenteur réelle.
Loin de la source, les propriétés des modes de plaques ne sont plus décrites par des zéros mais par des
maxima qui correspondent aux deux types de courbes de dispersion (atténuation spatiale ou temporelle
très faible). D’un autre côté, la vitesse de l’énergie des ondes guidées est calculée à partir de la notion du
vecteur de Poynting. Dans le cas de modes de Lamb non atténués dans une plaque non absorbante dans
le vide, la formulation intégrale de la vitesse de l’énergie est analytiquement égale à la vitesse de groupe.
Dans le cas d’une plaque non absorbante immergée dans un fluide ou d’une plaque absorbante dans le
vide, nous montrons numériquement que la vitesse de l’énergie peut être substantiellement différente de
la vitesse de groupe, spécialement à des endroits où l’atténuation est élevée. Une étude expérimentale du
mode S3 dans une plaque absorbante démontre une bonne corrélation entre la vitesse du paquet d’ondes
et la vitesse de l’énergie à des endroits où il y avait divergence avec la vitesse de groupe.

Mots clés : ondes planes hétérogènes; fréquence complexe; faisceau borné; coefficient de réflexion; vitesse
de l’énergie des ondes de Lamb; traducteurs interdigitaux.
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