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Abstract

Long range guided wave inspection of large engineering structures has been proven to be
very effective. However, there are still many aspects of the guided wave behaviour which
remain unknown. One of these aspects is the curvature effect which can substantially
change the physical properties of the guided wave mode, especially in a leaky system
where limiting the extent of energy radiation into the surrounding medium is critical for

successful inspection.

This thesis examines the curvature effect on the guided wave properties using a 2-D curved
plate system. Both unloaded and loaded cases are investigated systematically. Model

studies comprise exact and asymptotic analyses, including investigations of their limits.

The curvature effect in an unloaded case is examined by comparing the phase velocity and
the displacement mode shapes of fundamental modes between a straight case and curved
cases of various curvature radii, at all frequencies. The percentage difference of these
properties due to the curvature effect is found to increase exponentially with an increase
in radius, and is frequency dependent. This provides a graphical tool to pick the best
frequency at which the properties are least affected by the curvature. Results of Finite

Element (FE) modelling and experiment prove the validity of the analytical predictions.

For the loaded case (leaky case), the analytical solution is substantially more complicated,
partly due to the fact that the numerical calculations of the Bessel functions with a
complex order are hard to implement. The solutions produce the dispersion relation of
phase velocity and attenuation of an embedded curved plate system. The distribution of
energy, determining the amount of coupling between the guiding layer and the surrounding
medium, can be obtained, and can also be related to the changes of attenuation in a

particular mode when the plate is curved. Experimental and FE validations are provided.
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Chapter 1

Introduction

1.1 Motivation

Adequate roof support systems in underground coal mines are of vital importance to both
the safety and productivity of the mining operation. Since the 1960s, a rockbolt technique

to reinforce the roof in roadways and caverns in mines has become very popular [1].

The rockbolts are ribbed steel bars that are designed to stop and stabilise the rock move-
ments, and therefore can be constantly subjected to a high level of stress, especially at
locations where the surrounding rocks begin to fracture. As a result, regular inspections
of the rockbolts are essential to ensure their integrity. Possible problems are fracture, se-
vere bending distortion by rock movement, stress corrosion cracking, and loss of bonding
between the bolt and the rock, all of which can lead to unsafe roof conditions threatening

both personnel safety and production capacity.

A technique, based on a time response method using guided waves, has been developed
by Beard [2, 3] to inspect the rockbolts. Guided waves are undoubtedly one of the most
efficient Non-Destructive Evaluation (NDE) concepts to inspect and monitor elongated
structures. The guided wave inspection is straightforward and is based on ultrasonic elastic
waves that are excited at one location on the structure and propagate along its length.
Any subsequent echoes can indicate the presence of defects and/or other discontinuities.

For the rockbolt inspection, the setup is illustrated in Fig. 1.1.

A good understanding of the wave propagation properties for the specific structure, the
embedded rockbolt in this case, is the key to any successful inspection using guided waves.
There are many different wave modes which can propagate at different speeds, and they
are, in general, frequency-dependent. These properties are usually calculated numerically

and expressed in the form of frequency dependent dispersion curves for all the propagating
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Figure 1.1: Schematic diagram of the experimental setup for the rockbolt inspection (after Beard

31)-

wave modes of the system, presenting phase velocities, group velocities and also attenua-
tions in the case of a leaky system such as the rockbolt embedded in rock (Fig. 1.1). A
leaky system is coupled with an infinite half space that the energy leaks into as the wave

modes travel along the guiding medium.

The dispersion curves can provide vital information for choosing the most appropriate type
of wave mode and frequency to achieve optimal excitation and propagation conditions for
the inspection; in this case the key goals are long-range propagation without excessive
attenuation and a good detectability of defects. In addition, the dispersion curves are
very important to the post processing of the inspection results, from which the defects

and other features of the structure can be identified, located and sized.

One major challenge for the rockbolt inspection is to achieve a good signal to noise ratio by
minimising the radiation of the propagation energy into the surrounding rock. Wave modes
are chosen at frequencies where the energy is concentrated at the core of the rockbolt [4].
This is to minimise the amount of energy at the interface between the bar surface and the

surrounding medium, hence limiting the amount of attenuation due to the energy leakage.

The dispersion curves for the rockbolt have so far been calculated based on cylindrical
waves propagating along a perfectly straight path (see for example Auld [5]). In reality,
many of the rockbolts may be bent along their length by the external forces that are
applied by movements of the rock layers, after they have been used for a period of time.
These curvatures along the length of the rockbolt are usually sufficiently small that they
have an insignificant effect on the wave propagation properties. However, the curvatures
can be critical when the rock movements are severe and the prediction of the straight case

can no longer correctly represent the curved case.

Beard [2] found that the wave modes, at a frequency thought to be optimum when the

rockbolt is straight, undergo a mode conversion where the energy distribution in the cross
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section shifts towards the surface close to either the inner or the outer radius of the cur-
vature after the rockbolt is curved. This allows a greater coupling at the metal/rock
interface, resulting in a higher amount of leakage as the wave propagates, and conse-
quently the signal to noise ratio can become very low such that an inspection using the
selected wave mode can no longer be possible. Therefore depending on this condition of
detectability, a bend along the propagation direction can be categorised into either critical
or non-critical. Fig. 1.2 shows a photograph of a rockbolt that was removed from the
mine after being used for many years; the bolt has several bend sections including those of
critical and non-critical natures. Currently, there is very poor understanding of the nature

of the wave propagation around these bends.

Embedded length

N

Critical bend

Exposed

Non-critical bend
end

Figure 1.2: Photograph of a rockbolt extracted from a mine after being critically bent by the

surrounding rock movements.

This curved rockbolt problem constitutes the motivation of the investigation in this thesis,
of which the objective is to gain insight into the curvature effect on the propagation prop-
erties. This particular geometry for the curved rockbolt problem is complex because of
double curvatures: the rockbolt is circular in section and is then curved also in the plane
of bending. As a result, there has been relatively little research on such curved cylindri-
cal geometries. A historical development of research in curved cylindrical geometries is

presented in the next section.

There is much similarity of wave behaviour in plates and bars, therefore it has been
shown by Beard [2] that it is possible to make inferences about wave behaviour in bars
from the study of wave behaviour in a simpler 2-dimensional plate system. There have
been some limited studies of the curvature effect recently by Beard [2], Wilcox [6] and
Valle et al. [7], all of which have used plate structures for their studies. However, these
studies do not address leaky problems which are fundamental to any potential guided wave
applications in embedded structures, and nor do they present any result in the region where
the frequency and “curvature radius to thickness ratio” are high. This is due to the fact
that the analytical solution can be unstable in these regions. This thesis aims to exploit

and extend on their ideas to resolve these omissions.
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1.2 Properties of Waves in Plates, Pipes and Bars

The basic concept of guided waves is based on the acoustic plane waves (also known
as bulk waves) of the material, propagating along a medium that is bounded by the
regular boundaries of the structure. The acoustic plane waves are of either compressional
or shear nature; in combination, they form specific types of frequency-dependent wave
motions, with their own individual propagation properties, for the corresponding structural
geometry. These wave modes have increasingly complex mode shapes with increasing
frequency, and they only exist beyond their cut-off frequencies. The frequency dependence
of these wave modes can be modelled analytically with dispersion curves, showing, for

example, the phase velocity and group velocity.

The common geometries, for which the guided wave inspection technique has been used,
are plates, pipes and bars. In each of the three cases, the wave motions can be categorised
into families of wave modes according to their propagation nature. It is worth noting that

pipes and bars have a similar geometry, and thus share the same families of wave modes.

For plates, the wave modes are either symmetric and antisymmetric along the mid-plane
through the thickness, which is the characteristic used to group them into the correspond-
ing families. For bars or pipes, the wave modes are, in general, divided into three families,
namely the longitudinal modes: a purely axially symmetric wave motion, the flexural
modes: an asymmetric mode involving a bending motion along the propagation direction,
and the torsional mode: a twisting motion along the centre axis. The category of families
for plates and pipes are illustrated in Figs. 1.3 and 1.4, of which the deformed mode shapes

of the wave motions for each family of the geometry type are shown.

Propagation direction Propagation direction
— > —

Figure 1.3: Families of wave motions of guided waves in plates (Diagram generated using Disperse
[148]).
1.3 Background on Guided Waves in Curved Beams

An analytical model to predict the properties of guided waves is one of the fundamental

needs when developing methods for guided wave inspection, as mentioned before. The
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Propagation direction

Longitudinal Mode

Figure 1.4: Families of wave motions of guided waves in bars/pipes (Diagram generated us-
ing Disperse [148]).The thick arrows indicate the general directions of particle movements in one

instance corresponding to a particular wave family.

development of analytical models has spanned over more than a century and has included
a wide variety of problems, ranging from the guided wave propagation in isotropic plates
[8,9, 10, 11, 12] and cylindrical structures [13, 14, 15, 16, 17], to those with additional com-
plexities, such as multi-layered structures [18, 19, 20, 21, 22, 23], anisotropy of materials
[24, 25, 26, 27, 28] and leaky wave problems [29, 30, 31].

Mathematically, all of these different cases are governed by the same set of partial differ-
ential equations, also called the wave equations, describing the behaviour of the waves in a
3-dimensional space. The only difference between these cases is the boundary conditions,
and it is the introduction of these boundary conditions that makes the analytical solution
difficult. The majority of the above studies have used an elegant classical partial waves
technique to obtain modal solutions of guided waves in many structures with a simple
cross section geometry; the partial waves technique decomposes the coupled partial dif-
ferential equations into separable equations in terms of the shear and longitudinal partial

wave potentials (see for example Achenbach [32] or Auld [33]).

The studies of propagation in curvilinear beam waveguides are difficult, and mathemati-
cal models developed to date are still incomplete and complicated. These studies can be
roughly divided into two different branches concerning acoustic and elastic wave propaga-
tions. They correspond to many day to day physical applications such as the sound wave
propagation in musical instruments and impact testing of structures with such curved

geometry.
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1.3.1 Acoustic Waveguides

Acoustic waveguides can be purely longitudinal in which the particle motion in the acoustic
medium is polarised in the propagation direction, or purely shear in which the particle
motion in the acoustic medium is polarised in the direction that is perpendicular to the
propagation direction. Here it commonly refers to those wave modes that travel in a fluid

medium where only the longitudinal motion is supported.

In 1957, Waldron [34] derived a set of general equations to describe the particle move-
ments along a curved acoustic line. Later, Grigor’yan [35] extended on Waldron’s idea to
include acoustic propagation in an infinitely long bend with a rectangular cross-section.
In addition, he demonstrated the acoustical field line diagram in the bent sections. In the
earlier studies of curvilinear waveguides, the cross-section was confined to a rectangular
shape. This is partly because their governing equations are separable, and thus can readily

be solved.

In 1971, Rostafinski [36] successfully treated the acoustical problem of a curved rectangular
section joined to a straight section. He theoretically investigated the acoustic velocity
distribution of propagating and non-propagating modes in curved bends and presented a
method for determining the non-propagating modes generated at discontinuities. However,
his solutions were limited to very low frequencies. Subsequent study by Osborne [37]
produced solutions for the higher order modes of the same geometry as Rostafinski’s

study.

The first experimental study of a curved acoustic waveguide with a rectangular cross sec-
tion was carried out by Cummings [38] in 1974. In the same publication, Cummings
derived the principle governing equations for a curved circular section acoustic waveg-
uide in toroidal co-ordinates. However, toroidal co-ordinates, which are required to suit
the boundary conditions of a circular section curved geometry, is not one of the eleven
co-ordinate systems in which the governing wave equations are amenable to separable
solutions, and thus cannot be solved directly. (Details of the separability of differential
equations can be found in, for example, Morse and Feshbach [39], pp. 665-666). Cummings
did not produce any solutions to the circular section curved problem which remained a
stumbling block to progress for a long time. Other studies on various aspects of sound

propagation in rectangular curved waveguides were also conducted [40, 41].

In 1983, Keefe et al. [42] was the first to attempt to address the toroidal problem by
approximating the circular cross-section with appropriate sizes of rectangular slices stacked
on top of each other. This was a very crude model, therefore it is not surprising that a
high percentage of error was recorded. In the same year, Ting et al. [43] investigated the
problem of the same toroidal geometry using a perturbation method where the results was

solved asymptotically to the straight case, and the solution were therefore limited to cases
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of slight curvature.

Recently, a sequence of publications by Félix et al. using multimodal analysis [44, 45, 46|
produced the most promising solutions for analysing the acoustical characteristics in a bent
pipe. The solutions allow calculations of steady and dynamic (transient) problems, includ-
ing any kind of discontinuities. In addition, the reflection and transmission coeflicients at

the entrance and exit of the bend have also been studied.

1.3.2 Elastic Waveguides

Elastic waveguides transmit wave propagations in an elastic medium supporting both
the longitudinal and/or shear wave motions that are coupled together. As expected,
there have been substantially fewer studies on elastic curved waveguides than on acoustic
curved waveguides because of the difficulty in obtaining the exact frequency dependent
characteristic solutions. Any analysis has thus had to rely heavily on approximation

approaches.

In 1960, Morley [47] derived a Timoshenko-like theory for the propagation of flexural elastic
waves in an infinite curved rod. Morley’s model included both the rotary inertia and radial
shear deformation about the neutral axis as in the Timoshenko theory. However, the model
is only valid for rods with a slight curvature, allowing the extension of the neutral axis to
be neglected, and the governing equations can then be simplified significantly. In 1974,
Crowley et al. [48] adapted from Morley’s Timoshenko theory to study the propagation of
light in a rectangular cross-section beam. The study involves numerical simulation of the
fringe pattern generated by a continuous wave, which was then compared to one obtained
experimentally from a transmitted light isochromatic technique, but strictly speaking, this

should be regarded as an acoustic problem.

In 1966, Witrick [49] investigated elastic wave propagation in a helical spring using the
same theory containing a small curvature, where he measured and identified two different

velocities corresponding to the bending and the torsional elastic wave modes.

Subsequently, Britton et al. [50] put forward an approximate theory for longitudinal elastic
waves in circular rings and helical springs. They have drawn a conclusion that a completely
different approximate theory is required for each type of propagation (i.e. longitudinal,
torsional and flexural). Frequency dependent dispersion curves for these fundamental types
of modes were presented. Nevertheless, approximate theories, such as the Timoshenko
theory, are subject to assumptions and can only accurately describe the behaviour of
the few lowest order modes where the distribution of the motion in the cross-section is
relatively simple. Some experimental validations were also produced in their late paper in

1971 [51], where short duration, wide band pulses were sent along a helical spring.
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A similar experiment to investigate the distortion of longitudinal square pulses in slightly
curved elastic rods was also performed by Hsieh et al. [52]. This was validated with results
obtained from an elementary theory where the rotary inertia and radial shear deformation
are neglected. Hsieh et al. demonstrated that a good agreement can be obtained when
the wavelength of the pulse is large compared to the curvature of the rod, and thus all
bending effects may be neglected. Then Bryan Moodie et al. [53] offered comparisons of

several mathematical techniques to solve the elementary theory.

The immense difficulty in producing such solutions have deterred many researchers from
considering this topic. Since Crowley’s study, the author is not aware of any publication

“non-

regarding this topic until a paper by Wu et al. [54] in 1996. Wu et al. derived the
trivial” characteristic equations for a bent bar. Although these equations were never solved
in their publication, attention was paid to the calculation of the energy carried by wave
modes that are reflected or transmitted at the bend. Nevertheless, a heavy assumption
that the curvature radius goes to infinity was made to obtain solutions of the energy field
in an uncoupled form. Both smooth and sharp bends were investigated, and experimental
validations were carried out in a sequel paper [55]; carbon steel bars were bent at various
curvatures, while strain that can be linked to the energy around the circumference was

measured using diametrically opposite strain gauges.

Although the development of guided wave techniques to carry out long range inspection
for structures, such as pipelines and rockbolts, has advanced rapidly in the past two
decades [56], there are still many problems to be solved, one of which is the curvature
effect. Demma et al. [57] examined the mode conversion phenomenon of the fundamental
pipe modes at the straight/bend interfaces numerically and experimentally. Later, they
[58] extracted the dispersion curves for a bent pipe in vacuum using a finite element
toroid model; the dispersion curves and the characteristic mode shapes were subsequently

compared with the straight case.

Recently, a new branch of guided waves, concerning quantum particles that propagate in
nanoscale structures, such as thin wires, has attracted much attention. This has been
driven by the race in the semiconductor industry to achieve a faster computer processor
or other IC chips, where the electrons are transported between one component and the
next in a confining potential. Waves of this kind of propagation through a curved wire
have just been studied [59, 60] using an effective one-dimensional equation which can
subsequently match the solutions of the three-dimensional waveguide case. The wave
functions are constructed using a method similar to the multimodal technique which can

be easily solved as an eigen-problem.
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1.4 Project Collaborators

It is well known that the governing wave equations of a guided wave problem may be
solved using a variety of mathematical approximation methods such as the Normal Mode
Theory [61, 5], asymptotic method [62, 63|, ray theory [64], JWKB expansion theory [65]
and spectral method [66, 67]. Although, all of these methods can substantially simplify
the numerical solutions of the problem, and thus may resolve the inseparable equations
in toroidal co-ordinates, they are often based on heavy assumptions which may limit the

solutions to specific conditions.

Due to the mathematical complexity in these alternative methods, it was decided in the
beginning that great benefits would be gained from a close collaboration with Dr. Dmitri
Gridin, Prof. Richard Craster and Mr. Alexander Adamou of the Mathematics Department
at Imperial College London. This collaborative project was funded by the Engineering
and Physical Science Research Council (EPSRC) [68]. This has provided a framework
in which ideas have been exchanged regularly in many useful meetings to try to tackle
the difficult mathematical problems. Some of the results obtained by the mathematics
collaborators are included in summary form in this thesis, and wherever this is done, it
is clearly identified as their work. Elsewhere, unless stated otherwise, all of the work in
this thesis is the author’s own. The followings are the list of publications as an outcome

of this project by the collaborators:

D. Gridin, R.V. Craster, J. Fong, M.J.S. Lowe and M. Beard, “The high-frequency asymp-

totic analysis of guided waves in a circular elastic annulus”, Wave Motion 38, 67-90 (2003).

D. Gridin and R.V. Craster, “Quasi-modes of a weakly curved waveguide”, Proceeding of
Royal Society London, series A, 459, 2909-2931 (2003).

D. Gridin and R.V. Craster, “Lamb-modes in curved plates”, Proceeding of Royal Society
London, series A, 460, 1831-1847 (2004).

A.T.I. Adamou and R.V. Craster, “Spectral methods for modelling guided waves in elastic
media”, The Journal of the Acoustical Society of America 116(3), 1524-1535 (2004).

D. Gridin, A.T.I. Adamou and R.V. Craster, “Electronic eigenstates in quantum rings:
Asymptotics and numerics”, Physical Review B 69, 155317 (2004).

D. Gridin, R.V. Craster and A.T.I. Adamou, “Trapped modes in curved elastic plates”,
submitted to Proceeding of Royal Society London, series A, in 2004.

The list of publications by the author can be found at the end of this thesis.
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1.5 Outline of Thesis

This thesis studies the significance of the curvature effect in the propagation direction
on the properties of the guided waves. The study has been carried out in a systematic
approach of several steps, with an ultimate aim to gain insight into the leaky curved
problem using a plate structure. Each of these steps describes a different aspect of the

problem and constitutes roughly a chapter in the thesis in the following way.

In chapter 1, subsequent to an introductory remark for this investigation, a literature
review on the wave propagations in curved beam structures, both acoustic and elastic
waveguides, has been presented. This gives the historical background of waveguides in a
curved beam, and details the difficulties of obtaining precise analytical solutions to the
behaviour of the wave modes in such problems. These difficulties would also justify the
use of plate structures initially to study the curvature effect, instead of starting out with

the more complex cylindrical structures.

Chapter 2 reviews the circumferential guided waves in an unloaded curved plate and their
engineering applications. Subsequently, the foundation theoretical concept of the disper-
sion relations of the circumferential waves in an unloaded plate is summarised, and the
essential notations are introduced. Although, the analytical solution for these dispersion
relations is well documented, numerical instabilities have prevented the calculation of so-
lutions when the product of frequency and radius is large. A detailed study of these
instabilities is presented. The dispersion curves were traced numerically using a scheme

implemented in Matlab, for which the key steps are outlined.

The instability problem of the analytical solutions can be overcome using three asymptotic
methods which were derived by our collaborators. The theory of these asymptotic methods
has been published in a joint paper [63]. In first part of the Chapter 3, the equations of the
asymptotic methods are summarised. Subsequently, in the second part of this chapter, the
author studies numerical examples of these methods, while the accuracy and robustness
of each of the asymptotic methods is investigated. However, the studies are limited to
the lower order wave modes existing in the guiding system as they are fundamental to the

calculation of the curvature effect in the later chapters.

In chapter 4, using the analytical solutions presented in the previous chapter, the cur-
vature effect on the frequency dependent phase velocity of the fundamental modes in an
unloaded plate is investigated. Since the dynamic interaction of the incident mode and the
defect /discontinuity is vital to an inspection, we then examine how the curvature affects
the through-thickness displacement distribution. A quantitative comparison between the

phase velocities and the mode shapes of the propagating modes is also made.

Chapter 5 is divided into two separate parts, introducing numerical and experimental
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techniques which were used to validate the analytical prediction of the curvature effect
of an unloaded case. For the experimental part, a modification of the analytical model
is presented; the modification was necessary to correctly represent the “real” situation of

the experiment, and thus to enable experiment and model results to be compared.

A review of the existing studies of leaky circumferential waves is given in chapter 6. The
exact analytical solution is extended to include the leaky curved plate cases. The routine
to trace the dispersion curves for these cases is developed, and it is more difficult because
of the complex roots. Using the analytical solutions, the prediction of the curvature effect

on the frequency dependent attenuation of the fundamental modes is obtained.

In chapter 7, the curvature effect on the attenuation of the wave modes in a loaded coupled
plate case is validated experimentally and by finite element modelling. An immersed pipe

experimental technique is proposed for the validation, and the results are explained.

Lastly, the concluding remarks are presented in the final chapter.
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Chapter 2

Circumferential Guided Waves in
Unloaded Plates

The effect of curvature along the propagation direction on guided wave properties can
be studied initially using plate structures in plane strain (2-D). This provides a sensi-
ble alternative to 3-D beam structures because of the relative simplicity in obtaining the
analytical solutions. The aim of this chapter is to provide the underlying analytical the-
ory, from which the frequency dependent (dispersive) propagation characteristics of wave
modes in a curved plate are calculated. The characteristic solutions can be numerically
evaluated, although they are unstable in certain combinations of input parameters. A
detailed study is also presented to investigate the circumstances in which these analytical

solutions become unstable.

2.1 Background

This section reviews the historical development of circumferential guided waves, and their

use in engineering applications.

2.1.1 Historical Background on Circumferential Waves

The study of waves propagating in the circumferential direction of a structure can be traced
back to as early as the 1920s, mainly inspired by the field of seismology. Researchers such
as Sezawa investigated the earthquake phenomena of surface waves propagating along the

slightly curved earth surface in both cylindrical [69] and spherical [70] coordinates.

In 1958, Viktorov [71] formulated the fundamental theory for the Rayleigh wave that
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2. Circumferential Guided Waves in Unloaded Plates

propagates on both convex and concave cylindrical surfaces. He derived and solved the
governing differential equations, and introduced the concept of angular wavenumber. Sub-
sequently, in 1964, Keller et al. [72] used a first-order asymptotic approximation of the
“geometrical theory” to construct the surface wave field at high frequencies, however, the
effect of dispersion was not taken into account. In addition to the Rayleigh wave, there
are other modes of surface waves that are confined to propagating near curved bound-
aries. One of these modes is the “whispering gallery” wave mode, which was studied by
Brekhovskikh [73] in 1968. The mode was named after the whispering-gallery phenomenon
in large circular buildings such as St. Paul Cathedral, London, where the mode was first
discovered. In addition, there exist many more studies on curved surface waveguides
since the 1960s, concerning a wide spectrum of fields [74, 35, 75] which cover elasticity,

electromagnetics, hydrodynamics, optics and other fields.

In 1962, Horton et al. [76] were the first to demonstrate experimentally that circumferential
waves can exist in an aluminium cylinder. Subsequently, the first mathematical theory for
the Lamb-type elastic waves travelling around a solid cylinder was derived by Viktorov
[77] in 1963. Later, in a letter to the Journal of the Acoustical Society of America, Grace
et al. [78] attempted to extend on Viktorov’s work to include the attenuation due to the
leakage of energy as the waves propagate around the circumference of an immersed pipe.
However, the complex parameter which was used to account for the attenuation decay is
thought to be incorrectly used. The reason for such mistake will be explained in detail
later in Ch. 6.

Recently, Viktorov’s work was revised by Qu et al. [79] and Liu et al. [80], both of whom
introduced non-dimensional parameters to the formulations. One obvious advantage for
using these parameters is that the dispersion curves could be used universally for struc-
tures with the same material properties and “thickness to radius” ratio. In 1999, Valle
et al. [7] utilised these formulae to model multilayered solid cylindrical structures using
continuous boundary conditions between layers. In the same year, Kley et al. [81] demon-
strated experimentally the effectiveness of a technique to extract the dispersion curves
for circumferential guided waves. The waves were generated by a laser-ultrasonic method
in a two-layered cylinder. Subsequently, Maze et al. [82] used the same solution type to

calculate for the case of fluid filled pipes.

Despite the formulae of the circumferential Shear Horizontal (SH) waves being simpler
compared to those for the Lamb-type waves, the mathematical derivation of the charac-
teristic function for circumferential SH waves was only published by Gridin et al. [63] in
2003, and later was also reported by Zhao et al. [83] in 2004.

The usage of composite materials has increased steadily in the past decade, driven pri-
marily by substantial demands in the aerospace industry. As a result, research on circum-

ferential waves in anisotropic composite multilayered structures has also been receiving
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attention in recent years, in order to come up with a reliable fast inspection technique.
Deriving from the classical elasticity theory, Towfighi et al. treated the problem of elastic
waves in anisotropic cylindrical curved plates [84], and later for spherical curved plates
[85]. In 1998, Babich et al. [86] formulated an explicit expression for the amplitude of a
wave mode travelling along a curved inhomogeneous layer where the material properties
vary through the thickness. Additionally, Sharma et al. [87] examined the wave propa-
gations that are generated by the thermoelastic effect in a transversely isotropic curved

plate.

2.1.2 Engineering Applications using circumferential guided waves

The general review by Chimenti [12], which focuses on guided wave inspection techniques
for plates in particular, describes the developments in this area up to 1997. In addition
to plates, elongated cylindrical structures, such as pipelines, can be inspected successfully
using axially propagating cylindrical guided waves [56]. Guided wave techniques have
the advantage of long range coverage, and only a small area needs to be exposed for
excitation. However, an axially propagating guided wave technique is only for the screening

of pipelines, and thus does not give definite information about defects.

Therefore for local detailed inspection, the axially propagating guided wave technique may
not be applicable. In this case, conventional through-transmission ultrasound methods
have been used to measure the local wall thickness losses, as shown in Fig. 2.1. Although
this technique can pin-point the exact location and the severity of the defect accurately,
it can be very time consuming, especially when the pipe diameter is large. Alternatively,
guided waves propagating in the circumferential direction can potentially offer a robust
option for inspecting these cases. Theoretically the technique can inspect the full circum-
ference from a single point around the circumference of a structure, though this can only
be achieved if the excitation frequency and the excitation mode are carefully chosen to

obtain the best propagation characteristics.

Other than pipes, large curved metal plates are used in many engineering applications
such as those used in the construction of the cylindrical shell of a large oil tank, as
illustrated in Fig. 2.2. Techniques to inspect flat plates using Electro Magnetic Array
Transducers (EMATSs) have been well developed [88]. A similar technique may be easily
adapted for inspecting the curved structures. Alers [89] considered using EMATSs that are
mounted either on the outer surface of the pipe or inside of the pipe via a ‘pig’ moving
platform, to generate circumferentially propagating Rayleigh waves for the inspection.
Subsequently, Hirao et al. [90] applied circumferential Shear Horizontal (SH) waves to
inspect gas pipelines in a setup analogous to Alers’. In addition, pressure vessels can

potentially be inspected using guided circumferential waves around the circumference.
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The method is particularly attractive for the inspection of areas that are difficult to access

such as directly above supports.

Figure 2.1: Photograph of a conventional point by point through-transmission inspection tech-

nique around a small diameter water pipe.

Figure 2.2: Photograph of a large oil tank that is assembled by many large slightly curved plates.

Nevertheless, applications using circumferential waves remain novel, where much of the
work progressed merely over the past decade. In 1994, Nagy et al. [91] reported using
circumferential creeping waves to detect radially grown fatigue cracks on the far side of
so-called “weep” holes in thin airframe stiffeners, though the fuel contained in the wing
must be drained before any inspection. Later, Hassan et al. [92] investigated the possibility
of detecting these cracks in a fuel filled “weep” hole, and assessed the attenuation caused

by the radiation of energy into the fluid.
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In 1998, Cheeke et al. [93] instigated an intrinsic technique to sense the fluid level contained
inside the pipe; the technique takes advantage of the sizeable difference in group velocity
of the Lamb type circumferential waves between a filled and an empty pipe, Later, Li et
al. [94] invented a method to detect fatigue cracks in complex components that are used in
aging helicopters, such as the rotor hub, connecting links and pitch shaft. Subsequently,
Valle et al. [95] and Qu et al. [96] demonstrated that radial cracks in an annular structure

can be located and sized accurately using the Lamb-type circumferential guided waves.

Employing an optimisation process, Chen et al. [97] reported recently that the charac-
teristic parameters, such as the elastic constants, thickness and curvature radius, can be
measured using the low-frequency circumferential Lamb waves. This has a potential ap-
plication of evaluating the characteristic parameters for thin layers of protective materials

coated on the surface of pipelines.

2.2 Exact Theoretical Analysis of Circumferential Waves

A comprehensive version of the exact analytical characteristic formulae has been reported
by Qu et al. [79]. In this section, these equations are modified by the introduction of
new notations which are in-line with a recent publication [63], in such a way that they
may be easily adapted for various situations with the appropriate boundary conditions
(see Sec. 2.2.4); the equations are also consistent with those derived for the leaky cases in
Ch. 6.

The approach for solution in the circumferential geometry is similar to that in the straight
plate, where Bessel functions being used instead of exponential functions. The SH and
Lamb-type circumferential wave solutions are entirely independent (uncoupled), therefore
it is valid to treat them separately. Formulae for both the SH and Lamb-type circumfer-

ential waves are presented in this section.

2.2.1 Wave Equations

To study waves propagating circumferentially, a system of cylindrical co-ordinates, in the
r, 8 and z direction, is used throughout this thesis. A schematic diagram showing the
cylindrical system is illustrated in Fig. 2.3. The governing mathematical equations of
elastic wave propagation in a bulk material are well documented; these equations will
be referred to as the wave equations (see for example Auld [5]). Previously, the wave
equations expressed in cylindrical coordinates have also been studied extensively for wave

propagations in the axial direction of a pipe [56]. The fundamental wave equations which
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Figure 2.3: The geometry of the circumferential waves problem (after Wilcox [5]).

are not subject to any external body forces, are considered:

0%

where @ = (u,,ug, u,) is the displacement vector in cylindrical coordinates, and V is the
divergence operator. Eqn. 2.1 may be expressed in term of non-tensor equations which
are given in App. A.1. The Cauchy stress tensor o;; can be related to the strain tensor €;;
by Hooke’s law (Eqn. 2.2); and furthermore the strain tensor may be expressed in terms

of the displacement vector, @ (defined in App. A.2).
Oij = )\5@]¢ + Q,uEU. (2.2)

where §;; is the Kronecker delta which is equal to one for ¢ = j and is equal to zero for
i # j, while dilatation ¢ = €, + €gg + €22

For circumferential propagation, the field in the elastic medium does not depend on the
z direction, and therefore any z direction dependent terms are omitted. As a result, the
displacement vector @ is only a function of r and #. Furthermore, the field is dependent on
a time harmonic in the propagation direction, represented by e, where w is the angular
frequency. In general, the time harmonic function is common to all field quantities and
therefore is suppressed throughout the formulation. The displacement field may be reduced

to the following form:
a(r,0) = U(r)e™?. (2.3)
where v is the angular wavenumber and U is the wave displacement amplitude along the

radial line. For the non-attenuative problem considered in this chapter, both v and w

are assumed to be purely real quantities. Although the model depicts a pipe structure
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with waves propagating around its circumference, the circumferential continuity condition
is not considered theoretically. The waves are assumed to propagate along an infinite
circular cylinder, or along a cylindrical cavity of circular cross section in an infinite elastic

medium. Therefore v may vary between zero and infinity.

2.2.2 Shear Horizontal (SH) Circumferential Waves

SH circumferential waves propagate in the 8 direction and are polarised in the z direction.
The particle movements can be described by Eqn. A.3, corresponding to the equation of
motion in an infinite medium in the z direction. Eqn. A.3 may be expressed in terms of

the displacement in the SH direction, u,, in the following form:

02 10 1 9 9
<mﬁ»m+ww9%+“wza (24)
where kr = w/Cr is the bulk shear wavenumber, and Cr is the bulk shear velocity. Sub-
stituting the z component of Eqn. 2.3 into Eqn. 2.4 yields the following Bessel’s differential

equation for U,:

oU,

U
2 z
2+ 1T )

(krr)? + ((krr)? — AU = 0. (2.5

(krr)

The general solutions of Eqn 2.5 may be satisfied by several combinations of Bessel func-
tions, each of which represents the oscillatory behaviour of the shear partial bulk wave
propagating towards and away from one point in the medium respectively. The three valid
combinations are the normal Bessel functions (J and Y'), the modified Bessel functions (1
and K) and the Hankel functions (H1 and H2) which are linear combinations of normal
Bessel functions of the first and second kinds. The general solution for U, may be written

in the following form:
U, = a1WV<kT7“) + CLQZV(]{TT’). (2.6)
where W and Z are placeholders for the solutions of a Bessel equation (after Pavlakovic

[14]), and may be substituted by any of the combinations discussed, and a; and as are the

unknown field constants for the incident and reflected shear partial bulk waves respectively.

2.2.3 Lamb-Type Circumferential Waves

The exact formulation of the fields in a Lamb-type problem is analogous to that of the

SH waves. Particles of the circumferentially propagating Lamb-type waves polarise in
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both the radial and circumferential directions (u, and ug). Therefore two coupled waves
equations in those directions, Eqn. A.1 and Eqn. A.2, are considered; the equations may
be simplified by using the convenient Helmholtz decomposition technique. The technique
separates the coupled equations in terms of two scalar potentials, ¢ and 1, associated with
the longitudinal and shear motions respectively. The displacement field of Eqn. 2.3 may

be expressed as follows:

_dp  10¢ _10p O

.= -, —r_Z 2.7
“ or + r 00 Y100 or (2.7)
And the equations of motion become two uncoupled Helmholtz equations:
02 10 1 0? 5
(52 * v * e o+ Ko =0,
0? 10 1 02 9

where k;, = w/Cp and kpr = w/Crp are the bulk longitudinal and shear wavenumbers
respectively. Cp, and Cr are the longitudinal and shear bulk velocities of the material,
and may also be expressed in terms of the material properties, such as the Lamé constants
(A, p) and the density (p):

2
Cp = |22 or = 2. (2.9)
p p

The modal solutions of the potentials may be assumed as follows:

o(r,0) = <I>(r)ei”9, P(r,0) = \Il(r)eiya. (2.10)

where ®(r) and ¥(r) are the amplitude distributions of their corresponding modal solution
across the plate thickness. Then substituting these modal representations into Eqn. 2.8,

the wave equations may be rewritten for ® and V:

2
() iy * gy + (G = )2 =0
2
(ko) 4 (k) 5+ () = /) = (211)

where the first and second equations correspond to the longitudinal and transverse wave
propagations in an infinite medium. As in the SH formulation, the general solutions of

Equations 2.11 may be expressed with the Bessel function placeholders, W and Z:
S =a W, (krr) + asZ,(kpr), WV =asW,(krr)+ asZ,(kpr). (2.12)

where a;s, with i = {1,2,3,4} are the unknown partial bulk wave amplitudes.
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2.2.4 Boundary Conditions

The general solutions of the waves equations presented in the previous sections give the
basis for calculating the SH and Lamb-type circumferential guided waves. The solutions
are formulated in such a way that they can be easily adapted to form the characteristic
functions of both non-attenuative and attenuative homogeneous cases provided that the
appropriate boundary conditions are satisfied at the interfaces between different materials.
The formulation of circumferential waves continues from the work started by Lowe [98]
and Pavlakovic [14] for the plate and cylindrical guided waves respectively, therefore the
interfaces considered are in-line with those considered by them; the interfaces considered
are solid-solid, solid-vacuum, and solid-fluid. Only the non-attenuative cases are consid-
ered in this chapter, while the attenuative case of a leaky system will be presented in
Ch. 6.

It is worth noting that only an ideal fluid, which does not support any shear wave prop-
agation, is considered. In addition, only the boundary conditions that are relevant to the
formation of the characteristic functions are summarised in this section. There should be
an adequate number of conditions to set up a finite set of equations in the same unknown
field amplitudes of which the common solutions in the frequency-wavenumber domain
(w —v) can be determined. Since SH waves have polarisation in the z direction and the
fluid does not support any shear propagation, a slightly different boundary condition at
the interfaces would have to be used compared to those used for the Lamb-type wave prop-
agation. The boundary conditions for the SH waves are summarised in Tab. 2.1 where o,

is the tangential stress.

Interface types
solid-vacuum |  solid'solid> | solid-fluid
O z2rsotia = 0lr=a Uz, gl — Wz,o5a2 |r=a Uzgotia — 0lr=a
02 it — 92701502 |T:a Orrgoria — 0|r=a

Table 2.1: Boundary conditions for the circumferentially propagating SH waves at the interface,

r = a, between two types of materials.

For the circumferential Lamb-type waves, all the field components are z independent, since
there is no z direction polarisation in these waves. The four fields that are valid at these
interfaces where the radius r is equal to a distance a, are the normal radial stress o, the
tangential stress o,¢, the radial displacement wu,, and the circumferential displacement uyg.
A summary of the boundary conditions for the Lamb case at various types of interface is
shown in Tab. 2.2.

38



2. Circumferential Guided Waves in Unloaded Plates

Interface types
solid-vacuum |  solid'-solid’> |  solid-fluid
Orrootia = Olr=a W gt = Ur, a2 lr=a Urgoriq = quluid|7“=a
00014 = Olr=a UG, ot = WO, pua2 |r=a Orrsoria = UW‘fluid’T‘:a
Irrgiat = 70142 [r=a 14150 = Olr=a
9710 p1iar = 7001102 |T:a

Table 2.2: Boundary conditions for the circumferentially propagating Lamb-type guided waves

at the interface, r = a, between two types of material.

2.2.5 Characteristic Functions for an Unloaded Single Layer

The modelling of guided waves for a particular curvature of a single curved solid layer
in vacuum is fairly simple. This involves satisfying the traction-free boundary conditions
listed in the previous section with the general solutions for the specific types of propagation;
the general solutions for the SH and Lamb-type waves are given in Eqn. 2.6 and Eqn. 2.12

respectively.

The choice of the combination of Bessel functions for these general solutions in the axially
propagating cases has been studied extensively by Pavlakovic [14] who concluded that the
right choice of Bessel functions could improve the numerical stability. However, for the
circumferential case, the parameters used in the Bessel functions are very different, where
the order of the functions are not necessarily integer and can be very large. In this case,
there are little differences in the numerical stability when using various combinations of
Bessel functions, therefore the normal Bessel functions (J and Y') will be used throughout
this thesis for the general solutions of non-attenuative cases. On the other hand, for waves
propagating along a layer that is coupled with an infinite half space where the energy leaks
into the surrounding half-space medium and vanishes in distance, the solutions cannot be
correctly represented by the normal Bessel functions. Further detail on this can be found
in Sec. 6.2.

SH Circumferential Waves

The traction-free boundary conditions at the inner and outer surfaces for the SH waves

can be reduced to:

ou,
or

— O’ T =71,T2. (213)

This condition is known as the homogeneous Neumann boundary condition, which is also

used in acoustic propagation problems. Substituting the general solutions into Eqn. 2.13

39



2. Circumferential Guided Waves in Unloaded Plates

creates a homogeneous system of two equations:
alJllj(kJTrl) + (IQYV/(kT’Fl) =0, aljl/,(k:TTg) + CLQY;(]CTTQ) =0. (2.14)

Then the dispersion relation for the modal solutions can be simplified to the following

elegant form:
J,/,(kTrl)YV'(kT?”g) — Jl/,(k‘T?”Q)YV/(kTTl) =0. (2.15)

For every frequency w, there is a finite number of real roots v of Eqn. 2.15, relating to the
number of propagating modes. Substituting the root of a w—wv pair back into Eqn. 2.14, the
field amplitudes a1 and ao may be evaluated. The general through-thickness displacement

field is subsequently obtained:

u(r,0) = U, (r)e?? o {J,,(kTT) - MYV@TT)}J”Q. (2.16)

v
Lamb-Type Circumferential Waves

Similarly, for the Lamb-type waves, the traction-free boundary conditions need to be
satisfied in order to set up a characteristic function. First, the stresses o, and 0,9 have
to be re-written in terms of the displacement potentials, ¢ and i (see Eqn. 2.17). This
can be obtained by substituting the displacement field (Eqn. 2.7) into the strain tensor
(Eqn. A.2), while the Hookes Law relation (Eqn. 2.2) is used to obtain the stress-strain

relationship.

e 10¢  10%
2
Jrr:)\k:LgoJrZ,u(arQrQ@ngr&r@@)’

(26% 200 10% 0% 1a¢)
Org = W . )

roro0 200 2002 o2 ' ror (2.17)

By expressing the traction-free conditions at the inner and outer surfaces using Eqn. 2.17, a
4 x 4 homogeneous characteristic eigen-matrix for the 4 unknown field amplitude constants
)T

a = (a1,ag,as,aq4)’ is obtained:

D(v,w)-a=0. (2.18)

The eigen-matrix D is a function of the frequency w and angular wavenumber v. The
roots of the characteristic eigen-matrix, given by the w-v pairs, can be evaluated when
the determinant of the matrix, D, is set to zero. The elements of matrix D for the

unloaded Lamb-type circumferential case are given in App. B. To solve for the unknown
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amplitudes, a, as an eigenvector, one of these unknowns must be assumed as an arbitrary
value. Subsequently, using the general solutions and Eqn. 2.7, the displacement fields can

be rearranged as the following:

ur(r, 9) = {alk‘LJL(kLT) + (ZQkLYV/(kLT') + ag%Jy(kTT) + a4Z:YV(k‘T?”)}€iV9,

ug(r,0) = {all:Jl,(kLr) + angy(kLr) — askrJ] (kpr) — a4kTYV’(kT7")}e“’9. (2.19)
T

2.3 Instabilities of Exact Analytical Solutions

With the derivations in the previous sections, dispersion curves for both the SH and Lamb-
type cases may be calculated and traced numerically using the characteristic functions,
Eqn. 2.15 and Eqn. 2.18 respectively. The computation requires finding of the roots in
the w — v domain. The root convergence is achieved using a bi-section iteration technique

and together with a summary of the tracing routine, will be discussed later in Sec. 3.2.

One major problem with the exact analytical dispersion relation of the circumferential
waves is that the solutions can become unstable numerically at high frequencies or when
the curvature radius of the system is large. This instability is associated with the very
large value of either, the elements of the characteristic function (Eqn. 2.18) or the de-
terminant of D. An unavoidable numerical breakdown is results, where values above the
machine precision being obtained. There are both upper and lower limits on the mag-
nitude of floating point numbers in each computer. All computation was carried out in
a commercial software, Matlab”™  where all variables are defined using double preci-
sion that has an overflow limit of 41.79769313486232 x 103%® and an underflow limit of
+4.94065645841247 x 107324,

As an example, the dispersion curves of a 3mm thick and 20mm inner radius curved
plate are plotted for the SH and Lamb-type circumferential waves in Figs. 2.4 and 2.5
respectively. The material used for this example is steel and has material properties of
Cr, = 5960m/s, O = 3260m/s and p = 7932kg/m3>. It can be seen in these figures that
no solution can be obtained in the higher-frequency region of the dispersion curves because

of the numerical instabilities which are caused by two related circumstances.

2.3.1 “Large f —d” Problem

The first type of the instabilities is the “ill-conditioning” of the eigen-matrix characteristic
function, D. It is also commonly known as the “large f —d” problem (f is frequency and d
is the plate thickness), which has been studied comprehensively in the straight plate case

by Lowe [98]. As the name has suggested, the characteristic functions become unstable
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Figure 2.4: Every 20" mode of the shear horizontal SH dispersion curves of a 3mm thick and

20mm inner radius steel curved plate.

when the combination of the frequency and thickness becomes very large. The “large
f — d” problem is associated with the displacement decoupling of the inner and outer

surfaces when the bulk partial waves become inhomogeneous (evanescent).

In the Lamb-type guided wave homogeneous system, the solution can be thought of as a
superposition of 4 pairs of incident and reflected longitudinal and shear partial waves on
both inner and outer surfaces. The natures of these partial waves are represented by the
Bessel functions of the first and second kind (J and Y') with the arguments w;, &9, w3 and

w4, which are defined as follows:
djl = kLTl, C&A.)Q = kLTQ, (2)3 = kTTl, @4 = k‘T’I”Q. (2.20)

The amplitudes of these partial waves, a, associated with a particular propagating wave
mode can be determined by satisfying the boundary conditions at the inner and outer
surfaces. Fig. 2.6 illustrates the partial waves concept for a curved plate system. Each
type of partial waves strikes and reflects with the same angle from a normal radial line on

both the inner and outer surfaces.

When both partial bulk waves on the same surface become inhomogeneous, the displace-
ments and stresses of these modes at this surface begin to uncouple from the rest of the
structure, as the energy decays exponentially away from that surface. This is what hap-
pens, for example, with the Rayleigh wave mode on a straight plate, when the solution

transforms asymptotically from the Ay and Sy modes towards the Rayleigh mode at high
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Figure 2.5: Every 5" mode of the Lamb dispersion curves of a 3mm thick and 20mm inner radius

steel curved plate.

frequencies. Unlike the symmetric boundary condition processed by the straight plate, a
curved plate has different boundary conditions at the inner and outer surfaces due to the
difference in curvature. It is worth stressing that as the frequency increases, each of these
partial bulk waves become inhomogeneous sequentially. This results in the Rayleigh wave

forming only on one surface at a time.

Once a partial wave in the system becomes inhomogeneous, elements in the solution matrix
would have to adapt a combination of both decaying and growing coefficients in order to

describe such decoupling behaviour, causing an ill-conditioning in the eigen-matrix D.

—> Longitudinal partial wave
—> Shear partial wave

Figure 2.6: The concept of partial waves theory illustrating the uncoupled longitudinal and shear

partial bulk waves at the inner and outer surfaces of a curved plate case.
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In a strongly curved plate (i.e. the ratio thickness to radius is large), all propagating
modes could become the surface Rayleigh-type waves at high frequencies (see Ch. 4).
Fig. 2.7 demonstrates this asymmetry of the curved plate by comparing the through-
thickness displacement mode shapes for the straight and curved cases for a plate of the
same thickness. It can be clearly seen that the energy of the Ay mode of the curved plate

concentrates on the outer surface.

Thus the computation of the roots of a dispersion relation after any of the partial waves
has become inhomogeneous, may be unstable. This area of stability can be illustrated in
Fig. 2.8, where the dispersion function is evaluated at a constant frequency w, and as a
function of angular wavenumber v, and corresponds to the calculation along the line shown
in Fig. 2.5. It can be seen that the characteristic function has an oscillatory feature, where
the zero crossings along the x-axis are the roots of the system. In the region v < wy, the
amplitude of these oscillations are more or less unvarying. In comparison, when v > w1, one
or more of the partial waves in the system would have become inhomogeneous; as a result,
the amplitude of the function can become very large due to the “large f —d” problem, and
may breakdown because of the large rounding error discussed before. Evaluating the roots
in this region can be computationally expensive because of an increase in the number of

iteration needed to obtain convergence.

Top Outer
surface —x surface /
Radial
Out-of-plane displacement Circumferential
displacement In-plane displacement
displacement
Bottom (@) | Inner (b)
surface Arbitrary amplitude surface Arbitrary amplitude

Figure 2.7: Displacement mode shapes of the Ay mode at a frequency of TMHz for (a) a straight

steel plate, 3mm thick, and (b) a curved steel plate, 3mm thick and 20mm inner radius.

2.3.2 Breakdown of the Bessel Function

In addition to the “large f—d” problem, the second instability phenomenon is related to the
breakdown of the Bessel functions contained within the eigen-matrix D of a curved plate
system. this occurs when the argument is much larger than the order of the function [99].
The complicated Bessel functions offer unique solutions to the Bessel partial differential
equations such as Eqn. 2.5. These equations appear in problems of vibrations, electric

fields, heat conduction, fluid flow ...etc, in cylindrical geometry. Bessel functions of
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Figure 2.8: Lamb-type characteristic function calculated along the line shown in Fig. 2.5 for a

curved steel plate, 3mm thick and 20mm inner radius. The frequency is kept constant at 10MHz

the first and second kind (Jy(z) and Y, (x)), and their derivatives, are used in forming
the underlying dispersion relation equations (App. B), where v and x are the order and
argument of the Bessel functions respectively. Instability of the Bessel functions is a
previously known problem and has been treated in much literature such as Abramowitz
et al. [99] and Watson [100] using, for example, series expansions and several asymptotic

expressions, but the accuracy of these schemes are generally conditional.

When x > v, both J,(x) and Y, (z) functions have oscillatory profiles with a relatively
low gradually changing amplitude, also the oscillation of the functions has a non-constant
frequency, as shown in Fig. 2.9. On the contrary, when x < v, J,(z) has a zero value,
while Y, (x) grows exponentially. Therefore when the partial bulk waves in the Lamb-type
case become inhomogeneous, i.e. v < w; with ¢ = {1,2,3,4}, the corresponding Bessel

function of the second kind Y, (w;) can become numerically very large.

This does not necessarily lead to an immediate solution breakdown once the order is
larger than the argument of a Bessel function. As shown in Fig. 2.10, the Bessel function

bT™M even at a location of a high frequency

of the second kind remains computable in Matla
value where the corresponding partial bulk wave has long turned inhomogeneous (i.e. when
v << w;). However, the amplitude of the Bessel function may eventually exceed the double
precision limit at very high frequencies, corresponding to the spikes in Fig. 2.10 where

the function may be evaluated but the result is inaccurate.
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Figure 2.9: Amplitude of Bessel functions of the first J,(z) and second Y, (z) kind, with the
argument vy assigned to be a constant. The J,(z) and Y, (z) are shown in solid and dotted lines

respectively.

2.3.3 Comparison of the Two Instabilities

Although both the Y, (z) and the “large f-d” problem could introduce instabilities to the
numerical calculation of the characteristic functions at different frequencies, the funda-
mental causes of these breakdowns are evidently linked to the introduction of evanescent
bulk partial waves in the solution. The order in which these two types of instabilities
occur is dependent on both the geometrical and mechanical properties of the system. The
only region where the solution is totally stable is where the partial waves in the system are
completely homogeneous. Based on this observation, both the stable and unstable regions

are indicated in Fig. 2.5.

The Bessel functions are the main building blocks of the characteristic eigen-matrix D,
and are also used to describe the nature of the partial waves at the interfaces. Therefore
analysing the absolute amplitude of the Bessel functions at a typical area of dispersion

curves in the “w —v” domain can help us to visualise the causes of the two different types

of instability.

Taking the first and last partial waves that become inhomogeneous for a particular mode
with increasing frequency as an example, the absolute amplitude of their corresponding
Bessel functions of the first and second kinds, with the arguments w; and wy respectively,
are evaluated, as shown in Fig. 2.11. The Bessel functions of the first (/) and second kinds
(Y') represent the decay rates of the incident and reflected partial wave amplitudes at the
surfaces. The arguments of the Bessel function denote the type of partial wave and at
which surface it is interacting, in such a way that the argument @w; = krry correspond to
the longitudinal partial wave at the inner surface, and the argument w4 = kpro correspond
to the shear partial wave at the outer surface. A detail study of the partial wave analysis

for this kind of system is presented in Sec. 3.1.4.
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Figure 2.10: Three-dimensional plot of the second order Bessel function Y, (x) evaluated using

Matlab”™ around a numerically unstable region.

In addition, the lines v = @; for i = {1,2,3,4} are plotted to indicate the positions where
each of the partial waves transform from homogeneous to inhomogeneous. The plots are

calculated for a 3mm thick and 20mm inner radius curved steel plate.

Fig. 2.11(a) shows the absolute amplitude of Y, (&1), where the amplitude on the left hand
side of ¥ = @y remains moderate; whereas the amplitude on the right hand side of the line
increases exponentially. Eventually the function breaks down at very high frequencies,
covering a substantial area of the dispersion curves. The breakdown area of the Bessel
function is indicated in white, and in grey if it is over an area of dispersion curves. It can

also be seen that the width of this grey area increases with increasing frequency.

Additionally, the Bessel function of the second kind corresponds to the other partial waves,
for instance the shear partial wave at the outer surface Y, (@4), shown in Fig. 2.11(c), has an
amplitude which is typically much lower than that of Y, (&1). Furthermore, the numerical
breakdown of Y, (&4) is almost always beyond the area of the dispersion curves. Therefore
the precise reason of the Bessel function breakdown can actually be pinpointed to the

breakdown of Y, (&) of the system.

On the other hand, the “large f — d” problem is most likely to occur when Y, (&1) has
a very high amplitude, indicated in Fig. 2.11(a), compared to amplitudes of other Bessel
functions in the same locations. This creates an “ill-conditioning” of D. In this area,
both J,(@1) (Fig. 2.11(b)) and J,(w2) have zero values, and therefore have no effect on
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2. Circumferential Guided Waves in Unloaded Plates

the “large f — d” problem; whereas J,(&3) and J,(@4) (Fig. 2.11(d)) can have very small
absolute amplitudes in this area, especially where the partial waves are well coupled. As a
result, the genuine cause of the “large f — d” problem is highly dependent on the relative

difference in amplitudes between Y, (@) and J,(@y4).

In general, it can be said that, if the “d/r” ratio of the curved plate system is small, the
solution should breakdown due to the instability of the Bessel functions before the “large

’ ratio.

f-d” problem becomes influential, and vice versa for a system with a large “d/r;’
This is because the argument of the Bessel function is a product of the frequency (w), the
radius (r1,72) and the reciprocal of the bulk wave speeds (Cy ', C; 1), therefore increasing
the radius would proportionally reduce the value of frequency at which the Bessel function
breaks down. Numerical examples demonstrating this dependence will be presented later

in Sec. 3.3.

2.4 Summary

An extensive literature review on the development and current engineering applications

of the circumferentially propagating wave modes has been presented.

A theoretical analysis of waves propagating circumferentially in an unloaded plate has
been studied. The formulae of the SH and Lamb-type wave modes have been summarised
separately because of the difference in their polarisation directions. Then the fundamental
formulae in each type of propagation have been generalised to model a multilayered curved
plate structure, including both fluid and solid layers, by adapting the appropriate boundary
conditions listed in Sec. 2.2.4. As an example, the derivation of the characteristic functions

and other field quantities has been presented for an unloaded curved single layer.

Numerical solutions of the circumferential SH and Lamb-type modes can become unstable
at high frequencies. Depending on the geometrical and mechanical properties, the exact
solutions may be limited to low frequencies, especial those of the lower order modes. This
instability stems from the well known “large f — d” problem and the breakdown of the

Bessel function of the second kind Y, (z), and has been discussed in detail.
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Chapter 3

Asymptotic Analysis of
Circumferential Guided Waves in
Unloaded Plates

The exact analytical dispersion characteristic function of the circumferential guided waves
becomes unstable at high frequencies and large curvature radius as discussed in the pre-
vious chapter. Keeping the initial motivation of investigating the curvature effect using
circumferential waves in mind, it is desirable to be able to calculate the analytical solutions
for curved plate systems of any curvature, and at any frequency. For this reason, alterna-
tive methods to calculate the exact analytical solutions is a necessity for the completion
of this thesis. Asymptotic analyses for those “ill-conditioned” characteristic functions has
been studied, as part of the collaborative project with researchers in the Mathematics
department at Imperial College. The asymptotic solutions have been derived by our col-
laborators, and subsequently have been implemented into a Matlab”™ program where the
limits of these methods were further analysed by the author. This chapter is based on
work published in Gridin et al. [63] and Fong et al. [101].

In this chapter, the derivation of the asymptotic methods, found by Dr. D. Gridin and
Prof. R. Craster of mathematics department at Imperial College is summarised (Sec. 3.1).
Subsequently, a numerical routine that has ben implemented to trace the dispersion curves
for both the exact and asymptotic methods is outlined, and the dispersion curves of several
curvatures are presented as examples. Lastly, the accuracy and the efficiency of these

asymptotic methods are assessed.
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3. Asymptotic Analysis of Circumferential Guided Waves in Unloaded Plates

3.1 Asymptotic Solutions

To address the instability problems of the exact analytical solution of circumferential waves
in an unloaded curved plate, three asymptotic methods were proposed by our collaborators.
For completeness of this thesis, the derivations of these methods are summarised in this

section. The full details can be found in Gridin et al. [63].

The first method considered is the Uniform Asymptotic Method (UAM), with which the
exact Bessel functions are replaced with an uniform asymptotic expansion that is ex-
pressed in terms of the Airy functions. The second method, the Regional Asymptotic
Method (RAM), adapts a conditional asymptotic expansion which divides the calcula-
tions of the Bessel functions into three regimes depending on the order and the argument
of the Bessel functions. With further mathematical manipulations, the dispersion curves
can be subdivided into regions where the characteristic functions are expressed explicitly.
In the last proposed method, the Simplified Region Asymptotic Method (SRAM) extends
on the RAM by eliminating the exponentially small terms in the equations, to achieve a

complete stability of the characteristic function.

3.1.1 Uniform Asymptotic Method (UAM)

The methodology of the UAM to obtain dispersion relations is the same as the exact
method. Both methods require solving for roots in the w—r domain when the determinant
of this eigen-problem matrix is equal to zero, Eqn. 2.18. The only difference compared to
the exact derivation is that the Bessel functions [(J, (kr,r,-71,2) and Yy, (kr 1 -712)] and their

derivatives contained in the eigen-matrix D are replaced with the uniform asymptotes.

In the UAM, only the leading terms of the large-order asymptotes of the Bessel functions

that are uniform for all arguments x (see pp.366 of Abramowitz [99]), are used.

4¢ \ AR 4¢_ YV Bi(y**¢)
Jy(x) ~ < ) ,  Yo(x)~ —< ) ,
'Y( ) - % 71/3 7( ) - % /71/3
2 2
1— Lo\ 1/4 f:00.2/3 1— Zo\1/4 R:(2/3
v x 4¢ ~2/3 gl T 4¢ ~2/3
where ¢ can be obtained using the following:
2 _ x2
§C3/2:cosh Yy /z) — 1—?, x <7,

S0 = F —eosTl(yfz),  w>o. (3.2)
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3. Asymptotic Analysis of Circumferential Guided Waves in Unloaded Plates

Although the UAM does not resolve the instability problem at high frequencies since the
nature of the Airy functions (Ai and Bi) is similar to that of the Bessel functions, a
significant reduction in the complexity of calculating the Bessel functions is achieved. As
a result, the calculation time required using the UAM is much reduced compared to that

of the exact method.

3.1.2 Regional Asymptotic Method (RAM)

One fundamental assumption used in the RAM is that the wavelength of the shear bulk

wave is much smaller than the inner radius of the curved plate (r1):

krry, krry > 1. (3.3)

This assumption ensures that the arguments of the Bessel functions used in the dispersion
relations (2.15 and 2.18) are large. Consequently, the Bessel functions can be simplified
using the large-argument large-order (Debye’s) asymptotes that are expressed in 3 regimes
depending on the order v and the argument x of the Bessel functions in the following

relationships:

Regime I: v <z, Regime II: vy =z, Regime III: v > x. (3.4)

The leading terms of the large-argument large-order asymptotes of the Bessel functions,

and their first derivatives are summarised in App. C.1.

Shear Horizontal (SH) Waves

By adapting the solution in the appropriate regime (Eqn. 3.4 to represent the Bessel
functions in the dispersion relation, the SH dispersion curves can be sub-divided into five

regions in which a real angular wavenumber v can be situated:

Region I: v < kpry, Region II: v =~ kpry, Region III: kpri < v < kpra,
Region IV: v ~ kpre,  Region V: krre < v. (3.5)

These regions can also be visualised graphically in the dispersion curves shown in the
v-w domain of Fig. 3.1. Regions I and III are the main regions where the majority of
the solutions are calculated; while Regions II and IV are the transitional regions, which
are much narrower than Regions I and III. The purpose of these transitional regions

is to ensure a smooth transition by using a solution that is equally accurate in both
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3. Asymptotic Analysis of Circumferential Guided Waves in Unloaded Plates

neighbouring regions. The transitional areas surround the boundaries v = kpry, krra,
where the boundaries of this transitional area (& —v/) is calculated by taking the argument
of the Airy function in Eqn. 3.1 equal to a constant, is defined in Eqn. 3.6 where the
subscripts T, L, 1,2 may be chosen according to the region in which the solution applies;
the value of the constant dictates the width of translational area which increases with
frequency, and a constant value of 3 is typically used. Eqn. 3.6 can be applied to the

translational areas for the Lamb-type cases in the next section.

3 vC wr 21\ **
-1 T.Ly - 1,2 —
j:‘ (1/ lQ(COSh ( G ) 1 (VCT,L) 1) =3 (Const.) (3.6)
v =k,
200 —————————— -
Region IV

. S
N ]
an
% |
>
o —
=
Q |
S
&)
é.: -

0 1 1 1

0 angular wavenumber, v 10000

Figure 3.1: Shear horizontal (SH) circumferential dispersion curves and the regions defined for

the Regional Asymptotic methods (r1 = 0.02m and ro = 0.023m, Steel as an example).

Using the appropriate asymptotes (App. C.1), the dispersion relation may be expressed

explicitly in each Region:

Region I: v < kpry

sin {(k:%r% - V2)1/2 — (k32— 1/2)1/2

- l/[cos_1 (kTVrl> —cos™! (k;:rz)]} =0. (3.7)
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Region II: v~ krry
9 1/3
Ai (an) (v — kpry)| cos {(k:%r% —)Y2 — ycos™! (kTVT’2> — Z}

. 2 1/3 . _ 1% T
—Bi’ (/<3T7’1> (v — /{:Tﬁ)} sin {(k%r% — Y2 — ycos™! (kT7'2> - 4} = 0.

Region III: krr; < v < kpry

2sin [\/k%r% — 2 —vcos! <k:TVr2> — ﬂ

\/m_ ycos_1 ( 1% ) . 7T:| 62[\/y2—k%rf—ucosh*1(y/kTrl)] = 0. (38)
kTT’Q 4

Region IV: v = krro

62[‘ fv2—k2r?—v cosh_l(zz/kTm)]Bi/

2 1/3
(kTT2> (v = krr2)

—+ cos

(2>1/3(1/ — krra)

krry

+2A7

— 0. (3.9)

Lamb-type Waves

Under the assumption of Eqn. 3.3, the second terms of the elements in the solution matrix
D (shown in App. B) are of higher asymptotic order, and therefore may be neglected.
Additionally, the determinant of the eigen-matrix may be reduced and expressed in the

following single equation:

FRIE{T (@) Yo (@1) = T (01)Ys (@) H I (04) Yo (@3) — o (@3) Yo (04)}

160 n o (T (@2) Y (@1) — JL(@1) V@2 HIL (@)Y (@5) — JL (@) Vi)
—4V[ @3 { T (@) Yy (@1) = T (@1) Yo (@2) H T (@0) Y (@3) — T3 (@3)Ye (@)}

+ [ @aa{ T (@2) Yo (1) = S (@1) Y, (@) H T, (@4) Ve (@3) — o (@3) Yy (@a) }]

+ 2 fsfs =0 (3.10)

where f5 =202 — 03, fo =202 —&3.

Eqn. 3.10 has been expressed in such a way that a convenient form of asymptotes for
the cross-products of the Bessel functions containing two different arguments (given in
App. C.2), could be readily used. Asin the SH waves, the dispersion characteristic function
(Eqn. 3.10) is further simplified into nine regions by applying the appropriate cross-product
asymptotes for the Bessel functions corresponding to the different regimes, the nine regions

being:

Region I: v < @, Region II: v =~ w1, Region III: &1 < v < wo,
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Region IV: v = w9, Region V: &3 < v < w3, Region VI: v = @3,

Region VII: w3 < v < @4, Region VIII: v = @4, Region IX: &4 < v. (3.11)

where w1 = krr1, w9 = kpre, @3 = kpry, w4 = kpre. The graphical representation of

Region VI
V= ®,
\;:6) 3 Region YH
D;<v<®),
[ v=0,
| [Region VIII
V= O,
O =k, -1
0, =k, -n,
oy =k -1
: e i e EmInC O, =k -1,
N/ e L o,<v )
O | | | | |
0 Angular wavenumber, v 500

Figure 3.2: Lamb-type circumferential dispersion curves and regions defined for the Regional
Asymptotic methods (r; = 0.02m and ro = 0.025m, Steel as an example).

these regions is illustrated in the dispersion curves of Fig. 3.2, where the dispersion relation
is expressed explicitly for each region. Regions II, IV, VI, VIII are the transitional regions,
where the solutions are derived in the same way as those of the SH case, and are shown
in App. C.3. Regions I, III, V, VII and IX are expressed in terms of the fundamental
trigonometric functions which can substantially reduce the complexity of the calculations.

The key equations of the Regions are summarised below:
Region I: v < @&

c1sin(a; — ag) sin(as — ay) + ca cos(ag — ag) cos(ag — ay) + ¢z = 0. (3.12)

Region III: &) < v < @9

f52f62 —By . e 47 : -1
—q =—2>>—|( cosase +sma27 + 160" f1 fof3fa| sin age

fifafsfa
B1 2 51
+ cos a26> } sin(ag — ayq) — 4y2{)%~}c2f4 ( — sin age_ﬁl + cos 0426)
2 fifs 2
2 F B1
+f5f2f}fg (cos ase P —sin a262> } cos(ag — ayq) +c3 = 0. (3.13)
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Region V: s < v < w3

ey sinh(B1 — P2) sin(as — ay) + ¢5 cosh(B1 — P2) cos(as — ay) + ¢3 = 0. (3.14)

Region VII: &3 < v <@y
213
Jifaf3fa
B3 27 B3
+ cos a4e> } — 42 cosh(fy — Bl){ f6~f2~f4 < — cos oz4e— —sin a4e_ﬂ3>
2 fifs 2

2F F B3
+f5f§}fs (cos age P —sin a462>} +c3 = 0. (3.15)

B3 I
Sinh(,@Q — ,31){ (COS 0446_’83 + sin a462> — 161/4f1f2f3f4<sin a4e_ﬂ3

Region IX: @y < v
C6 Sil’lh(ﬁl — 62) Sinh(ﬁg — ﬁ4) + c7 COSh(ﬂl — ﬁg) COSh(ﬂg — ﬁ4) +c3 = 0. (316)

O fRfE 4 o Bhf | fifafs
where ¢ = P Fafals +16v° f1faf3fs, co= —4v { ol + Fifs },
f213 ; f2fifs | f3fats
:82 ’ :~§6 _164 ’ :_42 5~ 6~ ’
c3 =8v°f5fs, ca A ifah vififafsfa, cs v { i + it }
_ 1R V6UA T o o _ 42 fBhfs | f3fafs
o LR T RRb o= {h REAY
i = fF—veos T (v)w) — /4, B = 2 —vecosh L (v/@),

fi= @ =)V fi= @ -t (3.17)

7

The dispersion relations of the transitional regions contain Bessel functions associated
only to partial waves that are homogeneous. This ensures that the Bessel function that
is determined using the uniform asymptotes expressed in terms of the Airy functions

(Eqn. 3.1), could not become unstable.

3.1.3 Simplified Regional Asymptotic Method (SRAM)

Although using the RAM resolves the instability problem of the Bessel functions, the
dispersion relation equations derived using the RAM (Eqns. 3.7 - 3.9 and Eqns. 3.12 - 3.16),
may still contain numerous exponentially small and large terms. These terms normally
exist in the equations of the dispersion relation inside the “unstable Region” shown in
Fig. 2.5, where some or all the partial waves are inhomogeneous, as discussed in Sec. 2.3.
In fact, the very small and large terms in the equations, representing the exponential decay
of the partial wave amplitudes, and thus having a similar effect to the “large f-d” problem.
They can cause the dispersion relation function to grow exponentially, and eventually the

solutions break down at very high frequency due to numerical overflow.
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This “ill-conditioning” of the dispersion functions may be overcome simply by eliminating
the exponentially small terms that describe the mild coupling condition of the partial
waves between the surfaces when they become inhomogeneous. By doing so, a considerable
reduction of the function amplitude and a removal of the exponential growth nature of
the function can be achieved. This allows the iteration of the roots to be quicker and the

solutions to be more stable.

As an illustration, a comparison of the Lamb-type dispersion characteristic functions for
Region V between the RAM and SRAM is shown in Fig. 3.3; the roots of the function are
where the curve crosses the x-axis. It can be seen that the nature of rapidly increasing
oscillation amplitude is effectively removed when using the SRAM. Since only the zero
crossing points of the function are of any interest, reducing the oscillation amplitude of
the function would not in any way affect the accuracy of the results; this is reflected in

the accuracy plots later in Sec. 3.4.

18
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Figure 3.3: Lamb-type dispersion characteristic function of Region V at a frequency of 25MHz
for a curved steel plate structure (3mm thick and 20mm inner radius) using RAM (bottom) and

SRAM (top) with a “zoom-in” for low angular wavenumber values.

In Regions I and II of both the SH and Lamb-type systems, all partial waves are homoge-
neous or in the transition of becoming inhomogeneous. Therefore there are no exponen-
tially small and large terms in the dispersion relation of these regions which may cause
the “ill-conditioning” of the dispersion function; consequently, no further simplification of

the dispersion result is necessary in these regions.
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3. Asymptotic Analysis of Circumferential Guided Waves in Unloaded Plates

Shear Horizontal (SH) Waves

Region III: krr; < v < krry

In Eqn. 3.8, the second term is typically very small for all the parameters used in the
solution, and therefore can be omitted. Doing so is equivalent to neglecting the boundary
condition of inner wall completely, resulting in a simplified asymptotic dispersion relation

for a curved plate:

sin [,/k%«% —v2 —vcos ! (kyr > - Z} =0. (3.18)
72

Region IV: v =~ kpry

In this region, the first term of Eqn. 3.9 is exponentially small and therefore can be omitted,
resulting in a reduced dispersion relation for the whispering gallery type modes in a curved

plate:

Ai = 0. (3.19)

(2)" -

krra

Lamb-type Waves

The dispersion relations for the transitional regions are shown in App. C.4, in which the
exponentially small terms of the dispersion relations in the RAM (App. C.3) are identified

and eliminated.

Region III: &1 < v < @9

In Eqn. 3.13, terms with e=#1, where 3; is negative and large, are much larger than unity,

therefore c3 and the €' terms can be neglected and the dispersion relation in this region

becomes:
{% cos 042) + 16u4f1f2]i3f4 sin ag} sin(as — ay)
+4I/2{ — f(j{;? sin ag + fi;f};fg cos ozz} cos(ag — ay) +c3 =0. (3.20)

This simplification can be applied similarly to both Regions V and Region VII.

Region V: 0y < v < w3

—cysin(ag — ay) + c5 cos(as — aq) = 0. (3.21)
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Region VII: @3 < v <@y

(f§ = 92 FEF)(f3 cosau) = 0. (3.22)

Region IX: @4 < v

With further simplification of Eqn. 3.16, its equation may be expressed as a combination
of two Rayleigh equations describing waves on the outer and inner surfaces of the curved

plate that correspond to the first and the second half of the equation respectively:

{(21/2 — k%r%)z — 41/2\/1/2 — k:%rg\/ﬂ — k2r3}
(207 — K3rd)? — a2 — k22 — k2eR) =0 (3.23)

3.1.4 Partial Wave Analysis

The partial wave analysis [102] is an elegant way of representing the concept of guided wave
propagation. A guided wave of a particular wave mode may be decomposed into longitu-
dinal and shear partial waves that have appropriate amplitudes to satisfy the boundary
conditions at a given frequency. In a Lamb-type system, the physical behaviour of the
partial waves corresponding to each region (shown in Fig. 3.2) is illustrated in Fig. 3.4.
The length of the arrows in the figure indicates the amplitude of partial waves at the
inner r; and outer ry radii, while the direction of the arrows show the angle of interaction

between the partial waves and the boundary surfaces.

In general, the longitudinal and shear partial waves are reflected from the inner and outer
surfaces of the curved plate at a reflected angle which is the same as the incident angle; an
angle that is between the incident /reflected wave and the normal of the surface. However,
in cylindrical coordinates, the general direction of the wave front of these partial waves
rotates around the central axis. As a result, there is an infinite set of longitudinal-shear

partial wave pairs along the surfaces that are dependent on the 6 direction.

As the frequency increases, the incident and reflected angles increase simultaneously. At
the point where the dispersion curve of a mode touches the line ¥ = @; in Region II (see
Fig. 3.2), the longitudinal partial wave is tangential to the inner surface. Subsequently, as
the dispersion curve crosses the line v = @ into Region 111, the longitudinal partial wave
on the inner surface must change from homogeneous to inhomogeneous (i.e. from real to
imaginary wavenumber) in order to ensure its resultant amplitude is the same as the other

partial waves.

As the frequency increases, the rest of the partial waves become inhomogeneous waves
sequentially as the dispersion curves cross the lines v = @9 3 4 in Regions IV, VI and VIII

respectively, as shown in Fig. 3.4. The wave modes eventually converge into the surface
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Rayleigh waves when both the longitudinal and shear partial waves become inhomoge-
neous. The behaviour of the partial waves that comprise the solution is in general very
different in each region, and hence the asymptotic solutions of the Bessel function in the

appropriate regime are used.

—> Homogeneous partial wave
Longitudinal partial wave ——> Shear partial wave ~ ———=> Inhomogeneous partial wave

Figure 3.4: Partial wave pattern at the boundaries of a generalised curved plate structure cor-
responding to the various locations in the dispersion curves of Fig. 3.2. (a) Region L. (b) v = @;.
(c) Region III. (d) Region V. (e) Region VII. (f) Region IX.

3.2 Implementation of Numerical Solutions

The analytical dispersion characteristic equations of both the exact and asymptotic meth-
ods for a single layered unloaded curved plate have been implemented in a Matlab™
program, from which the modal solutions, also known as the roots of the characteristic
equations, are computed. The program evaluates the solutions in the frequency-angular
wavenumber w-v domain, and traces and joins the roots that belong to the same wave
propagating mode. The tracing routine used is very similar to that used by Lowe [9] with

some minor modifications, such as the choice of iteration and sweeping domains.

To trace the dispersion curves, a number of fundamental parameters defining the geomet-
rical and mechanical properties of the problem must be first defined. The program then
selects two close angular wavenumber values (v 2) chosen preferably in the region v > @
where the gradient of the curves in the working domain v — w is similar between wave

modes.

There is in general an infinite number of frequencies w that can satisfy the dispersion
relation for any one angular wavenumber. Therefore an upper frequency limit must be
specified to restrict the number of wave modes traced. The program steps and iterates in

the w domain up to the specified upper frequency limit, where a finite number of frequency
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roots wy, for both v and v, is evaluated.

A . sweeping
+ search range +—x—
7] ' dw
~ Y
3
N’
' .
Q h ' X
= ' : .
9 .1/ «———extrapolation
S vt
5] ;
= ' !
=~ \&

starting points (v, ,~©,)

\4

[ [
Angular wavenumber (v)

Figure 3.5: Illustration of a typical dispersion curves 1D-iteration and tracing procedure.

Each pair of these roots v awy, provides the starting point for the first m modes, and is used
to linearly extrapolate an estimated angular wavenumber value in a small frequency step
dw. Convergence is obtained by iterating over a range of angular wavenumbers (sweeping)
as demonstrated in Fig. 3.5. The program switches to a quadratic extrapolation once a
third point is found. Doing so can usually provide a better estimation for the extrapolation,

and thus a reduction in the overall number of iterations.

The stepping size in frequency dw might be reduced when there are two closely located
roots found in the sweeping range, or when the gradient is very extreme to extrapolate
accurately. In general, a large step can be used in the regions where v > kpr; for the SH
case and v > kpri for the Lamb-type case. This is because the dispersion curves in these
regions have gradients that vary little with frequency. The tracing process is repeated for

all m modes.

In addition, Matlab™ automatically registers the value of double precision variables with
“Inf” or “0” when they become overflow or underflow respectively, as discussed in Sec. 2.3.
Using these properties, it would possible to distinguish if the instability is caused by
the Bessel functions or the “large f-d” problem; the Bessel function breakdown causes
the value of Y, (@) in the solution (Eqn. B.1) to become Inf, while the determinant of
the solution matrix becomes Inf if the solution breakdown is caused by the “large f-d”

problem.

When using the regional methods, extra procedures are included to determine the region
in which the estimated w-v is located, allowing an appropriate dispersion relation to be
used. Nevertheless, there is one obvious difficulty in applying such a regional scheme.

Since the equation of the dispersion relation is different for each region, a discontinuity
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may occur at the boundary of any two regions. By increasing the sweeping range, the
discontinuity problem of the curves can often be resolved, but this may just as easily cause
the extrapolation to track the neighbouring mode. To rectify this problem, a much smaller
frequency step dw for the extrapolation is automatically applied near the boundaries when
regional schemes are used. The general concept of the tracing routine is summarised with

the flow chart shown in Fig. 3.6.

Input the basic parameters
e.g. .1, Cp, Cp, starting v,
and tracing scheme type

Determine the Region
based on » and v
' 1 lNo
Choose an appropriate
dispersion relation function

_Yes

Is this a regional scheme?

Use stored
data to plot

Increase the
number of
iterations

dispersion { Bi-section iteration
curves ¥

Yes ‘ Is thi_s less than the ‘ No 1 .
Is this the |No specified accuracy? Sweep in frequency
last mode? Yes to evaluate roc?ts 0,
A Store results corresponding
Repeat for the m" ! tov, and v,
mode and start :
tracine usin < Yes Has the solution reach the ‘ ﬂ‘
the startging ro%)ts assigned frequency limit?
¢ No

[Extrapolate for an }

estimate v value { Step in frequency d® }

No { Is this the starting v, and v, ? J Yes

bTM

Figure 3.6: Flow chart of the tracing routine that has been implemented in a Matla program.

A Bi-Section Method (BSM) [103] is used for the iteration in this program; the BSM
is a very simple method to use but is regarded as inefficient. Other potentially more
efficient methods such as the Newton’s method ([104]) have been considered. However
due to the exponential growth nature of the dispersion functions (Fig. 2.8), these methods
often add and subtract extremely unequal numbers, resulting in higher numerical rounding
errors compared to the BSM. It appears that the BSM has provided a much more stable
scheme for this kind of problem as it only makes use of the polarity of the function at
each evaluation, while ignoring the solution magnitude. The solutions are iterated until a
minimum accuracy of a specified value is obtained. In all the calculations of this chapter,
an accuracy of 1 x 107? was used; the value was chosen so that the numerical error is

many orders less than the error caused by using the asymptotic methods.

Additionally, the routine has been programmed to solve the characteristic function of a

62



3. Asymptotic Analysis of Circumferential Guided Waves in Unloaded Plates

multilayered curved plate using the classical exact global matrix method [98]. The Global
Matrix [G] forms a secular equation that relates the partial waves amplitudes {A} at each

layer boundary to the external boundary conditions of the system in the following form:
[G{A} =0. (3.24)

However, as there are currently no asymptotic solutions available for multilayered struc-
tures, solutions are likely to suffer from instabilities at high frequencies due to the reasons

discussed previously in Sec. 2.3.

3.3 Numerical Examples

As an example, numerical results of the dispersion curves for the circumferential SH and
Lamb-type waves of a curved plate were calculated using the exact solution and the three
asymptotic approximation methods with the tracing routine described in the previous
section. The curved plate structure investigated was composed of steel that has material
properties of C;, = 5960m/s, C7 = 3260m/s and p = 7932kg/m3. To demonstrate
the effect of curvature, three geometries have been carefully chosen so that the solution
corresponding to the same mode breaks down at different frequencies; these example
geometries are tabulated in Tab. 3.1. The curvature of a plate is defined by the “d/r,”

ratio in this thesis, where d is the thickness and r; is the inner radius.

H ri(m) ry(m) Curvature: % =
geometry 1 0.02 0.021 0.05 1.05
geometry 2 || 0.02  0.023 0.15 1.15
geometry 3 || 0.02  0.025 0.25 1.25

Table 3.1: Geometries of the curved plate used for the case study in this thesis.

SH waves

Fig. 3.7(a) shows four dispersion curves of the SH type wave modes that are calculated
for the geometry 2. Due to the large number of modes existing in the frequency range
of interest, only every 20*” mode is presented in the graph to give a better visual quality.
Using the exact method (top graph), it is evident that the solutions break down at the high-
frequency high-angular wavenumber region as expected. Replacing the Bessel functions in
the dispersion relation with the uniform asymptotes (Sec. 3.1.1), as shown in the second

graph, did not result in any improvement in the stability of the solutions. This is shown
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by comparing the frequency at which these curves break down to those of the exact case
in graph 1; the breakdown point of each curve is marked with a cross in Fig. 3.7. As
mentioned earlier, the time required to trace these curves using the UAM was significantly

reduced.

By using the RAM (shown in the third graph from the top in Fig. 3.7(a)), the dispersion
relation function becomes more stable and its solution could consequently be obtained at
higher frequencies. Nevertheless, despite the improvement in stability compared to the
UAM, the solutions can be seen to break down at even higher frequencies. The RAM
eliminates the instability of the Bessel functions, therefore any further breakdown of the

RAM solutions would have to be caused by the “large f-d” problem.

This is further confirmed by the SRAM, shown in the bottom graph of Fig. 3.7(a), where
solutions are obtained for dispersion curves of all three geometries at any frequencies.
Further investigation has indicated that there are no signs of any solution breakdown up
to a frequency that is twice of that shown in Fig. 3.7(a). The dispersion functions of the
SRAM do not grow exponentially with increasing frequency; as a result, there should not

be any frequency limit at which the solutions become unstable.

Lamb-type waves

Figs. 3.7(b - d) present the Lamb-type dispersion curves that were calculated using the
exact and asymptotic methods for geometry 1 to 3 respectively; the red and blue curves
in the figures are used to distinguish between the neighbouring modes. Again for clarity,

only every 5th mode is plotted here in the figures of the Lamb-type cases.

In order to compare dispersion curves of different geometries, both the frequency w and the
angular wavenumber v must be scaled with the thickness d and the radius corresponding
to the mid-point through the thickness of a curved plate ;4 (Eqn. 3.25). By doing so
the circumferential wave dispersion curves are located in a similar location of the graph
regardless of their geometry. However, it is worth stressing that the dispersion curves are
only universal for geometries with the same ry /7 ratio. All graphs in the Lamb-type case
(Figs. 3.7(b - d)) were traced to an upper frequency-thickness (fd) limit of 0.18MHz-m.
This is to ensure that a similar number of modes are presented in each graph to provide

a good visual comparison.

v-d

T'mid

Scaled frequency,w = f-d, Scaled wavenumber, v = (3.25)

As in the SH case, the UAM does not improve the stability of the dispersion curves in
the Lamb-type case. The solutions of both UAM and exact method fail at exactly the
same frequencies, as illustrated in the top two graphs of Figs. 3.7(b - d) for all three
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geometries. In general, the value of the fd product at which the exact solutions of a
particular mode break down, increases with increasing curvature, though the cause of this
solution breakdown in each geometry case might vary between the “large f — d” problem

and the breakdown of the Bessel functions.

In the case of ro/r; = 1.05 (Fig. 3.7(b)), the exact solution breakdown is caused by
the instability of the Bessel functions. Using the RAM, a dramatic improvement in the
solution stability is achieved in the dispersion curves. Nonetheless, the lower order modes

still break down at very high fd products.

In the case of ro/r; = 1.15 (Fig. 3.7(c)), though the breakdown of the exact solutions is
caused by the instability of the Bessel functions, the elements of the characteristic eigen-
matrix D at the point of the breakdown contain some extremely large and small terms.
Because of this, the solutions are as likely to fail by the “large f-d” problem as much as
by the breakdown of the Bessel functions. It is not surprising that only a very little extent
of the dispersion curves is further traced when the RAM is used, compared to the exact
method.

As the curvature increases, such as in the case of ro/r; = 1.25 (Fig. 3.7(d)), the “large
f-d” problem becomes dominant. It can be seen that there is no improvement compared
to the exact method when using either UAM or RAM. This suggests that any solution
breakdown at this geometry is purely caused by the “large f-d” problem. Such trend of
increasing domination of the “large f —d” problem over the breakdown of Bessel functions
can also be observed in the graphs (3) of Figs. 3.7(b - d), corresponding to r2/r; increasing
from 1.05 to 1.25. In this sequence of figures, the fd product values at which the solutions

break down decreases.

Finally, by using the SRAM (graphs (4) of Figs. 3.7(b - d)), any instability nature of
the dispersion relation is removed, and it is possible to trace solutions for all modes, and
at all frequencies. The asymptotic methods have unquestionably solved the numerical

instability problem discussed earlier in Sec. 2.3.

The dispersion curves in this chapter are plotted along the frequency-angular wavenumber
w-v axes. Other forms of dispersion curves such as the tangential phase velocity V,; and
the group velocity Vg, are sometimes more commonly used because of their physical
meanings to certain applications. The tangential V,;, and Vi, of the wave modes can be

easily converted from the w-v domain, using the following relationships:

Von(rad/s) = % (3.26)
Vgr(rad/s) = g—b: (3.27)
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Figure 3.7: Frequency-Angular wavenumber dispersion curves using various analytical methods
(1) Exact, (2) UAM, (3) RAM, (4) SRAM, where the breakdown points of the solutions are marked

with crosses (x).
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3.4 Comparison of Asymptotic Methods

3.4.1 Accuracy

A simple observation of the dispersion curves reveals few differences between the results
obtained using the exact method and the asymptotic methods, shown in Fig. 3.7. However,
some errors at very low frequencies are expected as noted in Sec. 3.1. This is because
the Debye’s asymptotes used for the substitution of the Bessel functions are intended
for large-orders and large-arguments, and thus they could easily hit their limits at low
frequencies. Although the exact solution, which is extremely stable at low frequencies,
can in theory be used instead of the asymptotic solutions at these frequencies to achieve
an all-round accuracy for the dispersion curves, but for comparison purposes of each

asymptotic method, this is not implemented at this stage.

To investigate the accuracy of various asymptotic methods preciously, a more specific
analysis is conducted to measure the relative error of the dispersion curves. The relative
error is defined as the absolute percentage difference in angular wavenumbers v between
the asymptotic (V(aymptotic,m,w)) and the exact (V(czqct,mw)) methods, and it is normalised

by the angular wavenumber of the exact method:

Relative Error(%) = Haymptoticimyw) — Pleaactme) (3.28)

V(exact,m,w)

The percentage error is measured for every mode m at a frequency step, dw. This per-
centage error can then be mapped over the area of the corresponding dispersion curves for

each asymptotic method, presented in a three-dimensional plot.

Unfortunately, the calculations of the relative error are limited to positions where the
exact solution is computable. As a result, only modes which exist at frequencies that are
lower than the breakdown frequency of the first fundamental mode when using the exact
method are compared. The area of investigation is indicated by the rectangular boxes in

the dispersion curves, shown in the plot (a) of Figs. 3.8 to 3.11.

As the asymptotic solutions become increasingly accurate with increasing frequency, the
comparison in these rectangular boxes between various asymptotic and exact methods
should have higher errors relatively compared to that at higher frequencies; therefore the
comparison is representative of the investigation of the accuracy for these methods in the

worse case scenario.
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Figure 3.8: Measurements of the relative percentage error in angular wavenumber v of the

circumferential shear horizontal dispersion curves in an annular steel structure (geometry 2 :

ro/r1 = 1.15). (a) 3-D error plot of the UAM, projecting over the calculation area of the ex-
act dispersion curves. (b) 3-D error plot of the RAM. (c¢) 3-D error plot of the SRAM.
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Figure 3.9: Measurements of the relative percentage error in angular wavenumber v of the

circumferential Lamb-type dispersion curves in an annular steel structure (geometry 1 : ro/r; =

1.05). (a) 3-D error plot of the UAM, projecting over the calculation area of the exact dispersion
curves. (b) 3-D error plot of the RAM. (c) 3-D error plot of the SRAM.
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Figure 3.10: Measurements of the relative percentage error in angular wavenumber v of the
circumferential Lamb-type dispersion curves in an annular steel structure (geometry 2 : ro/r; =
1.15). (a) 3-D error plot of the UAM, projecting over the calculation area of the exact dispersion
curves. (b) 3-D error plot of the RAM. (c¢) 3-D error plot of the SRAM.
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Figure 3.11: Measurements of the relative percentage error in angular wavenumber v of the
circumferential Lamb-type dispersion curves in an annular steel structure (geometry 3 : ro/r1 =
1.25). (a) 3-D error plot of the UAM, projecting over the calculation area of the exact dispersion
curves. (b) 3-D error plot of the RAM. (c) 3-D error plot of the SRAM.
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SH waves

Fig. 3.8 shows a three-dimensional error plot of the SH mode using geometry 2 and all three
asymptotic methods; the 3-D error plot is assembled using approximately 500 grid points
in each axis. For the UAM shown in Fig. 3.8(a), the solutions are extremely accurate,
having a relatively error of less than 0.00005% generally. The relatively high level of
error in the very low frequency region is anticipated because of the use of high-order high

argument asymptotes for the Bessel functions.

For the regional asymptotic methods (i.e. the RAM and SRAM shown in Figs. 3.8[b -
c]), it can be seen that the level of error is in general slightly higher than that of the
UAM. This is attributed to the further simplification of the dispersion relation used in
these methods. Additionally, a relatively high level of error is also detected at which the
boundaries between the two neighbouring regions are located, for example at v = cpry.
This is caused by the fact that the expressions of the dispersion relation in different
regions become less accurate at these boundaries where they reach their limits. This
results in a slight discontinuity between any two regions. The effect of this discontinuity
has been minimised by using the dispersion relations of the transitional regions in which
their solutions are typically uniform across the neighbouring regions. This effect may
further reduce by taking a higher constant value in Eqn. 3.6 to increase the size of the
transitional region area, however this increases the complexity of the calculations at the

same time.

Lamb-type waves

Figs. 3.9 to 3.11 present the three-dimensional error plots of the Lamb-type modes for
the various asymptotic methods associated with the geometries 1, 2 and 3 respectively.
These 3-D plots are assembled using a different number of grid points depending on the fd
range of investigation. In the Lamb-type case, the percentage error is significantly higher
than that of the SH case. This is because the Lamb-type dispersion relations are far more

complex than those of the SH case.

In general, the accuracy of the solution depends on the accurate description of each term
in the dispersion relation. In the asymptotic methods, these terms are substituted with
asymptotes, and in cases of the SRAM, these terms may even be further simplified by
utilising only the leading orders of the asymptotes. It can be seen that the total error
can be easily accumulated when calculating the dispersion function that comprises many

asymptotic terms.

The sharp peaks of the error amplitude at the very low frequencies are due to the same

reason as the SH case. The amplitude of these sharp peaks has been truncated to enhance
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the visual details in the 3-D error plot for the rest of the dispersion curve area. The high
level of error at the boundaries between the regions is clearly visible. This is even more
obvious in Regions VIII and IX of the SRAM (Fig. 3.2), where the dispersion relations have
been heavily simplified as the partial waves on the inner and the outer surfaces become
weakly coupled; this areas are indicated by label “A” in, for example, Figs. 3.10(c) and
3.11(c).

The solutions for the UAM generally have an error of less than 0.001% in most parts of
the dispersion curves, and a slightly higher level of error is observed at locations where the
curves are very close to each other. On the other hand, for the regional methods, solutions
have an error of typically less than 0.01%, except at locations near the boundaries between
two regions. Overall, the RAM appears to behave better near the boundaries than the
SRAM. In spite of this, the worst accuracy near the boundaries occurs at a very low
frequency and has a value of no more than 0.1%, which in most cases is sufficient to

provide an extremely good prediction to the dispersion relation.

To sum up, simplification of the dispersion relations using all three asymptotic methods
has been shown to retain a high degree of accuracy. This accuracy generally increases
further with increasing frequency. Therefore even in the area near to the boundaries, the

accuracy is exceptionally high in the high frequency region.

3.4.2 Speed

On top of the asymptotic methods being accurate, they are also extremely robust. The
speed of the tracing routine is compared between the exact and asymptotic methods.
Fig. 3.12 shows a comparison of the time in seconds that is required to trace the first 45
Lamb-type modes of the dispersion curves for the geometry 1 using various methods. An
upper frequency limit is set at 32MHz. The calculations were performed with the tracing
routine described in Fig. 3.6 using a computer with a Pentium IV 2.4GHz processor and

512MBytes of random access memory.

In the UAM, Airy functions are used instead of the Bessel functions; they are much
easier to compute numerically, resulting in halving the tracing time compared to the exact
method. A further reduction in the tracing time is achieved when using the RAM which
expresses the dispersion relations in each region separately; this eliminates the need to
assemble the eigen-problem matrix D in each iteration, allowing the RAM to speed up
significantly. In the case of tracing the dispersion curves using SRAM, the solutions are
well-conditioned, where the moderately oscillating amplitude can substantially allow the

number of iterations needed for convergence to be reduced.
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Figure 3.12: Time for tracing the Lamb-type circumferential dispersion curves for a Imm thick,

20mm inner radius annulus steel structure using exact and Asymptotic methods.

3.5 Summary

This chapter has shown that the normally unstable exact dispersion relation of the circum-
ferential guided elastic waves can be made stable by using asymptotic methods, allowing
the solution to be extracted at all frequencies and geometries. The dispersion relations in
these asymptotic methods can, in general, be related to the nature of the partial waves at

different parts of the dispersion curves.

The steps of a numerical scheme to trace dispersion curves have been summarised. Using
this tracing routine, numerical examples of several curvature radius cases, using both the
exact and asymptotic methods, have been presented. Subsequently, the type of instability
that causes the breakdown of the exact dispersion relation have been analysed using these
examples. Furthermore, both the accuracy and the robustness of the solutions have been

examined thoroughly for all three asymptotic methods.
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Chapter 4

Curvature Effect on Propagation

Properties in Unloaded Plates

Having demonstrated the accuracy and the effectiveness of the asymptotic methods in the
previous chapter, the curvature effect on the propagation properties can now be thoroughly
analysed at any frequency and for any wave mode using these solutions. In this chapter,
a quantitative method to calculate the difference in phase velocity between straight and
curved plates is introduced. The outcome of this provides a plain graphical interpretation
representing the influence of the curvature at various frequencies for a particular mode;
these graphs subsequently allow one to pick the best excitation frequency at which the

mode is best suited for a particular engineering application.

In the second half of this chapter, the physical behaviour of the wave modes in a curved
plate, such as the mode shapes, is examined; this behaviour may then be related to the
propagation properties. Additionally, the features of the dispersion curves for a curved
plate are explained using the“ method of bounds”. This chapter is based on work published
in Fong et al. [105].

4.1 Analytical Predictions of the Curvature Effect

To analyse the effect of curvature, the phase velocities of wave modes in both straight
and curved plates must first be calculated numerically. In the case of the straight plates,
solutions of the dispersion curves can be readily obtained from a general purpose commer-
cial program, Disperse [98]; whereas for the case of the curved plates, the solutions are
evaluated numerically in the w — v domain using the numerical tracing routine described
in Sec. 3.2, and are subsequently converted into the V), — w domain using Eqn. 3.26.

The solutions were calculated using the exact formulation (Sec. 2.2.5) where possible, and
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4. Curvature Effect on Propagation Properties in Unloaded Plates

the asymptotic methods (Sec. 3.1) where the exact solution becomes unstable. This en-
sured that the calculations of these dispersion curves in any frequency range are extremely

accurate.

10.0

1

1

Vph (m/ms)

1

0.0

0.0 0.012

Frequency-thickness product (MHz mm)

Figure 4.1: Phase velocity dispersion curves of an aluminium straight plate (Solid lines) of 3mm
thickness (d) and an aluminium curved plate (Dashed lines), d = 3mm and r; = 0.02mm. The

curves are labelled according to the straight plate system.

Fig. 4.1 shows the phase velocity dispersion curves for both straight and curved plate
cases. The Lamb modes in a straight plate can, in general, be separated into two families
depending on the symmetry of the displacement mode shapes with respect to the mid-
plane of the plate. The labelling of Lamb modes in a straight plate is in accordance to
this symmetry property, with A and S correspond to the antisymmetric and symmetric
modes. Only the curves for the straight plate are labelled in Fig. 4.1. However, although
dispersion curves of the curved plate may be found at locations close to those of their
straight plate counterparts as can be seen in Fig. 4.1, these modes cannot be labelled in

the same way.

For a curved plate system, there is no absolute distinction between symmetric and anti-
symmetric mode shapes, due to the difference in curvature between the inner and outer
surfaces. The plate no longer possesses a symmetry through the thickness and thus these
modes become “quasi plate modes”. As a result, the through-thickness displacement fields
of these curved plate modes correspond only to “near symmetric” or “near anti-symmetric”
distribution, and these two natures may interchange from one section to another along the
dispersion curve of a specific curved plate mode. This interchanging of symmetrical natures
is linked to a repulsion phenomenon of the dispersion curves, which will be discussed later
in Sec. 4.3.3. Nevertheless, the dispersion curves are often very similar to those of the

straight plate case.
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4. Curvature Effect on Propagation Properties in Unloaded Plates

The difference between these curves can be very subtle, and may be detected only upon
careful inspections at certain frequencies. Therefore the significance of the curvature effect
on wave modes in an unloaded plate may be quantified by comparing the phase velocity
Vpn, directly as a function of frequency between straight and curved plates over a range of

curvatures using the following relationship:

abs[Vpp(straight pl.) — Vpp,(curved pl.)]
Vpn (straight pl.)

Normalised diff. in Vp,(%) = -100. (4.1)

In a curved plate system, the wave properties such as the linear phase velocity calculated
using Eqn. 3.26 vary depending on the radial position at a particular frequency. There-
fore before the phase velocities between the straight and curved plates can be compared,
the circumferential wave speed must be recalculated along the mid-line position through
the plate thickness (r,,;q4) so that it is compatible with that of the straight case; the

corresponding equations for calculating the linear phase and group velocities are:

Vn(m/s) = = - ryuia (42)
Vor /) = 5 - v (4.3

As an example, the first four fundamental modes are investigated here in this chapter,
namely the Ag, Sg, A1 and S; modes in the straight plate; these modes are commonly used
for non-destructive evaluation, therefore have a higher investigation value. Additionally,
their dispersion curves are of the least complicated nature as they intersect with other
modes in the phase velocity-frequency domain for both the straight and curved cases,
thus allowing a direct comparison between these two cases easily. By contrast, it would
be a lot harder to compare the higher order modes directly because the symmetric and
the neighbouring anti-symmetric modes cross each other typically at phase velocity higher
than the longitudinal bulk velocity in the straight case, while the curved plate counterparts
do not cross. A detailed examination of the mode crossing phenomenon is presented in
Sec. 4.3.3.

The comparisons are carried out using dispersion curves calculated for a 1mm thick alu-
minium plate, and with the material properties of Cp = 6320m/s, Cr = 3130m/s and
density, p = 2700kg/m>. The comparison of the phase velocity for each of these modes
forms a three-dimensional surface plot, shown in Fig. 4.2, with a frequency range of 0 to
6MHz, and an inner radius range of 0 to 0.1m, where the parametric surface represents

the amount of the phase velocity differences between the straight and curved plates.

In all four cases, the dispersion profile of the normalised phase velocity difference is not

dependent on the inner radius which also known as the curvature radius in this thesis;
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their amplitudes decay rapidly with increasing radius, showing as expected, that the phase
velocity converges to the velocity of the straight plate case as the curvature reduces.
Additionally, it can be observed that the velocity difference is significantly higher in all

four cases at the very low frequencies.
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Figure 4.2: Effect of curvature on the phase velocity of (a) Ag, (b) Sp, (¢) Ay and (d) S; modes.

The surface plots show the percentage difference in phase velocity V,, between the straight and

curved plates as a function of frequency at the mid-wall radius (r,;4) for a Imm thick aluminium

plate. The solutions of the phase velocity were calculated using analytical methods detailed in the

previous chapters.

In the case of the Ay mode, its phase velocity tends to zero as the frequency reduces,

as a result, the percentage differences may appear to be substantially larger when the

absolute phase velocity difference is normalised with this phase velocity value at these low

frequencies.

In the case of all other modes, both wave modes of the curved and straight plates become

non-propagating at their cut-off frequency (for example shown in Fig. 4.1), and their phase

velocity tends to infinity. Additionally, the “out of plane” (radial) displacement field of this
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4. Curvature Effect on Propagation Properties in Unloaded Plates

“quasi-Sp” mode becomes antisymmetric, while the “in-plane” (tangential) displacement,
which usually has a very small amplitude, remains symmetric. This mode corresponds to
the vibration “breathing mode” of a pipe, where it can only vibrate as a whole and no
energy can be transmitted from one location to another around the circumference. Below

the cut-off frequency, the surface boundary condition can no longer support this type of

wave motion.

Cut off frequencies
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Figure 4.3: Dispersion curves of the “quasi-Sy” mode for aluminium plates of a range of thickness

to radius ratios (d/r1) at location near their cut off frequency.

The cut-off frequency of the curved case in general increases with increasing thickness to
radius ratio of the curved plate (i.e. o curvature), as shown in Fig. 4.3. This phenomenon
can be attributed to the change of curvature in the plate system, and consequently alters
the nature of the waves that interact with the boundaries of the propagation system,
resulting in a shift of cut-off frequency of the wave mode. The phase velocity changes
rapidly close to the cut-off frequency; for this reason, the difference between the straight
and curved cases at location close to their cut-off frequency can appear to be very large

in the higher order mode cases when comparing.

Using the dispersion profile in these three-dimensional plots shown in Fig. 4.2, it is possible
to locate a frequency at which the mode is least sensitive to the curvature. The advantage
of performing NDT inspection at this frequency is that the received echoes would allow one
to locate the corresponding features precisely regardless of whether curvature exist along
the propagation direction. These frequencies for the four modes of interest are labelled as

“optimal frequency” and are indicated in Fig. 4.2.
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4. Curvature Effect on Propagation Properties in Unloaded Plates

4.2 Physical Properties of Waves in Curved Waveguides

As shown earlier in the previous sections, the phase velocity depends on both the frequency
and curvature radius. The through-thickness displacement mode shapes of a particular
mode can govern its phase velocity at a given frequency. In this section, the relationship
between the change of the mode shapes and that of the phase velocity as the plate curvature

changes is investigated.

One major factor of this curvature dependency is the difference in curvature between the
boundaries at the top and bottom surfaces. As a result, the displacement mode shape
distribution for the curved plate modes tends to shift towards either surface compared to
the straight plate case; there is no longer a symmetry in distribution along the mid-line of
the thickness. The level of this mode shape shift might generally increase with increasing

curvature.

As an illustration, the displacement mode shapes of the fundamental zero order symmetric
(So) and anti-symmetric (Ag) modes at the selected frequencies may be compared visually
between the straight (thickness: 1mm) and curved (thickness: 1mm, inner radius: 10mm)

plates, as shown in Fig. 4.4.

It can be seen that both the Ay and Sg modes in the case of the straight plate converge
to the surface Rayleigh wave speed at high frequencies, however these wave modes do not
behave in the same way as soon as the curvature is introduced. Once again using the
partial waves technique, discussed in Sec. 3.1.4, to decompose a mode into longitudinal
and shear partial waves that interact with the boundaries at the inner and outer surfaces,

it is possible to comprehend the physical behaviour of these two modes.

The idea of the asymptotic regions in Fig. 3.2 and the corresponding behaviour of the
partial waves in Fig. 3.4 will be referred to considerably in this section for the explanation
of various phenomena. Here the behaviour of the “quasi-Ag” and “quasi-Sp” modes in
three different curvature ranges is considered, including a moderately curved case, and

cases when the curvature is either very large or very small.

Moderate Curvature Radius

When a plate is moderately curved, the dispersion curve of the “quasi-Sy” mode appears
in Region VIII (Fig. 3.2) at high frequencies; in this region, only the partial waves at the
inner surface are completely inhomogeneous and have amplitudes much greater than that
at the outer surface. As a result, most of the energy concentrates only on the inner surface
at these frequencies as shown in Fig. 4.4, hence the corresponding phase velocity can be

thought of as the phase velocity for the Rayleigh wave on the concave surface [74].
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4. Curvature Effect on Propagation Properties in Unloaded Plates

Small Curvature Radius

On the other hand, when the curvature of a plate is large such as that used for Fig. 3.7d
(d/r1=0.25), all higher order modes tend asymptotically to the “quasi-Sy” mode in Region
VIII at high frequencies, where they share the same physical behaviour. And as a result,
when the curvature of the system is large, these higher order modes would eventually
become the Rayleigh wave on the concave surface in the same way as the “quasi-Sg mode

as the frequency increases.

Large Curvature Radius

When the curvature of the system is small, the width of Region VIII narrows and the
“quasi-Sp” mode crosses the boundary v = @, into Region IX, where partial waves on
both the inner and outer surfaces become inhomogeneous. As expected, the mode shapes
of the “quasi-Sp” and “quasi-Ag” modes and their corresponding linear phase velocities
may become similar to each other in this region. In addition, the curves of the higher order
modes can no longer converge to the “quasi-Sp” mode at high frequencies, but instead they

converge asymptotically to a single wave speed in the Region VIII.

As r; — o0, the properties of the “quasi-Sy” and “quasi-Ay” modes would eventually
coincide and Region VIII disappears as the boundaries v = @3 and v = @4 merge, while

the higher order modes converge to the shear bulk velocity.

Whispering Gallery Wave

For the “quasi-Ay” mode, the partial waves become inhomogeneous on both surfaces at
high frequencies. Therefore the displacement decays exponentially towards the mid-plane
from both surfaces; the decay is represented by the nature of the Bessel function of the
second kind Y, (z) where v > x. However, due to the curvature effect, the decay of
displacement amplitude away from the outer surface decays much faster than that on the
inner surface. In this case, as the frequency increases, most of the energy concentrates
relatively on the outer surface, forcing the phase velocity to match the velocity of the

Rayleigh wave on the outer surface, or the whispering gallery wave [106].

The pure whispering gallery wave can be easily calculated by considering a rod where
waves propagate in the circumferential direction. This eliminates the boundary condition
at the inner surface to simulate the condition where the partial waves are decoupled from
the inner surface of the curved plate at high frequencies. Furthermore, since the boundary
conditions (ogg and 0,9 = 0) are axially symmetric, the components associated with the

outgoing radiation are not required and the general solutions (Eqn. 2.12) can be reduced
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4. Curvature Effect on Propagation Properties in Unloaded Plates

to the following forms:
o(r,0) = [aljl,(kLr)]ei”g, (T, 0)solid = [GQJV(kTT)]eiVG. (4.4)

The secular equation of the dispersion relations is constructed by substituting these general
solutions back into Eqn. 2.17. The solution of first fundamental mode of this secular
equation is the whispering gallery wave. The dispersion curve can then be extracted as
described in Sec. 3.2.

It can be seen in Fig. 4.4 that at high frequencies the “quasi-Ay” mode converges to the
speed of the whispering gallery mode, indicating that the energy of the “quasi-Ay” mode

is trapped very close to the outer surface.

Mode Shapes Comparison

In general, the degree of difference in the displacement mode shapes between the straight
and curved plates can be linked directly to the difference in the phase velocity. This is
further illustrated, for example, in Fig. 4.2(a), at 1IMHz and 6MHz for the “quasi-Ag”
mode, where the differences in phase velocity correspond roughly to the minimum and
maximum respectively within the range of interest. At these two frequencies, the “quasi-
Ap” mode, as shown in Fig. 4.4, is found to have the minimum and maximum differences in
displacement mode shapes between the straight and curved plates when compared visually.
It is thought that the study of the mode shape similarity can provide an interesting insight

into the curvature effect.

The similarity of the mode shapes can be investigated using a “displacement dot prod-
uct” method modified from Beard [2], which involves comparing the two “out-of-plane”
(i, and 4, ), and the two “in-plane” (4, and ug) through-thickness displacement vectors
between the straight and curved plates. The ~ denotes the vector of through-thickness
amplitudes, and = and z are the “out -of-plane” and “in-plane” directions of a straight
plate respectively, while r and 6 are the corresponding directions of a curved plate (see

Fig. 4.5 for illustration).

Mathematically the similarity of the displacement vectors between the straight and curved
plates can be described by a similarity factor “S” which is evaluated by taking the av-
erage dot product of the vectors in the “in-plane” and “out-of-plane” directions in turn
(Eqn. 4.5). The similarity “S-factor” equals zero if the mode shapes under comparison are

identical, and equals one if they are completely different.

g1 1<(ﬂz-ﬂe) (ﬂx-ﬂr))

- 5 |az||ﬂ9‘ |ﬂx”ﬂ7«|
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4. Curvature Effect on Propagation Properties in Unloaded Plates

Figure 4.5: Coordinates system of the straight and curved plates.

The “S-factor” was calculated for the Sy and Ay modes for a Imm thick, 10mm inner
radius curved aluminium plate compared with a straight 1mm thick aluminium plate, in a
frequency range of 0-10MHz. The displacement mode shapes vectors were discretised into
101 equal distance points across the wall thickness. The results, together with the phase
velocity percentage differences for the corresponding curvature and frequency range, are

presented in Fig. 4.6.

In both cases, the “S-factor” follows the trend of the phase velocity percentage difference.
Additionally, the amplitude of the “S-factor” can be roughly correlated to that of the
phase velocity percentage difference. Although there is a qualitative similarity between
the two parameters where an “S-factor” of 0.3 is approximately equivalent to 4% of phase
velocity difference (shown in Fig. 4.6), they are not in a simple relationship; this may
be quantified by taking the ratio of the difference in phase velocity to the “S-factor”, as
shown in Fig. 4.7. Note that the vertical scale of the figures has been magnified to reveal
the differences. It can be seen that the difference between the two parameters is bigger
particularly at frequencies where there are subtle changes in the phase velocity, such as
4-6MHz for the Ag mode and 2-4MHz for the Sy mode.

Nevertheless, this sudden increase in amplitude of the “S-factor” and the phase velocity
difference can provide a fairly good indication of the frequency at which the modes start to
converge to the Rayleigh wave. This is because in this frequency range, the curved plate
mode has the majority of its energy shifted towards one surface as discussed earlier, while
the straight plate mode remains symmetric, causing a sudden increase in the property

difference between these two cases.
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Figure 4.6: Difference in mode shapes between a curved (Imm thick and 10mm inner radius)
and a straight (Imm thick) plates for the Ay (top) and Sg (bottom) modes.

4.3 Characteristics of Dispersion Curves in Curved plates

4.3.1 Concept of the Method of Bounds

For the Lamb wave dispersion curves of a straight plate in vacuum, Mindlin [107] instigated
an ingenious method to characterise the basic features of the curves using the “method
of bounds”. The idea of this method is based on mapping the so-called “bounds” to the
dispersion curves of the coupled guided wave system. In the case of Lamb-type propagation

in a straight plate, Mindlin defined the “bounds” as:

e the dispersion curves of an uncoupled guided wave system, supporting purely one
of their fundamental wave propagation types (i.e. either the longitudinal or shear
type propagation) that satisfy all two traction-free boundary conditions at the plate

surfaces.

The system of “bounds” allows one to visualise the asymptotic behaviour of the curves
to the “bounds” according to their physical characteristics, and to a large extent the

“bounds” guide the dispersion curves of the coupled system.
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Figure 4.7: Ratio of the difference in phase velocity to the “S-factor” for the Ay and Sy modes
taken from data presented in Fig. 4.6.
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Figure 4.8: An illustration of the method of bounds by Mindlin [107] , showing the dispersion
curves of a plate system and those supporting purely longitudinal and shear motions known as

“bounds”.

To study the more complex dispersion curves one must often be satisfied with successive
approximations starting from the cases for which solutions are familiar. Fig. 4.8 illustrates
the concept of the method of bounds, where it can be seen that the Lamb wave dispersion
curves in a plate are closely related to the “bounds”. A more detailed examination of
the “bounds” is provided later in Sec. 4.3.3. In this section, using a comparable method
to Mindlin’s method of bounds, various features of dispersion curves in a curved plate in

vacuum may be identified in a similar fashion.

4.3.2 Shear Horizontal (SH) Dispersion Curves in Curved Plates

The SH wave modes in the straight plate contain purely shear motion polarised in the

z direction, while satisfying the symmetric traction-free boundaries on the top and the
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bottom surfaces. As a result, they are themselves the “bounds” of the wave system.
However, unlike the straight case, the boundary conditions in the curved case are not
symmetric. Therefore unless the dispersion curves are calculated from solutions satisfying
each of the two boundary conditions individually, the dispersion curves of SH waves in

curved plates cannot qualify to be true “bounds” as defined by Mindlin [107].

It would not be possible to decompose these dispersion curves further in satisfying each
of the two boundary conditions in turn, since the two boundary conditions define also
the geometry of the waveguide system such as the thickness; both boundary conditions
are therefore needed in any solution. However, it would be possible to assume that the
thickness of the plate is infinitely small and the curvatures on the inner and outer surfaces
tend towards being identical. With this assumption in mind, two sets of dispersion curves
can be obtained as a shell system for curvature corresponding to thin plates with radius

equal to the value of either the inner or outer surface.

The dispersion relation of the M SH shell mode of curvature radius of r1,2 and shell
thickness d may be modified from the straight case which is taken from Auld [5], and is

given as:

w(M) = \/ (M = )2+ (D) 112+ d)2] % Co /. (4.6)

where v(M) - 712 are the linear wavenumber at the inner (r;) and outer (r2) surfaces of

the curved plate respectively.

As an example, the dispersion curves are plotted in Fig. 4.9 for a curved steel plate with
inner and outer radii of 10mm and 20mm respectively; the large curvature difference
between the inner and outer surfaces is used to exaggerate the features in the dispersion
curves that are caused by the two boundary conditions. The figure shows the dispersion
curves of the curved plate SH wave modes calculated using Eqn. 2.15, together with
a selected number of modes for the two shell systems with radius equal to the either

boundary curvature (i.e. r =1 2).

When only one of the curvature radii is considered in the solutions of the shell systems,
the dispersion curves maintain the same cut-off frequencies as those of the curved plate
system. This suggests that these cut-off frequencies of the SH modes cannot be affected

by the change in curvature, and they are only dependent on the thickness of the plate.

It can be seen that the 1%¢ order shell modes correspond to the linear bulk velocity at the
inner and outer surfaces (i.e. v = kpri2) respectively. Additionally, all the modes of the
two shell systems converge to the linear bulk velocity corresponding to the shell curvature

radius at high frequencies (i.e. v = kpry and v = kpre for the inner and outer surfaces).
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Figure 4.9: Angular wavenumber dispersion curves of SH modes in a steel curved plate (thickness:
10mm, inner radius: 10mm), and dispersion curves of the 15¢, 5! 6 and 7" modes of the shell
system in which both curved boundary surfaces have their radius matched either to r1 or to ro. A

zoom-window shows the 7t* mode in the region v < krr.

The mapping of the shell modes in the dispersion curves helps to visualise the amount of

effect by each of the boundary conditions.

The two sets of shell modes can only coexist in the region v < kpry where the SH curved
plate modes are affected by both boundaries. In the region v > kpry, only the dispersion
curves of the shell modes corresponding to the curvature radius of the outer surface ro
are related to the SH curved plate modes; hence SH wave modes in this region may be

considered as the Whispering Gallery waves of a purely shear nature.

Taking the 7*" order mode as an example, shown in the zoom-in window of Fig. 4.9, the
SH curved plate mode has a dispersion profile sandwiched in between the two shell cases,
showing that in this region the dispersion curves of the plate mode are influenced roughly
the same by the boundary conditions on both surfaces. And as the plate mode moves
towards v = kpry, the curves change their normal trajectory and linger along v = kpr;

momentarily before changing their trajectory once again as they move into the region
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v > kpri. This region is marked by the green circle in Fig. 4.9.

In this region, there are no SH shell modes of the inner curvature radius r = r; present
since the partial wave on the inner surface has turned inhomogeneous. However, this
does not lead the plate dispersion curves to converge asymptotically to the shell modes of
the outer curvature radius r = ro. When v > kprq, the fields disconnect from the inner
surface, therefore having solutions that are bounded by the both inner and outer surfaces

would not correctly describe their physical behaviour.

In order to model the asymptotic solution of modes in this region, one would have to
consider the SH wave mode solutions that propagate in a rod with radius of ry. The
solutions for such wave propagation may be reduced directly from the RHS of Eqn. 2.14
where the outgoing partial wave term is eliminated, and the dispersion relation may be

expressed as the following:
CLlJllj(/{?T’I“Q) =0. (47)

Fig. 4.10 shows the dispersion curves of SH modes in a curved steel plate, and those in a
steel rod. It can be clearly seen that in the region v > kpry, the dispersion curves of SH
modes in a rod agree exactly to those of the plate case. This shows that solutions bounded

by only the outer surface are relevant in this region.

4.3.3 Lamb-type Dispersion Curves in Curved Plates

According to Mindlin’s method of bounds, the “bounds” of the coupled Lamb-type system
are constituted of the dispersion curves of wave modes in the same geometry, which support
either the purely shear motion or the purely longitudinal motion in the circumferential
direction. These “bounds” can easily be calculated numerically using a similar analytical
approach to that of the SH mode, detailed in Ch. 2. The dispersion relations for these

two sets of “bounds” are:

Shear modes: Jl/,(]{:TT‘l)Y/(k'TTQ) - Jl/,(k'TTQ)YV/(kZTrl) =0. (48)
Longitudinal modes: J/,(kpr1)Y, (kpro) — J., (kpra)Y, (kpr) =0 (4.9)

A set of “bounds” of the coupled Lamb-type dispersion curves should have the following

properties:

1. the “bounds” pass through a family of cut-off frequencies at v = 0.

2. the crossing of the any two “bounds” forms the “intersectors”, as shown in Fig. 4.8.
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Figure 4.10: Angular wavenumber dispersion curves of SH modes in a steel curved plate (thick-
ness: 10mm, inner radius: 10mm), and dispersion curves of SH mode in a steel rod (outer radius:
20mm).

3. the dispersion curves of the coupled Lamb-type wave modes are separated by the

“bounds”, and they only cross the bounds at the “intersector”.

Fig. 4.11 shows the dispersion curves of the Lamb-type wave modes in a steel curved
plate (thickness: 3mm, inner radius: 10mm). Additionally, it shows the sets of uncoupled
longitudinal and shear curved plate modes of the corresponding curved plate system, which

form the diamond like pattern of “bounds”.

It can be seen that the uncoupled wave modes satisfy the first two properties of the
“bounds” at all frequencies, whereas the third property is valid everywhere except inside
the region w; < v < wy where w; and wg are (wr1/Cp) and (wre/CL) respectively. In
this region (marked in Fig. 4.11), the dispersion curves of the coupled system do not seem
to establish any connection with those of the uncoupled systems. This is because in this
region the dispersion curves of the uncoupled longitudinal case do not depend on the inner
surface of the curved plate; this phenomenon is similar to that in the region v > kpry

of the SH case, shown in Fig. 4.9 of the previous section. Thus the “bounds” of these
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Figure 4.11: Angular wavenumber dispersion curves of the Lamb-type waves, and of the uncou-

pled purely longitudinal plate waves and purely shear plate waves, in a steel curved plate (thickness:

3mm, inner radius: 10mm). The location labels are marked inside the circles.

uncoupled plate modes would not be relevant in this region.

In the region v > @9, the “bounds” are made up solely of the dispersion curves of the

purely shear case. A peculiar phenomenon may be observed in this region for the dispersion

curves of a plate when curvature along the propagation direction is introduced. Since the

dispersion curves of the curved plate case cannot cross the “bounds”, it can be seen in

Fig. 4.11 that these curves first run asymptotically along one “bound” (label “A”); they

subsequently move towards the neighbouring “bound” with increasing frequency (label

“B”), coming close range to neighbouring mode at the location 7 before repelling each

other to run asymptotically along “bound” (label “C”). This repulsion phenomenon is also

highlighted by the location labels 5-7 in Fig. 4.11, additionally, the zoom-in of location 7

is shown in Fig. 4.12.
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Figure 4.12: A zoom-in window of the angular wavenumber dispersion curves, showing the

repulsion phenomenon at location correspond to the label 7 of Fig. 4.11 in the region v > @s.

On the other hand, in the region v < @i, the dispersion curves of the coupled Lamb
case behave similarly to the straight plate case (see for example pp. 19 of Mindlin [107]).
The dispersion curves follow asymptotically along the “bounds” at positions between the
cut-off and the first set of “intersectors” (label “D”), the two neighbouring modes then
come in close range at the intersector before repelling back towards the previous “bound”.
Thereafter they establish a parabolic profile between two “intersectors” in a terrace-like

grid (label “E”) until they reach the boundary of v = &y.

In the Lamb dispersion curves of the straight plate case, a mode crossing phenomenon,
where a symmetric mode and a neighbouring anti-symmetric mode intersect, occurs typ-
ically at the “intersectors”. However, this phenomenon vanishes in a curved plate case
(see, for example, location labels 1-5 in Fig. 4.11, and a zoom-in of label 2 is shown in
Fig. 4.13).

It has been shown by Zhu et al. [108] that the crossings of “bounds” are in fact “discon-
tinuity points” of the coupled system in the straight case. These “discontinuity points”
coincide with the so-called “intersection” and “near intersection” features in the Lamb
dispersion curves. The results from Zhu’s investigation indicated that no two propagating
modes of one system travelling at the same speed and frequency can coexist. The same

hypothesis may be applied to the curved plate system here.

Noting that the “intersectors” exist only in the region v < @i, it would be possible to
make use of the Region Asymptotic Method (RAM) discussed in Sec. 3.1.2 to evaluate
the values of the (wr,vr) roots at the “intersectors” in this region. The formulation of

the asymptotic solutions of the purely longitudinal and shear circumferential curved plate
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Figure 4.13: A zoom-in window of the angular wavenumber dispersion curves, showing the
repulsion phenomenon at the “intersector” correspond to the label 2 of Fig. 4.11 in the region

v<w.

modes are analogous to that of the SH wave, shown in Eqn. 3.7, and they are given in the

following forms:

Shear modes: sin{

(4.10)

The unknown values of (wr,vr) at the “intersectors” are evaluated by finding the zeros
of a system of the two above equations. To validate the existence of the “discontinuity
points” in the curved plate system, the (wr,vr) was first calculated numerically for the
“intersectors” at the locations labelled 1-5 in Fig. 4.11. The calculation was performed

with a tolerance factor of 1 x 10712 and the results are summarised in Tab. 4.1.

Subsequently, the Lamb-type dispersion function (Eqn. 2.18) was evaluated based on the
results of (wr, vr) at the “intersectors”, where a perturbation in the frequency domain was
carried out, while v; was fixed. Figs. 4.14 and 4.15 shows the amplitude of the Lamb-type
dispersion function over a small range of frequencies at locations close to the “intersectors”

label 1 and 4 respectively for comparison. In both graphs, the dispersion function does
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Frequency (Hz) at Angular wavenumber
“Intersector” location label “intersector”, wy at “intersector”, vy
1 2248180.1763508 12.6391630164712
2 4496360.35270159 25.2783260329422
3 6357612.76403117 47.616506606474
4 6744540.52905239 37.9174890494132
5 7109763.21793554 17.8257820710146

Table 4.1: (wy,vy) roots of the intersectors, corresponding to the case presented in Fig. 4.11.

not pass through the x-axis at the frequency of the “intersector”. This indicates that
the dispersion curves of the curved plate do not possess a root at the “intersector”, thus

illustrating the condition of the “discontinuity points” at the “intersectors”.

In general, the dispersion curves of the two neighbouring modes in a curved plate case
cannot cross each other, however, they may come close to each other at the “intersector”,
then repel each other as they move beyond this point (see Fig. 4.13). This is also shown
in Figs. 4.14 and 4.15 where wy of the “intersector” is located in between two Lamb-type
roots, each of which corresponds to one of the two neighbouring modes. The gap between
these two neighbouring roots in these plots increases with increasing curvature, and vice

versa as the curved plate system moves towards the straight case.

The condition on whether any two modes should intersect or repel each other at the
“intersector” has been investigated by Uberall et al. [109], who linked this character,
though with little evidence, to that encountered for the energy levels of atoms during a

molecular formation based on a perturbation theory.

Nevertheless, Uberall concluded that if the neighbouring two modes belong to a different
through-thickness symmetry near the “intersector”, like the case of the symmetric (S) and
antisymmetric (A) modes in straight plates (these two families are represented by inde-
pendent orthogonal solutions), they may intersect each other. On the other hand, if the
two neighbouring modes have similar mode shapes (i.e. belonging to the same orthogonal
family), as in the case of two neighbouring modes of the same symmetry in straight plates,
they repel each other after a near intersection, exchanging the nature of the corresponding

modes simultaneously.

By contrast, the solutions of the curved plate case, though they satisfy the orthogonality
condition, cannot be divided into two independent orthogonal families due to asymmetry
of the boundary conditions. Based on the argument by Uberall, the repulsion phenomenon
between two neighbouring modes must occur at all “intersectors”, which can be observed

in Fig. 4.11. Moreover, the physical character of curved plate modes changes between
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Figure 4.14: Lamb-type characteristic function of a curved plate (blue solid line), calculated as
a function of a small range of frequencies near the “intersector” label 1 shown in Fig. 4.11, while
an angular wavenumber is fixed at vy of location 1. The frequency at which the corresponding

“intersector” occurs, is indicated with the red dashed line.
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Figure 4.15: Lamb-type characteristic function of a curved plate (blue solid line), calculated as
a function of a small range of frequencies near the “intersector” label 4 shown in Fig. 4.11, while
an angular wavenumber is fixed at vy, of location 4. The frequency at which the corresponding

“intersector” occurs, is indicated with the red dashed line.
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the “near symmetric” and the “near anti-symmetric” mode shapes as they pass by each

“Intersector”.

4.4 Summary

Using the asymptotic methods, the difference in phase velocity between the straight and
curved plates as a function of radius and frequency has been studied for the first few
fundamental plate modes in this chapter. The results of this comparison are presented in
a 3-D plot for each individual mode, where an optimal frequency can be picked for a given

engineering application.

The energy distribution of a wave mode can shift towards either the inner or outer surface
when the curvature is present. Using this property, one could increase the sensitivity
of the detection of defects at certain through thickness locations. The change in mode
shapes between the straight and curved plates has been investigated using a “dot product”
technique, which can be used to compare directly with the corresponding change in phase

velocity at a particular frequency and curvature radius.

In this chapter, we have shown that various features of the dispersion curves in the curved
plate may be identified using a modified version of the “method of bounds”; a system
of uncoupled dispersion curves supporting primarily shear and longitudinal waves. These
features include a family of cut-off frequencies, the near intersection points between two
neighbouring modes and the asymptotic behaviours of the dispersion curves. Moreover,

the repulsion phenomenon in the dispersion curves has been examined numerically.
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Chapter 5

Confirmation of Curvature Effect
in Unloaded Plates

The purpose of this chapter is to test the validity of the theoretical background, developed
in the previous chapters, for the curvature effect on the propagation properties of guided
waves in an unloaded plate. The confirmation cases are divided into two main sections
where the analytical solutions are compared to results obtained using independent Finite

Element (FE) modelling and experimental measurements respectively.

In the first section, a cyclic periodic FE model is utilised to extract the phase velocity
dispersion curves numerically for plates of a range of curvature radii. Since the difference
in phase velocity can be tiny when the curvature is small, it is extremely important that
the accuracy of the numerical approximation in the FE modelling, which relates to the
size of the elements, is ensured. A convergence analysis to pinpoint the limiting case of the
element size is therefore performed. The solutions of the FE modelling are subsequently
used for evaluating the curvature effect by comparing with the straight case as a function

of frequency for each curvature radius.

An experimental technique to illustrate the curvature effect has proven to be very difficult
because of the relatively small changes in velocity. In the second section, a simple tech-
nique to investigate the effect of curvature on the waveguide properties is presented. The
technique involves thin aluminium strips bent to different curvatures within its material
yield limit. In addition, permanently attached transducers were used for exciting and
gathering of the wave signals to improve the accuracy of the experiment. This method al-
lows sensitive measurements of the percentage difference in phase velocity between curved

and straight plates.

However, since the curvature radius was restricted to the elastic limit of the plate material,

the change in the phase velocity due to the curvature effect can be as little as in the order of
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a hundredth of a percent. As a result, any other influences, such as the change of through-
thickness local density and stress, may become significant. These additional influences
are investigated, leading to an appropriate adjustment to the analytical model. Good
agreements are obtained when the experimental results are correlated with the improved

analytical predictions.

5.1 Finite Element (FE) Modelling

5.1.1 Introduction

Many problems in engineering are either difficult or impossible to solve analytically due
to the complexity involved in describing the geometry of a real life structure. As a con-
sequence, analytical solutions can be obtained only for limited simple situations. For
complex systems, engineers therefore resort to numerical methods, which provide an ap-
propriate approximation to the solution. Most numerical methods, such as the Finite
Element (FE) method [110], employ a technique of discretisation in which the solutions
are formulated based on a constituent set of elements or nodes, which are then combined
to obtain the solution for the whole structure. In the case of FE, as the size of the elements
becomes smaller, the model forms a continuum which represents the real structure with
increasing accuracy. This numerical technique takes advantage of the recent rapid advance
in the processing power of digital computers to include enormous complexity while being

able to analyse the solution efficiently.

FE procedures have been employed extensively in solid and fluid structures for analyses of
heat transfers, stress, flow ...etc. Recently, they have been used increasingly in simulating
ultrasonic waveguide propagations [111, 112, 113]. This method provides a vital research

tool for both academic and industrial use.

The use of standard commercial FE programs to calculate the guided wave dispersion
curves for structures with complicated arbitrary cross-section has been previously reported
by Gavri¢ [114], and subsequently adapted by Wilcox et al. [115], so only a brief description
of the method is given in this section. Coincidentally, Wilcox’s FE method was originally
formulated to approximate solutions of a straight case based on an annular structure.
Therefore it would be possible to apply a specific curvature radius to the annular structure

to model the curved plate cases exactly.

The procedure of the modelling is analogous to that by Wilcox et al. [115] who used a
so-called cyclic symmetry model, where a given order of periodic variation around the cir-
cumference is prescribed. This axially harmonic condition allows a 3-D structure problem

to be modelled with 2-D axi-symmetric harmonic elements representing the cross section
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Figure 5.1: Schematic diagram of a 2-D cyclic symmetry FE model for the evaluation of dispersion

curves.

of the structure normal to the propagation direction.

The model consists of discretising the thickness of the plate into a row of a desired number
of 2-D axially symmetric elements, such that the radial length of the row corresponds to
the thickness of the plate (see Fig. 5.1). Symmetric boundary conditions are subsequently
applied to the top and the bottom of the row of elements to simulate an infinitely wide
plate (the width direction is vertical in Fig. 5.1). Noting that there is no variation of the
displacement field in the z direction for circumferentially propagating Lamb modes. An

illustration of the modelling is shown in Fig. 5.1.

Assuming the waves propagate in the circumferential direction, €, the circumferential

periodic cyclic order, n, of the FE model related to the angular wavenumber, v, by

_ wavelength, \ — Circ.umference _ 27T7’mid' (5.1)
v Cyclic order, n n

o T'mid
For a model with fixed radius, varying the periodic cyclic order, n, around the circumfer-
ence would therefore force the propagating modes to propagate at a certain wavelength
A. As in the analytical calculations (Eqn. 3.25), the dispersion relation is calculated along

the mid-line through the plate thickness (ry,iq).

This unloaded system subsequently forms an eigen-problem of an equilibrium relation
between the internal stiffness matrix k, global mass matrix M, nodal displacement @ and
nodal acceleration 4 in a local scale, expressed as a set of linear simultaneous algebraic

equations of the following type:

(M) + [k(n, wp)]@ = 0. (5.2)
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The natural frequencies (wy,) of the plate corresponding to the mt" propagating mode
can be solved using the eigensolver routine available in most commercial FE packages.
The results presented in this section were obtained using the program Finel [116], a FE
program developed at Imperial College, with which the periodic cyclic order, n can be
specified and the corresponding w,, solved. Finel finds the roots, n — wy,, of the specific

system using the Lanczos method of eigenvalue extraction.

By solving for w,, over the first m modes and a range of periodic cyclic orders, n, a
complete set of eigen-solution (wy,,n) discrete points are obtained (shown, for example,
in Fig. 5.2), and can then be joined to form dispersion curves. The only drawback with
this technique is that the periodic cyclic orders n which can be analysed are restricted to
integers, and this may result in a low resolution at the region where the phase velocity is
high.

5.1.2 Accuracy of the FE Model

To ensure the accuracy of the FE solution, there should be enough elements across the
thickness to closely represent all mode shapes in the real structure. In this section, the
checking of the accuracy is divided into two parts. In the first part, a convergence analysis
is performed, from which an optimal number of elements through the thickness to obtain
an adequate level of accuracy is evaluated. Additionally, since the mode shapes, which
can be highly distorted due to the curvature, are linked to the propagation properties as
discussed in Sec. 4.2, it is important that the mode shapes calculated analytically match
those extracted using the method. This comparison in mode shapes is presented in the

second part of this section.

Convergence Analysis

The through-thickness displacement mode shapes become more complicated with increas-
ing in both the mode and periodic cyclic orders (i.e. m and n respectively) shown in Fig. 5.2
for the Lamb circumferential dispersion curves of an aluminium curved plate (thickness:
Ilmm, inner radius: 20mm). Therefore the results can quickly become inaccurate when

the product of mn grows larger.

As a rule of thumb, practice has shown that at least 6 elements should be used for each
displacement harmonic cycle across the thickness. However, with such a small difference
in phase velocity between the straight and curved plates in the case when the curved plate
has small curvature, the accuracy of the FE modelling should be at least a factor of the
higher than the changes due to the curvature effect. In this section, a study is carried

out to determine the number of elements required to model the wall thickness in order
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to ensure an acceptable level of accuracy. For simplicity, only four noded quadrilateral

elements with unity aspect ratio are considered throughout the FE study.

As an illustration of the effect where the thickness of the model is constructed with less
than the appropriate number of elements, Fig. 5.3 shows two dispersion curves for a 1mm
thick, 20mm inner radius aluminium curved plate composed of two different element sizes

corresponding to 34 and 47 elements through the plate thickness respectively.

With 34 elements through the thickness (Fig. 5.3(a)), the solutions do not resemble those
calculated using exact solution at high values of nm product where the displacement mode
shapes become complicated; this indicates a breakdown of the FE solution. In this case,
there is simply an inadequate number of elements to resemble the full displacement field
across the thickness, resulting in distorted displacement mode shapes. To extract the full
dispersion curves up to n = 1400 without any obvious solution breakdown, 47 elements

through the thickness (Fig. 5.3(b)) was found to be the absolute minimum.

Taking the 20" mode at n = 1200 as an example, both the in-plane and the out-of-plane
displacement mode shapes have approximately 10 harmonics across the thickness, therefore
there should be at least 60 elements across the thickness according to the “rule of thumb”.
Nonetheless, the results generated using 60 elements are generally less accurate than is
acceptable for the investigation of the curvature effect. In addition, for a given number of

elements used, the level of the accuracy decreases with increasing m and frequency wy,.

To demonstrate those points, the percentage error in frequency of the 20"

propagating
mode is calculated in relation to the exact analytical solutions for a 1mm thick and 20mm
inner radius curved aluminium plate. The result, shown in Fig. 5.4, is calculated at every
n with n = {1,2,3...etc.} and over a range of number of elements through the wall

thickness.

With 2000 elements used across the wall thickness in the model, a typical percentage
error of less than 0.001% was obtained for all locations of the dispersion curves (maximum
range: n = 1400 and m = 20). In comparison, the small percentage difference caused
by the curvature effect discussed in Sec. 4.1, even in the case of the smallest curvature
investigated (inner radius: 0.1m), is approximately one order bigger than the error due to

the finite element (FE) approximation.

This clearly indicates that many more elements than that according to the “rule of thumb”,
are required to ensure the accuracy level for predicting the curvature effect on the prop-
agation properties. However, keeping in mind that the calculation time necessary for
an eigen-matrix calculation depends mainly on the total number of Degree of Freedom
(DOF) which increases proportionally with increasing number of elements. Therefore a

model with a high number of elements can be computational expensive. This is especially
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Figure 5.3: Dispersion curves extracted using the FE axially cyclic symmetric model with two

different sizes of elements for an aluminium curved plate (thickness: 1mm, inner radius: 20mm).
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Figure 5.4: Percentage error in frequency of the 20" mode as a function of the periodic cyclic

order n and the number of elements through the thickness for an aluminium curved plate (thickness:

Imm, inner radius: 20mm).
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important if the modelling is to be repeated many times over the range of periodic cyclic

orders, n, in order to extract the dispersion curves.

Fig. 5.5 demonstrates the calculation time required to solve the eigen-problem using mod-
els with increasing elements, which were calculated using the FE program, Finel; the
linear relationship shown in the figure is due to the fact that a substantial proportion of
the reported time is for assembling the stiffness matrix of the problem. In reality, the

relationship is likely to be an exponential best fit.
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Figure 5.5: Calculation time required to solve the eigen-matrix for the first 20 modes at n = 1200
for an aluminium curved plate (thickness: lmm, inner radius: 20mm) with the thickness of the
model assembled using various numbers of elements according to Fig. 5.1. These calculations were

carried out using the FE program Finel.

Nevertheless, if only the lower order fundamental modes are being considered in the FE
simulation of the curvature effect, 1000 elements through the thickness should be more

than adequate to obtain the necessary high accuracy.

Mode Shapes

The displacement mode shapes of a cyclic symmetry FE model can be obtained by means
of solving the eigenvector @ in Eqn. 5.2 for the corresponding n — wy, pair. The through-
thickness displacement field is then acquired from these displacement amplitudes at the

nodal points along either the top or the bottom symmetry boundary (see in Fig. 5.1).

Two different types of mode shapes, one having many harmonics through its thickness with
the other being highly asymmetric, have been considered for investigation in this section.
A 1mm thick and 10mm inner radius aluminium curved plate was modelled using FE;

the FE model was constructed using 1000 elements through the thickness. Figs. 5.6 and
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5.7 present the through-thickness displacement mode shapes using every 10" nodal point
across the thickness, and those calculated using the exact displacement field equations of
Eqgn. 2.19.

It can be seen that the mode shapes of the 10" mode in Fig. 5.7 are very much more
complicated than those of the “quasi-Ag” mode in Fig. 5.6, and hence each harmonic
through the thickness is constructed with a less number of nodal points compared to the
lower order modes, resulting in a reduction in accuracy. In the case of Figs. 5.6 and
5.7, there are no noticeable discrepancies between the mode shapes calculated using the
exact and the FE methods in both plots. Additionally, mode shapes having dominant

amplitudes on the outer surface have been accurately modelled using the FE method.

5.1.3 Results of FE Simulations

This section deals with the confirmation of the curvature effect using the solutions obtained
from the FE modelling of various curvature radii. The FE calculations are based on
aluminium curved plates that have material properties of C, = 6320m/s, Cr = 3130m/s
and density, p = 2700kg/m3.

Prediction of the Curvature Effect using FE

The effect of curvature on the phase velocity is examined as a function of curvature
radius and frequency in a similar manner as the analytical comparison detailed in Sec. 4.1.
Although the accuracy of the FE solutions in the curved plate case is highly dependent on
the number of elements used across the thickness, for a given thickness, a change in the
radius should not in theory affect the accuracy of the FE results. It is therefore possible
to assume that the convergence analysis in the Sec. 5.1.2 is correct for Imm thick curved

aluminium plates of any given curvature radius.

For a crude visual comparison between the exact and FE methods, the eigen-solutions of
periodic cyclic order n (angular wavenumber v) - frequency wy, pair have been calculated
using the FE cyclic symmetry model for 1mm thick curved aluminium plates of curvature
radii in the range found in Fig. 4.2. The percentage differences in phase velocity were
calculated according to Eqn. 4.1, which requires the eigen-solutions to be converted first
into the phase velocity-frequency (Vp, —w) domain using Eqn. 4.2, and are subsequently
interpolated at a regular frequency interval. The accuracy was ensured by using quadratic

interpolation on FE solutions that are extracted at sufficiently close n intervals.

The phase velocity at each curvature radius was then compared with the exact solution of

the straight case obtained from Disperse at the same regular interval. The overall results
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Figure 5.6: Displacement mode shapes of the “quasi-Ag” mode at 8.53MHz for a 1mm thick and
10mm inner radius aluminium curved plate, extracted using the exact (solid lines) and the FE

(cross points) methods. The FE model is constructed using 1000 elements through the thickness.

Outer surface ‘ ‘ ‘ ‘ E—

- In plane 1
I displac%% ]
|Out of plane ]

Inner surface : - : -
-1 Arbitrary displacement amplitude 0.8

Figure 5.7: Displacement mode shapes of the 10?" “quasi-mode” at 8.53MHz for a Imm thick
and 10mm inner radius aluminium curved plate, extracted using the exact (solid lines) and the FE

(cross points) methods. The FE model is constructed using 1000 elements through the thickness.
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generate 3-D plots of the percentage difference as a function of radius and frequency for
each individual propagating mode in a similar way to Fig. 4.2. Figs. 5.8 and 5.9 show
the percentage difference between the straight and curved plate cases for the Ag and
A; modes respectively. Both plots appear to bear a striking resemblance to their exact

solution counterparts (Figs. 4.2(a) and 4.2(c)) in terms of their shapes and amplitudes.

A direct comparison between the FE and exact methods, shown in Figs. 5.10 and 5.11 for
the Ag and A; modes respectively, reveals that the solutions are, in general, extremely
accurate with an absolute difference in percentage (A%) between the exact and FE meth-
ods of less than 0.001%, except near their cut-off frequencies. One obvious explanation
of this reduced level of accuracy is that the cut-off frequencies vary with the curvature
radii, and their gradients near these frequencies can change dramatically from one point
to another, hence introducing higher errors when interpolating their eigen-solutions at the

regular frequency intervals.
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Figure 5.8: Percentage difference in phase velocity Vj, of the Ag mode as a function of frequency
and curvature radius for a 1mm thick aluminium plate calculated using a cyclic symmetric FE

model.

At frequencies other than the cut-off frequency, the accuracy of the FE method as a
function of radius may be demonstrated by plotting the percentage difference of the Ay
mode at 4MHz calculated using the exact and FE methods concurrently, as shown in
Fig. 5.12. It can be seen that the FE eigen-solutions overlay the solutions of the exact
method for any curvature radius at this frequency, and a similar accuracy can, in general,
be obtained across the whole frequency spectrum except near the cut off frequencies for

the reasons mentioned.

108



5. Confirmation of Curvature Effect in Unloaded Plates
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Figure 5.9: Percentage difference in phase velocity V,, of the first order anti-symmetric mode
(A1) as a function of frequency and radius for a Imm thick aluminium plate calculated using a

cyclic symmetry FE model.
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Figure 5.10: Absolute difference in percentage of the phase velocity difference of the Ay mode
between the exact (Fig. 4.2(a)) and the FE (Fig. 5.8) methods in a Imm curved aluminium plate.
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Figure 5.11: Absolute difference in percentage of the phase velocity difference of the A; mode
between the exact (Fig. 4.2(c)) and the FE (Fig. 5.9) methods in a Imm curved aluminium plate.
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Figure 5.12: Percentage difference due to the curvature effect as a function of radius for the Ag
mode of a Imm thick aluminium plate at 4MHz using exact analytical (solid line) and FE (circles)

methods.
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5.2 Experimental Studies

In this section, experimental techniques to illustrate the effect of curvature on the Lamb-
type plate wave propagation properties are presented. Furthermore, many of the issues
raised during the experiments, such as the excitability of a pure mode, are investigated

and discussed.

5.2.1 Experimental Samples

The experiment was carried out with thin high-grade aluminium alloy (Al-2014A-T4)
strips that are 0.97mm thick. The thin Al-2014A-T4 aluminium alloy plate has a high
ultimate tensile strength that allows one to bend the strips to a tight curvature without
passing the yield limit. It is also easier to handle than, for example, steel because of
its lower Young’s modulus. The material properties of the Al-2014A-T4 aluminium alloy

[117] are summarised in Tab. 5.1.

Material | Al-2014A-T4
Young’s modulus (MPa) 69500
Ultimate Tensile Strength (MPa) 385
0.2% Proof stress (MPa) 85
Elongation (%) 18

Table 5.1: Material properties of the Al-2014A-T4 aluminium alloy strip [117] used for the

experiments.

The theory of circumferential waves developed in the previous chapters were for wave
modes propagating in an infinitely wide plate, but of course this is not achievable in
practise. Therefore finite width strips must be used, as shown in Fig. 5.13. Strips with
a large aspect ratio (H/d) would be favourable in this experiment. However, it is more
difficult to bend a wide strip, and furthermore, to achieve a consistent curvature across

its length.

Recently, in 2002, Mukdadi et al. [118] have discovered that for plates with a small aspect
(H/d) ratio, plate modes corresponding to the width of the strip H can be coupled with
the normal plate modes of thickness d, creating a guiding system for a rectangular cross
section. The extent to which the dispersion relation for this guiding system differs from
the infinitely wide plate case of thickness d is highly dependent on the H/d ratio used.
Currently there is no literature addressing either the relationship between the H/d ratio
and the dispersion relation, or whether it is appropriate to use the modes of a rectangular
cross section to approximate those of the infinitely wide plate. To address these questions,

guided waves in the rectangular section will be investigated later in Sec. 5.2.4.
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Figure 5.13: Schematic diagram of a thin curved aluminium strip, attached with a PZT plate.

For now, it is assumed that two sets of modes exist: those that are guided purely or almost
purely by the width edges of the strip will be referred to as “width modes”, while those
that are guided by the thickness edges of the strip will be referred to as “thickness modes”.

The width of the strip sample for the experiment was chosen so that the H/d ratio is large
enough that the “width modes” have minimum interference with the “thickness modes”
of the plate. The excitation of the width modes could also be minimised by exciting the
strip in such a way that the excitation force does not match the mode shapes of any of
the width modes; this will be discussed in the next section. Ideally, only the wave mode
for the investigation should be excited, but this is not always easy to achieve. Therefore
the sample strip should also be long enough so that it can act as a delay line where the

received signals of different modes are well separated from each other in time.

Taking all of these into consideration, an aluminium strip 0.97mm thick (d), 30mm wide
(H) and 700mm long (L) was selected for the experimental investigation of the curvature
effect.

5.2.2 Excitation Technique

As shown in Fig. 4.2, the curvature effect on the phase velocity of any chosen mode is
generally very small, especially when the curvature radius is large. Therefore the excitation
method should always provide the same reference signal at different curvatures in order
to eliminate any unnecessary error due to the shifting in excitation positions, and this is

achieved using a permanently attached PZT transducer.

The mode for the investigation should be easy to excite. The Ag mode has predominantly
“out of plane” displacement at almost all frequencies and for plates of any curvature.

Additionally, its properties are significantly influenced by the curvature effect and it is
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thus ideal for the investigation. Exciting this mode requires driving the plate with a
strong normal force, which is relatively easy to achieve efficiently using two thickness
expansion PZT ceramic plates attached to the surfaces on either side of the plate, one

excited 180 degrees out of phase to the other.

A commercially available lead based piezoelectric ceramic material Pz27 with properties
shown in Tab. 5.2 was used for the experiment. When a voltage is applied to the PZT
plates, one contracts while the other one expands, and vice versa in turn, generating a

normal force on both surfaces in a synchronised fashion.

The size of the PZT plate used in this experiment is chosen based on the fact that the
excitation frequency range is near the centre resonant frequency C fpz of the PZT plate,
calculated using the relationship given by Eqn. 5.3, where dpz is the PZT plate thickness
and Vpy is the compressional bulk velocity of the PZT material (see Fig. 5.13).

Vi
Cfpz = 2d];ZZ' (5.3)

The experiment was performed at below the cut-off frequencies of the higher order Lamb
wave modes (~< 2MHz) to minimise any multimodal excitation of the “thickness modes”.
The PZT elements was 1mm thick (dpz), 3mm wide (Wpz) and 30mm long (Lpz); the
centre frequency C fpy of the PZT element is approximately 1.3MHz.

’ Ceramic Properties Pz27 H ‘
Density (kg/m3) 7740
Compression Velocity (m/s) 2760
Mechanical losses 0.02
Dielectric losses 0.02

kp 0.59
Coupling factors kit 0.47
k33 0.70

Table 5.2: Ceramic properties of the piezoelectric plate transducer, Pz27 used in the experiment.

The PZT plates could be attached at the end of the aluminium strip (shown in Fig. 5.14)
using either a silver loaded glue or a fast cure epoxy, both of which have advantages and
disadvantages. The silver loaded glue, though highly conductive, contains relatively large
particles which causes a thick coupling layer in between the PZT plates and the aluminium
plate. On the other hand, the fast cure epoxy is easy to manipulate and also gives a much
thinner coupling layer than the silver loaded glue, but the epoxy is not conductive. Either
the thick or non-conductive coupling layer can cause a significant voltage drop across the

adhesive layer when a voltage is applied between the plate and the PZT, leading to a
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reduction in the signal to noise ratio. Overall the fast cure epoxy was found to have a

better performance than the silver loaded glue, and therefore was used for the experiment.

R aluminium strip | |
s g Propagation PZT plates
~ direction
L /" driving force
e e E R direction
+V

Figure 5.14: Schematic diagram of exciting the Ag mode in an aluminium strip using PZT plates.

5.2.3 Experimental Setup

The aluminium strip may be bent at different curvatures by mean of fixing the length of
the strip onto a set of plastic fixtures that are pinned on a wooden board along a specific
curvature radius. A photograph of the experimental setup is shown in Fig. 5.15. In order
to allow the plate to deform reversibly, the curvature radius of the experiment is limited
by the fact that the sample material should not yield during the bending process. Using
the material properties listed in Tab. 5.1, one can calculate the smallest curvature of the
aluminium alloy strip, at which the stress applied on the strip during bending is within
the yield limit of the material. This relationship between the yield stress o, and the
minimum curvature radius r,,;, can be readily obtained from standard equations of the

stress analysis in the following form:

d T'min

where F and d are the Young’s modulus and plate thickness respectively. The smallest

curvature radius 7.,;, for which the sample plate remains elastic is approximately 0.09m.

The measurements were taken in a pulse-echo configuration where a signal is transmitted
and received through the same set of PZT plates. A 30 cycle Hanning windowed wave
packet, which provides a smooth narrow band signal, was used for the excitation. The
equipment for generating such a signal involves a pulse generator, a function generator,
a power amplifier and a receiver amplifier, all of which have been integrated into a single

machine, “WaveMaker-Duet” [119]. Additionally, an oscilloscope and a computer are
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Figure 5.15: A photograph of the experimental setup for the investigation of the curvature effect.

used to save the data of the receiving wave signal for further processing. Fig. 5.16 shows

a schematic diagram of the experimental setup.

The pulse generator triggers the oscilloscope simultaneously, while the function generator
delivers a tone burst signal with an integer number of cycles to the PZT plates via the
power amplifier. The toneburst signal travels back and forth along the aluminium plate
after reflecting from the end of the plate, and subsequently being picked up by the same
PZT plates. The received signal is amplified and displayed on an oscilloscope and may

then be captured digitally in a computer via a GPIB connection.

5.2.4 Excitation Issues of Strip with a Rectangular Cross Section

Due to the presence of the width boundaries in a rectangular cross-section strip, the plate
modes in a finite width plate strip may be different to those predicted theoretically for an
infinitely wide plate. In general, there are two known issues associated with a waveguide

of a rectangular cross-section. In this section each of these two issues is addressed in turn.

“Width-Edges” Effect

The first issue is the so-called “width-edges” effect, where the displacement field across the
width of the strip alters due to the presence of the width-edges of a metal strip. Fromme
[120] measured the out of plane displacement field of the metal plate surface using a Laser

Vibrometer with an excitation method similar to that described in the previous section.
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Figure 5.16: Schematic diagram of the experimental setup in a pulse-echo configuration.

He reported that the amplitudes of the out of plane displacement field is significantly
higher close to the edges than elsewhere on the strip; the results are reproduced with

permission in Fig. 5.17.

The “width-edges” effect has also been investigated on our experimental sample, where the
out of plane displacement was measured across the width of the strip at several locations
along its length using a Laser Vibrometer. The measurements were taken from the first
arriving signal of the Ay mode from the excitation source at 0.lmm intervals across the
width of the strip at 450kHz, and the measured displacement amplitudes were normalised

to the maximum amplitude across the width.

Fig. 5.18 shows the displacement amplitude variation across the width. It can be seen that
the displacement field has a roughly constant amplitude in the central region of the strip
at various locations away from the excitation, and as expected a much higher amplitude
close to the width edges can be observed. Moreover, The actual amplitude along the edges
was found to be dependent of its location along the strip, though, no further investigation
was carried out. The high amplitude along the edges is thought to be caused by the fact
that the particles are allowed greater movement due to the lack of constraint along the
free boundary, while this is not the case in the central region. In general, the percentage
of total energy at edges goes down as width goes up, therefore the “width-edges” effect

would have less influence on the displacement field for a wider strip.

This suggests that the Ag plate mode exists in both finite and infinitely wide plates, despite
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Figure 5.17: A reproduction of a scan measured by Fromme [120] (with permission). The scan
shows the out of plane displacement field of the Ay mode over the surface of a 1mm thick, 30mm
wide aluminium strip. The Ay mode is excited using the same method as described in Sec. 5.2.2

at 160kHz, and the field is measured using a Laser Vibrometer.

the presence of the “width-edges” effect, and they are travelling at the same velocity [118].
It also appears [118] that the Ay mode has the same phase velocity regardless of the width
of the strip at a particular frequency. However, based on the argument on the relationship
between the phase velocity and the mode shapes discussed in Sec. 4.2, some influence of

the “width-edges” effect should be expected, though they are thought to be insignificant.

This view was confirmed in the study by Gazis et al. [121] who used approximate equations
of motion to investigate the influence of the width of a plate strip on the velocity of the
lower order modes. Gazis et al. concluded that the width-edges of the metal strip have a
significant influence on the phase velocity up to a large “H/d” ratio, after which the velocity
converges asymptotically towards that of an infinitely wide straight plate. Although there
is no specific value of “H/d” given to which the velocity is considered to be converge to
that of the plate case. The velocity measurements of the Ay mode taken from the 30mm
wide strip match exactly to that of the analytical prediction, demonstrating that the strip
has a “H/d” ratio where the velocity is asymptotic to that of the infinitely wide plate.

Rectangular Wave Modes

During the experiment, an excitation of a single pure Ag plate mode was extremely difficult
to achieve. Despite exciting at a frequency that is lower than the cut-off frequencies of
the higher order modes, multimodal excitation was very common. Furthermore, many of
the modes which are excited travel at velocities which do not correspond to either the Ag
or So mode. This raises the suspicion that wave modes which are excited correspond to

those of the rectangular cross section.

Every care has been taken to ensure that only the out of plane displacement field corre-
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Figure 5.18: Measured out-of-plane displacement amplitude of the Ay mode across the width of

the aluminium strip sample at several locations along its length, at 450kHz.

sponding to the Ag mode is excited. However, an imperfection of the PZT bonding to the
strip surface is inevitable, resulting in an uneven distribution of the out of plane loading
across the bond line of the PZT plate. This behaviour encourages the excitation of waves
that are wholly or partially coupled with the waves reflecting back and forth between the
boundaries of the width-edges. These coupled modes are referred to as the “rectangular-

modes” in this thesis in recognition of their existence in a rectangular cross-section.

At many frequencies, the excitation of the “rectangular-modes” is unavoidable. However,
at other frequencies these “rectangular-modes” may not be strongly excited. This is
because the “rectangular-modes” become highly dispersive at these frequencies, where the
different frequency components of the corresponding signal travel at different velocities,
resulting in the energy of the dispersive mode being spread out in time. In this case a good
clean signal of the Ay mode can be obtained for the measurement of the phase velocity
difference between the straight and curved waveguides. Fig. 5.19 shows the time responses
at frequencies of 650kHz and 1MHz, at which the “width-modes” are strongly excited and

are extremely dispersive respectively.

Using the FE cyclic symmetry modal analysis detailed in Sec. 5.1, the dispersion curves
of the waveguide consisting of a rectangular cross-section with dimensions (thickness:
0.97mm, width: 30mm), as in the experiment, were obtained. The FE model used a large
radius of 400mm to obtain the approximate solutions for the straight case. This technique
of approximation had been verified by Wilcox et al. [115]. Figs. 5.20 and 5.21 show the
frequency-angular wavenumber and phase velocity-frequency dispersion curves for such

a rectangular waveguide. The presence of the edges introduces an extra dimension of
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Figure 5.19: Time responses of the experiment in a pulse-echo configuration using a straight
aluminium strip (thickness:0.97mm, width: 30mm) which was excited with a 30 cycle Hanning

windowed toneburst signal at one end of the strip.
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Figure 5.20: Frequency-angular wavenumber dispersion curves for a rectangular cross section
aluminium strip (thickness: 0.97mm, width: 30mm, Black lines), and those of an infinitely wide
aluminium plate (0.97mm, Red lines). The dispersion curves of the rectangular cross section were

modelled using a cyclic symmetry FE model with an inner radius of 400mm.
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Figure 5.21: Phase velocity-frequency dispersion curves for a rectangular cross section aluminium
strip (thickness: 0.97mm, width: 30mm, Black lines), and those of an infinitely wide aluminium
plate (0.97mm, Red lines). The dispersion curves of the rectangular cross section were modelled

using a cyclic symmetry FE model with an inner radius of 400mm.
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movement, and the rectangular cross section system is therefore able to support a much
higher number of wave modes in the frequency range below the cut-off frequency of the

higher order infinite plate modes.

In general, the waves of a rectangular cross section waveguide can be divided into 3 types

depending on their interaction with the different sets of boundaries.

1. Thickness-plate modes: These correspond to modes of an infinite plate whose
thickness is the same as that of the strip and are subject to the edges effect. Only
two exist in a frequency range of up to 1.4MHz in this case (see Fig. 5.20).

2. Width-plate modes: These correspond to modes of an infinite plate whose
thickness is equal to the width of the strip and are subject to the edges effect.

There are many in this frequency range.

3. Twisting modes: Modes that are coupled between the “thickness-plate modes”

and the “width-plate modes”, resulting in a twisting motion of the metal strip.

The dispersions curves of the latter two cases are shown in Figs. 5.22 and 5.24, while the
mode shapes of the lower order modes of their corresponding type have been calculated at
300kHz from the eigen-vectors at the corresponding w,, —n eigenvalues shown in Figs. 5.23
and 5.25. Although there are many wave modes of these two types in the frequency range
of interest for this experiment, judging from their mode shapes, it can be easily seen that
many of the higher order modes could not be excited because of very poor matching of
the excitation force to their complex mode shapes. Furthermore, the “width-edges” effect

is clearly visible from the mode shapes of the Ay mode shown in Fig. 5.24.

Having the dispersion curves of the rectangular cross section, it is now possible to investi-
gate the modes that have been excited during the experiment and their amplitudes at var-
ious frequencies, using a 2-dimensional Fourier transformation (2DFFT) technique [122].
The technique provides an indirect means of extracting the dispersion curves of the Lamb
waves quantitatively from the experimental measurements of multimodal signals. This
technique measures the signal of the time-responses at a certain known distance interval
along the propagation direction using a Laser Doppler Vibrometer (LDV). An illustration
of the setup can be found in Fig. 5.26. The measurement was performed in a “pitch-catch”
configuration where the signal is excited with the PZT plates and subsequently picked up
by the LDV after travelling a certain distance along the strip.

Generally, the measured results are in the time-spatial domain from which the 2DFFT is
applied to transform the data into the frequency-wavenumber domain. The time-response
data was measured with 32,000 time sampling points at every 1mm interval over a distance

of 100mm in the propagation direction. The collected data formed a matrix, from which
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Figure 5.22: Dispersion curves of the “width-plate modes” for a rectangular cross section alu-
minium strip (thickness: 0.97mm, width: 30mm). The lower order modes are labelled in the
zoom-in window, which correspond to the mode shapes in Fig. 5.23.
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Figure 5.23: The displacement mode shapes (red mesh) of the “width-plate modes” corresponding
to those labelled in Fig. 5.22 at 300kHz, while the undeformed mesh is shown in blue.

122



5. Confirmation of Curvature Effect in Unloaded Plates

1.2¢

—_
S
T

o
)
T

Frequency (Hz)
o
=

0.4+

0 50 100 150 200
Angular wavenumber v (Cyclic order n)

Figure 5.24: Dispersion curves of the “twisting modes” for a rectangular cross section aluminium

strip (thickness: 0.97mm, width: 30mm). The lower order modes are labelled in the zoom-in

window, which correspond to the mode shapes in Fig. 5.24.
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Figure 5.25: The displacement mode shapes (red mesh) of the “twisting modes” corresponding
to those labelled in Fig. 5.24 and that of the Ay mode at 300kHz, while the undeformed mode
shapes is shown in blue mesh.
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the 2DFFT was performed in a Matlab”™ program. The 2DFFT generates a 2-D colour
map showing the distribution of energy and its amplitude at various locations in the
frequency-wavenumber domain. By overlaying this colour map with the dispersion curves

for the sample (Fig. 5.23), the modes that are strongly excited would be easily identified.

To visualise the contrast between the multimodal and the nearly pure-mode excitations,
the 2DFFT technique was performed twice at the centre frequencies of 650kHz and
1.0MHz. These frequencies correspond to those used in obtaining the time responses
of Fig. 5.19. At 650kHz (Fig. 5.27), as well as the Ag mode, the Sy and 15! order “width-
plate” modes have been strongly excited, although it is also clearly visible that there are
numerous other “width-plate” modes being weakly excited. With such a multimodal ex-
citation, it would be impossible to carry out any sensitive measurements of the curvature

effect on the Ay mode.
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LeCroy 9400 Computer 1

- Laser
4 < Receiver : controller
Amplifier | OFV-3001
Pulse +

A

3 USL
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' < : ;
Amplifier generator : Scanning Motor
—

WaveMaker-Duet

O OO OSSOSO : Laser doppler
\” vibrometer

(receiver)

Out of plane
displacement measurement

Figure 5.26: Schematic diagram of the experimental setup for measuring the time responses at

a regular spatial interval along the propagation direction.

On the other hand, the 2DFFT result measured at 1.0MHz (Fig. 5.28) reveals that the Sy
and the “width-plate” modes have not been strongly excited. This confirms the observation
of a nearly “pure-mode” excitation of the Ay mode in the time response at this frequency
shown in Fig. 5.19(b).

Typically, a good signal to noise ratio can be obtained in a relatively broad frequency range
of approximately 300kHz to 2MHz using the PZT plates. Within this frequency range,
there are many frequencies at which a nearly “pure-mode” excitation can be achieved and

may be used for measuring phase velocity accurately.
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Figure 5.27: A colour map showing the result of the 2DFFT of the measurements obtained from
the aluminium strip sample (thickness: 0.97mm, width: 30mm) with 32000 time and 100 spatial
sampling points. The aluminium strip was excited at a centre frequency of 650kHz. The colour

map overlays with the dispersion curves of the aluminium strip sample.
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Figure 5.28: A colour map showing the result of the 2DFFT of the measurements obtained from
the aluminium strip sample (thickness:0.97mm, width: 30mm) with 32000 time and 100 spatial
sampling points. The aluminium strip was excited at a centre frequency of 1.0MHz. The colour

map overlays with the dispersion curves of the aluminium strip sample.
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5.2.5 Measurement of Relative Velocity

The permanently attached PZT plates allow the signal to be excited and received at the
same reference locations, thus any shift in the time response should in theory, be caused
by the difference in phase velocity of the Ag mode travelling at different curvatures. The
time response of the wave packet signal of both the straight and curved systems after
travelling a certain distance, for example the first or the second end reflection of the metal
strip, may be measured. Since the difference in phase velocity between the straight and
curved cases is extremely small, as predicted in Sec. 4.1 (in most cases the difference is
less than 1%), the actual difference in time between the straight and curved cases after
travelling back and forth along the strip would still be much less than the time period of

one wavelength.

The most reliable way to measure fractional changes in velocity is to identify the zero-
crossing time of a particular sinusoid in the signal, as shown in Fig. 5.29. These two
measured zero crossing points have the same phase, however, the difference in the mea-
sured times is caused by the velocity shift in the curved plate. Therefore the normalised
phase velocity difference at the excitation frequency for a toneburst signal which had trav-
elled a distance [, can be calculated using Eqn. 5.5. Vphg is the phase velocity of the
corresponding wave mode in a straight plate. This measurement relies on the signal being

very narrow band, which can be treated practically as a single sinusoid.

l abs[t, — ty]
Vphst tctf

Difference in Vph(%) = -100. (5.5)

where t. and t; are the zero-crossing time of the curved and straight cases respectively.

End reflections

= ! s A
[t =
Z (a) £ A0
Time(ms) Time(ms) \
LN N N N YN

C
C
S

Figure 5.29: Time response of end reflection of the Ay mode, (a) for a straight and (b) for a
curved waveguide, and (c) the detail of their overlay, showing the arrival time of the striaght ¢,

and curved t. cases.

126



5. Confirmation of Curvature Effect in Unloaded Plates

5.2.6 Preliminary Results on Velocity Measurements

As discussed in the previous chapter, numerical instability of the exact circumferential
waveguide solution occurs at high frequencies. Therefore the experimental measurements
were validated against solutions obtained using the exact method, and with the asymptotic
method where exact solutions become unstable. Results were only measured at certain
frequencies where a nearly “pure-mode” was obtained, as discussed earlier. At other
frequencies, the excitation of the “rectangular modes” interfered with the Ag mode signal.
Using several identical sample strips, experimental measurements were possible at 450kHz,
1.0MHz, 1.1MHz and 1.3MHz over a range of curvature radii, and these results together
with those calculated from the analytical and FE methods are shown in Fig. 5.30.

The change of velocity from these predictions grows rapidly with reducing curvature ra-
dius as expected. Although the experimental results follow a similar upturn with reducing
curvature radius at all four frequencies, the change of velocity from the experimental mea-
surement was found to be higher than those from the analytical predictions. Additionally,

these changes were also found to increase steadily with increasing curvature.

In general, there are two possible explanations for this discrepancy. First, it was difficult to
force the aluminium strip into a constant curvature along the whole length with merely the
plastic supports, especially at the ends of the strip, due to its elasticity. Nevertheless, this
problem was thought to be minor and could be easily fixed. Secondly, the strip sample was
constantly under stress when curved, which could change the material properties through
the thickness. This was thought to be the significant cause of the error, and therefore

further investigation was necessary.

5.2.7 Validation against an Improved Analytical Model

Bending of the metal strip can have two profound effects on the material properties through
the thickness of the plate, which are discussed in this section. The effects are the local
applied stress and the local density, both of which could affect the acoustical properties
locally. The stress field varies linearly across the thickness in such a way that the inner
and the outer surfaces have the highest compression and tension respectively at that
particular curvature radius. Therefore the experimental validations could be improved
either by taking into account the stress condition and the local density variation in the
model, or by annealing the experimental samples to remove the variation of material

properties permanently at each curvature.

The annealing idea is thought to be far too difficult to achieve without damaging the
bonding of the PZT plates during the process, which could alter the reference signal, and

thus reduce the accuracy of the measurements. For this reason, it would be sensible to
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5. Confirmation of Curvature Effect in Unloaded Plates

simply include these “stress-induced” conditions into the analytical model. For this to be
done, it is necessary to understand what parameters need to be updated in the analytical

model.

The dispersion relation (Eqn. 2.18) is governed by the geometry properties of the thick-
ness d and mean radius 7,4, and also the material mechanical properties of the Young’s
modulus E, poisson’s ratio v and density p. The latter are linked to the Lamé constants

(A, p) in the following forms:

vE E

AT AT o020 Ty

(5.6)

and thus Eqn. 2.9 of the bulk velocities, Cr and Cf, become:

B E(1—-v) B E
Cr= \/p(l +o)(1-2v)’ Cr = \/ 2p(1 + ) (5:7)

Both the thickness d and the length of the mid-plane of the aluminium strip are assumed to

be constant during bending. By contrast, the material properties can change significantly
due to the acousto-elastic effect [123] where the bulk velocities of a material are sensitive
to stress within the material, as well as the local density changes. The bulk velocities of
a stressed structure may be calculated using the Murnaghan third-order elasticity theory
[124]. The theory relates the stresses and the bulk velocities in the orthogonal directions

of the cartesian coordinates.

Since the Lamb-type wave modes in an infinitely wide curved plate polarise only in the r
and @ directions, which can be assumed to be orthogonal at a local level, the bulk velocity

can then be recalculated using the following relevant equations [123]:

P
poC2p = A+ 20 — —2%9L (7N 4+ 104 + 61 + 4m)

3K,
-Ploczzl n
C2p=p— 3\ 4 6u 4 3m — =
polrp = H 3K0( +6p + 3m 2)
S, A+
poC2g = A+ 2u + el (2T 4N 4 10p + 4m) + A+ 20)
3Ky =
Slocal An
C2q = O (AN + 4 - = 5.8
poCrg M+3Ko( +4p+m M4) (5.8)

The subscripts L and T indicate the longitudinal and shear wave motion respectively, and
Piocar and Sjoeqr are the compressional and tensional local stresses applied in the direction
of propagation (i.e. on the inner and outer halves through the thickness respectively). u,
A, I, m, and n are the first and third order global elastic constants, whereas Ky is the

global bulk modulus for an isotropic material defined as Ko = (A + 2u/3), while pg is the
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5. Confirmation of Curvature Effect in Unloaded Plates

density of the material in the initial unstrained state. The third-order elastic moduli of
solids account for the non-linear interaction of sound waves in solids that are caused by

the applied directional stresses.

One basic assumption in the theory is that the material remains elastic throughout the
deformation. This was investigated by measuring the stress as a function of strain for
the aluminium sample in an Instron 5500 series tensile testing machine, and the results
are shown in Fig. 5.31. It can be seen that the stress-strain relationship has remained
virtually linear, even above the maximum stress level relating to that experienced by the
aluminium strip with the smallest curvature radius investigated. The small offset in the

graph could be caused by the slipping of the clamping jaws during the measurement.
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Figure 5.31: Stress strain relationship of the aluminium sample (Al-2014A-T4, thickness:
0.97mm, width: 30mm, length: 700mm). In addition, the highest stress level, corresponding

to that in aluminium strip with the minimum curvature radius (10cm), is indicated in the graph.

The third-order elastic moduli of aluminium based alloys with various weight propor-
tions of copper (Al-Cu) and Magnesium (Al-Mg) have been measured by Kesava Raju et
al. [125]. The third-order moduli of the Al-2014A aluminium sample may be inferred from
Kesava Raju’s measurement results of the aluminium alloy that contains the closest metal
compositions. The moduli were taken from the mean values of the measurements of a
Al-4.8%Cu composition, compared to a Al-4.5%Cu-0.4%Mg composition for the Al-2014A
aluminium sample, and they are listed in the Tab. 5.3 in the expression defined by Toupin
et al. [126] which can be converted back to those used in Eqn. 5.8 by using the following
[123]:

l:%+1/2, m = vy +2v3, n=4dvs. (5.9)

To include the conditions due to bending, an improved plate model with its thickness

discretised into 9 layers has been analysed; each layer has a thickness of §d and is assumed
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Toupin and Bernstein [126] ‘ H Murnaghan [124] ‘
12 + 6.0 l -7.8
12 -10.8 m - 25.6
Vs -74 n -29.6

Table 5.3: Mean value of the measured third-order elastic moduli of Al-4.8%Cu alloys at 298K
in units of 10!°Nm~2, obtained from Toupin et al. [126], and the corresponding moduli expressed
by Murnaghan [124] .

to have the same curvature at the top and bottom of each layer. In addition, it is assumed
that the plate is sufficiently wide compared to the thickness and the properties are uniform
at all points in each layer. By doing so, the local density, pj,cqi in each layer, due to
strain while bending, may be calculated as a function of the local radius (rjocq;) shown in
Eqgn. 5.10.

3
PO Trid
Plocal = e R (510)
T'local (Tmid + UTlocal — Urmid)

Using Eqns. 5.8 and 5.10, the appropriate values of Cp, Cr and pjeq corresponding to
the local curvature radius in each layer of the model can be calculated to account for
the through-thickness variations of density and velocity due to the local applied stresses.
The solution of this analytical model of each layer is assembled using the Global Matrix
method [98], with suitable boundary conditions between the layers (i.e. oy, 0,9, Uy and

ugp are continuous at the interface, while maintaining stress free conditions at r = 1 2).

As a demonstration, the parameters of each of the 9-layers for the case of an aluminium
sample that is bent to a curvature radius of 20cm are listed in Tab. 5.4. A negative value
of stress in the table indicates compressional stresses P, while a positive value indicates
tensional stresses S. The aluminum sample has unstrained material properties of: Cf =
6320m/s, Cr = 3230m/s and density pg = 2700kg/m3. Layer 5 is on the neutral axis and
so has properties which have not been modified, while the local material properties are
calculated at the mid-depth position in each layer. It can be seen from Tab. 5.4 that the
bulk velocities are, in general, more sensitive to the compressional stresses than to the
tensional stresses. Using these parameters, the dispersion curve of the Ay mode of this

multi-layered model was calculated and is shown in Fig. 5.32.

It is worth noting that although the percentage changes of longitudinal and shear bulk
velocities, due to the stress and strain conditions on the outermost layers of the plate,
are as high as 0.19% and 0.26% respectively, the change in phase velocity of the Ag mode
calculated with the stressed multilayered model compared to the unstrained single curved

layer, is typically less then one thirtieth of a percent over the whole frequency range. The

131



5. Confirmation of Curvature Effect in Unloaded Plates

8000 \
Quasi-A, ‘\\
\\‘
@ 6000 Quasi-S ]
E E———
? 2059.3 Improvéd multilayefed A
§ 4000+ curved model ) Phd |
- 2059.28ingle layer \4/ . -
2 curved L’
g : model _ ~ —
= Quasi-A, 2059.1
2000’ -, ' i
L7 Straight
2059 model
6.751 6.752 6.753 6.754
0 : w ‘ ‘ _ x10°
0 05 1 15 2 25 3
6
Frequency (Hz) x 10

Figure 5.32: Phase velocity dispersion curves of an aluminium curved plate (thickness: 0.97mm,
curvature radius: 20cm) using a single layer exact solution (Red solid line) and a multilayered

improved model (Blue dashed line), and for an aluminium straight plate of the same thickness
(Black solid line).
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reason for such a small phase velocity alteration despite the larger changes of the bulk
velocities may be understood to be the cancelling effect of the stress conditions where the

overall stress is averaged out over the top and bottom halves through the thickness.

The dispersion curves of the 0.97mm thick aluminium plate were recalculated for curvature
radii between 0.1m and 0.7m using the improved multilayered model, and subsequently
used to compare again with the experimental results using Eqn. 4.1. The solutions are
limited to curvature of small radii because of the solution breakdown when the curvature
radius is large, as discussed in Sec. 2.3. It can be seen in Fig. 5.33 that the prediction of the
experimental measurements using the analytical stressed model has improved significantly,
compared to the single layer unstrained model used before in Sec. 5.2.6. The upturn of the
velocity difference curve in Fig. 5.33 for the stressed curved plate case, occurs at a higher
curvature radius. This is because when the curvature radius is small, the acousto-elastic
effect becomes dominant, and therefore increases the difference greatly compared to the

unstrained case.

Vph difference (%)

0 0.5 1 1.5 2 2.5 3
Radius (m)

Figure 5.33: Percentage difference in phase velocity V,, at 1.0MHz as a function of radius
between 0.97mm thick aluminium straight and curved plates calculated with the multilayered

analytical model (Solid line), and the experimental measurements (Dotted line).

5.2.8 Experimental Validation of the Displacement Mode Shapes

As discussed in Sec. 4.2, the displacement mode shapes can change substantially when
the plate is bent from one curvature radius to another, and it is therefore interesting
to measure such an effect experimentally. In general, it is rather difficult to measure
the through-thickness displacement mode shapes directly and accurately, especially for
plates with very small thickness. However, the curvature effect can shift the displacement
field towards one surface, resulting an asymmetric mode shapes. Thus it is possible to
validate the displacement mode shapes indirectly by comparing the ratio of displacement

amplitudes taken on directly opposite sides faces of the plate.

The measurements was taken using the same aluminium sample and excitation method

described earlier in Sec. 5.2.1 and Sec. 5.2.2 respectively. The toneburst signal of the
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aluminium strip

PZT plates

PZT dice for
measuring out-of
plane displacement

Figure 5.34: Schematic diagram of the PZT dice which are used to measure the out-of-plane

displacement on the two surfaces.

Ay mode was subsequently picked up by two small PZT dice elements (2mm cubes) that
were glued directly opposite to each other on either side of the plate surfaces, as shown
in Fig. 5.34. This allows the out-of-plane displacement amplitudes on both surfaces to be
measured and are subsequently used for the validation of the phenomenon of asymmetric

through-thickness mode shapes.

To compensate for any difference in the transducer sensitivity and coupling, each of the
measured amplitudes was first normalised by the corresponding displacement amplitude
taken when the plate is straight. The ratio of the amplitudes measured in the experiment
were then compared with those calculated using the exact solution, and the results are
shown in Fig. 5.35. The results of the measurements show a consistent trend with the
analytical predictions. When the plate is straight, the ratio of the amplitude measured
on the outer surface to that on the inner surface, is equal to one. As the curvature
of the aluminium plate reduces, the displacement ratio reduces too, indicating that the
displacement amplitude on the outer surface is becoming greater than that on the inner

surface, hence shifting the displacement field as predicted.

5.3 Summary

The accuracy of using a cyclic symmetry finite element modelling technique to calculate
dispersion curves of curved plates has been demonstrated; this requires that a sufficient
number of elements be used to represent the through-thickness displacement mode shapes
precisely. The number of elements required is dependent on the complexity of the mode
shapes, which increases with increasing frequency and mode order. The asymmetric be-
haviour of the through-thickness mode shapes has been correctly presented in the mod-

elling. The results of the FE modelling were then used to validate the exact prediction of
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Figure 5.35: Ratio of the Ay out-of-plane displacement amplitude between the outer and the
inner surfaces as a function of curvature for a 0.97mm aluminium plate at 1.0MHz obtained ex-

perimentally (Solid line) and analytically (Dashed line).

the curvature effect on the phase velocity. In general, good agreement has been obtained,

except near the cut-off frequency of the wave mode due to some minor numerical errors.

A simple experimental technique to validate the curvature effect has been introduced. Due
to the small changes in phase velocity by the curvature effect, all aspects which could cause
an inaccurate prediction have been carefully investigated. This includes the selectivity of
the excitation wave mode and the local through-thickness variation of density and bulk
velocities caused by the strain-stress conditions. The results of these investigations form
the basis of an improved model, where conditions other than the curvature effect that
were induced during the experiment, have been included into the analytical model. The
experimental measurements match the prediction obtained from the improved analytical

model reasonably well.
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Chapter 6

Circumferential Guided Waves in
Loaded Curved Plates

This chapter concerns the investigation of the curvature effect on the guided wave proper-
ties in curved plates coupled to an infinite half space of solid or fluid. This is an extension
of the studies on the unloaded case detailed in the previous chapters, where it was found
that the curvature has an insignificant effect on the wave propagation velocity when the
curvature radius is moderately large. Thus predictions of a straight structure should in
theory provide a sufficient accuracy for the inspection of a curved structure of the same
cross section in most cases. In a loaded system, such as an embedded rockbolt, a dramatic
increase in attenuation of some wave modes has been previously reported [2] when the
rockbolt was curved, and thus the loaded curved system may still prove to be significantly

different to the loaded straight system.

The aim of this chapter is to understand the effect of curvature on the attenuation due
to the leakage of energy into the surrounding medium as the wave mode propagates along
the structure. This study is of fundamental importance, especially to improve the under-

standing of some issues in the inspection technique of curved rockbolts (see Ch. 1).

To the best of the author’s knowledge, there are currently no publications on the exact
analytical solution of leaky circumferential Lamb-type waves, except a paper by Rousselot
[127] dealing with circumferential wave propagation around thin shells. The reason for the
lack of publications in this field is mainly the difficulty in solving the analytical solutions of
this particular system; the analytical solution contains many complicated Bessel functions
of complex order as part of the global solution. Currently, there is very little knowledge
on how best this complex function is solved. In this chapter, both the analytical solution
of the loaded curved plate problem and the solving of the Bessel functions with a complex

order are addressed.
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Numerical examples of the leaky case are presented in the second half of the chapter,
which are subsequently used for predicting the curvature effect on the attenuation and
phase velocity of the leaky plate modes. This chapter is based on work published in Fong
et al. [128].

6.1 Literature Review on Leaky Circumferential Waves

Although, as mentioned earlier, there are currently very few papers studying the leaky
circumferentially propagating guided waves, there is a relevant topic that is closely linked
concerning leaky vibration modes scattering from pipes immersed in fluid; this topic has
been studied extensively using a so-called “Resonance Scattering Theory” (RST) which
was first derived in 1945 by Osborne et al. [129]. The difference between the studies of the
leaky circumferentially propagating guided waves and the wave mode scattering problem
using RST is that the former case addresses the waves travelling along a curved plate
system, while their energy is leaked into the surrounding medium; on the other hand, the
latter case addresses vibration, and does not correctly describe the attenuative nature of

propagating modes due to leakage into the surrounding medium.

The general solutions for the displacement field (U) of wave modes are typically given
by Eqn. 6.1, where A is the field amplitude as a function of radial position through the

thickness, and v and w are the angular wavenumber and angular frequency respectively.
U(r,0) = A(r) - 041, (6.1)

Either or both the wavenumber v or frequency w in Eqn. 6.1 can in theory be set to be
complex, where the imaginary part accounts for the decay in the field amplitude as the
wave modes propagate. However, these two complex quantities are in fact representing

problems of two very different physical natures as reported by Bernard et al. [130].

The use of these two complex quantities can be easily mixed up, especially in a leaky
curved plate system where the coupled half space medium has a much smaller impedance
than the plate layer. For example, a metallic plate layer couples with a water half space.
In this case, due to the mismatching of the impedance between the two coupled materials,
the leakage is normally small. As a consequence, the imaginary part of the complex root,
regardless whether a complex frequency @ or a complex wavenumber 7 is used, is not the
dominant part of the root. In fact, there is very little difference in the real part of the roots
between solutions calculated using the complex frequency w and the complex wavenumber
v. For this reason, good agreement for an experimental validation have been reported
[131] despite the experiment corresponding to one case and the analytical prediction to
the other.
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Figure 6.1: Illustration of the leaky circumferential wave problem and the coordinate system.

The RST uses a complex frequency (@ = wyeal + iWimag), and integer wavenumber; the
solutions describe a steady state leaky system of the vibration modes of pipes with a
certain integer number of harmonic cycles around the circumference at various frequencies.
However, for a transient system (Fig. 6.1), a complex wavenumber (¥ = Vyeq +iVimag) and
real frequency should be used; this would allow a correct description of the field amplitude

that decays over distance while propagating around a curved waveguide.

The fundamental governing equations for these two problems are extremely similar, both
of which contain Bessel functions. However, because of the use of a complex frequency &
in the case of RST, only the Bessel functions of a complex argument and a real order are
required to be solved; the solutions to the Bessel function with this combination of the

argument and order are readily available (see for example Abramowitz et al. [99]).

On the other hand, problems represented by the Bessel functions with a complex order
have not been studied thoroughly in the past; as a result, their nature is not yet clearly
understood. Currently there are few numerical schemes available to calculate the Bessel
functions of this combination of order and argument, and all of them are extremely difficult

to implement; some of these issues are discussed later in this chapter.

Because of this obstacle in solving these Bessel functions, the investigation of the vibration
scattering problem using the RST has become much more advanced compared to the leaky

guided wave problem.

6.1.1 Complex Frequency - RST

All references listed in this section relate to solutions calculated using the complex fre-

quency @ while the wavenumber remains real throughout. The RST was originally de-

139



6. Circumferential Guided Waves in Loaded Curved Plates

veloped for problems of acoustic-wave scattering from elastic cylinders and spheres which
has subsequently been applied to the case of elastic wave scattering from cavities (see for
example [132, 133, 134]).

Using the normal modal analysis, Breitenbach et al. [133] for the first time in 1983, plot-
ted the phase velocity dispersion curves for the low-frequency modes in an aluminium

cylindrical shell of various ratios of inner and outer radii.

Later, in 1984, Gaunaurd et al. [135] produced the phase velocity, group velocity and also
attenuation dispersion curves for the first few circumnavigating surface waves using both
the normal mode analysis and the RST. Subsequently, Talment et al. [136] extended this
to the higher order modes, including the so-called “whispering gallery mode”, the Rayleigh

mode and the fluid-borne Stoneley mode.

In 1999, Maze et al. [137] examined the repulsion phenomena in the phase-velocity dis-
persion curves of the circumferential plate waves using a perturbation theory. The papers
by Talment et al. [136] and Maze et al. [137] were later summarised in a publication by
Bao et al. [138], together with a small extension which includes solutions for pipes that
are both loaded and filled.

In 1998, Ahyi et al. [139] observed experimentally the acoustic excitation of the Ay wave
mode on a shell using long-pulse incident sound waves. The technique involves capturing in
a photograph the wavefronts of the excited wave modes that are leaked into the surrounding
fluid, from which it would be possible to evaluate the velocity of the corresponding wave

mode.

6.1.2 Complex Wavenumber - Leaky Guided Circumferential Waves

Up until now, all analytical studies of the leaky circumferentially propagating guided
waves have been limited to surface-type or interface-type waves. The first paper in which
a complex wavenumber was used to account for the energy leakage of the surface Rayleigh
wave on elastic cylinders into the surrounding fluid, was published in 1975 by Frisk et
al. [140]. In the subsequent year, the same group of authors published two other papers
on the solutions of two surface type circumferential waves on immersed pipes: one being
the study of creeping waves [141] which are also known as the Franz modes, and the other
being the “whispering gallery wave” [106]. The solutions of both cases were obtained
using a heavily reduced form of the exact method, of which the limiting case corresponds

to either of these two waves types.

Detailed experimental studies of the circumferentially propagating Rayleigh and Lamb
waves have been previously examined on a cylinder immersed in water by Bunney et

al. [142] in 1969. Additionally, in the same paper, Bunney et al. studied these waves on
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cylinders with a range of different materials.

Later, in 1985, Rousselot [127] derived the dispersion curves of circumferentially propagat-
ing waves in a shell system (i.e. wall thickness d — 0) using a modal theory. Despite the
success in obtaining the analytical solutions to this case, the results shown in this paper

are limited to the low frequency region of the dispersion curves.

In 1997, Hassan et al. [92] investigated a family of circumferential creeping waves around a
fluid-filled cylindrical cavity in an elastic medium, where the phase velocity, group velocity
and also attenuation dispersion curves were studied for this family of wave modes. The
formulation of the analytical solution was adapted from that of the Rayleigh case on curved
surfaces [74]. Later, in a sequel paper, Hassan et al. [143] examined the attenuation of the
solid-borne Rayleigh waves and the fluid-borne Creeping waves in a fluid-filled cylindrical

cavity, and some experimental validations of the analytical predictions were given.

6.2 Exact Analytical Model of the Leaky Circumferential

Waves

A system may be considered to be leaky if a solid or fluid half space is coupled either on
the inner (concave) or outer (convex) surface of the pipe or curved plate. However, it can
readily be seen that for the filled case the energy leaking into the internal medium can be
re-incident further around the pipe and so in fact is not lost, whereas for the externally
loaded case, the leaking energy vanishes away from the interface. Therefore the convex

case is the more interesting to study.

Fig. 6.1 shows the schematic diagram and the coordinate system of the problem of interest,
where a curved metal plate couples with either a solid or fluid half space on the outer plate

surface; this system will be referred to as the leaky case for the rest of this thesis.

The fundamental formulations of the wave equations used in this chapter are analogous
to those presented in Sec. 2.2.2 and Sec. 2.2.3 for the unloaded SH and Lamb-type cases.
For the SH case, the relevant equation of motion (Eqn. 2.4) is expressed in terms of the
displacement wu, in the z direction. On the other hand, for the Lamb-type waves, the
equations of motion are uncoupled into two separable equations in terms of the two scalar
potentials, ¢ and ¥, corresponding to the longitudinal and shear motions respectively
(Eqn. 2.7).
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6.2.1 Displacement Field Equations

Solid layer(s)

As in Ch. 2, the common time harmonic factor (e~*?) in the general displacement field

equations is suppressed throughout. The equations of motion (see Eqns. 2.4 and 2.8 for
the SH and Lamb cases respectively) are expressed in terms of Bessel equations which can
be solved using Bessel-type functions. For solid layer(s), Bessel functions of the first kind
(J) and second kind (Y') with complex order may be used. The solution for the SH case

become:
uz('r, 9)solid = [alsJD(kTT) + CLQSYI—,(]{}TT)]BWQ. (62)
whereas for the Lamb-type case, the solutions are:

(1, 0)sotia = [a1sT5(kLr) + a2 Yy (kpr))e™?, 63
(1, 0)solia = [azs 5 (krr) 4 a4sYy(krr)]e™?.

where a;5, with i={1,2...etc} are the unknown plane wave amplitudes in the solid layer
(denoted by the subscript s).

Solid Half Space

A solid half space supports the propagation of both the shear and longitudinal bulk waves.
Only the Hankel function of the first kind (H?), corresponding to the outward propagating
plane wave, is suitable to represent solutions in an infinite half space. The solution for the

SH case becomes:
= (r, 0)solidy, = [a15,, Ha (krr)]e’™. (6.4)

while the solution for the Lamb-type case is:

o(r, 0)solidy, = [alsth;(kLr)]eilja’ o5
(r, 0)solia,, = [ags,, H (krr))e™.

where a;g, , with i={1,2...etc} are the unknown plane wave amplitudes in the solid half

space (denoted by the subscript hs).
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Fluid Half Space

A perfect fluid half space cannot support any shear propagation, therefore any shear
components in the solid layer would not be able to couple with the fluid layer, hence
Uz = 0 in the SH case, while ¢ = 0 in the Lamb-type case. As a result, the solutions

of the leaky and non-leaky SH cases are both non-attenuative.

The solution for the fluid half space in the Lamb-type case, supporting only the longitu-

dinal wave propagation, is reduced to the following form:
(1, O)uidy,, = [ag,, Hz (krr)e™. (6.6)

where ay,  is the unknown plane wave amplitude in the fluid half space of the Lamb-type

case.

6.2.2 Solution of the Fluid-Loaded Solid Curved layer

As an example, the solution of Lamb-type waves in a solid curved plate coupled with
a fluid half space on the outer surface (see Fig. 6.1) is presented in this section; the
analytical solution is also in-line with the numerical and experimental validations presented
in the next chapter. In all cases, the solution is obtained by applying the appropriate
boundary conditions of each interface discussed in Sec. 2.2.4, and using the correct stress
or displacement field equations. The stress field equations (Eqn. 2.17) can be obtained
from the displacement field equations. According to Tab. 2.2, the five boundary conditions

for the case of a fluid-filled solid curved layer are:

Orrootia = Olr=r

Orfsoria = 0|7”=T1

Orfsoria = 0|7”=T2 (6'7)
Urgoria = urfluid‘T:T2

Orrgotia — O-Trfluid|7":7”2

where r; and 79 are the radius at the inner and outer surfaces of the solid layer respectively.
The overall solution of the layers can be assembled using the Global Matrix method (see

for example Lowe [98]). This forms a homogeneous eigen-problem that relates the square

143



6. Circumferential Guided Waves in Loaded Curved Plates

eigen-matrix

D11

Dsq

[D] to the field amplitudes a in the form:

D;5 s

' a2s
ass =0.

: Q45

Ds;s | afy,

(6.8)

It is worth noting that the eigen-matrix [D] is assembled with the boundary conditions in

the order listed in Eqn. 6.7, and the elements of D are expressed explicitly as follows:

D55 =

— AsJp(@
——kL[ AsY5(@2) + 2015 Y7 (&2
= 2] Lo (Gy) + ke, J5(4)

(@4
1

K[ = Mp(@n) + 2 (@n)]
ki, [— AYo(@1) + 2usY7 (@1)]
2 [ L5 (@g) + o, T (3)]
2;;3111/[ B %YD(@?ﬁ) + ]{:TSY,,/(@?))]
0

2L L Jp(Gn) + kr, Jp(@n)]
M[_ Ly, (@ 1) + ko, Yo (or)]

€>

ps — k3, J2(@3) + Lo T (Gg) — B Jp(ig)]
ps[ — K3, Y (@3) + LoV (@3) — B Yo (@3)]

r

2) + 2sJ7 (W2)]

T2

[~ LY, (60) + b, V3

T2

ki, [— Afol(a; )+ 2up HIY (@

where (.:)1 = kLSle (212 = kLSTQ, d)g = kTsrl, @4 = ]CTSTQ, (215 = kaT‘Q, and A and 1%

are the Lamé constants of the material, while the subscripts s and f indicate the material
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properties corresponding to the solid layer and the fluid half space respectively. The prime

/ indicates the derivative of a function in respect to the radius r.

The solution to Eqn. 2.18 which consists of the complex wavenumber, v, and the real
frequency, w, is obtained using a tracing routine written by the author and an optimisation
routine available in the software Matlab”’™. The procedure of this 2-D tracing routine is

discussed in Sec. 6.3.

The linear (tangential) phase velocity (V) and the attenuation (Atten) of the wave
modes are calculated at the mid-thickness of the plate (r,,;4), and can be expressed in the

following relationships:

W Tmid
Atten(dB/m) = @ -20logio(e). (6.11)
mid

6.2.3 Bessel Function of the Complex Order

The numerical solution to Eqn. 6.8 was found to be extremely demanding, this is mainly
because of the fact that an accurate calculation of the Bessel functions with a complex
order is very complicated. As discussed in Sec. 2.3.2, the Bessel functions of the order
and argument x are the unique standard solutions to the Bessel’s differential equation in

the following form:
Y 2y + (1= L)y =0 (6.12)
. .~ : .

Many engineering problems, especially those showing cylindrical symmetry, are described
by the Bessel equation. In most circumstances, both the order and the argument of the
Bessel function are real, or the order is real and the argument is complex. In this case,
the Bessel equation can be easily treated using various methods, such as convergent series
and asymptotic expansions ... etc. The details can be found in, for example, Ch. 9 of
Abramowitz et al. [99].

However, the Bessel function of a complex order and a real/complex argument can arise
in a few engineering problems such as acoustic wave propagations (see for example Frisk
et al. [140]). Before computers were available, the theoretical treatment of the Bessel
function of this kind relied heavily on asymptotic solutions that are subject to numerous
conditions (details can be found in Langer [144]), and they are not always suitable for
numerical calculations. Recently, the solutions of the Bessel function of this kind have
been revised so that numerical schemes, such as Chebyshev expansions, recursion relations

and numerical integration of the integral representation, can be applied.
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The Chebyshev Expansions Technique (CET) [145] involves expressing the Bessel function
in terms of the Chebyshev polynomial series. It has been reported [145] that the calcula-
tions using the CET can become uneconomical when the order and argument of the Bessel

function are large.

On the other hand, the recurrence method has been shown [146] to provide the “most
powerful” solution to the Bessel functions of complex order. The method takes advantage
of the recurrence relations of the Bessel functions (Eqn. 9.1.27 of Abramowitz et al. [99]),
from which the solution can be significantly simplified, and thus can easily be implemented
and evaluated. Nevertheless, the accuracy of the numerical calculation using this method

is highly dependent on the values of the orders and arguments used.

The theoretical background of the integral representation of the Bessel function has been
examined briefly by Watson (pp. 46 of [100]). The numerical study of this Numerical
Integration Scheme (NIS) has been investigated by one of the collaborators of the present

work, Alexander Adamou, and the procedures of the method are summarised below.

In general, Bessel functions of the first kind J,(z) may be expressed in the form of an
integral in the following form (Eqn. 9.1.20 of [99]):

_ 20 Lyt
Jv(x)—ﬂér(%y+é)/0 (1= £2)7~% cos(at)dt. (6.13)

_1
29

—%, recurrence relations are used to express the Bessel

function in terms of other Bessel functions with ®(v) > —3, which are then integrated as

where I' is the Gamma function. The formula is valid for R(vy) > and can be nu-

merically integrated. For R(v) <

before.

The Bessel function of the second kind Y, (z) can be evaluated using the following expres-
sion (Eqn. 9.1.2 of [99]):

Jy(x) cos(ym) — J_y(x) .

Yy(2) = sin(y)

(6.14)

bT™ program where the accuracy of the solution can

The NIS was implemented in a Matla
be specified. It is worth noting that the numerical integration breaks down for large x (at

around x > 100) due to the rapid oscillations of the integrand.

In 1986, Thompson et al. [147] examined the Bessel functions of complex order using com-
bination of both the CET and the recurrence relations to achieve a good accuracy in any
range of the order and argument of the Bessel function. Based on his findings, Thompson
outlined suitable choices of algorithms using a combinations of the above methods accord-

ing to the v — x region, in order to achieve the best accuracy. This has subsequently been
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implemented into a commercial program Maple’™ as a “ready-to-use” function (see for
example http://www.maple.com); this Maple function can be linked to Matlab’™ from

which the phase velocity and attenuation dispersion curves are calculated.

The accuracy of Thompson’s method may be checked by comparing the numerical results
with those calculated using the NIS with a tolerance value higher than the number of
significant figures displayed by Matlab”™ . The numerical comparisons were performed
using values of v and x that fall into the three different regions: R(v) < z, R(vy) ~ x and
R(v) > x. The results are shown in Tab. 6.1, where the NIS has a theoretical tolerance
in accuracy of at least 10 x 10715, therefore the differences of the solutions between these
two methods correspond to the accuracy of CET (shown in Tab. 6.2). It can be seen
that the results produced by Thompson’s method for both the real and imaginary parts
are extremely accurate in all regions. The solution is slightly less accurate in the region
of ¥ > z, but nevertheless it has an accuracy of 1 x 1077%. Therefore the method
should in theory provide sufficient accuracy when evaluating the dispersion curves using

the characteristic functions Eqn. 6.8 for the study of the curvature effect.

6.3 Two-dimensional Optimisation Routine

In an attenuative case, where the attenuation is due to leakage into a surrounding material,
the roots of the system (Eqn. 6.8) are complex (7, w where U = Vpeqr + Vimagl ), as
discussed earlier, and can be treated as a system of three independent parameters. The
tracing routine is, in general, very similar to that of the 1D problem detailed in Fig. 3.6
of Sec. 3.2.

The only difference compared to the non-attenuative case is that the roots of the charac-
teristic function for the leaky case are searched in a plane of two independent parameters,
while the remaining one is fixed. The plane in which a root is searched can be in any
combination of the three parameters. In the author’s implementation of the optimisation
routine, a root is searched in the plane of imaginary part of wavenumber and frequency

(Vimag — w), while the real part of the wavenumber v,..q; is fixed.

As in the non-attenuative case, the first step of the routine is to locate two “initial roots”
corresponding to the same mode at two real angular wavenumbers, Re(v1) and Re(r) that
have very close values. These roots provide the starting points of the line tracing routine
in both the increasing and decreasing frequency directions. This searching of the “initial

roots” may be repeated to search for a desired number of higher order modes.

To find a root of two parameters, the calculation may be treated as a minimisation problem
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when the characteristic function of Eqn. 6.8 is expressed in the following way:

bs[R(det(D 3(det(D
Modified Characteristic Function (MCF) = log (a SR el(() >Z>1—(')—1(\)2< et ))])

(6.15)

R and & indicate the real and imaginary quantities of the determinant of the character-
istic function, D. Since the absolute quantity of D is usually very large, for clarity the
01007

amplitudes of D can be normalised with a very large number, such as 10 x 1 and

expressed on a Log scale.

Fig. 6.2 illustrates the root finding routine of two independent parameters. The contour
lines indicate the amplitude of the MCF. Having chosen the real part of the angular
wavenumber V,.qq, the amplitude of the MCF forms a sink at the corresponding root in
the Vjmqeg-w plane, showing a minimum of the function which corresponds to a root of the
leaky system (Label A in Fig. 6.2).

The approximate location of a sink may be located by sweeping along the v,y and w
plane in turn to locate the general direction of the local minimum with respect to each
parameter. This would subsequently allow the minima to be homed-in using a numerical
algorithm of a two-dimensional steepest descent (see for example Press et al. [103]); the
algorithm, as shown in Fig. 6.2, iterates to find the nearest local minimum of the MCF
in the direction of the steepest descent gradient at a given starting point in the vjqq-w
plane. The process is iterated as many times as required until a specified accuracy is

achieved; a typical accuracy is set to 1 x 1076 for the values of both Vimag and w.

Using the “initial roots”, the second step of the routine traces the dispersion curves of the
modes in the user specified frequency range, at every real angular wavenumber intervals
Re(dv). To trace a dispersion curve, an “initial guess point” is first identified by extrapo-
lation in a step of Re(dr) using previously found roots that can either be the “initial roots”
or roots that are subsequently found. A linear extrapolation is used for the first 5 points
on a curve, thereafter a quadratic extrapolation can be used to improve the efficiency of

the scheme; this is similar to a technique used in Disperse [148].

In Fig. 6.2, the linear extrapolation of the tracing routine is demonstrated. It can be
seen that an “initial guess point” at Real(v + 20v) is obtained by extrapolating using the
two known roots at Real(v) and Real(v + 0v), and the root is located using the steepest
descent gradient iteration scheme. The extrapolation technique applies to both increasing

and decreasing real wavenumber directions.

This tracing routine typically takes a lot longer than the 1D-tracing routine of the non-

leaky case (Sec. 3.2). This can be attributed to the complexity of finding roots in the
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plane of two independent parameters, additional time is required during the first step of
the routine to search for the “initial roots”. For the 1-D problem of a non-attenuative
case, the finding of the “initial roots” requires sweeping along one parameter within a
particular range over n number of steps, whereas for the leaky problem, the searching of
the “initial roots” requires sweeping along both parameters. If the same number of steps
n is used in sweeping both parameters, the time needed to find the “initial roots” in an

attenuative problem would be the square of that needed for the non-attenuative case.

The size of the step in each parameter for the initial sweeping is decided based on the size
of the sink. The function MCF generates sinks that are localised, covering a small area in
the Imag(v)-w plane. As demonstrated in Fig. 6.3, the direction of the steepest descent
gradient does not always point towards the nearest root as one sweeps in the frequency
along a particular Imag(r). It can be seen that the direction of the steepest descent
gradient points towards the sink along Im(v + dv), while it points away from the sink
along Im(v1). Therefore the step size of imaginary wavenumber Im(dr) must be small
enough so that when sweeping along Im(rv;) and Im(vy + dv), the steepest decents are
not both pointing away from the sink, which might result in the root not being identified.

Similarly, the same criterion applies when choosing the step size for the frequency sweeping.

Root

Direction of the steepest
descent gradient pointing

= towards the root -

Imag(v)

| Im(v,+5v)

im(v)

Direction of the steepest
descent gradient pointing
away from the root

Frequency (®)

Figure 6.3: An illustration of the sweeping of the initial complex roots along a real wavenumber,

Re(ry), in frequency dw and in imaginary wavenumber, Im(dv), steps.
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6. Circumferential Guided Waves in Loaded Curved Plates

6.4 Numerical Examples of a Fluid Loaded Case

As an example, numerical solutions of the dispersion curves for circumferential leaky
Lamb-type waves in the system, illustrated in Fig. 6.1, were calculated using the solution

detailed in Sec. 6.2.2, and with the tracing routine described in Sec. 6.3.

H Steel layer Water half space

Longitudinal Vel. Cr,, (m/s) 5959.6 1410.0
Shear Vel. Cp, (m/s) 3260.0 —
Density p, (kg/m?) 7932 1000

Table 6.3: acoustical properties and density of the materials used in the numerical example of

this chapter.

Figs. 6.4(a) and 6.4(b) show the phase velocity and attenuation dispersion curves of the
Lamb type waves in a steel curved plate (thickness: 3mm, and inner radius: 40mm) coupled
with a water half space on the outer surface. The acoustical properties and the density of
these materials used in the numerical example are listed in Tab. 6.3. It can be seen that
the phase velocity dispersion curves (Fig. 6.4(a)) are very similar to those of the non-leaky
cases (see for example Fig. 4.1). This is because the solid layer remains as the dominant
guiding layer in which the waves propagate at a similar speed to the non-leaky case, while
some of their energy leaks into the water. The same phenomenon can also be found in
the straight case when a water half space coupled to a solid layer would not change the
physical properties of the wave modes significantly in the layer. The attenuation due to the
energy leakage into the water for each individual mode is represented by the attenuation
dispersion curves as a function of frequency, shown in Fig. 6.4(b). A comparison of the
attenuation between straight and curved plates that are coupled with a water half space

is given later in Sec. 6.5.

Figs. 6.5 and 6.6 show the mode shapes of the leaky and non-leaky cases for both the Ag
and Sy modes respectively for a curved plate (thickness: 3mm, inner radius: 40mm). In
both cases, despite the fact that they are calculated using different analytical solutions,
the mode shapes of these two modes in the solid layer appear to be almost the same. This
is because the water in the leaky case has a much lower impedance than the plate, thus
has little effect on the mode shapes. Nevertheless, if the impedance between the plate and

the water were similar, it would have a big effect on the mode shapes.

Furthermore as mentioned in Sec. 4.2, the change in mode shapes can be linked directly
to the propagation properties such as the phase velocity. As a result, provided that the
geometry of the main guiding medium (i.e. the solid plate) is kept the same, a matching in

phase velocity of the wave modes between the leaky and non-leaky cases can be expected.
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Figure 6.4: Dispersion curves of the Lamb-type modes in a leaky curved plate systems of a 3mm

thick, 40mm inner radius steel plate coupled with a water half space on the outside of plate.
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Figure 6.5: Radial (Red) and circumferential (Blue) displacement field for the quasi-Ay mode in
a steel curved plate (thickness: 3mm, inner radius: 40mm) at 2.5MHz. Leaky case is for water on

the outside of the plate.
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Figure 6.6: Radial (Red) and circumferential (Blue) displacement field for the quasi-Sp mode in
a steel curved plate (thickness: 3mm, inner radius: 40mm) at 2.5MHz. Leaky case is for water on

the outside of the plate.
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In addition to the typical Lamb-type modes, the fluid-borne Franz modes [149] (also
known as creeping waves) can also be calculated using the formulation derived in Sec. 6.2.2.
Figs. 6.7(a) and 6.7(b) show the dispersion curves of the Franz modes in the same frequency
range as those shown in Figs. 6.4(a) and 6.4(b). There is an infinite number of these
modes at each frequency, all of whose phase velocity converge to the bulk speed of water

as W — OQ.
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Figure 6.7: Dispersion curves of the fluid-borne Franz modes in a leaky curved plate system of a

3mm thick, 40mm inner radius steel plate coupled with a water half space on the outside of plate.

Unlike the Sholte mode in the leaky straight plate system [150], the Franz modes propagate
circumferentially in the fluid at a certain distance away from the solid layer surface, and
have a large displacement component in the radial direction which leads to a large atten-
uation. Compared to the leaky Lamb-type curved plate modes, the Franz modes typically
have a much higher attenuation. Fig. 6.8 shows the displacement mode shapes of the 15

and 4" order Franz modes. For a given Franz mode, the amplitude of the mode shapes
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increases with distance from the plate surface; this increase in amplitude is associated to
the curvature of the system, therefore a system with a large curvature would increase the
rate at which the displacement amplitude radiating out from the surface. Additionally, it
can be seen from Figs. 6.7 and 6.8 that the attenuation of the Franz mode increases with

distance away from the solid surface where it propagates.

In practise these modes can be very difficult to detect as they are damped out completely
in a very short distance compared to the typical Lamb-type curved plate modes, thus they

do not normally interfere during experimental measurements.
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Figure 6.8: Radial (Red) and circumferential (Blue) displacement field for Franz modes in a steel
curved plate (thickness: 3mm, inner radius: 40mm) coupled with a water half space on the outer
surface at 500kHz.

6.5 Curvature Effect on Propagation Properties in Loaded
Plates

In this section, the curvature effect on the phase velocity and the attenuation of the wave
modes in a loaded curved plate is investigated in a similar fashion to those investigated in
Ch. 4 for the unloaded case. First, the phase velocity and attenuation dispersion curves
may be compared visually between a straight (thickness: 3mm) and a curved steel plate
(thickness: 3mm, inner radius: 40mm), both of which are coupled with a water half space
on the outer surface, shown in Fig. 6.9. Only the first two fundamental Lamb-type wave
modes are compared in Fig. 6.9, however, in the frequency range of this figure, there are
other higher order plate modes as seen in Fig. 6.4(a), but for clarity these are not shown.
The prefix “Quasi” is used in the figure to distinguish the wave modes belonging to the

curved leaky plate system from those of the straight leaky system.
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Figure 6.9: Dispersion curves of the lowest two order Lamb-type modes in the straight (Dashed
lines) and curved (Solid lines) leaky plate systems (3mm thick steel plate coupled with a water

half space on the outer side of plate). The inner radius of the curved plate is 40mm.

Phase Velocity

As in the case of the non-leaky curved plate, the “quasi-Ay” and “quasi-Sp” modes do
not converge to a single Rayleigh wave speed, but to two distinctively different speeds
corresponding to the surface waves on the outer and inner surfaces respectively as w — oo.
The displacement field of these two wave modes at low frequencies are similar, and hence
their attenuation values are similar too. However, at higher frequencies, for example at
2.5MHz (shown in Figs. 6.5(b) and 6.6(b)) the displacement amplitude is confined to the
area close to either the inner or the outer surface. As a result, the “quasi-Ay” mode can
be strongly coupled with the water half space, and it can be seen in Fig. 6.9(b) that the

attenuation becomes much larger than that of the Ay mode towards higher frequencies due
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to the increased leakage. On the contrary, as the energy distribution in the plate moves
towards the inner surface, away from the water-solid interface, the “quasi-Sy” mode has a

much smaller attenuation at higher frequencies compared to the straight plate Sy mode.

Fig. 6.10 shows the normalised difference in phase velocity of the Ay and Sy modes between
the straight and curved plates, using Eqn. 4.1, for a range of frequencies and inner radii
of the curved plate. These figures have a striking resemblance to those analysed for the
unloaded plate case (see Fig. 4.2) in terms of the pattern and the amplitude. The difference
in phase velocity is typically less than a few percent even for a curved plate having a very
small inner radius. This clearly suggests that the curvature has little effect on the phase

velocity in both the leaky and the non-leaky systems.
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Figure 6.10: Percentage difference in phase velocity between straight and curved steel plates
(thickness: 3mm) as a function of frequency and inner radius of the curved plate. The plates are

coupled on one side with water.

Attenuation

Similar 3-D plots (Fig. 6.11) have been produced for the comparison of the attenuation
of the Ay and Sy modes over the same frequency and curvature radius range as those for
the phase velocity comparison. It can be seen that the curvature effect on the attenuation
varies over the range of frequencies in both cases, but most importantly, the curvature

effect on the attenuation is substantially greater than that on the phase velocity.

Additionally, it is worth noting that the “quasi-Ay” mode has a greater attenuation which
increases with increasing curvature, and this phenomenon is completely opposite for the
“quasi-Sp” mode due to the reasons discussed earlier. Note that the percentage difference
in attenuation of the Sy shown in Fig. 6.11(b) is negative; a greater attenuation is shown
as a positive percentage difference and vice versa. As Beard [2] reported, curvature can

become problematic for inspection, especially in a leaky system. Typically the changes in
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attenuation due to the curvature effect can increase and decrease by over 100% for the Ag

and Sy modes respectively when the curvature radius is small.
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Figure 6.11: Percentage difference in attenuation between straight and curved steel plates (thick-
ness: 3mm) as a function of frequency and inner radius of the curved plate. The plates are coupled

with a water half space on the outer surface of the plate.

Since the amount of leakage from the plate is related to the energy available to couple
with the water half space at the surface of the plate, it would help to improve the under-
standing of the curvature effect on the attenuation by plotting the total energy density
distribution across the plate thickness for a range of inner radii. The total energy density
is a combination of the kinetic energy density (KED) and the strain energy density (SED).
For the Lamb-type circumferentially propagating waves, the displacement field (Sec. 6.2.1)
does not depend on the z direction, while u, = 0. Therefore the formulae of the KED
and SED (see for example Auld [5]), in terms of the relevant displacement and stress field

vectors, can be reduced to the following forms:
_ o[ (Y 8ue>2
KED = 1 {( 5 ) + ( 5 . (6.16)
1 ou, Oug O 0 [ug 1 0u,
SED = 4{0'7~T8 +099<89+ >}+ 3 {Tar(r)Jrrae}. (6.17)

where u,., ug, o, and o9 can be expressed in terms of the displacement scalar potentials

@ and v using Eqns. 2.7 and 2.17 respectively, while the reduced version of ggg can be

expressed as follows:

10% 10% 100 1000
[waez‘raaaﬁraﬁrzae' (6.18)

The through-thickness total energy density for the “quasi-Ag” and “quasi-Sp” modes at
500kHz is shown in Fig. 6.12, where the amplitude of the total energy density for a par-

ticular curvature radius has been normalised with the local maximum value. As expected,
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the energy distribution is shifted towards the outer and inner surfaces for the quasi-Ag
and quasi-Sg modes respectively as the curvature increases. This changes the amount of
energy coupled with the water half space and consequently affects the attenuation value

in the same way as occurs with increasing frequency.
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Figure 6.12: Through-thickness normalised total energy density calculated at 500kHz for the
quasi-Ay and quasi-Syp modes in 3mm steel curved plates coupled with a water half space, over a

range of inner radii.

6.6 Summary

In this chapter, leaky systems using solution that either have the angular wavenumber
being real and the frequency being complex, or the angular wavenumber being complex
and the frequency being real, have been thoroughly examined. In addition, a detailed

literature review on these two kind of solutions has been performed.

For leaky guided circumferential wave propagation, the attenuation due to leakage can only
be correctly described using the combination of complex wavenumber and real frequency
roots. The general analytical solution for the circumferential guided waves of a loaded
curved plate based on this combination of roots have been derived, and the formulation

of a fluid-loaded case has been explicitly shown.
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The Bessel function of complex order is the most important component in the solutions of
leaky circumferential guided wave problems. However, few numerical schemes are available
for the evaluation of these complex functions. The most promising numerical schemes
include the robust Chebyshev Expansion Technique (CET), and the accurate Numerical
Integration Scheme (NIS); both of these schemes have been evaluated in this chapter.

The finding of roots from the dispersion relation in a leaky case with two independent pa-
rameters can be carried out using a steepest descent scheme in a two-dimensional optimi-

sation routine. This forms part of the global tracing routine, which has been summarised.

As an example, the phase velocity and attenuation dispersion curves, and the mode shapes,
have been presented for a fluid loaded case, all of which were calculated using the numerical
tracing routine. In general, there are two families of wave modes in the coupled plate case:

the plate guided wave modes and the fluid-borne Franz modes.

The curvature of the plate was found to have much more effect on the attenuation than
the phase velocity of the wave modes in the leaky case. The amount which the attenuation
changes can be related to the amount of shift in energy distribution through the thickness
due to the increasing in curvature. The shift of the energy distribution towards one surface
or the other is wave mode dependent. In general, a higher attenuation is obtained if the

energy shifts towards the half space-plate interface, and vice versa.
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Chapter 7

Validation of Curvature Effect in
Loaded Plates

The analytical solutions of a leaky system have been examined thoroughly in the previous
chapter; the system consists of guided waves propagating circumferentially in curved plates
that are coupled with either a solid or a fluid half space on the outer surface. The solutions
were subsequently used to study the curvature effect in such systems. Before one uses the

results, the validity of this solution must be established.

In this chapter, the analytical prediction of the curvature effect of the leaky curved plate
case is validated using both the numerical FE method and experimental measurements.
The model case for the validation in this chapter is a 3mm thick steel curved plate coupled
with an infinite fluid half space on the outer surface (illustrated in Fig. 6.1). These
geometrical dimensions are also the same as those investigated in Sec. 6.5 of the previous

chapter.

In the first part of this chapter, a FE model analysed in the time domain using elastic and
acoustic plane strain elements to represent the solid plate layer and the fluid half space
respectively, is presented. Using this method, the attenuation can be evaluated from FE
simulation results obtained over a range of curvature radii; the results are subsequently

compared to that of the straight case to evaluate the curvature effect.

In the second part of this chapter, an experimental technique to measure the amount of
attenuation due to the leakage into the surrounding medium is presented. Although the
experimental technique, used in Ch. 5, can sensitively measure the difference in phase
velocity due to the curvature effect, it would not be appropriate for the validation of the
leaky case. This is because the experimental technique cannot be easily set up to allow
only the outer surface of the metal plate to couple with a fluid half space. Nevertheless,

since we expect the curvature effect on the attenuation to be significant, we do not need
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such a sensitive setup as we did when studying the free case, as predicted in the previous

chapter.

Instead, sufficiently accurate experimental measurements can be taken from a set of trans-
ducers attached permanently on the surface of a series of pipes of the same thickness and
various curvature radii. The attenuation can then be measured by comparing the wave

signals when the pipes are surrounded by water and when they are in air.

7.1 Finite Element (FE) Modelling of the Leaky Case

The general concept of numerical modelling using finite elements was discussed in Sec. 5.1.1.
In this section, a FE technique to measure the difference in both the phase velocity and

attenuation between the curved and straight cases is presented.

For a leaky system of a curved plate coupled with an infinite fluid half space (see Fig. 6.1),
the dispersion curves cannot be extracted from the FE modelling technique in the same
way as for the layered case with a finite thickness studied in Sec. 5.1. This is because
for a non-leaky case, the FE calculation is based on a modal analysis where the natural
frequencies corresponding to the ascribed geometry and boundary conditions are extracted;
whereas for a leaky system, the geometry of an infinite half space is very difficult to model

using a modal extraction scheme in finite element modelling.

Since the fluid half space has a very different impedance to the main guiding medium of
the steel plate, and the wave modes of fluid and solid media can be considered as very
weakly coupled, a close approximation in phase velocity may be obtained when the infinite
half space is replaced with a thick finite layer. Although this idea of modelling the leaky
system may correctly approximate the phase velocity of the wave modes in the plate layer
by using the appropriate boundary conditions at the solid-fluid boundary, the model still
would not be representative of the leaky system, as the leaky energy can re-enter the

guiding medium after reflecting from the top of the fluid layer.

Alternatively, the wave mode propagation may be simulated in the time-domain, where
a wave mode is excited at one end of the plate model and is subsequently measured at
several locations along the plate before reflections from the top of the fluid layer appear.
The results of this time response signal can then be used to calculate the attenuation of

one particular wave mode.
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7.1.1 FE model of the Leaky Case

Lamb-type wave mode propagation in both the straight and the curved plate cases involves
polarisation only in the out-of-plane (u,, u,) and in-plane (u,, ug) directions, as shown
in Figs. 4.5 and 7.1. Therefore the simulation can be performed using 2-D elastic and
acoustic plane strain elements to model a section through an infinitely wide steel plate
and a fluid half space respectively. The plane strain elements are utilised in the plane of

x —y or r — 0 for the straight or curved case respectively.

,Start of the

g Absorbing boundary :curved section
SX

50mm 50mm

vd\
A
Line of excitation Steel plate
(plane strain elastic
7 elements, thickness: d,)
Absorbing r
boundary ~
7 0 (a)
Cy Curvature "
Coupled = radius Monitoring
translational S E points
motion EE
\L =5
Min no. of elements = S,
Water layer

(plane strain acoustic
elements, thickness: d/)

Figure 7.1: Schematic diagram of a two layered finite element model for the simulation of leaky

wave mode propagation in the time domain.

Fig. 7.1 shows a schematic diagram of the FE model used for the time-domain FE sim-
ulation. The simulations were performed using Abaqus’™ but could equally have been
done using many commercial FE programs. The model consists of a layer of steel plate
(thickness: 3mm) coupled with a layer of water (thickness: 10mm). The two layers are tied
together by coupling the translational motion, in the direction normal to the interface as
expected for a perfect fluid. Additionally, absorbing boundaries are used on the external
edges of the water layer to absorb any energy radiating away from the solid-fluid interface,

hence simulating a fluid half space.

The material properties used are the same as those used in the previous chapter, and are
listed in Tab. 6.3. The model is divided into two sections comprising an initial straight

section and then a curved section of which the inner radius is fixed to a specific value

164



7. Validation of Curvature Effect in Loaded Plates

corresponding to the curvature radius that is under investigation.

A 5-cycle Hanning windowed toneburst signal is excited at the straight end of the steel
plate by applying forces along the “line of excitation” with an appropriate amplitude
either in the normal or in-plane direction to excite the Ay or Sg mode respectively; the
“line of excitation” is the series of nodes along the free end of the straight section. To
avoid transferring energy to the fluid-borne modes directly during the excitation of either
the Ag or Sp mode, a 50mm long uncoupled single layered straight section is included to
allow the specific excitation mode to fully develop before entering the leaky double layered

section.

The choice of element sizes for the elastic and acoustic plane strain elements in the FE
model follows the same criteria as those used in the modelling of the non-leaky cases
discussed in Sec. 5.1. The general rule is that there should be at least 6 elements for one
wavelength of the slowest propagating wave mode, including both guided and bulk wave
types. Using these basic ideas, the minimum number of elements in the solid and fluid
layers (S7 and S2) as illustrated in Fig. 7.1, can be determined using Eqns. 7.1 and 7.2.

Additionally, for simplicity an aspect ratio = 1 is used for all elements.

ds V,

S1 = Round lG fph] ) (7.1)
dt CL s

Sy = Round [ij}fh“d} (7.2)

where Vph is the phase velocity of the wave mode under investigation, Cp,,,,,, is the bulk
translational velocity of the fluid, f., is the excitation frequency of the wave mode, and

ds and dy are the thickness of the solid and fluid layers respectively.

The excitation signal can be reflected at any locations where there is a sharp change of
impedance in the propagation direction; the impedance is dependent on both the material
properties and the geometry. Therefore a reflection is expected to occur at location where
the plate couples with the water layer, hence the initial straight section provides delay to
separate the reverberating signals. Additionally, propagation velocities of the “quasi-Ag”
and “quasi-Sp” modes vary little over the range of curvature radii in this study, therefore
the length of the straight section (shown in Fig. 7.1) works well as a filtering length in all

models.

As an illustration, the total energy density field of the system with a curvature radius
of 40mm, at several time instances, is shown in Fig. 7.2. The fields were collected from

M and subsequently

the results generated from the time-domain simulation in Abaqus’
plotted using Matlab”™ . The total energy density fields, which are the sum of the kinetic
and potential energy density fields stored in the system (see for example pp.142-146 of

Auld [33]), are plotted at four time instances corresponding to the propagation of the
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Ao wave mode in different sections of the FE model at times of 0.4 x 107>, 1.8 x 1075,
2.8 x 107° and 6.8 x 10~° seconds respectively. The colour scales of the field amplitudes
are different in all four time instances; the amplitudes of the energy level in the field are
normalised to the maximum value for clarity. Therefore these images are illustrative but

do not directly indicate the degree of attenuation.

Fig. 7.2(a) shows the Ay mode being generated along the “line of excitation” at 500kHz
to propagate in the non-leaky straight section of the model (Fig. 7.2(b)). As the wave
packet enters the double layered straight section (Fig. 7.2(c)), the non-leaky Ay wave mode
converts into a leaky Ag mode where some of its energy leaks into the fluid layer, and is
subsequently absorbed by the absorbing boundary. The amount of this leakage is governed
by the attenuation characteristic of the wave mode at the excitation frequency. Finally,
the Ay leaky wave mode enters the leaky curved sections, as shown in Fig. 7.2(d), where
more energy is expected to leak into the surrounding medium for the reasons explained in
Sec. 6.5 of the previous chapter. In this section of the model, the wave fronts of the leaky
bulk waves appear to be curved in the fluid layer; the arc of the wave fronts has the same

curvature as that of the outer surface of the plate.

A drawback with this approach is that the absorbing boundary condition works best
when the radiating waves strike the boundaries at 90 degrees (details can be found in, for
example, Engquist et al. [151]). As a result, the absorbing boundaries of the fluid layer do
not absorb all the wave energy that reaches them; a small amount of the energy may be
reflected back and re-enter the plate. However, the fluid layer acts as a delay line so any

such re-incident waves are delayed with respect to the wave mode of interest.

Additionally, the propagation of the fluid-borne Franz modes can be observed in the fluid
layer in Fig. 7.2(d). It can be seen that as the energy of the “quasi-Ay” mode leaks into
the fluid layer, some of this leaky energy is converted continuously into the Franz modes,

which are represented by the circular wave fronts in the fluid layer.

Abaqus™ outputs the time response signal of the displacement only in the directions
along the principal axes of the cartesian coordinates, = and y, in Fig. 7.2(a). For the
investigation of the curvature effect on the attenuation of the leaky “quasi-Ay” mode, two
time response signals are required, and they are measured at nodes located at the mid-
point through the thickness of the steel plate in the out-of-plane direction at positions

along the principal axes, indicated by the “monitoring points” 1 and 2 of Fig. 7.2(d).

The typical time response signals of the leaky “quasi-Ag” mode, measured in the out-of-
plane direction at the “monitoring points” 1 and 2, for a 3mm thick steel plate with a

40mm curvature radius, are shown in Fig. 7.3.

In addition to the leaky “quasi-Ap” mode, a small amount of the leaky “quasi-Sg” mode
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can also been seen ahead of the “quasi-Ay” mode. Since the excitation is asymmetric, there
should not be any “quasi-Sg mode excited at the “line of excitation”. However, as the wave
packet enters the coupled section (see location “A” in Fig. 7.1), the symmetry condition
is destroyed. At this location, some of the energy for the “quasi-Ag” mode is converted to

that of “quasi-Sg” mode; this is also know as the mode conversion phenomenon.

The same phenomenon occurs when exciting the Sg mode where some of its energy is
converted to that of the Ay mode. However, it was found that a substantially higher
amount of the Ag mode is generated in this case, compared to the amount of Sy mode

generated during the excitation of the Ay mode.
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Figure 7.3: Typical FE time-response signals taken from the first (a) and second (b) monitoring
points shown in Fig. 7.2(d). The wave signal is excited at 500kHz.

Furthermore, some signals that cannot be correlated to any of the excited wave mode can
be observed in Fig. 7.3 at times later than the first arrival of the leaky “quasi-Ay” mode;
these signals are likely to be caused by the reverberations of the excitation wave mode
or other converted wave modes at the initial straight section, or they can be caused by
the re-incident leaky waves after being partially reflected from the absorbing boundaries.
As these waves arrive later than the main signal, they should not affect the accuracy in

calculating the attenuation of the targeted wave mode.
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7.1.2 Results of the FE Validation

The calculation of the attenuation in dB/m of a particular wave mode, due to the energy
leakage into the surrounding medium in the curved section of the FE model, can be
evaluated easily using the amplitudes of the time-response signals taken at the “monitoring
points” 1 and 2. the typical time signal measurements at these monitoring points are shown

in Figs. 7.3, and the formula of the attenuation calculation is:

Atten(dB/m) = 270 log (j:g;) . (7.3)

where Amp; with ¢ = {1,2} corresponds to the peak to peak amplitude of the received sig-
nal at the “monitoring points” 1 and 2 (illustrated in Fig. 7.2), and [ is the circumferential

distance between the two monitoring points (shown Fig. 7.1).

A limitation of using this FE method to calculate the attenuation is that when the curva-
ture radius becomes large, the distance between the two monitoring points increases. This
would also increase the amount of energy leakage of the “quasi-modes” as it travels be-
tween the two monitoring points. In the limiting case, the amplitude of the “quasi-mode”
may not be distinguishable from the reverberative noise mentioned above, and thus the
calculation of attenuation would not be possible. For this reason, attenuations of the
wave modes in a 3mm steel curved plate due to the energy leakage into the surrounding
material are calculated for a range of curvature radii that are restricted to values between
10mm and 110mm if the results are taken only from the principle axes. Alternatively, if
the results are to be taken from the curved section, the wave signals may be resolved in
directions to obtain the normal amplitude (i.e. A, cos(f) + A, sin() where A, , are the

motion amplitude along the principle axes = and y).

Figs. 7.4(a)-(d) show the normalised percentage difference in attenuation of the Ay and
So modes calculated using both the analytical method and the FE simulations at 500kHz
and 1000kHz, where the results were compared with those of the straight case obtained
using Disperse [148]. A greater attenuation compared to the straight case is shown as a

positive percentage difference in the y axis, and vice versa.

It can be seen in Fig. 7.4 that the FE simulations predict the percentage difference in
attenuation fairly accurately. Nevertheless, a noticeable increase in the level of error can
be detected as the curvature radius reduces. This can be linked to the fact that some of
the energy reflected from absorbing boundaries in the fluid layer re-enters the plate layer,
supplying extra energy to the guiding system. Additionally, this extra supply of energy
also provides an explanation for the percentage difference in attenuation of both the Ay
and Sp modes calculated using the FE simulations always being lower than those predicted

analytically.
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In general, marginally more energy is expected to re-enter to the plate after reflecting from
the edge of the fluid layer, as the curvature radius reduces. This extra energy interferes
with the amplitude of the measured signal. A model with a small curvature radius has a
short circumferential distance, [, between the two monitoring points, thus allowing a short
distance for the re-incident signals and the wave mode of interest to separate in time.

Thus the error is believed to be due to the presence of these unwanted re-incident signals.

7.2 Experimental Validation of Curvature Effect in Leaky

Cases

In this section, an experimental technique to measure the attenuation of the “quasi-Ag”
mode is presented; this technique is applied to fluid loaded pipes with a range of curvature
radii, and subsequently used to validate the curvature effect on the attenuation due to the

energy leakage into the surrounding material.

7.2.1 Experimental Samples

The experiment was performed using commercially available carbon steel pipes of various
sizes. Typical material and acoustical properties of the carbon steel are assumed, and are
the same as those used for the analytical solution of the fluid loaded case, investigated in
the previous chapter; the material properties of both the carbon steel and the water are
listed in Tab. 6.3. To eliminate the dependence of thickness of the pipes when investigating

the curvature effect, all pipes were machined in a lathe to the same wall thickness.

The dimensions of commercially available carbon steel pipes of various sizes (i.e. the thick-
ness to radius ratio) are roughly determined by the amount of pressure which the pipes
are designed to withstand; typically a large safety factor is also utilised to ensure safety.
Therefore these pipes are not required to be manufactured to a high geometrical accuracy.
According to the API-51 standard by American Petroleum Institute, pipes with diameter
> 2% and < 20 inches, the diameter (as a percentage of specified outer diameter) is to be
within £1%.

A total of six pipe sizes, labelled from A to F, were investigated, all of which have been
carefully machined down to a wall thickness that is as close to 3mm as possible; their
dimensions, and the measured maximum and minimum thicknesses around the circumfer-
ence, which are the positive and negative percentage changes compared to the nominal
wall thickness, are listed in Tab. 7.1. In general, the tolerance of the wall thickness in-
creases with the pipe diameter, hence a large pipe is less axially symmetric than one with

a smaller diameter, as shown in Tab. 7.1. Every care has been taken to ensure that the
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finishing of the pipes is close to perfect, but tiny circumferential grooves can be clearly
observed on the machined surfaces due to the turning in the lathe. However, the size of
the grooves is much smaller than the wavelength of the excitation mode, and therefore the

grooves should have minimal effect on the propagation properties.

Measured min. thickness | Measured max. thickness
Inner/Curvature | Thickness (% change (% change
Pipe || diameter (mm) (mm) in thickness) in thickness)
A 53.4 3.0 -2.12 4.91
B 70 3.0 -5.31 7.18
C 80.4 3.0 -2.59 8.83
D 104 3.0 -9.90 6.15
E 156 3.0 -7.75 12.02
F 207 3.0 -5.13 16.12

Table 7.1: Dimensions and their tolerances of pipes of various curvature radii used in the exper-

imental measurement of attenuation due to leakage.

7.2.2 Experimental Technique

To evaluate the attenuation due to leakage into the surrounding medium, the experiment
compares the amplitude of wave signal propagating around the circumference of a pipe
between the unloaded and loaded cases directly. As a result, it is very important that
the positions where the wave mode is excited and detected are fixed for both cases. Com-
pressional PZT circular disc elements were used for the excitation of the wave mode. The
material properties of the PZT (see Tab. 5.2) is the same as those used in the validation

of the unloaded case; they provide an excellent means of exciting the Ag mode.

The PZT elements have a diameter of 3mm and thickness of 1mm, and are attached per-
manently on the outer surface aligned around the circumference as illustrated in Fig. 7.5;
these disc elements were subsequently encased in a small amount of silicon to stop any con-
tact with the water when immersed during the second part of the experiment. Typically,
more than two PZT elements were placed along the circumference to monitor the signal
at several locations as the wave propagates around the circumference. The experimental

measurements were taken in a “pitch-catch” configuration.

The pipes are typically cut to a length of approximately 150mm, while the PZT elements
are attached on the outer surface of the pipe approximately halfway across the length.
Since the Ay mode propagates in all directions, the length of the pipe above and below
the PZT element can act as a “filter length”, separating the wave modes reflected from

the ends of the pipe from the first arrival of the Ay mode.
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steel
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Figure 7.5: Schematic diagram of experimental setup (dry case) where a pipe is attached with

PZT circular disc elements for the excitation and detection of the Ay wave mode that propagates

around the circumference.
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As demonstrated in the FE simulation earlier, many other wave modes might be simul-
taneously excited when simply forcing purely in the radial direction on the surface of the
pipe. To minimise the number of excitation modes, hence reducing the complication of
the received signals, the experiment was carried out at an excitation frequency below the
cut-off frequency of the A; mode so that only the Ag and Sy modes could be excited.
Additionally, the PZT elements were carefully positioned in such a way that the arrival
times of the wave packet under measurement were not overlapping with those of the other

wave packets when it was received using any of the receiver PZT elements.

To carry out the measurement, a 5 cycle toneburst signal, excited using one PZT disc,
generated both the Ag and Sy modes. These propagated in both directions around the
circumference, and were received by all the other PZT elements in turn. Then the sealed
pipe was immersed in a water tank (540mm x 540mm x 400mm) filled with de-gased tap
water, as illustrated in Fig. 7.6. The bottom end of the pipe was sealed with a piece of metal
plate to prevent any water from entering the inside of the pipe when immersed; therefore
only the outer surface of the pipe was coupled with the water in the tank. Furthermore,
the sides of the water tank were laid with acoustical absorbing rubber sheets to prevent
any of the leaky signal from re-entering the guiding system. The electronics to drive the
toneburst signals were the same as those used in the unloaded validation, illustrated in

Fig. 5.26. Once the immersed setup was ready, a second set of measurements was recorded.

L 540mm |
[ I

Leaky wave
mode propagation

Steel pipe
(thickne:sI;: 3mm)
W
N
g
Guided Wave 5
propagation
. direction
Acoustica
Absorbing

Rubber \

Transmitter
element

Water tank

Figure 7.6: Schematic diagram (top view) of experimental setup (wet case) showing a sealed
pipe immersed in a water tank, where absorbing rubber was used to prevent reflection of the leaky

waves (Diagram is not to scale).
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7.2.3 Experimental Results

The attenuation is calculated by dividing the amplitude of the quasi-Ag time signal of the
wet case by that of the dry case. By doing so, the effect of material damping in the steel
and beam spreading of the energy can be cancelled out, and any reduction in amplitude

is solely attributed to the energy leakage.
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(b) Immersed measurement

Figure 7.7: Typical experimental measurements obtained in “pitch-catch” configuration, where
the excitation wave packet propagates in both directions around the circumference along path 1

and 2 shown in Fig. 7.6. These measurements were made on pipe C with a 500kHz signal.

Fig. 7.7 shows two time responses taken from pipe C at 500kHz measured in dry and
wet conditions. The first and second arrival wave packets correspond to the propagation
of the Ay mode along the shorter and longer arcs of the circumference respectively (see
Fig. 7.6). Knowing the separation distance between the transmitting and receiving PZT
disc elements (1), the attenuation value of the Ag mode of a specific curvature can be
calculated using Eqn. 7.3, where Amp, and Ampy are the peak-to-peak amplitudes of a

wave packet measured in the dry and wet cases respectively.

Although the first and second wave packets were both excited and received using the
same set of PZT elements, the second received signal (path 2), despite travelling a longer

distance, has an unexpectedly higher amplitude than the first (path 1), as shown in
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Fig. 7.7(a). This indicates that the sensitivity of the wave mode detection using these
PZT disc elements is directional. This may be due to an uneven coupling condition be-
tween the PZT elements and pipe surface as discussed before for the unloaded experimental

technique in Sec. 5.2.4.

Unfortunately, the wave packet corresponding to the Ay mode could not be interpreted
easily in many of the other measurements. This is generally because of the overlapping of
the various wave packets in time, as a result of both the positioning of the PZT elements
and the strong excitation of the Sg mode. The problem is illustrated in Fig. 7.8. This shows
that there are numerous propagation paths of different lengths. Nevertheless, since the Sy
and Ag modes are travelling at different velocities, it can be seen that their corresponding
wave packets can eventually separate over a long period of time after travelling around
the circumferential more than once. Thus, knowing the length of each of these paths, the

attenuation can still be calculated.

The attenuation of the six pipe samples was measured experimentally, using signals at
500kHz and 700kHz; their curvature radius is listed in Tab. 7.1, ranging from 26.7mm to
103.5mm, while the thickness was 3mm. The results are shown in Fig. 7.9, plotted together
with those obtained analytically and by the FE method discussed earlier in Sec. 7.1.1.
The average values of the experimental measurements are plotted while the distribution

of measured values at a particular curvature radius is shown with the vertical error bars.

It can be seen that the curvature effect on the attenuation simulated by the FE models is
in generally good agreement with the analytical predictions. The measurements in general
match well with the analytical predictions, except for results of pipes with a large radius
where they appear to be more inconsistent. One possible reason is that the pipes with a
large radius have a high tolerance in axially symmetry as discussed earlier in Sec. 7.2.1,
therefore a wider distribution of measured values can be observed as a result of waves

propagating along paths with inconsistent thickness.

7.3 Summary

In this chapter, the analytical prediction of the curvature effect has been validated using

both FE numerical simulations and experimental measurements.

A two layered leaky FE model with appropriate boundary conditions, simulated in the
time-domain, has been used to evaluate the attenuation in a leaky curved plate system.
Although it would be impossible to evaluate the attenuation dispersion of each individual
mode directly, the model has provided means of validating the amount of energy which
leaks into the surrounding medium for a particular wave mode at a given frequency. The

curvature effect on both the leaky “quasi-Ay” and “quasi-Sp” modes have been investigated
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Figure 7.9: Attenuation of the leaky quasi-Ay mode in steel pipes (thickness: 3mm) of various
curvature radii, obtained using the analytical model (Blue solid line), FE method (Red dotted line)
and experimental measurements (Black dashed line where the dots show the average values while
the vertical bars show the distribution of results measured). The pipes are coupled with a water

half space on the outer surface.
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using this FE method. The FE results generally match well with the analytical predictions,
and are very accurate when the curvature radius of the pipes is large. The results become
less accurate when the pipes are small. This is caused by the phenomenon of re-incident
leaky waves in the fluid layer as a result of imperfection of the adsorbing boundaries used
in the FE model.

In the second part of this chapter, a relatively simple experimental technique to validate
the curvature effect on the attenuation using pipes with a range of different curvature
radii and a fixed wall thickness, has been introduced. PZT elements attached to the wall
of the pipe were used to send and receive circumferential guided waves. The attenuation
was measured directly by comparing propagated signals between the dry and immersed
cases. Despite the difficulty in setting up this experiment, the average attenuation values
of these measurements follow the same trend as those predicted by the analytical and FE

models over a range of pipe curvature radii.
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Chapter 8

Conclusions

This research work focused on the investigation of the curvature effect on the wave prop-
agation properties of guided waves. The findings of such effects are very important for
improving the understanding of guided wave inspection techniques in curved embedded

engineering structures, such as the original motivation: rockbolts embedded in rock.

In the beginning of this concluding chapter, a general review of this thesis is presented, in
which the main findings are highlighted. Secondly, the main contributions to knowledge

in this study are summarised. Finally, the future work of this project will be suggested.

8.1 Review of Thesis

The motivation of this research work was presented in Ch. 1; this motivation emerged as
a result of unresolved problems in understanding guided wave techniques when inspecting
curved structures. A specific example was embedded rockbolts that are curved by the
surrounding rock movements. The inspection technique was developed by Beard [2], using
an excitation mode and frequency that are chosen in such a way that propagation with low
attenuation is obtained. Thus any “breaks” or corrosion of the rockbolt might be identified
by the echo signals which reflect from them. However, when the rockbolt is curved, the
amplitudes of these signals reduce dramatically due to an increase in the energy leakage
which makes the detection of these defects impracticable. Therefore it was important to
understand the physics of this observation; the reason for the change of attenuation with

curvature.

The exact analytical formulae to calculate the propagation properties of acoustic or elas-
tic waveguides in a curved circular section bar were not developed in this thesis due to

their complexity. Nevertheless, many other authors have tried to obtain solutions using
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alternative approximation methods. A detailed literature review on these methods was

given in Ch. 1.

The main objectives of this work is to improve the understanding the curvature effect on
the propagation properties, in particular, where the attenuation of the propagating mode
increases after the guiding structure is bent. Since the dispersion relations of plates and
circular cross section beams are very similar to each other, the nature of the effects of
curvature can therefore be studied using a simpler curved plate geometry, and this was

developed in this thesis.

8.1.1 Non-Leaky Circumferential Waves

The historical background of the study of guided waves propagating circumferentially
around pipes or curved plates, and their potential engineering applications were reviewed
in Ch. 2. Prior to this thesis, the studies of these circumferential plate waves were mostly
restricted to those of the non-attenuative nature in the regime of low frequency and small
curvature radius. For the attenuative cases, published in few papers, solutions were ob-

tainable only with those that are subjected to heavy assumptions.

In Ch. 2, the analytical formulae for the non-attenuative circumferential case, containing
complicated Bessel functions, were generalised to include the multilayered curved plate
model for both the SH and the Lamb-type plate wave propagation. In addition, the
conditions of the numerical stability of these solutions were evaluated. It was found that
the solution becomes unstable when either the frequency or the curvature radius is very
large; these numerical instabilities were linked to conditions known as the “large f — d”
problem and the breakdown of the Bessel functions. The nature of these two numerical

instabilities was subsequently investigated thoroughly.

These numerical instabilities were identified and addressed in Ch. 3. Three alternative
asymptotic analytical methods: Uniform Asymptotic Method (UAM), Regional Asymp-
totic Method (RAM) and Simplified Regional Asymptotic Method (SRAM), were derived
by the project collaborators at the Mathematics Department, Imperial College, where
the specific terms in the solution are either removed or replaced with stable asymptotic
equivalent terms. These three schemes were examined and summarised in Ch. 3 by the

author.

The UAM replaces the normal Bessel function expression with an asymptotic expression
that is uniform for all parameters; although this particular scheme cannot improve the
stability of the solution, it significantly increases the robustness of the calculation in the
region of frequency-wavenumber domain where the exact solution is stable. On the other

hand, the RAM and SRAM express the analytical solution explicitly in individual regions
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that depend on the relationship between parameters such as the material and geometrical

properties of the system.

All three asymptotic schemes were proven to be extremely accurate except at the very
low frequencies, and at the boundaries between analytical regions in the case of RAM and
SRAM. Nonetheless the accuracy of these schemes generally increases dramatically with
increasing frequency. Therefore, using a combination of the exact and asymptotic methods
where the asymptotic solutions are used when the exact solution becomes unstable, the
overall accuracy and robustness in obtaining the numerical solutions of a non-leaky case

can easily be obtained.

The curvature effect on the propagation and physical properties was investigated in Ch. 4,
where the phase velocity and mode shapes of the curved plate wave modes were compared
to those of the straight case at a range of curvature radii and frequencies. The results of
the phase velocity difference were illustrated in a 3-D landscape plot for each individual
mode. The curved plate modes of the lowest four order, “quasi-Ag”, “quasi-So”, “quasi-
A1” and “quasi-S;” modes, were investigated over a frequency range of 0 - 6MHz, and over
a curvature radius range of 0 - 0.1m, showing in general a rapid increase with decreasing
curvature radius, and non-linearly dependence on the frequency. An optimal frequency,
at which the curvature of the structure in the propagation direction has the minimum
effect on the propagation properties in the frequency range investigated, was successfully
identified from each of these 3-D plots. Nevertheless, the changes in phase velocity are

very small, typically with less than 1% for curvature radius that is larger than 0.01m.

In addition, the mode shapes of several curved plate modes were compared directly with
those of the straight case using a “dot-product” method, revealing the similarity of mode
shapes between the curved and straight cases, which was termed the “S-factor”. It was
found that the “S-factor” can in general be related to the difference in phase velocity for a
particular curvature radius. The through-thickness energy density of a wave mode shifts
towards either the inner or the outer surface, a property which can be exploited to increase

the sensitivity of the detection of defects that are situated close to either of these surfaces.

The dispersion curves of curved plates were analysed using the “method of bounds”; a
method that provides a visual tool to characterise the major features in the dispersion
curves. The dispersion curves of the Lamb-type elastic curved plate waves were shown
to be characterised by two sets of so-called “bounds”, which simply are dispersion curves
corresponding to the uncoupled purely longitudinal and shear plate modes of the same
geometry. Unlike the “mode-crossing” phenomenon in the dispersion curves of the straight
case, none of the neighbouring modes of the curved plate case cross each other, but instead,
after they come close to each other, they subsequently repel at the typical “intersection”

points of the straight case.
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In Ch. 5, a finite element eigen-modal modelling method to calculate the dispersion curves
of the curved plate case was considered. The method, based on a simple axially sym-
metric model, extracts the natural frequencies corresponding to a pre-ascribed number of
circumferential cyclic order which is identical to the angular wavenumber. Additionally,
the through-thickness mode shapes can be evaluated using the eigen-vectors of the solu-
tion. The curvature effect were investigated using the FE method and presented in the
similar 3-D landscape plots as the analytical case, showing the difference in phase veloc-
ity as a function of frequency and radius. The FE method was overall found to be very
accurate with the level of error typically better than 0.01% in all frequency and curvature
ranges for the Ag and A; modes. The only exception is where the curves are close to the
cut-off frequency. The FE modelling in general offers an alternative method to evaluate
the curvature effect, it is especially useful where the infinitely long structure with a cross

section that is too complicated to be formulated analytically.

The effect of curvature on the propagation properties was examined experimentally in the
second half of Ch. 5. The experiment involved comparing the arrival times of a toneburst
wave packet between the straight and curved cases. The measurements were taken from
the end reflection of a thin aluminum strip. A specific curvature of the strip along the
propagation direction was achieved by physical bending and held in place by a set of
plastic fixtures, while permanently attached PZT elements were used to ensure that the
same reference signal was retained for all curvature radius cases. Despite the use of strips
with a high “thickness to width” ratio, a significant number of section modes corresponding
to those bounded by the width edges, were excited, resulting in both the “width-edges”
effect and the excitation of rectangular wave modes. These effects were examined, and
the dispersion curves of the rectangular cross section were modelled using finite elements,
while their mode shapes at specific frequencies were extracted. Using these dispersion
curves and a 2D-Fast Fourier Transform (2DFFT) technique on the experimental results,
the type of wave modes being excited in the aluminium strip were successfully identified.
It was found that the type of mode which was excited depended on the frequency. In
the case of a 0.97mm thick, 30mm wide aluminium strip, an almost pure Ay wave mode
excitation was achieved at 450kHz, 1MHz, 1.1MHz and 1.3MHz, at which the experimental
measurements were taken to evaluate the curvature effect. Since the excitation conditions
vary greatly from one strip to another, these frequencies are specific to this case and cannot

be taken to apply universally.

It was found that the experimental measurements do not agree well with the preliminary
analytical predictions. This can be explained by the fact that the differences in phase
velocity due to the curvature effect are on average very small. For this reason, any external
factors, such as the local changes of stress and density that are introduced during bending,
can significantly affect the experimental results, and must be taken into consideration.

The experimental results agree well with the analytical prediction when these additional
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external factors are included; this improved analytical model contains 9 layers, each of
which is assigned with material properties that is relevant to those affected by the external
factors at the local position. Furthermore, the phenomenon, where the energy distribution
of the Ay mode shifts towards the outer surface, was validated using two 2mm PZT element
cubes attached on opposite sides of the plate surfaces to measure the relative out-of-plane
displacement amplitude ratio between the two surfaces. Good agreements were obtained

between the analytical prediction and experimental measurements.

8.1.2 Leaky Circumferential Waves

Ch. 6 described the development of an analytical model for a leaky system in which
guided waves propagate circumferentially in a curved plate coupled with a half space on
the outer surface. A general literature review of these leaky circumferential waves was
given. Although the analytical formulation is exactly the same for roots of either complex
wavenumber or complex frequency, where the attenuation due to the energy leakage into
the surrounding medium can be expressed in terms of the imaginary part of either of these
complex parameters, the two cases are in fact associated with completely different physical
problems. In this thesis, the leaky guided wave problem was correctly described by the

roots composed of complex wavenumber and real frequency.

The analytical characteristic matrix of a leaky curved plate system was assembled using the
Global Matrix method and suitable boundary conditions; the characteristic matrix consists
of many complicated Bessel functions with complex order that rarely arise in engineering
problems. Various numerical methods to solve these Bessel functions were examined, from
which a suitable scheme, using a combination of Chebyshev Expansions Technique (CET)
and recurrence relations of the Bessel function, was chosen for the numerical calculation
of the roots. The roots of this leaky system comprise two independent parameters which
can be located using an effective 2-D tracing routine based on a steepest descent method.

The numerical tracing routine was illustrated and summarised.

In the leaky curved plate case, although the phase velocity dispersion curves are extremely
similar to those of the straight case, the attenuation dispersion curves were found to be
dramatically different. The “quasi-Ag” and “quasi-Sg” modes propagating in curved plates
that are coupled with an infinite half space were studied in detail. In the leaky curved
plate case, the through-thickness energy distribution of the “leaky quasi-Ag” mode shifts
towards the outer surface, allowing more energy to be coupled with the half space; thus
a higher value of attenuation than that of the corresponding straight case was expected.
On the other hand, the “leaky quasi-Sy” mode has its energy distribution shifted towards
the inner surface, resulting in less energy available on the outer surface to be coupled with

the half space. The shift in energy distribution increases with increasing frequency, and at
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very high frequencies, the “quasi-Ay” and “quasi-Sg” modes become the Rayleigh wave on
the outer and inner surfaces respectively. It was concluded that the amount of attenuation
of a particular mode is typically linked to the concentration of the energy density at the

layer-half space interface.

Likewise the same phenomenon was observed with the change of curvature radius of the
plate; the shift of the energy distribution towards one surface increases with increasing
curvature. Overall, in the ranges of frequency-thickness: 0-3300Hz — m and curvature
radius: 0-0.13m, the absolute maximum percentage difference in attenuation of the Ag
and Sy modes in comparison to a straight plate were calculated to be 157% and -98%

respectively, where the negative value indicates a reduction in attenuation.

The inspection range of an embedded structure is determined by the total attenuation
experienced by the wave as it propagates. It is therefore important to choose the mode and
frequency according to knowledge of the curvature and the attenuation. For example the
quasi-Sp mode would be advantageous for detecting internal surface cracks in a cylindrical
structure which is surrounding by fluid. In this case the wave is concentrated near the
inner surface which reduces its leakage attenuation. Furthermore its leakage reduces with

increase frequency.

In addition to the Lamb-type leaky curved plate modes, a family of highly attenuative
fluid-borne wave modes, also known as the Franz modes, that propagate circumferentially
at a certain distance away from the curved plate surface, was also investigated in Ch. 6.
There is in theory an infinite number of these Franz modes, all of which converge to the

bulk speed of the fluid in the half space at high frequencies.

The curvature effect on the attenuation in leaky curved plates was validated numerically
and experimentally in Ch. 7. The finite element (FE) modelling comprised a solid metal
curved layer of a specific curvature radius, which coupled with a thick fluid layer where
absorbing boundary conditions were applied on the free-edges of the layer to eliminate
most of the leaking bulk waves. Accurate results of the attenuation due to leakage into the
surrounding medium were obtained for both the “quasi-Ag” and the “quasi-Sp” modes.
Due to the limitation of the FE model, the curvature radius at which the attenuation
was possible to be evaluated, was restricted to a range between 0.01lm and 0.11m. The
results were compared between the analytical prediction and those measured from the FE
models; in general, the FE results predicted well the trend of the curvature effect on the
attenuation, but agreement was weaker when the curvature radius considered was small,

due to the inefficiency of the absorbing boundaries.

A simple and effective experiment, based on pipes of various diameters and the same
thickness, was used to validate the curvature effect on the attenuation of the “quasi-Ag

mode. Using a “pitch-catch” configuration, the amplitudes of the out-of-plane displace-
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ment measured from a set of PZT circular disc elements permanently attached on the
surface around the circumference of these pipes were measured. The measurements were
taken in both the dry condition and when the pipes were immersed in water. Based on
these measurements, the attenuation of the “quasi-Ay” mode propagating in pipes of a
range of curvature radii was evaluated. The average values of attenuation from roughly
10 measurements of each pipe size, agreed well with the analytical predictions and those

obtained using the FE method.

8.2 Main contributions to Knowledge

This work has made a contribution to the understanding of an aspect of guided wave
propagation that can be commonly found during NDT guided wave inspection. Although
this work does not address the problem which arose directly from the curvature effect
in the rockbolt inspection, it deals with the fundamental concept of this curvature effect
using a simpler plate system. Using asymptotic methods, it has been demonstrated in this
thesis that dispersion curves of an unloaded curved plate can be obtained in the normally

unstable region when the frequency and the curvature radius are large.

A thorough assessment of the suitability of the asymptotic methods to eliminate certain
types of numerical instabilities was carried out, which led to a novel scheme to trace
dispersion curves effectively in all ranges of frequencies and curvature radii. Investigation
into the effect of curvature along the propagation direction on the lower order plate modes
has established that the difference in phase velocity between the straight and curved cases
are both frequency and curvature radius dependent. The curvature effect has been shown

to be the same for plates with the same “thickness to curvature radius” ratio.

A novel analysis to relate the changes in the propagation properties to the changes in the
through-thickness mode shapes has made the curvature effect more comprehensible. As a
rule, the curvature along the propagation direction shifts the energy distribution of a wave
mode to either the inner or the outer surface. Although this shift in energy distribution
has little effect on the phase velocity of the wave mode in both non-leaky and leaky cases,
it has a significant effect on the attenuation in the leaky case, due to a change in the
amount of energy available at the guiding medium-half space interface. In general, the
same concept can be used to predict the change in attenuation due to leakage of wave

modes propagation in beams of any cross section geometry.

An extension of the “method of bounds” has been successfully adapted to analyse various
features on the dispersion curves of wave modes in a curved plate. The so-called “bounds”
which are asymptotic barriers to the dispersion curves in terms of purely longitudinal or

purely shear wave modes satisfying individual boundary conditions, provide a useful tool
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to visualise the behaviour and the composition of the wave types at different parts of the

curves.

Finally, the development of the analytical solution for the leaky curved plate, based on the
Helmholtz decomposition and Global Matrix methods, is novel. As part of the solution, an
efficient numerical scheme has been chosen to solve the complicated Bessel function with a
complex order. These solutions have subsequently enabled the evaluation of the curvature
effect in this kind of leaky system. This is a generic result which has applicability to all

sorts of multilayered curved plate structures.

8.3 Project Outlook

Although a substantial amount of work has been done in this thesis to understand the
curvature effect on guided wave properties, the entire work has been based on the plate
structures. An extension of this study to include the cylindrical geometry is undeniably
needed. This would subsequently allow issues, caused when the rock bolts are curved, to

be properly addressed.

Again, the study should be carried out in stages, starting with the easier case of a non-
leaky system, and then a leaky system. As with the plate case, the analytical solution of
the curved cylindrical geometry must first be developed. However, this solution as dis-
cussed earlier, is extremely difficult, and thus a close collaboration with the Mathematics

Department, Imperial College, would certainly be beneficial.

Using a toroidal geometry, eigen-solutions in a Finite Element (FE) modelling can be
effectively used to obtain the dispersion curves of a non-leaky system. Nevertheless, much
work is still needed to obtain solutions for the leaky case. The main challenge is to find a

method with which the infinite leaky medium can be simulated correctly.

From this study, it is clear that the attenuation of a wave mode is directly linked to the
amount of energy available on the interface between the guiding and surrounding mediums.
Therefore, once the analytical model for the curved cylindrical geometry is attained, it
would allow the mode shapes of the propagating modes to be studied in relation to various

frequencies and curvatures.

Ultimately, the aim is to identify a suitable wave mode that contains appropriate properties

to carry out inspection on rock bolts which may or may not be curved.
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Appendix A

Basic Equations of Elasticity in

Cylindrical Coordinates

A.1 Equations of Motion

The equations of motion shown below correspond to the principal directions r, # and z as
defined in figure 2.3.

82ur 0oy 1909 oy, Oryr — 000

,0( Ot? ) - or + r 00 0z + r ' (A1)
82U9 80’9,. 1 80’99 80’92 Org

,0( ot? ) or + r 00 + 0z t2 r (A-2)
0%u, 0oy 100, 00, 0

p(8t2)_8r T Te: T (A.3)

A.2 Strain Tensor Formulation

The strain tensor can be expressed in terms of the displacement vector @ in the polar

coordinate system 7,6, z.

Epr = %. (A.4)
egp = 18(;;9 + “7 (A.5)
€pz = % (A.6)
-G
STEY
i)
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Appendix B

Exact Dispersion Relations for an

Unloaded Single Layer

The elements given here are for an eigen-problem matrix (2.18), D, that satisfies the stress-

free boundary conditions at the inner and outer surfaces for the Lamb-type circumferential

waves in a single layer curved plate. The elements given here are in their most general form

so that they are consistent with those used in the leaky cases given in Ch. 6. However,

it is worth noting that a more elegant expression can be obtained using a recurrence

relationship of the Bessel functions [63].

diy = 2 [ = -y (@) + kL ()],

T1

diz = 22— LY, (&) + kLY, ()],
diz = p] — K3 (@s) + EL T, (@) — %, (@3)] Trolr=r-
1
dua = p[ = K3 Y (3) + %Ymg) — Y, (@),
dy = kL[ Ay (@1) + 2pdy) (@1)],
d22 [ Y ( ) + 2,u,Y”(w1)] o B
dos = 22 [ — LT, (@3) + ke J), (3)], -
dos = 22 — LY, () + kY, (@s)),
dgy = 2] — L], (@) + kpJ) (@),
dsy = 27— ] i oy Yu(@2) + kLY (@2)],
sy = 1] — KT (6n) + BE 7t (@4) — Y Ju(@4)], Trolr=ra:
2
dsa = pul — K3 (@1) + 2V (@1) — 27V (@0),
day = k7 [ — Ao (&2) + 2pT]/ (&2)],
dag = k[ — Y, (@2) + 2pY, (2)], 5
dyz = 2¢;V[ — T (@4) + ke J)(@4)], -
dag = 22 [ — LY, (&4) + kY (&),

Where @1 = k‘LT‘l, (2)2 = k‘LTQ, (213 = k‘TT‘l, @)4 = k‘T’I“Q.

(B.1)

(B.2)

(B.4)
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Appendix C

Supplements of Asymptotics

Solutions

C.1 Asymptotics of the Bessel Function in Various Regimes
[99]

Regime I: 7 < z

2 2
Jy(x) ~ \/;(xz — )V eosa, \/;(3:2 “Ygina,

2 _ A2)\1/4 2 1/4
J () ~ —\/gusina, ~ = 2@ =) 7 ) COS Q. (C.1)
T x 7r

2 2\1/2

where a = (22 — v%)Y/2 — v cos ™! (yx) — /4.

Regime II: 7y~ z
T (@) ~ (i)l/gAi{<i>l/3(’y—x)}7 Y, (2) ~ (92:)1/331{(923)1/3(7_%)},
Jé(a:) N _(i)2/3Ai/{(i>l/3(7_m)}7 Yé(a:) N <i)2/331’{<i>1/3(7—x)}.

where Ai and Bi are the Airy functions.

Regime III: v > z

1 1 2 1
~ B ~ g2 - B
) V2r (2 — 2" Y (@) 7 (72 — )/
1 72 — 22 1/4 2 72 — 1/4
J () ~ \/ﬂ( . ) e’ Y (x) ~ ﬂ_(x)e s (C.2)
where 3 = ( Y2 — ~cosh™t(y/x
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C. Supplements of Asymptotics Solutions

C.2 Asymptotics for Cross-Products of the Bessel functions
[99]

Case v < x1, v < 22

@)Yy en B e2) ~ i g sin(an — ),
T )Y — Sy a)Vian) ~ 2T ) )
Ty (22)Y (21 — T (1)) Y5 (22) ~ i(ﬁ —x?2)1/4 = 172)1/4 cos(a — ),
T (22)Yy (w1 — Ty (21)) Yy (22) ~ _% (2 —172)1/4 s _g:ZZ)lM cos(a1 — az). (C.3)

Case v > 1, 7> 22

T @) @1 = )Y aa) ~ 1@1 e 1@1 ; sinh(81 — B),

T )Y — Iy e)Vier) ~ 2 OO Gy, )

Ty (w2) Y. (@1 — J (21))Y, (22) ~ 3(72 _xf%)1/4 e (1:6%)1 77 cosh(B1 — Ba),

BaaYafos = e Ven) ~ 2 e O s . (o)

where «; and 3; are defined in 3.17.

C.3 Lamb Dispersion Relation: Transitional Regions of the
Regional Asymptotic method [63]

Region II: v ~ @&y

™ 1213
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— 16041 fa f3 f1( sin aoY;) (1) + cos 042%@1))}

—él\/ZV2 cos(ag — 044){fgf2f4 (sinazVy (&1) + cos azJy (1))

f3
+f§®1f3(cos Y, (1) — sin OZQJI/,(C:H))} +c3=0. (C5)
fafa
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Region IV: v ~ @y
—B1
—\/Zsin(ozg —« ){ J3 18 (Jy (@2 )e_ﬁl +Yu(@2)e 5 )

fifsfa
~ e P
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Region VI: v ~ w3
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Region VIII: v ~ @4
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where f;, fi, w;, oy, B; are defined in 3.17.

C.4 Lamb Dispersion Relation: Transitional Regions of the
Simplified Regional Asymptotic method [63]

Region IV: v ~ w9

—\/Zsin(ag “a ){fﬁgﬁ[} (@) — 16y4a2f1f3f4J;(a2)}

_4\fy cos(a — m){@fi’gﬁ;(@) + fgj{if?’Jy(wQ)} 0. (C.9)
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Region VI: v ~ w3
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