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Abstract

The structural integrity of adhesive joints is known to be dependent on the properties of the
adhesive (cohesive properties) and the properties of the adherend/adhesive interface (adhesive
properties). Despite a substantial research effort worldwide there is no currently available
nondestructive technique to test for interfacial defects in adhesive joints. However, ultrasonic
methods have been identified as the most promising techniques for these purposes. It is
therefore desirable to asses their suitability.

This thesis presents an evaluation of the ultrasonic reflection coefficient method and, in
particular, the oblique incidence method, for the nondestructive characterisation of
adherend/adhesive interfaces in bonded joints. The technique uses two ultrasonic transducers
inclined at an angle, operating in a pitch-catch mode, with respect to the tested joint.

A theoretical model is developed which is capable of accurate predictions of reflection and
transmission coefficients from isotropic multilayered, viscoelastic plates, excited at normal and
oblique incidences by ultrasonic transducers of finite sizes. Experiments are performed on
simple model systems for the theory validation. The measured reflection coefficient amplitudes
are found to be within 5 % of the predicted values.

Theoretical and experimental work is carried out to find the optimal arrangement of the probes,
frequency range and type of reflection in order to achieve maximum sensitivity to changes in the
adherend/adhesive interfaces. It is found that the oblique incidence techniques can offer a
substantial increase in sensitivity to interfacial properties over the current standard inspection
techniques, but the results obtained indicate that the improvement is unlikely to be sufficient for
the technique to be used as a new reliable nondestructive procedure.
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MHz.
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Kronecker delta
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CHAPTER 1

Background

1.1 Introduction

In order to maintain their top positions in world markets, highly developed industrial nations
constantly increase the quality and cost effectiveness of their products. It is therefore of crucial
importance for these countries to be innovative in design, manufacturing and service support of
their products. Nondestructive testing is the field of science and engineering which provides the
industry with the necessary tools to determine the quality of products during both
manufacturing and service. Nondestructive testing, therefore, plays an ever increasing role in
maintaining the leading edge over the competitors in areas where the reliability of products are
of prime importance, especially in the nuclear, defence and aerospace industries.

Nondestructive testing (NDT) techniques are those which can define the quality of the product
without causing damage to it. It is therefore natural that nondestructive testing enjoys increasing
demand in industry and a substantial research effort is put towards development and
improvement of NDT methods.

In section 1.2 different types of defects found in adhesive joints are described and classified
into three basic categories: disbonds and porosity, poor cohesion and poor adhesion.

In section 1.3 the various NDT techniques used for the detection of disbonds and porosity are
reviewed and the current advances in testing for cohesive properties in adhesive joints are
presented.

In section 1.4 the problem of testing for poor adhesion using ultrasonic waves, which is the
subject of this thesis, is given more detailed attention. In this section various theoretical models
of an interface between two solids are presented. Two different testing strategies for poor
adhesion, the modal approach and the reflection coefficient approach, are introduced and
discussed in more detail.

In section 1.5 the main objectives of this thesis are formulated and the main anticipated
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difficulties are listed. In section 1.6 the outline of the thesis is presented and the contents and a
purpose of each chapter are briefly described.

1.2 Defects in adhesive joints

The types of defects found in adhesive joints have been classified by many authors (Kinloch
1983, Adams and Wake 1984, Guyott et al. 1986). The description given here follows that of
Cawley (1992).

There are three different classes of defects which occur in adhesive joints; these are:

1. complete disbonds, voids or porosity in the adhesive layer;

2. poor cohesion (ie a weak adhesive layer);

3. poor adhesion (ie a weak interface between the adhesive layer and one or both adherends);
and an ultimate goal for NDT techniques is to detect all three. Each of these factors affecting
joint strength is discussed in more detail below.

Porosity is caused by volatiles and entrained air in the adhesive. It is therefore present to some
extend in most bondlines. Voids in the adhesive are similar to porosity except that the individual
defect volume can be much greater. They are caused by air or gases becoming trapped by the
pattern of laying the adhesive.

Disbonds are essentially large, flat voids which can be caused by the presence of grease or
other contaminants on an adherend. In this case, the defects surfaces are generally in close
proximity or touching which can make them very difficult to detect. Disbonds may also occur
as a result of impact or environmental degradation after manufacture.

It should be emphasised that the significance of a particular defect depénds critically on its
position within a joint. For example, Wang e? al. (1971) showed that a large disbonded area in
the central region of a lap joint had little effect on the joint strength. However, a smaller defect
towards the end of the overlap would have a serious effect because of the much greatér stress in
this region. |

A weak adhesive layer, giving poor cohesive properties, can result from either incomplete
mixing, incorrect formulation or inadequate cure of the adhesive. Incomplete mixing is chiefly a
problem with two part adhesives, and their incorrect formulation can result from, for example,
the dispenser of one of the parts being partially blocked. In general, film adhesives avoid these
problems so with these adhesive systems, miscuring is the most likely cause of poor cohesive
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properties.

If the adherend surface is contaminated by oil deposits or loose oxide layers prior to bonding,
or if a two part adhesive is left too long after mixing and forms a 'skin’, the interface between
the adhesive and the adherend may be weak, leading to poor adhesion. A disbond may be
regarded as an extreme case of poor adhesion.

The adhesive/adherend interface is very important in determining the resistance of a joint to
environmental attack, particularly when one or both adherends are aluminium. Before bonding,
the adherend surfaces are not only cleaned carefully, but they may be treated to grow favourable
oxide or other layers which reduce their succeptibility to environmental attack (Kinloch 1983).
Some manufacturers apply a primer to the freshly prepared surfaces while others insist that the
joints are made within fixed time.

1.3 Testing for disbonds, porosity and poor cohesion

The field of the NDT of adhesive joints has been reviewed by several authors in the last five
years (Stone 1986, Thompson and Thompson 1988, Guyott et al. 1986, Light and Kwun
1989). The description given here follows that of Cawley (1992).

1.3.1 Disbonds, voids and porosity
Conventional Ultrasonics

Time domain ultrasonics is one of the most widely used methods of nondestructive
examination. It can be used readily to detect voids and disbonds and has the potential for
detecting very small, distributed defects such as porosity. The test may be carried out either
with a single transducer in pulse-echo mode, or with two transducers in through transmission
mode.

As the pulse of ultrasound passes through the joint, part of its energy os reflected at each
boundary. The amplitude of reflection at a boundary is dependent on the acoustic impedance of
the materials on either side of it, and on the angle of incidence of the ultrasound. The acoustic_
impedance of a material, z, is given by,

zZ =p¢c, (1.1)

where p is the density and c is the phase velocity of sound in the material. In most tests used in
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industry, the transducer is normal to the structure and the reflection coefficient, R,, from a
boundary between two media of impedance z; and z, when the ultrasound is incident in

material 1 is given by (Brekhovskikh 1980),

Zn - Z
_ 22 1
12 = Zl + 22 ) (1°2)

Hence, if there is a large difference in the acoustic impedance of the materials, the reflected
signal is large. Since air has a very low acoustic impedance relative to solids and liquids, it is
difficult to propagate ultrasonic energy from the transducer, through air, into the structure to be
tested. The transducer is therefore coupled to the structure via a medium which has an acoustic
impedance closer to that of the structure. The structure and the transducer are frequently
immersed in a water bath; the ultrasound then propagates across the water filled gap (typically
25 - 100 mm, depending on the transducer) into the testpiece. An alternative is to use a water jet
transducer in which the ultrasound propagates along a moving column of water (jet). Small
scale inspections, particularly in the field, are commonly done with hand-held contact
transducers, coupling being provided by a thin layer of gel between the transducer and the
structure. Some work at low ultrasonic frequencies has also been carried out using roller probes
in which the ultrasonic transducer is held inside a wheel, the sound being propagated into the
specimen via soft rubber tyre. However, this method is not satisfactory for the detailed
characterisation of defects (Stone and Clarke 1987). Serious problems can arise if the couplant
or some of other liquid such as water or fuel is allowed to penetrate a disbond. The presence of
the liquid reduces the reflection coefficient and the defect becomes more difficult to detect.

Since a defect such as disbond or void containing air or any other low density substance has a
very low acoustic impedance relative to the adhesive or adherend, a strong reflection will be
obtained. The amplitude of the signal transmitted through the bondline will therefore be
reduced.

The magnitude of the reflected echoes can be displayed with respect to time and be used to

indicate the presence of defects. A display of this type is commonly called an A-scan. B and C

scans are also commonly used to display the test results. In the B scan presentation, the vertical

axis is time, the presence of echoes being indicated by intensity variations. The horizbntal axis

gives position information, so an image of cross section of the component is built up. If the

amplitude of a particular echo is monitored at each point on the surface of the work, a C-scan.
can be produced. Measurements at each point are taken using a scanning mechanism which

produces a plan of the defects positions but gives no information about their depth.

If immersion testing is used, the amplitude of the echo received from a reflector plate placed
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below the bottom adherend is often monitored and used to produce a C-scan map. A
delamination whose plan dimensions exceed those of the ultrasonic beam will almost
completely remove this echo, while the presence of porosity will cause attenuation of the signal
due to scattering of the ultrasound by small gas bubbles. Examples of A, B and C scans can be
found in Guyott et al. (1986).

Ultrasonic bondtesters

A number of bondtesters operating in the frequency range between 100 kHz and 1 MHz are
widely marketed. The Bondascope manufactured by NDT Instruments measures the magnitude
and phase of the ultrasonic impedance of a bonded structure, and displays the result as a 'flying
dot' on an oscilloscope screen Guyott et al. (1986). Changes in the magnitude and phase of the
impedance can be related to the existence and depth of disbonds or delaminations, though small
voids and porosity cannot be detected. The Fokker Bond Tester Mk II uses spectroscopic
approach: it monitors frequency and amplitude changes in the first two modes of through-
thickness vibration of a system comprising a transducer coupled to the structure. Changes in
resonance frequency reveal the existence and depth of disbonds and delaminations. The
instrument can detect disbonds satisfactorily with any adhesive system, but it is not sensitive to
changes in the cohesive properties of modern, high-strength adhesives.

Sonic vibration

While ultrasonic methods are capable of detecting disbonds, voids and porosity, since the probe
has to be scanned over each point at which the structure must be inspected, they suffer from the
disadvantage of being slow, and the need to apply couplant is also a major drawback in many
circumstances.

Sonic vibration methods offer one means of avoiding the need to apply a coupling fluid. The
coin-tap test in which region of the structure to be tested is tapped with a coin, the operator
listening to the sound, is probably the best known of these techniques. It is found that defective
areas sound duller than good areas (Cawley and Adams 1988, Adams and Cawley 1989). It has
been shown that the difference between good and defective structures can be detected simply by
tapping the structure using a small hammer with a force transducer incorporated in its head, and
monitoring the force input to the structure during the tap. This has led to the development of an
instrument which carries out the test automatically and gives an objective measure of integrity of
the structure.

The mechanical impedance method (Cawley 1987) can also be used for the detection of
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delaminations in composite materials and disbonds in adhesive joints. The point impedance at
the site of a disbond or delamination is lower than in good areas of structure so impedance
measurements can be used to detect the defects. The impedance change produced by a given
size of defect reduces as the depth of the defect increases, so the sensitivity of the test is highest
for defects close to the surface. This is also true of the coin-tap test.

The major application area of these techniques is in the field, where the use of coupling fluids is
particularly inconvenient, and where it is frequently only necessary to detect quite large defects.
They are also useful for the inspection of thin-skinned honeycomb structures in which the skins
are porous, which means that coupling fluids cannot be used. Further details of these and other
sonic vibration techniques can be found in Cawley (1990).

Thermography

Passive thermography is one method which shows considerable promise for the quick
inspection of large areas of structure. It involves the measurement of the surface temperature of
the structure after the application of a heating transient, usually with an infra-red camera, and
anomalies in the temperature distribution reveal the presence of defects. The performance of the
method is strongly dependent on the heat source used, a flash gun generally being the most
suitable.

It has been shown that the feasibility of the method is greatly enhanced by the use of a vide
recorder to store the rapidly changing temperature pattern after the structure surface is heated
and that this make it possible to detect defects in conducting materials whose effect on the
temperature distribution is very short-lived. The method can be employed with the heat source
and camera on the same side of the structure (pulse-echo) and on opposite sides (through-
transmission). The through-transmission method can detect deeper defects than the pulse-echo
technique, but for defects close to the surface, pulse-echo is superior. Further details of the
method can be found in Reynolds (1984) and Reynolds (1988).

Other methods

X radiography is not widely applied to the NDT of adhesive joints. This is partly because
defects such as disbonds tend to be normal to the X-ray beam, whereas defects are easiest to
detect if they are parallel to the beam. Also, if the adherends are metallic, the detection ofm
anomalies in the adhesive is extremely difficult since the absorbtion in the adherend is high, and
any lack of adhesive makes a negligible difference to the overall absorption.
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Unlike X-rays, neutrons are more strongly absorbed by adhesive than by metals, so neutron
radiography could be used to detect disbonds in joints with metal adherends. Neutron
radiography should also be very sensitive to the presence of moisture in the joint, and so could
possibly be used to monitor the progress of environmental degradation. However, as Bar-
Cohen (1986) points out, neutron sources are inconvenient for use in large scale NDT.

Like thermorgaphy, optical holography and shearography offer the possibility of inspecting
large areas of structure quickly for the presence of disbonds. They detect anomalies in the
displacement or, in the case of shearography, strain patterns on the structure when it is stressed
by vibration, static loading or thermal transients. If the optical system used has a large field of
view, it is possible to inspect an extensive area in one test, so the method can be used for the
quick inspection of large structures. However, the equipment costs are high and, unless a pulse
system is used, the structure must generally be mounted on a table which is isolated from
extraneous vibration. Recent work on holography is reported by Lokberg and Malmo (1988),
and further discussion of shearography can be found in Hung (1989).

1.3.2 Cohesive strength

If the adherend surface preparation has been carried out correctly, the strength of a joint is
generally controlled by the cohesive properties of the adhesive layer. Therefore, although
problems with cohesive properties are less common than those associated with the
adhesive/adherend interface, it would be desirable to be able to measure the cohesive properties
of the adhesive nondestructively. Also, if ultrasonic reflection coefficient measurements are
used to monitor the adhesive/adherend interface, the measured reflection amplitudes will depend
on the acoustic properties of the adhesive, so it is important that these are known.

Some progress is being made on the development of tests for cohesive properties and one
commercially available instrument, the Fokker Bond Tester Mk II does claim to be able to detect
poor cohesion (Schliekelmann 1975). The device measures the frequencies of the first two
modes of the transducer coupled to the joint. However, recent work (Guyott ez al. 1987) has
shown that it is not sensitive to variations in the cohesive properties of modern high strength
adhesives, though it can still be used to detect disbonds. .‘

Research has continued and subsequent work has used ultrasonic spectroscopy to measure the
frequencies of the through-thickness modes of the joint itself, in order to monitor the quality of
cohesion. A detailed analysis conducted by Guyott and Cawley (1988), and Cawley and
Hodson (1988) suggested that it is possible to calculate values of adhesive modulus and
thickness from measurements of the resonant frequencies. However, recent work conducted by
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Dewen (1992), showed that this approach is insufficiently robust for industrial applications.

Another idea which has been recently investigated by Dewen (1992) is to use the time-of-flight
in the adhesive layer and the reflection coefficient at the adherend/adhesive interface to infer the
elastic modulus and thickness of the bond line. Dewen (1992) showed that this technique is
more robust than ultrasonic spectroscopy and that the longitudinal wave velociiy in the adhesive
can be determined with a maximum error of 6% and the bondline thickness to within
micrometer accuracy.

Since the cohesive strength of the adhesive is a function of the degree of cross linking of the
polymer during cure, and this mechanism also controls the modulus, there is a good correlation
between adhesive modulus and cohesive strength. The cohesive strength of a joint is also
weaker function of the thickness of the adhesive layer. It seems therefore that monitoring the
adhesive modulus and thickness would provide a valuable means of checking the cohesive
strength of a joint.

Another possible technique for monitoring the cohesive properties of a joint is the measurement
of the dielectric relaxation characteristics of the adhesive. Organic molecules containing
molecular dipoles are capable of exhibiting a frequency and temperature dependent dielectric
permittivity. As the cure of an adhesive proceeds, the degree to which dipoles can reorient
themselves will firstly be influenced by the increase in viscosity which accompanies the chain
extension process, then by the suppression of bulk motion by the process of gelation, and
finally by an increase in the glass transition temperature.

Matiss and Shtrauss (1988) have shown that relaxation spectrum measurements at very low
frequencies between 1 mHz and 1 Hz are very effective for monitoring the degree of cure of an
epoxy resin, and they have worked on a measurement system which only requires access to one
side of a joint. Work on this subject is also being done by a group headed by Pethrick (Jeffrey
et al. 1988) who have shown that dielectric measurements are very sensitive to the moisture
content of the adhesive. This suggests that the technique may provide a means of monitoring
the progress of environmental attack which, although its chief effect is to reduce the strength of
the adhesive/ adherend interface, also leads to hydration of the adhesive layer. ‘

1.4 Testing for poor adhesion

Currently, there is no satisfactory nondestructive technique to test for adhesion strength in
bonded joints. In order to secure sufficient quality of adhesion strength in bonded structures,
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manufacturers implement costly and cumbersome process control procedures, frequently
involving destructive testing of samples taken from production lines. Despite substantial
research effort and many theories being proposed, the adhesion between two surfaces is not
well understood (Adams and Wake 1984, Stone 1986, Kinloch 1987, Light and Kwun 1989).
Therefore NDT can at best be used to attempt to determine whether a tested interface has the
same features as a reference one, which is assumed to be satisfactory. t

Two basic approaches have been investigated for the ultrasonic determination of the interfacial
properties in adhesive joints, namely modal solutions and reflection coefficient techniques.
Both approaches have been attempted to make predictions of response of the joint assuming a
certain model of the adhesive/adherend interface. Different interfacial models which have been
used are described below.

1.4.1 Theoretical models of the adherend/adhesive interface

For theoretical purposes, the notion of an interface layer with its own acoustic properties and
thickness is usually introduced. This means that the ultrasonic response from the
adherend/interface layer/adhesive system rather than the simple adherend/adhesive system is
analysed. The thickness of the interface layer is typically of the order of 1 pm and depends on
the surface characteristics like roughness, the presence of contaminants and the type of oxide on
the surface of the adherend. However, the wavelength of the ultrasonic waves used currently in
nondestructive testing are at least one hundred times larger than the thickness of the interface
layer. Tattersall (1973) assumed that the thickness of such an interface layer is therefore
negligible and its elastic properties can be modelled as a spring. Later on a number of
researchers studying different thin layer or interfacial problems arrived at essentially the same
spring model as Tattersall did in 1973, and were able to relate the stiffness of the interface to
different features of the measured system. Nowadays, the spring model is the most commonly
used approximation of a thin layer. Different cases leading to the spring model are listed below.

* A thin solid layer can sometimes be modelled using spring model. The normal and transverse
stiffness of the layer can be related to the thickness of the layer and its elastic constants. A
more detailed discussion of this is given in chapter 4 of this thesis. |

A thin liquid layer can be modelled in a similar manner as the thin solid layer. In the
transverse direction the behaviour of such a layer can be modelled by 'transverse slip' or
'viscous slip' depending on the layer's thickness, the viscosity of the liquid and the
frequency of excitation (Kithn and Lutsch 1961, Schoenberg 1980, Rokhlin and Marom
1986), while the stiffness in the normal direction can be calculated in the same manner as in
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the case of a solid layer.

« When two surfaces are in intimate contact with each other and there is no viscous coupling
between them then a dry contact takes place. Transmission of forces across the interface is
achieved by the large number of small contacts distributed randomly in the plane of the
interface. The stiffness of the interface can be related to the statistical descriptions of the
surfaces and the mechanical properties of the materials in contact (Haines 1980). Haines'
spring model has been used by a number of researchers investigating the reflection.
coefficient from contacting surfaces (Arakawa 1983, Krolikowski et al. 1989, Nagy 1990).

« When the adhesive/adherend interface is not perfect and an array of small debonded areas,
which cannot be resolved individually by an ultrasonic transducer, is formed then a partial
bond takes place. This bond has some, although somewhat reduced, strength. Certain
statistical properties of the partial bond like the size and density of the debonded areas can be
related to the interface stiffness (Angel and Achenbach 1985, Achenbach and Kitahara 1986,
Sotiropoulos and Achenbach 1988, Nagy 1990)

« A kissing bond can occur as a result of plastic contact between the surfaces. In such a case
the interface has no strength apart from some "'sticking" effect at the surfaces (Nagy 1990).
This can take place in diffusion bonded joints where the materials are pressed together at
elevated temperatures. In adhesively bonded joints this may possibly occur if, for example,
the adhesive is bonded to a very thin layer of a mould release agent deposited on the surface
of the adherend. If the mechanical properties of the contacting materials and a statistical
description of the mating surfaces (like mean separation) are known then the stiffness of the
interface can be calculated using Haines' (1980) approach.

Another, more complicated model of the interface, is to consider it as a finite thickness
intermediate isotropic layer with its own density, longitudinal and shear velocity and thickness
(Alers 1976, Nagy and Adler 1989 (b), Dale and Rose 1990). Recently Wang and Rokhlin
(1990) measured properties of thick layer of PAA oxide and employed an anisotropic layer
model to correlate the experiments with theory.

1.4.2 Different testing strategies

From the conceptual point of view, the adhesive bond is usually considered as a five layered
plate, the adherend/interface/adhesive/ interface/adherend system, where each of the layers has
its own acoustic properties. A successful testing technique should be capable of monitoring
certain changes in the elastic properties of either or both interfacial layers in a joint. Two
different testing approaches have been proposed in the literature. The first one is the modal
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approach using Leaky Lamb Waves (LLW), guided waves (trapped modes) in the adhesive
layer, or interface waves to determine the boundary conditions across the adhesive and
adherend. The second approach is to monitor the reflectivity of ultrasonic bulk waves from
adherend/adhesive interface, and is known as the reflection coefficient technique.

Modal approach

Leaky Lamb Waves (LLW) are waves propagating along a plate (see fig. 1.1(a)). If the plate is
an adhesive joint then the velocity and the wavelength of Leaky Lamb Waves depend on the
mechanical properties of the adhesive and adherends and the boundary conditions between
them. For theoretical purposes the adhesive joint is usually modelled as a three layered plate, an
adherend/adhesive/adherend system with 'imperfect' boundary conditions introduced between
one or both adherend/adhesive interfaces. In experimental investigations the Leaky Lamb
Waves are usually excited and received by ultrasonic transducers operating in a pitch-catch
mode underwater whose angles of incidence with respect to a tested plate can be accurately
adjusted. Theoretical predictions of the frequencies and the velocities at which the Leaky Lamb
Waves can propagate in a given adhesive joint are often displayed in the form of dispersion
curves and compared with experiments. In experimental investigations the Leaky Lamb Waves
are usually excited and received by ultrasonic transducers operating with immersion coupling in
a pitch-catch mode, whose angles of incidence with respect to a tested plate can be accurately
adjusted. Several researchers have tried to use the LLW technique for nondestructive evaluation
of adhesive joints and particularly to monitor their interfacial properties but their findings are
preliminary.

One of the recent publications from the group in the University of Paris headed by Quentin and
de Billy (Leomy er al. 1989) used LLW technique on samples of adhesively bonded
duraluminium plates to brass substrates and brass plates to duraluminium substrates.
Comparison between the measurements and theoretically generated dispefsion curves revealed
that most of the experimental plots were not predicted by the elastic theory used, and it was
concluded that attenuation should be included in the model. In another investigation (Guy 1992)
steel-to-steel adhesive joints with different surface preparations, including oil contamination,
were considered. Theoretical model predictions and experimental investigatioh“s led the
researchers to conclude that the LLW technique is only very weakly sensitive to different
interfacial conditions between steel and epoxy.

Rokhlin (Rokhlin e? al. 1990) used the LLW technique to monitor the degree of cure of two
very thin epoxy films in a five-layer system consisting of aluminium/epoxy/plastic/epoxy/
aluminium. During the curing process, the boundary conditions between the aluminium
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adherends and the plastic layer changed from 'weak' to 'good'. Comparison between
theoretical predictions and the measurements was essentially qualitative and some results were
left unexplained. However, the work demonstrated good sensitivity of the LLW technique to
adhesion type imperfections.

Guided waves (trapped modes) are the type of waves which propagate along the adhesive layer,
and unlike the Leaky Lamb Waves, do not extend over the entire thickness of an adhesive joint
(see fig. 1.1(b)). The adhesive layer acts here as a waveguide and the energy is concentrated
almost entirely in the bondline (Alers and Thompson 1976). True guided modes are not coupled
to any of the bulk waves in the surrounding media; they are therefore less suitable for NDT
applications since they are difficult to excite and receive through the adherend. One possibility
is to use Rayleigh waves propagating along the surface of the adherend plates, which are mode-
converted into guided interface waves when going through the joint (see fig. 1.2). A few
preliminary studies, both theoretical and experimental, have been conducted on this subject
showing that the guided waves are much more sensitive to both adhesive and cohesive type
defects than Lamb modes ( Nagy and Adler 1989 (b), Nagy et al. 1990, Nagy and Adler 1991).

Nagy and Adler (1989 (a)) used a Leaky Guided Wave technique to monitor changes in the
interfacial properties in adhesive joints caused by the presence of a thin layer of mould release
agent applied to the adherend prior to bonding. One of the main conclusions of the paper is that
the presence of the mould release affects the amplitudes of the Lamb modes rather than the
frequencies at which they propagate.

Interface waves propagate along the adhesive/adherend interface (see fig. 1.1(c)). The
mechanical energy of these waves is almost entirely concentrated in the vicinity of the
adhesive/adherend interface and the properties of the interface waves are dependent on the
mechanical properties in the interfacial region. This makes them potentially well suited for
monitoring the interfacial conditions between the adherend and adhesive. Despite its apparent
attractions, there is only a handful of reports on the application of interface waves to the
adhesion problem (Rokhlin ef al. 1981, Rokhlin 1982, Pilarski 1985, Nagy and Adler 1989
(b)). Application of the technique to the surface contact characterisation between two solids has
been reported by Murty and Kumar (1991). In all the reported investigations known to the
author, the interface waves were exited using the mode-conversion technique from the Rayleigh
wave to the interface wave, described above in the context of guided waves applications.

Reflection coefficient approach

In the reflection coefficient method the reflectivity of bulk waves, (longitudinal or shear), at the
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adherend/adhesive interface is measured. Measurements can be conducted at normal and
oblique incidence with respect to the monitored interface as well as at different frequencies of
excitation. The results of the measurements are then related to the mechanical properties of the
interfacial layer.

Tattersall (1973) assumed a simple one-dimensional spring model for the interface between two
solids and used this to study the reflection coefficients at normal incidence between an
aluminium block and low density polyethylene cast on the aluminium face. Using the spring
model of the interface, Tattersal derived an expression for the reflection coefficient,

Zl - Z2 + 10)(Z1Z2/k)

Ry, = (1.3)

Z2) + 2y +i0(z12,/K)

where z; and z, are the acoustic impedances of medium 1 and medium 2, defined by eqn 1.1,

and k is the stiffness of the interface. The model proposed by Tattersal therefore predicts that
the reflection coefficient from an imperfect interface will be frequency dependent. Equation 1.3
can be considered as an extension of the standard textbook expression of the reflection
coefficient from a flat interface between two materials without a spring in between (see eqn
1.2), which is frequency independent. Tattersal concluded that using the spring model it is
possible to account for presence of gaseous contamination at the interface. Because of its
simplicity the spring model has been used in a number of applications where the concept of
'thin layer' or 'thin imperfection' could be applied (see section 1.4 of this thesis for more
details).

Alers (1976) considered three different models of interfaces, an isotropic layer of finite
thickness, a diffuse layer and the spring model, and performed normal incidence reflectivity
measurements from bonded interfaces using Plexiglas (Lucite) adherends. Two different types
of bonds were investigated in his work. The first of them was an 'adhesive' type of bond
which was created by applying solvent on the surfaces of the adherends before pushing the
adherends together. The second set of joints, a 'thermal' type, were created by pushing the
Plexiglas adherends together at elevated temperature. The normal incidence longitudinal
reflection coefficient was measured and then destructive tests were carried out in order to find
some relationship between the reflection coefficient and strength for both 'thermal' and
‘adhesive' types of the interfaces. Alers was not able to correlate the ultrasonic reflectivity from
the interfaces with their strength and concluded that better understanding of wave interaction’
with imperfect boundaries is required. He also suggested that some alternative technique is
needed to achieve the required sensitivity to interfacial integrity.
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Rokhlin and Marom (1986) proposed a novel technique, based on an idea in the paper by Kiihn
and Lutsch (1961), to monitor the degree of cure in adhesives. They measured the longitudinal
wave oblique incidence reflection coefficient from thin adhesive films between two steel plates
and between steel and Plexiglas plates. They showed that during the curing cycle, thin adhesive
layers undergo changes from 'slip’ to 'rigid' conditions. The experimentally determined
reflection coefficient curves showed very good agreement with theoretical predictions and the
researchers concluded that the oblique incidence method can be used to monitor changes from
the 'slip' to 'rigid' conditions across thin layers and can be used for cure-monitoring of thin
adhesive layers.

Pilarski and Rose (1988) progressed the ultrasonic oblique incidence approach, proposed by
Rokhlin and Marom (1986), and used it as an alternative to the normal incidence technique in
the evaluation of aluminium-to-aluminium adhesive joints. The experimental evidence gathered
thus far suggested that the normal incidence was not sensitive enough to be used successfully
(Thompson and Thompson 1988). The normal incidence method relies on changes in the
interface stiffness solely in the direction normal to the interface. However, if the interfacial
imperfections affected the transverse stiffness of the boundary then the oblique incidence
method would have much higher sensitivity then the normal incidence tests. A two dimensional
model of the interface was proposed, with normal and tangential stiffnesses. A full set of
reflection coefficients (longitudinal-longitudinal, longitudinal-shear, shear-longitudinal and
shear-shear (see fig. 1.3)) from the aluminium/epoxy interface was theoretically calculated
assuming 'rigid' and 'slip' boundary conditions between the adhesive and the adherend. Tests
on adhesive bonds with two different surface preparations were conducted which indicated
good sensitivity of the oblique incidence method in practice. Pilarski and Rose concluded that
the oblique incidence method opens up a new direction in the search for a robust NDT
technique testing for interfacial strength. Theoretical and experimental studies on the oblique
incidence technique were presented by Pilarski and Rose in several papers (Pilarski 1985,
Pilarski et al. 1987, Pilarski et al. 1990, Rose et al. 1990 (a), (b)); howéver they are all of a
preliminary nature. Theoretical investigations were mostly based on the 'rigid' and 'slip’
boundary interface model which represent two extreme cases of 'good’ and 'weak' adhesive
joint and are very seldom, if at all, found in reality. The experimental investigations conducted
by Pilarski and Rose so far have not been systematic enough to provide a firm basis for the
acceptance of the oblique incidence reflection coefficient as a better technique for the
determination of interfacial properties in adhesive joints.

1.4.3 Conclusions

Despite substantial efforts made for over twenty years, the problem of testing for poor adhesion
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has not been solved. It has not been definitely determined whether or not an ultrasonic
technique can be used for the determination of interfacial weakness in adhesive bonds. The
most promising techniques are the guided wave (trapped mode), the interface wave and the
oblique incidence refection coefficient techniques. However, the studies conducted and
published on these three techniques are of a preliminary nature and further resc;arch is needed to
fully asses their applicability. This thesis considers the reflection coefficient method.

1.5 Problem summary

In summary, the problem is to determine the mechanical boundary conditions between the
layers of an adhesive joint, by sending longitudinal waves from a liquid into the joint and
receiving back the resulting reflections (see fig. 1.3). It is assumed that the adhesive joint
consists of two flat layers of metal joined by a flat layer of epoxy resin.

The main anticipated difficulties are as follows:

a.  The thickness of the aluminium/epoxy interface layer is usually of the order of 1 pm.
This makes it impossible to determine the mechanical properties of the layer by the
conventional ultrasonic techniques which are used for material evaluation because the
wavelength of the waves is much longer than the interface layer thickness.

b. In order to increase the impact toughness of adhesive joints, the adhesive is usually
modified (for example with rubber) so that it exhibits viscoelastic properties. This
means that the reflection coefficient from the interface can be affected by the
viscoelastic behaviour of the adhesive. This behaviour is, in general, frequency
dependent.

c.  The transducers used to excite the plates and to receive the reflected field are of finite
size. This raises questions about the applicability of the infinite plane wave theory to
realistic cases. |

1.6 Outline of the thesis

The aim of the research reported here was to conduct further detailed studies of all stages of the
reflection coefficient technique. This research includes the theoretical modelling of the adhesive
and adherend layers and the interfaces between them, sensitivity studies to determine the most
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useful practical testing arrangements, the construction and application of an appropriate
measurement rig, and experimental investigations to quantitatively validate the theoretical
models used.

In chapter 2 the concept of a viscoelastic medium is introduced by assuming that any
viscoelastic material can be fully described by its density and another four independent
variables, two of them being Lamé's constants and the remaining two characterising the
damping properties of the material. A wave equation of motion is derived on the basis of this
assumption, and it is shown that harmonic plane waves satisfy the equation. The reflection and
transmission coefficients are defined in terms of these harmonic plane waves.

Having established the equation for infinite plane waves the theory is progressed to the realistic
field generated by finite sized transducers. This is achieved by decomposing the field into
harmonic infinite plane waves whose reflection coefficients are readily found. Subsequently
this process is also used to determine the field received by a finite sized transducer by the
synthesis of the harmonic infinite plane wave solutions.

In chapter 3 the theory of plane wave reflection and transmission from multilayered viscoelastic
plates is given. This theory makes it possible to calculate reflection coefficients of any
multilayered viscoelastic plate with any boundary conditions between the layers. The only
limitation is that the boundary conditions have to be linear.

In chapter 4 a theoretical study of ultrasonic reflectivity from thin solid and liquid layers is
presented and a thin layer approximation is derived. Parametric studies of reflection coefficients
at normal and oblique incidences are conducted and compared with the spring model and the
thin layer approximation.

In chapter 5 the oblique incidence reflection coefficient testing rig constructed for the purposes
of this thesis is presented. Ultrasonic reflectivity measurements from single-layered and multi-
layered systems are compared with theoretical predictions to validate the theory derived in
chapters 2 and 3. The measurement error of the oblique incidence method is estimated and the
applicability of the plane wave theory and the finite transducer theory is discussed. |

In chapter 6 the monitoring of interfacial conditions in a glass/epoxy joint at the normal and
oblique angles of incidences using longitudinal and shear waves is performed. The computer
model, derived and validated in this thesis, was used to find the best testing strategy for the
interfacial weakness determination. Oblique incidence tests were then conducted at these
selected angles.
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In chapter 7 an attempt to monitor interfacial conditions of the aluminium/epoxy joints is
presented. Using the theoretical models and experimental tools developed in previous chapters

the applicability of the oblique incidence method to the adhesion problem in real aluminium-to-
aluminium joints is discussed.

Chapter 8 presents main conclusions of the thesis and contains recommendations and
suggestions for future work.
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Fig 1.1 Different plate waves used for the adhesion testing
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CHAPTER 2

The reflection coefficient from the interface between two
semi-infinite viscoelastic media

2.1 Introduction

Chapter 2 is concerned with the reflection and transmission of acoustic waves at a single
interface between two semi-infinite viscoelastic media. The chapter is divided into four
sections, the first presenting the harmonic plane wave concept, the second applying the plane
wave theory to solve a single interface reflection coefficient problem, the third one giving a
solution method for the reflection and transmission fields generated by transducers of finite
dimensions. The final section summarises the main points made in the chapter.

In section 2.2 the concept of harmonic longitudinal and shear plane waves is presented as a
solution of a wave equation in an unbounded viscoelastic medium. The solution follows a
standard procedure for a wave equation. Firstly the definition of strain and stress is given. Then
the governing equation for viscoelastic media, relating the stress field to the strain field, is
obtained under the assumption that any viscoelastic medium can be comprehensively
characterised by its density and another four independent constants, two of them being Lamé's
constants and the remaining two characterising the damping properties of the medium. In order
to relate the stress field to the displacement field, the equation of motion for an infinitesimally
small volume of the medium is given. Combining the equation of motion with the governing
equation and the definition of strain the wave ‘equation in terms of the displacement field is
derived.

To solve the equation the Helmholtz representation of the displacement field is then applied
which conveniently decouples the wave equation into two independent wave equations, the
solutions of which yield two harmonic plane waves: a longitudinal plane wave and a shear
plane wave in terms of the wave potential fields. The wave potential fields are related to the
displacement field by the Helmholtz representation and therefore the wave equation solutions-
can be obtained in terms of the displacement field.

Having done the necessary calculations it is found that the longitudinal plane wave field
consists solely of the harmonic displacement in the direction of propagation of the wave, and
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the shear wave causes the particles to move solely in the direction perpendicular to the direction
of propagation of the wave. This statement applies only to propagating (homogeneous)
longitudinal and shear waves which is the case when an infinite medium is considered.
Sometimes it is important to calculate the stress at a given point in the medium. The constitutive
equation, relating the stress field to the strain field, makes it possible to ca}culate the stress

tensor components due to the longitudinal and shear plane waves.

Section 2.3 deals with the generation of the reflected and transmitted harmonic plane waves at a
plane boundary between two viscoelastic materials. At the beginning of section the Snell's law
equation for viscoelastic media is given, which shows that the angular frequency of the waves
and their wavenumber components parallel to the interface must be preserved (ie they are
invariant in transmission and reflection from a plane interface). It is shown in this section that
these two invariants reduce the maximum number of the reflected and transmitted waves to
four: two reflected waves and two transmitted waves. Therefore the stress-displacement field
due to the four harmonic waves is calculated as a superposition of the stress-displacement fields
due to each of the four plane harmonic waves. This equation, relating the stress-displacement
field to the four harmonic wave amplitudes, describes a general form of the reflected or
transmitted field between any pair of viscoelastic media separated by a plane boundary. If the
relationship between the stress-displacement field on one side of the boundary and the stress-
displacement field on the other side of the boundary is known (eg in the form of a stiffness
matrix), then it is possible to calculate the amplitudes of the reflected or transmitted harmonic
plane waves, that is to calculate the reflection and transmission coefficients of the system. The
last subsection of section 2.3 deals with the boundary stiffness matrix and completes the
derivations of the equations relating the stress-displacement field across the plane interface.

In section 2.4 the problem of the reflection and transmission of the field at a single interface
generated by a finite transducer in an inviscid fluid is presented. It is possible to obtain an exact
solution of the field generated by a finite transducer using Huyghens principle ie by summation
of spherical waves from the face of the transducer. However, this will lead to cumbersome
equations when deriving the reflected and transmitted field at plane interfaces. It is therefore
more convenient to form the radiated field as a superposition of harmonic plane waves as it is
possible to obtain solutions for the reflection and transmission coefficients from plane
boundaries in a relatively straightforward manner.

Section 2.5 is the conclusion section and repeats the most important findings of this chapter in a
concise form.



90

J31em UT 9je]d WNTUILNGE YOIy} W Z°¢ WOIJ JABM [RUIPIISUO] PINILUSURIY, "0USPRUL [BULON 6'¢ STy

001 (svi) sy, 00

0l

A alla Alla Ala >>> >>> >>> >>> A 00

ol

The reflection coefficient from a multilayered viscoelastic plate

Chapter 3

(3eaurp) spmiijdury



Chapter 2 23
The reflection coefficient from the interface between two semi-infinite viscoelastic media

2.2 Plane wave in an infinite viscoelastic medium
2.2.1 Plane wave as a solution of the wave equation

In a viscoelastic medium the stress-strain equations can be written as (see for example Love
1944, Becker and Richardson 1970),

A 0 2u' 9

Gij = 7‘5118kk+2”81j + — 51] 5t Ekk * o atelj Q2.1

where O . ij is stress, €4 is strain, A and p are the Lamé's constants, A' and ' characterise
attenuation of the medium, @ is the frequency, and 5 is the Kronecker delta i,j=1,...,3. The
equation of motion is,

0 02
. Ol = P aa Ui, 22
j

where p is the density of the medium and Xjs j=1,...,3 is the Cartesian coordinate system and
vy, i=1,...,3 are the components of the displacement from the position of equilibrium. Strain is

defined in terms of displacement as,

1,0 d
1j= E(a—x‘]u1+'a;1u‘]). (2'3)

Substituting (2.2) and (2.3) into (2.1) we can obtain the equation of motion in terms of the
displacement u.

uVu4wx+u)V(an+-—Vﬂ§" 7”L“V(V m._pgé (2.4)

Using the Helmholtz representation (see for example Malvern 1969) we can express an
arbitrary continuous differentiable field as a superposition of an irrotational (potential) field L
and a rotational (solenoidal) field S. This can be expressed as, u = f+§, where E=V¢ and

S =VX\. The scalar function ¢ and the vector function \f are called the wave potentials.
Equation (2.4) then becomes a set of two uncoupled equations for ¢ and Vs,

[ +2w) +

N2 D o2 32
—51Vo =p35s0, 5)

in (2.6)

[kt §1V' -

Let us assume solutions,
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io(Nex/o - t)

ox.t) = o(w)e , 2.7)

and,

io(Nex/p - t)

Yx,t) = Y(w)e (2.8)

where N is a complex vector, o is the dot product symbol, and o and P are complex. The
operators for these solutions are,

J . 02
iy Loat 2.9)
i 2
3?{—.=1%)Ni; a—2=-(%)2N%; where ¢ =0 or ¢ =J, (2.10)
1 aXl
2 2 2 —
V2= 8_2+8_2+_8_2) = -(%)—)ZNON; where c=a or ¢ = . (2.11)
ox] 0x, 0x;

Assuming these solutions equations (2.5) and (2.6) become,

[ O+ 2u) + "';2“' ()] E RN ¢ = -po2o, @.12)
[ +%(-i(0)] [-(%))2] NeN \TI = —pO)Z\TI . (2.13)

These equations can be simplified to,
[ A +2p) - iV+2u)] NeN = po2, (2.14)

[1-ip] NeN = pp2. @15

Equations (2.14) and (2.15) are equivalent to equation (2.4) with the displacement field split
into the rotational S and irrotational L displacements and assuming that the motion is harmonic..
To simplify the two equations we can normalise the complex vector N defining it as being of
unit amplitude,

NeN =1 . (2.16)
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Equations (2.14) and (2.15) become,

o2 = (A+2p) - i(A'+2uh)

P
g2 = KM ‘ (2.18)
P

(2.17)

Thus equations (2.7) and (2.8) are solutions of equations (2.5) and (2.6) provided that
equations (2.16), (2.17) and (2.18) are satisfied.

The equations for a totally elastic solid can be obtained by setting A'=0 and u'=0, ie by
removing the viscous terms from eqn (2.1). The equations for a viscous fluid can be obtained
by removing the shear stiffness (setting p=0), and multiplying A' and ' by . In this case eqn
(2.1) becomes the Navier-Stokes equation. The inviscid (Newtonian) fluid model is obtained
by setting u=0, A'=0 and p'=0.

2.2.2 Displacement field for longitudinal and shear plane waves

Let us, for convenience, choose a Cartesian coordinate system so that N3=0. The wave

potentials, given by equations (2.7) and (2.8), can be therefore expressed in terms of x1 and x2
coordinates only, reducing the case to the two-dimensional plane strain problem, 8?(_3 = (.

Displacement field due to a wave potential ¢ of unit amplitude

The displacement field due to the wave potential ¢ is,

E=V¢={£—l,5§—2,m¢. | (2.19)

Substituting eqn (2.7) into (2.19) we have,

N :
Ly =aa)% = i(ogl o(w), o (2.20)
)
Lh=—= — , 2.21)
2=, =107 0@ (2.21)
Ly =0. (2.22)

Therefore we have,
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_ Niljo 10N x/0 + Nyxsy/o - t)

L= = o J0Mx 272 . (2.23)

uy NyJ &

Equation (2.23) describes the displacement field due to a wave potential ¢ of unit, real

amplitude.

Displacement field due to a wave potential \§ of unit amplitude

The rotational wave potential can be expressed as,

io(N N -
iI,=T3W(m)elco(1.X1/[3+ 2x2/P 0.

where 1 3 denotes the unit vector along the x 5 coordinate. The displacement field is,

i, i,
S _ Usiir — = Y < Yy
§=Vxy- ai a>a< ai “1ax2"2ax1
1 2 3
0 0 W

Substituting eqn (2.24) into (2.25) we have,

N
_oy . 2
S = =i0— Y(x,1),
17ox, B

N
d . 1
SH = = -iw — Y(x,1),
2 axl B

S3=O.

Therefore we have,

§_d"L_ N2 { i JoMN X /B + Nyxp/B - 1)
112 'Nl B .

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

Equation (2.29) describes the displacement field due to a wave potential \J of unit, real
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amplitude.
Definition of longitudinal and shear waves in terms of the displacement field

From now on we will assume that the longitudinal and shear harmonic plane waves are given in
terms of the displacement field as,

i Jul JNl (N xy /0 + Nyxy /0 - 1)
= = [} .

_ (2.30)
() (N2
' 4

_ |u N iw /B + Nyxy/B -t

§-4"11 420 JolMix/P+ Nyx/B -0 2.31)
2) N |

100
Comparing eqn (2.30) and (2.31) with (2.23) and (2.29) it can be seen that the terms = and
: o
0 have been dropped out. This has been done purely for convenience. Formally, we could
. . . - o - .
assume appropriate wave potentials (for example, assuming Qpew(X,t) = — ¢(X,t) to arrive at
im

the displacement fields given by equations (2.30) and (2.31).
Attenuation and phase velocity of a plane wave

Let us take a longitudinal wave. Its displacement field can be expressed as,

_ io(Nex/o -t
Ne1 ( ).

u(x,t) = (2.32)
Sometimes it is convenient to describe plane waves in a form,

&Y = Neoor O | 2.33)
where,

k = oN/a, @34)

is known as a wavenumber and describes the spatial properties of a harmonic plane wave of
angular frequency m; kisa complex vector which can be expressed as a sum of its real and
imaginary parts,

Kk =Kkye + iKim. (2.35)

Now, eqn (2.32) becomes,
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— i(Ere.i - C!)t) 'i(_im.i
€ € .

ux,t) = N (2.36)
The phase of the wave is defined by the term,
O(X,t) = KreoX - 0O, (2.37)

KimeX
and its amplitude by the term e . A wavefront of the wave is defined as a surface in
space at which the displacement field assumes the same phase at a given instant, t=t,. From eqn

(2.37) we have, @ = kre®X -0y, which gives,
Ikrel [XI cOS(8) = @y + ®t, = const . (2.38)
The angle 0 is the angle between vectors Kre and X, as shown in fig. 2.1.

From eqn (2.38) it can be seen that the wavefront of the plane wave is a plane perpendicular to
the real part of the wavenumber. Equation (2.37) shows that the planes of constant phase
change their spatial position with time. We can therefore lock on to a given wavefront and
follow it in time. The velocity at which we would have to move in space in order to follow this
wavefront is defined as the phase velocity. By eqn (2.38) the position of a given wavefront is,

KreoX = @, + O, (2.39)

which, after differentiation with respect to time gives,

KreoC = krel Il cos(®) = o, (2.40)

where the phase velocity vector ¢ = —% X, and 0 is the angle between ¢ and kre. If the phase
velocity is defined as a vector perpendicular to the surface of constant phase, then the phase
velocity can be obtained without ambiguity as a vector parallel to Kre, and eqn (2.40) becomes,
IErel lel = @, which, using eqn (2.34), gives the expression for the magnitude of the phase

velocity as,
- o
lel =——. (2.41)
kel |
. .. . . 'l_(im.i
The spatial variation of the field amplitude is defined by the term e of eqn (2.36).

Therefore the planes of constant amplitude are perpendicular to Kim and the gradient of the
amplitude is parallel to Kim.
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If a plane wave propagates in a perfectly elastic medium then either the wave amplitude is the
same everywhere in the medium, or the amplitude of the wave is exponentially decaying, planes
of constant phases and planes of constant amplitudes of the wave being perpendicular to each
other. In other words, either Eim vanishes or vectors Eim and Ere are mutually perpendicular.
To show this, consider the square of the wavenumber. From eqn (2.35) we have,

k%= k2= (kpe + ikim)” = &2, - K+ 2i kreoKim - (2.42)
Equation (2.34) gives,
12= ()2, (because NeN =1, eqn (2.16)). (2.43)
(04

If the medium is elastic then, from eqn (2.17), & is real and, consequently, k2 takes on a real
positive value. As the imaginary part of k2 is zero then, from eqn (2.42), the dot product of the
vectors Ere and Kjp is zero. This means that either kKim={0} or Ere and ki are perpendicular
to each other.

It may be readily shown that shear wave attenuation and phase velocity follow the same form.
2.2.3 Stress field due to longitudinal and shear waves in plane strain

Having defined the longitudinal and shear wave displacement fields by eqn (2.30) and (2.31), it
is now possible to calculate the stress fields. Stresses have been defined in terms of strains in
eqn (2.1) as,

M9 21 9
S = x&ljekk+2uelj+ 51] 3t Ekk * Ka— (2.44)

. J _ .
For a harmonic process 31 = "10, so,

Gy = 8 (7» 1k)ekk + 2(},L—1},l)8 - (2.45)

Assuming plane strain in the x1, X plane, the stress field vector acting on a plane perpendicular
to X2 axis is two-dimensional. Noting that €3 =€ 1+ €;,, we can evaluate the components of
the stress vector acting on a plane perpendicular to x5 axis, using eqn (2.45),

0-21 = 2( u— iu') 812 N (2.46)



Chapter 2 30
The reflection coefficient from the interface between two semi-infinite viscoelastic media

022 = ( 7\,— 1}.,,) ( 811+ 822) + 2( U- lu,') 822 . (2°47)

Now, using eqn (2.17) and (2.18) we can express the stresses as,
oy1 = 2pB%eq, . | (2.48)

Oyp = PO (E11+E9p) - 2pP%E1; . (2.49)

Using the definition of strain in eqn (2.3) we have,

d d
021 = pB2 ( ax2 ug Bxl up) | (2.50)
d d d
0‘22= p [az(ggl—ul +a—X2‘u2) - ZBZ'E;X—IUI] . (2.51)

Substituting eqn (2.30) and (2.31) into (2.50) and (2.51) we have, for longitudinal plane
waves:
] 7 io(Nex/o - t)
051 = 2i0pN N,f7a e , (2.52)

io(Nex/o - t
Gyyp = (impat- 2i(opN‘;'[32/oc )e (Nex ), (2.53)

and for shear plane waves:

9 io(Nex/a - t)
021 = I(Dp(Nz - N%)B € , (2.54)

io(Nex/a - t)

2.3 Plane waves as reflected and transmitted fields at a plane interface
2.3.1 Snell's law

Derivations presented in this subsection are, in its approach, similar to any good textbook
approach (see, for example, Brekhovskikh 1980, or Graff 1975).
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Let us consider a system consisting of two semi-infinite media with their common boundary at
xp = (), and a harmonic plane wave incident on the boundary. The incident wave generates n-1
refracted and reflected waves of arbitrary frequencies and directions of propagations. Therefore
there are n different plane waves in the whole system, with index numbers m = 1,...,n. The
incident harmonic plane wave can be expressed by,

u =N Ay S AN -0 (2.56)
where the subscript [ denotes the index number of the wave. Let us assume that at the
boundary the incident wave generates j reflected and n-j-1 refracted waves. The reflected waves
have index number m = 2,...,j and the refracted waves have index number m = j+1,...,n. The
reflected and refracted waves can be expressed as,

_ < 10y, Ny *X/0tpy - )
u=Ng Age & ™ Ap#0, m=2..n 2.57)

In section 2.2.3 it has been shown that if a given plane wave can be expressed as in eqn (2.56)
and (2.57), then the stress field component 051> OF Gy, Can be expressed in a form,

im (N 19X/Clps - 1)
Bpne m*[m] m ;i Bp#=0, m=1,..,n, (2.58)

where B,,, are complex constants. The displacement components u; and uj for each plane wave
are also expressed in a form given by eqn (2.58). Let us assume that one of the displacement
components uj or uy, or one of the stress components G91,0r G99, is continuous across the
interface x5 = 0. It is therefore valid to equate the value of this component on both sides of the
interface. Using eqn (2.58) the continuity across the boundary can be expressed in a form,

i01(s1x1-t 105 (SHXH-t 10;(s:x:-t
Bie 1(1 1 )-Bze 2(22 )-...-Bje J(JJ )

1
i(Dj+1(Sj+1Xj+1-t) i(Dn(San-t)
+ Bj+1 e +..+Bje =0, - (2.59)
where,
Nlmll
S = ; m=1,.,n, (2.60)
am .

and Ny, is the N[m] component along the xj coordinate. Setting x 1= 0, eqn (2.59) becomes,

w1t 1WAt im;t im:, 1t iw. t
Ble 1—B2e 2-...-Bje J+Bj+le J+1+...+Bne n=0, (2.61)
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which, by the Fourier theorem, leads to the equation,

O, =07 m=2,..,n, ' (2.62)

because it is impossible to obtain a harmonic process of a given frequency ®; by superposition
of harmonic processes of frequencies different than . Similarly, setting t = 0 in eqn (2.59),
and using eqn (2.62) we have,

is1x1 isox1 isix1 isj+1X1 iSpx1
Bje  -Bye = -.-Bje ' +Bjje’ +.+Bje =0, (2.63)
which gives,

Sjp =81, M= 2,...,0. (2.64)

Using eqn (2.60), eqn (2.64) can be re-written as,

Nimj1 _ Ny
O g ,

m = 2,..,n. (2.65)

Using eqn (2.34) and (2.62) it can be seen that eqn (2.65) can be expressed in terms of
wavenumbers as,

k[m]l = k[l]l , m= 2,...,n. (2.66)

Equation (2.66) shows that the wavenumber components parallel to the interface are all equal to
each other.

If the incident wave propagates in a non-attenuating medium then, by eqn (2.17) and (2.34),
the wavenumber E[I] becomes real. Equation (2.66) then shows that in this case, all the
wavenumber components parallel to the interface become real and attenuation can take place
only in the direction perpendicular to the interface plane.

If the media on both sides of the interface are non-attenuating, then by eqn (2.17), oy, become
real and equal to the longitudinal phase velocities and, by eqn (2.18), B, become real and equal
to the shear phase velocities. Then eqn (2.66) becomes the Snell's law equation (see for
example Brekhovskikh, 1980).

Equations (2.64), (2.65) and (2.66) are equivalent to each other and are analogous to the
Snell's law when the system is totally elastic. These equations,together with eqn (2.62), state
that the angular frequency ® = O, ,m= 1,...,n and the complex value of s = sy , m =1,...,n
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is preserved on both sides of the interface and is therefore spatially invariant everywhere in the
system. Let us then call s the Snell constant.

Some simplifications derived from the Snell's law

As eqn (2.62) and (2.65) are preserved across plane interfaces between viscoelastic media, it is
sometimes convenient to describe plane waves in terms of the Snell constant s, defined by eqn

(2.60). Let us assume that a given longitudinal plane wave can be expressed as,

Ny io(Nex/o - t)
u= e , (2.67)
Ny

and a shear plane wave can be expressed as,

N io(Nex/B - t
u= 2 em)( x/B ) (2.68)
_Nl

By Snell's law, Nl/B N, /o. = s = const, which is spatially 1nvar1ant Making use of the
definition, NeN =1, stated in eqn (2.16) it can be seen that Ny= (1 N1)1/2 which gives two
different solution pairs,

Ny=cs, Nyp=(l- 2912 and
Ny=cs, Np=-(1- 2212 wherec=o or c= B. (2.69)

Equation (2.69) shows that for each of the values of ¢ there can be only two different pairs
{N1,N2}. When N3 is positive then the first solution pair, {N1,N2}, corresponds to a wave
propagating in the upward direction and the second solution pair, {N1,-N3}, corresponds to a
wave propagating downwards. Therefore there are only four different plane waves satisfying
eqn (2.62) and (2.65) simultaneously: two for c=o¢ and two for c=B. Substituting eqn (2.69)
into (2.67) and (2.68), we obtain the following expressions for the 10ng1tud1na1 and shear
waves propagating 'upwards’,

_ { os }i(o(l-oczsz)l/zoc‘lxz ioo(sx ¢ -t)
= €

(1-02s2)1/2 ) (2.70) .
o {(1-925:)1/2} eico(1-[3252)1/2 Blx, Jolsxy-t) o)
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Substituting eqn (2.70) into equations (2.52) and (2.53), we can express the components of the
stress acting on a plane perpendicular to x2 axis due to harmonic longitudinal plane waves as,

io(l-a2sH2 olx,  io(sx -0
()

0y1 = 2iwpsp?(1-a2s2)12 ¢ : (2.72)

io(1-02)2 ol x,  io(sxq-t
Gy = iopas(12p252) € ) 2 O,

(2.73)
Substituting eqn (2.71) into equations (2.54) and (2.55), we can express the components of the
stress acting on a plane perpendicular to x2 axis due to harmonic shear plane waves as,

io(1-p2sH2 Blx,  iw(sxq-t)
€

0,1 = iopP(1-2B%s?) e , (2.74)

io(1-32s2)12 plx, Josx g0

Gyp = -2impsfP(1-p2sH)2 ¢ (2.75)

2.3.2 Displacement and stress field in a layer

In section 2.3.1 it has been shown that if it is assumed that the refracted and reflected waves are
plane waves then they have to have the same frequencies, eqn (2.62), and also satisfy Snell's
Law stated in eqn (2.65). In that section it was also shown that there are only four different
plane waves satisfying eqn (2.62) and (2.65) simultaneously in a given infinite viscoelastic
medium: two longitudinal plane waves and two shear plane waves. Let us, therefore, denote
the amplitudes of the four waves as,

Tp - the amplitude of the longitudinal wave ‘up',

Rp - the amplitude of the longitudinal wave 'down’,

Ts - the amplitude of the shear wave "up',

Rg - the amplitude of the shear wave 'down’,

(see fig. 2.2), and derive an equation for the displacement and the stress field in the layer in
terms of Tp, Rp, Ts, and Rg. In other words we want to find the transformation matrix M, 50

that,
EP )
M =120 (2.76)
Tp uy

TS U2
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Let us denote,
A=1-a2sH2, B =(1-p2sH12, C=1-2p%2

iwAorlx iwBp1x

gn=¢ 2, g, =¢ P 2, (2.77)
P S

Then the displacement and the stress fields for each component wave can be expressed as

follows. Using eqn (2.67), (2.52) and (2.53) we have for the longitudinal wave 'up’,

— [u iw(sx 1-t)
a ={u;} =T, {‘ZS} g e ™, 2.78)
. ) i(D(SXl-t) A
Oy = Tp 2icpsp A gp € , (2.79)
. i(D(SXl-t)
Oyy = Tp inpaC gp e (2.80)
Using eqn (2.67), (2.52) and (2.53) we have for the longitudinal wave 'down’,
_ (uy as| -1 ico(sxl-t)
u ={u2}= R, {_A} g e , 2.81)
-1 io(sxq-t)
O1p = ‘R, 2impspA gp1 e 17, (2.82)
) -1 im(sx 1-t)
Oy = Rp iopaC gp e . (2.83)
Using eqn (2.68), (2.54) and (2.55) we have for the shear wave "up',
— [uq B iw(sx 1-1) |
o= {u2}= T, {_Bs}gs e L7, (2.84)

o io(sx {-1)
Oy = T impPCg, e , (2.85)
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) » 100(sx ¢ -t)
Gyy = -T 2i0psP“B g e . (2.86)
Using eqn (2.68), (2.54) and (2.55) we have for the shear wave 'down’,
- -B) -1 io(sxq-t)
s-(i- x e
. _1 I(D(SXI't)
615 = R iwppCg, e , (2.88)
.1 io(sxq-t)
Gyp = R 2iwpsp?B gs1 e %1 : (2.89)

Combining equations (2.77)-(2.89) we can describe the displacement-stress field in matrix
notation as,

B i(;Jpcthi)1 2iwpsB2Bg;1 iopaCe 2iwpsB2B g 7 (rp (655
-2io)ps]32Agi)1 io)pBCg's1 2iwpsB2A%) iopBCe ) Rg & ) 01 L 2.90)
Oth_pl -Bg;l asg, Bg, 1 Tp ) uy .
L -Agi,l -Bsg'sl Ag, Bsg, | tTSJ \ u,
io(sx l—t)

where the common term, e , has been omitted here for clarity. The formulation given
by eqn (2.90) is similar in concept to that of Thomson (1950) and Haskell (1953), where the
matrix formulation was applied to elastic media. Propagation and reflection of ultrasonic waves
in viscoelastic media were considered in a number of recent publications (see for example

Becker and Richardson 1970, Fiorito et al. 1985, Deschamps 1990).

Reflection coefficient for a plane wave at a single interface between two
viscoelastic media

Consider the interface between medium 1 and medium 2, both of which are viscoelastic. The
interface lies in the x1,x3 plane, and satisfies the equation x5 = 0. A longitudinal plane wave of
unit amplitude is incident on the interface from medium 1, the direction of propagation being in

the X1,X9 plane. The angle of incidence of the plane wave to the normal to the interface is
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denoted by 6. Let us assume that the displacement and stress field is continuous across the
boundary x5 = 0 and the reflected and refracted field can be expressed as a sum of plane waves.
From section 2.3.1 it follows that all the plane waves must have the same frequency and must
satisfy Snell's Law. In other words, equations (2.62) and (2.65) are preserved on both sides of
the interface. Consequently, the analysis given in section 2.3.2 shows that on each side of the
boundary there may be at most four different plane waves satisfying eqn (2.62) and (2.65)
simultaneously and, therefore, eqn (2.90) describing the displacement and stress field is valid
on both sides of the boundary if appropriate values of mechanical constants are inserted into
eqn (2.77).

Let us therefore denote the amplitudes of the plane waves in medium 1 as, Rpl’ Rsl’ Tpl’
p2’ RsZ’ sz, TsZ’ (see fig. 2.3). Using eqn (2.90) the

displacement and stress field in medium 1 can be expressed as,

Tsl and in medium 2 as, R

[~ . -1 . -1, -1 . . 1 r ) 4 h
1oop10c1C1gp1 110)p1s[31 Bg, 10)p10L1C1%)1 ‘11‘”913[31131%1 Rp1 G22[1]
. 1, -1 . a1, 1 . R p
-110)p1s[31A1gp1 10)p1[31C1gsl 11®P1831A1%,1 1cop1[31C1%1 < 81 L 12[1] . 2.91)
1 1 T wg |
01881 -BlgSl 088 Bl%l p1 11]
Y
-1 -1
L Mgy Brsggy A1gy Brsgy  d TS Ly

or,

"”1‘{%}}}={{{:11}}]f (2.92)

Similarly, the displacement and stress field in medium 2 can be expressed as,

- 1, 2,1, . 2 TR A

10)p2(12C2gp2 210)p28B2 BgS2 10p 2(12(:2%)2 -21®p28B2B2%2 RPZ 0-22[2]

2P, PLAE L i0poBrCogi 2iap,sBoA iop,B,C Rl | S12i2)
P2SPoA2EpD 10P2P2L28sy “10P2SPy A28y  10P2P2%2&) 4 - > (2.93)

onsg L Bg L s B ) u2] |

258p2 2852 2582 2&2 .

-1 -1 |

| -A2gp2 'BZSgSZ A2gp2 'BZS%Z - kTSZ/ \. 112[2] J

or,

J”Z{Eg}}} - {{{:;}} } (2.94)
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Using eqn (2.92) and (2.94), the requirement of stress and displacement continuity across the
boundary can be expressed as,

“”1{%}}} i “”2{%}}} | (2.95)

Consider now a single longitudinal plane wave of unit amplitude incident on the interface from
medium 1. We also assume that there are no other waves incident on the boundary. {T} is the
vector of the longitudinal and shear wave amplitudes incident on the boundary from medium 1
and is therefore known. Since there are no waves incident on the boundary from medium 2,
{RZ} is null. Thus Tp1=1,and Tsl= Rp2= R52=0, giving,

(M} ={o} ma {R2} - {0} - @96

R+, T
pl> ©s1° “p
reflected and transmitted waves across the interface, are to be calculated. Equation (2.95) can be

The remaining four complex values of R 2 Ts2’ which are the amplitudes of

[#r1 ‘/”Tl]{F:H} = [#Rr2 J”Tz]{?;ﬁ} (2.97)

where MR 1, M T1, and MRy, M) are of dimensions 2x4 and are submatrices of 41 and
M, respectively. Equation (2.97) may be re-written to give,

[#Rr1 -J”Tz]{ﬁzl}}} =[R2 -%T1]{E§f}}}- (2.98)

The right-hand side of the eqn (2.98) is known, therefore eqn (2.98) is a system of four linear
equation with four complex unknowns. The solution of eqn (2.98) yields two reflection
coefficients: longitudinal Rpl and shear Rsl’ and two transmission coefficients, longitudinal
Tp2 and shear Ts2’ as functions of Snell's constant, s, which in turn can be related to the angle
of incidence of the longitudinal wave from medium 1, by eqn (2.60).

2.3.3 Boundary stiffness matrix

In section 2.3.2 the derivations of reflected and transmitted harmonic plane waves were carried
out assuming that the displacement and stress fields are continuous across the boundary. This
corresponds to the case of a perfect bond between two media, where the displacements are
transmitted across the boundary unchanged. However, when the rigidity of the interface is
assumed to be finite, then the particle displacement on each side of a boundary may not be
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identical. In such cases it is necessary to take the stiffness of the interface into consideration
when calculating reflected and transmitted waves at the boundary. There are a number of
circumstances in which an interface between two solids can be approximated to a massless
spring (see for example Tattersall 1973, Nagy 1990, Arakawa 1983, Pilarski and Rose 1988).
More detailed discussion of this can be found in subsection 1.4.1 of this thesis.

In general, the boundary stiffness matrix is defined by six independent constants. However,
when the mechanical properties of the interfaces are the same regardless of the sense of an axis
perpendicular to the interface, and the mechanical properties are isotropic in the plane parallel to
the interface, the number of constants fully defining the boundary can be reduced to two: the
normal stiffness and the tangential stiffness. This can be shown as follows.

Consider an interface which allows for discontinuities of the displacement field. The difference

of the displacement across the boundary can be expressed as the discontinuity vector Au (see
fig. 2.4).

Across the boundary the stress field is continuous, that is, the stresses on both sides of the
boundary are equal. Moreover, let us assume that there is a linear relationship between the
stress vector and the discontinuity vector at the boundary. This can be expressed in matrix
notation as,

021 ki1 k1o ki3 7 [Auyg
oy p=| ¥21 k22 ka3 [SAy, e, (2.99)
k31 kap k
oy3 31 K32 K33 ]| 4y,
or, more concisely,
o= Au, (2.100)

where Auj, i=1,..,3 is the difference in the displacement between two media across the
boundary in the ith direction. The complex stiffness matrix, J, represents the mechanical

properties of the boundary. From the Betti theorem of reciprocity (see for example Timoshenko
and Goodier 1970), matrix J is symmetric ie kij = kji, i,j = 1,...,3, and therefore, it can be

defined by six independent constants.

If we assume that the stiffness of the boundary is invariant in a given linear coordinate
transform &, like rotation or inversion then, using eqn (2.100), this statement can be expressed
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as,
T(H AQ) = H (T AD), | (2.101)

which means that the same value of stress vector is obtained before and after the coordinate

transformation. Dropping out the brackets and assuming that Au#{0}, we have,

TH = KT . (2.102)
Invariance in inversion of the x2 axis

If it is assumed that the mechanical properties of the boundary are the same regardless of the
sense of the x2 axis, then the stiffness matrix <% must be invariant in inversion of the x2 axis.

Now the coordinate transformation matrix is,
1 0 0
T =[ 0 -1 0 } . (2.103)
0 0 1

Substituting eqn (2.103) into eqn (2.102) and using the symmetry of %, we have, k12 =kp] =
ko3 =kzo=0,and & becomes,

ki1 0 kg3
w=l O kpp 0 } (2.104)
k3; 0 ki3

Invariance in rotation about the x2 axis

If the mechanical properties of the boundary are isotropic in the x1,x3 plane, then the stiffness
matrix remains the same in rotation about the x2 axis. Here the transformation matrix is,

cos® O -sinb
g={ 0 1 0 |, - (2.105)
sin@ 0 cosO

where 6 denotes an angle of rotation around the x5 axis. Substituting eqn (2.105) into eqn.
(2.102) and using the symmetry of J¢, we have, k13 = k31 =0, and kll = k33. If we denote
kll = k33 = kT and k22 = kN, then the matrix A becomes,
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kp 0 0
A= 0 kwy 0 |, , (2.106)
0 0 kr

where, the (in general) complex values of kT and ky are the tangential and normal stiffnesses

respectively.

Sometimes it is convenient to describe the mechanical properties of the boundary by its stress-
displacement transfer matrix, relating the stress-displacement field on one side of the boundary
to that on the other. This can be expressed as,

#{°t ={° (2.107)

(1 2]

=1

where & is the stress-displacement boundary transfer matrix, and the index numbers [1] and [2]

refer to the stress and displacement fields at the boundary in medium 1 and medium 2,
respectively. From the assumptions stated at the beginning of this section, the stress field is
equal on both sides of the boundary,

Sy =511y - (2.108)

Using eqn (2.100) the displacement field at the boundary in medium 2 can be expressed in
terms of the stress-displacement field at the boundary in medium 1 as,

i 15
gy = Uy + K Opyy- (2.109)

In some cases, for example when calculating the stress-displacement field of a plane wave

whose direction of propagation is parallel to the (x1,x2) plane, it is sufficient to consider
equations (2.108) and (2.109) in their two dimensional form. In that case < becomes a2 x 2

matrix and its inverse becomes,

0 1k |
-1 T
H _{UkN 0 ] (2.110)

Equations (2.108) and (2.109) can be then expressed in matrix notation as,



Chapter 2 42

The reflection coefficient from the interface between two semi-infinite viscoelastic media

1 0 0 0 Oy Oy

0 1 0 0 021 =< %13 (2.111)
0 hky 1 O o o
lkr O 0 1 wJ wJ

where the 4 x 4 matrix is the boundary transfer matrix 98 for the plane strain case in the (x1,x2)
plane. Expression of the form of eqn (2.111) has been given by a number of authors (see for
example Schoenberg 1980, Pilarski et al. 1990).

There are three limiting cases of the boundary stiffness matrix (see for example Pilarski and
Rose 1988):

Total debonding takes place when kT = 0 and kpy = 0, which means that the stresses on both
sides of the boundary vanish and the displacements on both sides of the boundary can be
arbitrary. In other words, the two media have free surfaces and there is no transmission of
stresses across the boundary.

The ideal connection, or 'welded' boundary condition takes place when k—e0 and kn—ee. In

this case the stress and displacement fields are continuous across the boundary.

The 'smooth' boundary condition occurs when kT = 0 and kyj—e<. This boundary condition

allows for free tangential displacements across the boundary with zero tangential stresses and
continuous normal stresses and displacements. In other words the two media are in intimate
contact, sliding on each other in a frictionless manner.

Further analysis of the spring model and comparisons of its performance against more accurate
theories is given in section 4.5 of this thesis.

2.4 Finite transducer

In section 2.3 the problem of the propagation of plane waves and their interaction with plane
boundaries has been discussed in detail and the theory for the calculation of ultrasonic reflection
coefficients from single boundaries has been given. These derivations assumed that the incident’
field is a plane harmonic wave extending infinitely along the interface. However, because the
transducers used to generate ultrasound are of finite dimensions, they cannot produce single
infinite plane waves. It is therefore desirable to address the applicabilty of the infinite plane
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wave theory to real cases.

In this section it is shown that the ultrasonic fields: generated by transducers of finite
dimensions can be decomposed into infinite plane wave components using Fourier
transformation. In other words, the acoustic fields generated by ultrasonic probes can be
represented as the sum of infinite harmonic plane waves propagating in different directions. The
theory presented here can, in general, be used in either two or three dimensions. The derivation
shown here considers the two dimensional plane strain case.

2.4.1 Transducer generating a single infinite plane wave

Let us assume an infinite inviscid liquid half space from the surface of an infinite transducer at
x2=0 and continuing towards positive values of x7 (see fig. 2.5). The infinite transducer

generates a harmonic longitudinal plane wave in the liquid given by the equation,

io(NexX/o -
ﬁ=A{§;} JoNex/a - 1) (2.112)

Let us determine the displacement boundary conditions which support the generation of the
wave described by eqn (2.112). Setting xp=0 in eqn (2.112), we have,

1} i(N1x1/0; - t)
€ .

(2.113)

From eqn (2.113) it can be seen that the movement of the liquid at the surface of the transducer
consists of displacement components both normal (up) and parallel (u1) to the surface of the
transducer as shown in fig. 2.5. If the face of the transducer moves in this manner then the
single plane wave described by eqn (2.112) will be generated. For our purposes it is convenient
to ignore the component of movement parallel to the face of the transducer, and it can be shown
that this has a negligible effect in liquids as follows. Consider the motion of the face of the
transducer consisting entirely of movement parallel to the face of the transducer,

0 S (2.114)

_ N io(N1x1/o - t)

u= A{ 1} e 17 .
For a solid moving in a perfect, inviscid, liquid no wave will be generated as there is no
coupling mechanism on the boundary. In practice, when the viscosity of the liquid is taken into
account, some shear wave field will be generated, but because of the viscosity, this field is
bound to attenuate in an extremely short distance.
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Now if the two different motions of the transducer, described by equations (2.113) and
(2.114), are added together,

- A{El} e1(1)(N1><1/OL -1) N A{'Nl} em)(lel/OL - t), (2.115)

2 0

then, the field generated by the transducer will be the superposition of the fields generated by
each of the motions separately. As the second term in eqn (1.115) has no effect on the wave
generation in an inviscid liquid, then the motion of the transducer given by,

) (2.116)

_ 0 io(Nix1/o - t)
u= A{NZ} [

must generate the same field as the motion described by eqn (2.113).
2.4.2 Field generated by a finite transducer in liquid

As can be seen from eqn (2.116), the generation of a plane wave can only be achieved by a
transducer extending infinitely in the x1 direction, whose normal displacement at its face is

governed by the equation,

io(N1x1/o - t)
€ .

uy = A 2.117)

In reality, however, the transducer is of finite size, the displacement at its face being an
arbitrary continuous function. It is therefore necessary to consider the case of the finite
transducer and to derive the expression for the displacement field generated in a liquid. Let us
assume that at the boundary x7 = 0 the normal displacement is given in a form, up = f(x1) e_m)t

as shown schematically in fig. 2.6.

Function f(x1) is continuous and vanishes outside the surface of the transducer, and therefore
satisfies the Dirichlet condition and is absolutely integrable. By the Fourier theorem it is valid to
describe f(x1) in a Fourier integral form as (Bracewell 1965),

4o oo . .
1 -ik1x1 ik1x1
fxn) =~ [{ Jfxpe ~Tdxp}e " dky, (2.118)

which states that the normal displacement at the boundary can be formed by superposition of
spatial harmonic components,



Chapter 2 45

The reflection coefficient from the interface between two semi-infinite viscoelastic media

ik1x1 -iot
uy(x1) =Bky) e e (2.119)
the amplitudes of which are given by the Fourier integral,
1t -ikgxg :
B(ky) = [ fxpe dxy . (2.120)

Equations (2.119) and (2.117) describe the same harmonic motion of the front face of the
transducer if k1 = @wNy/a, and B(kj) = ANp. Therefore, setting

ok Bk
Ny =20 Ny = N, AGep =T, (2.121)
® 2

each of the harmonic components, given by eqn (2.119), generates a plane wave, described by

eqn (2.112), in the liquid. Using the principle of superposition it is now valid to sum all the

plane waves generated by spatial harmonic components of the displacement field f(x;) e  to

form the field generated by the finite transducer,

_ T N io(Nex/a-t)
u=[A NZ}C dky , (2.122)

where N and A are functions of k1, given by eqn (2.121).

According to the assumptions, f(x1) vanishes outside the range <x1,,X1p>, and therefore the
infinite Fourier integral in eqn (2.120) can be replaced by a finite Fourier integral,
] *Ib -ik1x]
Bk =2~ [ fxpe dxy . | (2.123)

T X1a
If it is assumed that the function f(x1) fully "fills" the range <x1a,X1p> then it is possible to
show (see for example Randall 1987) that the function B assumes significant values only
between -k14 and k14, where k4 is a real positive value approximately equal to (X1p-X12)"1,

. o e _ ~ _ _1
B(ky) ={ significant -ki14<ki<kiqy, where ky4=(X1p-X12)

=0 elsewhere 2 ‘124)\«

In other words, the kj domain bandwidth of the function f(x1) is approximately equal to the
reciprocal of the spatial width of the transducer. Therefore the wider the transducer the
narrower the ki bandwidth of the generated field. The wavenumber of a given plane wave can
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be described using eqn (2.34) as,

k=—N, : (2.125)

R|e

Since in an inviscid fluid the loss terms are zero, o is real by eqn (2.17), and the phase
velocity, ¢ = o, by eqn (2.41). The wavenumber component parallel to the face of the
transducer can be evaluated as,

kq = Ikl sind = % sin, (2.126)

where 0 is the angle between the direction of propagation of the plane wave and the normal to
the face of the transducer. Equation (2.126) can be rewritten as,

0 =sinl(k; =), (2.127)
()]

which allows us to state that if the generated field has a narrow k1 bandwidth (wide transducer)
then it consists of the plane waves whose directions of propagation are close to the
perpendicular to the face of the transducer. If the k1 bandwidth of the field is wide (narrow
transducer) then it consists of plane waves of wider spread of directions of propagation. The
angular spread of the field is also dependent on the frequency, ®, of the harmonic process.

Equation (2.127) shows that the angular spread of the field decreases with frequency.

As the kq bandwidth of the generated field is finite then the infinite inverse Fourier integral in
eqn (2.122) can be replaced by a finite one without a significant loss in accuracy,

_ k14 1 io(Nex/o - 1)
u= [ A{gz}e dky , (2.128)
"kld ,

It can be seen from eqn (2.123) and (2.128) that the spatial decomposition (forward Fourier
transform) and synthesis (inverse Fourier transform) can be performed on a finite range of the
x1 space and kj space. Therefore the Fast Fourier Transform algorithm can be employed for
numerical evaluations of equations (2.122) and (2.123) without significant deteridration of
computation accuracy.

Displacement field generated by a finite transducer

To show how to use equations (2.122) and (2.123) let us calculate the ultrasonic field generated
by a 10 mm wide transducer in water. Since the two dimensional plane strain theory is to be
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applied here, the transducer is assumed to be placed perpendicular to x1, x2 plane (see fig.
2.6) so that it extends infinitely in the direction normal to the x1, x2 plane. The transducer is of
finite dimensions in the x1 direction and x1p - X1a = 10 mm. If the normal displacement at the
face of the transducer is known then, in accordance with eqn (2.122), it is possible to obtain the
expression for the displacement field in the fluid as a superposition of longitudinal plane waves.
The displacement field at x2=0 is therefore given by, I

_ teo io(N1x1/ct - 1)
u(x1,0) = | A{ﬁ;} e dkq . (2.129)

At a distance 12 in the direction normal to the surface of the transducer the displacement field is,

} iw[(N1x1+N212)/o - t]
[+

+ oo
u(x1.l2) = | A{ﬁé dky, (2.130)

which shows that the phase of each of the plane wave components shifts in proportion to the
product, N»ly, and the amplitude remains the same. Therefore, in order to compute the
displacement field at the distance 12 from the face of the transducer, it is valid to decompose the
normal displacement at the face of the transducer into sinusoidal components, shift the phase of
each component by ®N»l»/o and synthesise the field back by adding all the components

together.

The method was used to calculate ultrasonic field distributions in front of 10 mm wide
transducers in water outputing energy at different frequencies and with different displacement
shapes at their faces. Figures 2.7 and 2.8 show the computed displacement component normal
to the face of the transmitter. The field is generated in water by transmitters with Gaussian and
tapered normal displacement patterns at their faces. The Gaussian profile is defined by the
function f(x) = exp(-x2). The tapered profile is a modified rectangular window function,
increasing over 10 % of its width from zero to unity in a half sine manner, then maintaining the
unity value over the next 80 % of its width, and then finally decreasing from unity to zero over
10 % of its width again in a half-sine shape manner (see fig. 2.9).

In figures 2.7 and 2.8, 10 mm wide transducers are placed at the origin of the Cartesian

coordinate system and generate fields in the positive direction of the vertical axis, which is

shown in the middle of each plot. This way each of the four figures show the vertical

component of the displacement field in a square extending from 100 mm to the left of the )
transducer to 100 mm to the right of the transducer in the horizontal direction and from zero to

200 mm in the vertical direction. In fig. 2.7 both transducers operate at the frequency of 2

MHz, and in fig. 2.8 the probes operate at the frequency of 10 MHz.
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Comparing figures 2.7 (a) with 2.8 (a), and 2.7 (b) with 2.8 (b), it can be seen that the spread
of the generated field is frequency dependent and is smaller for higher frequencies. Indeed, the
area isonified by the transducer operating at the frequency of 10 MHz (fig 2.8 (a)), is contained
in much closer proximity to the transducer's axis of symmetry than in the case of the same
transducer operating at a frequency of 2 MHz, shown in fig. 2.7 (a). '

Transducers with tapered displacement patterns generate fields with very strong middle lobe
and much weaker side lobes (see figures 2.7 (b) and 2.8 (b)), sometimes referred to as the edge
waves (see for example Guyott and Cawley, 1988). The edge wave phenomenon is not seen
for the Gaussian type transducers (see figures 2.7(a), and 2.8(a))

Comparison of the plane wave decomposition approach with the Huyghens
principle method

Probably the most popular way to solve the radiation problem of the finite transducer is to
employ Huyghens principle by integrating the Green's function over the transducer's area (see
for example Morse and Ingafd 1968). For the comparison between the Huyghens principle
approach and the Fourier decomposition and synthesis method, the normal displacement field
200 mm away from the 10 mm wide transducer was computed. Figure 2.10 shows the results
of the calculations. The vertical axis represents the amplitude of the displacement in the
direction perpendicular to the face of the transducer, while the horizontal axis represents the
distance away from the transducer's axis of symmetry. Figures 2.9 (a) and 2.9 (b) look
identical, indicating perfect agreement between the Huyghens principle approach and the
Fourier decomposition method.

2.4.3 Reflected field generated by a finite transducer in liquid

So far in this section we have been concerned with the generation of a field by a finite
transducer. Let us now study the reflection of a finite beam from a plane interface. Consider
therefore a finite transducer in an inviscid fluid and a boundary at x2=0 as shown in fig. 2.11.

The axis of the transducer is inclined at an angle 0 with respect to the normal to the interface
and placed so that its face is at a distance d1 from the origin of the x1, x2 coordinate system.’
The total field generated by the transducer will now be composed of the incident and the
reflected field. The incident field can be found by the Fourier decomposition and synthesis of
the plane wave components as was shown in the previous sections. If the reflection coefficient
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of each of the plane wave components is known then the reflected field can be evaluated by the

summation of the reflected plane waves as they are the response to the incident plane waves.
The Fourier decomposition of the incident field is performed in x|, x3 coordinates (the

transmitter coordinates) and the synthesis of the reflected field in the X, x3 coordinate system

(the receiver coordinates).

If the reflection coefficient is independent of the angle of incidence and is equal unity then the
reflected field at the face of the receiver can be evaluated using eqn (2.130),

+oco 'y - JIEL 1y 1t

_ N io[(N1x1+N»s15)/a - t]

W0 = | A {N.l.} e TR dky, 2.131)
o0 2

where (see fig. 2.12) N} = -Nj, N7 = Nj and 15 = -(d1+d3). Note that the distance 15’

along x5 coordinate has to be taken with the negative sign because the reflected waves

propagate in the direction opposite to the x7  axis.

Now let us assume that the reflection coefficient of a plane wave of wavenumber k1, given in
the x1, Xp coordinate system, is R(k1). Decomposing the wavenumber vector into the X1, X3

coordinate system (see fig. 2.13), the x; component of the wavenumber is,

2.21/2
kq = -Kjcosd + kbsin®; (I = (K>-k) "%, Re(k)=0 ). (2.132)

The Fourier synthesis of the reflected field can now be calculated as,

+o0 1" 1

_ 1 Io[(Nix{+N313)/o - t
u(x1,0) = | A R(-k]cos8+k>sin6) {Ei.}e [(NIx]+N212) ] d

k. (2.133)

If the function describing the displacement field at the face of the transmitter fully "fills" the
width of the transducer then, by eqn (2.124), the k'] bandwidth of the generated field is 2k} 4.

The integral in eqn (2.133) can then be approximated by a finite integral without a significant
loss in accuracy,

kid

_ N1 io[(Njx1+N315)/o - t
u(x,0) = | A R(-k7cos0+k’sin0) {N;.}e [(NIx1+N212) : dkj. - (2.134)
-Kig

Equation (2.134) describes, in the receiver coordinate system, the displacement field reflected
from a boundary whose reflection coefficient is a complex function R(k1), where k1 is the
horizontal wavenumber component of an incident plane wave at the boundary (see fig. 2.13).
Equations similar in form to eqn (2.134), were derived by other researchers studying the
reflection of bounded beams from plane interfaces (see for example Ngoc and Mayer 1979,
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1980 as well as Nayfeh and Chimenti 1984).

This equation can now be used to obtain the displacement field distribution at the face of the
receiver (see fig. 2.14). By integration of the normal component of the displacement field over
the face of the receiver, the overall effect of the reflected field on the receiving transducer can be
calculated. If we assume that the electric potential generated by the receiver is proportional to
the average displacement field at the receiver's face then the voltage generated by the receiver is
proportional to the area integral of the reflected field over the receiver's face.

2.5 Conclusions

It has been assumed that viscoelastic materials can be characterised by two complex Lamé's
constants and the density. Under this assumption it has been shown that longitudinal and shear
plane waves satisfy the equation of motion of viscoelastic materials and the wavenumbers of the
plane waves are, in general, complex vectors. Plane waves propagate in the direction of the real
part of the wavenumber and attenuate in the direction of the imaginary part of the wavenumber.

It has been shown that at an interface between two media the reflected and transmitted plane
waves retain their frequencies and wavenumber components parallel to the interface. Using this
finding it has been proved that a single plane wave can, in general, excite only four different
plane waves in a viscoelastic layer. Therefore any response of a viscoelastic layer to a single
plane wave excitation can be described using a combination of at most four different plane
waves propagating within the layer. This greatly simplifies calculations when the reflection or
transmission coefficients of multilayered systems are required.

It has been shown that the acoustic field generated by a finite-sized transducer can be
decomposed into plane waves and the response of a given system to such an excitation can be
calculated as the sum of the responses to each of the plane wave components. The
decomposition of the field can be achieved using Fourier transformation and the sum (integral)
of the plane wave components can be obtained using inverse Fourier transformation.

The theory presented in this chapter can be used to calculate the distribution of the field

generated by a finite sized transducer (radiation problem), the interaction of the field with plane

interfaces (reflection problem) and, subsequently, to find the distribution of the acoustic field at
the face of the receiver. The theory presented in this chapter can therefore be used to

quantitatively predict results obtained in laboratory tests where finite sized transducers are

always used.
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Fig. 2.1 Wavefront of a plane wave.
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Fig. 2.2 Four waves of amplitudes Tp, Rp, Ts, and Rs in a layer.



Chapter 2 53
The reflection coefficient from the interface between two semi-infinite viscoelastic media
X2
waves incident waves generated at interface
from medium 2 and propagating in medium 2
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waves generated at interface
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Fig. 2.3 Schematic diagram of waves at a single interface.
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Fig. 2.4 The stress and the discontinuity vector at the boundary.



Chapter 2

The reflection coefficient from the interface between two semi-infinite viscoelastic media

55

liquid i > Uy : X1

transducer

Fig. 2.5 Infinite transducer in liquid. Arrangement
of the coordinate system.
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liquid

\ 4

transducer

Fig. 2.6 Finite transducer in liquid. Arrrangement
of the coordinate system.
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Fig. 2.11 Arrangements of the probes and their coordinate
systems with respect to the interface.
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Fig. 2.12 Reflected wave in the receiver's coordinate system.
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A\

Fig. 2.13 The wavenumber vector in the transmitter
and interface coordinate systems.
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Fig. 2.14 Calculation of the effect the reflected field has on the
receiving transducer. The shaded area marks the part
of the reflected field taken for the evaluatlon of the
response of the receiver.
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CHAPTER 3

The reflection coefficient from a multilayered
viscoelastic plate

3.1 Introduction

Chapter 3 is concerned with the reflection and transmission of acoustic waves from
multilayered viscoelastic plates. The chapter is divided into four sections, the first applying the
time domain approach to find the plate response to a pulse excitation, the second giving a
solution method for the problem of reflection and transmission from the plate in the frequency
domain, the third describing a procedure for the calculation of the fields reflected from and
transmitted by the plate when excited by a finite transducer, and the last containing the main
conclusions of the chapter.

In section 3.2 the response of a plate to a pulse excitation is derived by studying the pulse
propagation and reflection from the boundaries of the plate. If it is assumed that the plate is
non-dispersive, then the pulses do not change their shape during the propagation across the
plate and on reflection from the boundaries. The time domain response from the plate will then
consist of a series of equally delayed pulses, decaying with time. Such a response can be
theoretically derived and the frequency response of the plate can then be obtained by calculation
of the Fourier integral over the time domain response. This approach formed a basis of a new
method for determination of phase velocities in viscoelastic materials which has been developed
and compared with an existing technique presented by Sachse and Pao (1978).

In section 3.3 the frequency response of a multilayered viscoelastic plate is calculated directly in
the frequency domain without prior derivation of its time domain response. This makes it
possible to study the behaviour of viscoelastic and dispersive multilayered plates in a relatively
straightforward manner. The time domain response from these plates can then be obtained by
calculation of the inverse Fourier transform integral over the frequency domain response.

Section 3.4 develops the theory presented in section 3.3 for the case of finite transducer
excitation. The acoustic field generated by a finite transducer can be decomposed into its
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harmonic plane wave components. For each of the plane wave components the reflected and
transmitted harmonic plane waves can be calculated. The overall acoustic field for the system
can then be calculated by summation of the reflected and transmitted harmonic plane waves.

In section 3.5 the main conclusions of the chapter are presented in a concise form.

3.2 The reflection coefficient from a viscoelastic plate at normal incidence:
the time domain approach

In chapter 2 we were concerned with the reflection coefficient from a single interface between
two semi-infinite media. Now let us consider a plate of finite thickness being excited by an
infinite plane wave. To simplify the case let us assume that the wave hits the plate boundary at
normal incidence and for convenient comparison with experiment let us assume that the plate is
subjected to a pulse excitation. Then it is possible to show that for a perfectly elastic plate, the
shape of the pulse does not change on reflection and transmission at the plate faces. Therefore
as a result of multiple reflections the received signal consists of a family of pulses of exactly the
same shape but magnitudes decreasing with time. In order to obtain the reflection coefficient as
a function of frequency, a Fourier integral is calculated. This makes it possible to determine the
resonant frequencies of the plate and to relate them to the phase velocity of the bulk longitudinal
wave within the plate. This relationship can be used to find the value of the phase velocity of
the bulk wave within the plate experimentally.

This approach was developed earlier in the project and has since been used for the experimental
evaluation of phase velocities of bulk waves in adhesive joints. However, it has not been used
as a main tool for the theoretical analysis in the subsequent work and so a paper which was
written on it is presented in Appendix A.

3.3 The reflection coefficient of an infinite beam from a multilayered,
viscoelastic plate: the frequency domain approach

In section 3.2 and Appendix A the derivation of the reflection coefficient from a plate at normal
incidence was carried out in the time domain. The plate response to a plane wave pulse of
infinite spatial extent was analysed using simple geometric relations and the assumption that the
pulse shape is left unchanged on reflection and transmission at the plate boundaries which is the
case when nondispersive materials are considered. However, the frequency domain approach,
which was introduced in chapter 2, is more powerful and is capable of solving more
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complicated problems such as reflection, transmission and propagation of ultrasonic waves
through dispersive media. In this method, first the steady state response to an infinite harmonic
plane wave is calculated. Then, in order to obtain the response to pulse excitation, a harmonic
synthesis of the reflected field is carried out. Also a finite transducer problem can be
transformed to a harmonic plane wave reflection coefficient problem as hqs been shown in
chapter 2. Therefore it is useful to continue the frequency domain, infinite plane wave approach
started in chapter 2 to implement a full, multilayered viscoelastic model with different boundary
conditions between the layers. More extensive presentation of the Fourier decomposition
method and its applications to acoustics and ultrasonics can be found in good textbooks such as
Morse and Ingard (1968), Brekhovskikh (1980), or Fahy (1985). A very good general
introduction to the subject of frequency analysis is presented in Randall (1987).

In the first part of this section a solution procedure based on transfer matrices is presented. This
approach follows in principle that of Thomson (1950) and Haskell (1953). Some examples of
the reflection coefficient predictions using this technique are given and compared with the time
domain approach presented in Appendix A.

In the second part of this section the problem of instability of the Thomson-Haskell algorithm is
discussed in some detail. An alternative solution procedure, the global matrix algorithm, is
developed. The global matrix technique is similar in approach to that introduced by Knopoff
(1964) but offers a significant improvement in numerical stability over both the Thomson-
Haskell and the Knopoff methods.

3.3.1 Wave coupling algorithm; transfer matrices approach

The transfer matrices approach was introduced by Thomson (1950) and corrected by Haskell
(1953). It has subsequently been used widely in seismic applications as well as in ultrasonics.
The method was limited to elastic media. Propagation and reflection of ultrasonic waves in
viscoelastic media were considered in a number of recent publications (see for example Becker
and Richardson 1970, Fiorito et al. 1985, Deschamps 1990).

Let us consider an n-1 layered plate in a Cartesian coordinate system so that the plate
boundaries are normal to the x7 axis. The media are numbered consecutively from 1 to n+1 so
that the semi-infinite spaces are numbered 1 and n+1 respectively (see fig. 3.1). The x_
coordinates at which the layer interfaces are placed are denoted by yj, where i=1,...,n is the

number of the interface.
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Relationship between the stress-displacement vectors at the top and bottom
boundaries of a single layer

Let us take the kth layer (see fig. 3.2). As has been shown in section 2.3.1, there are at most
four different plane waves in the layer, two waves propagating in the positive x2 direction
(transmitted waves), the amplitudes of which are stored in vector { T}, and two propagating in
the negative xp direction (reflected waves), the amplitudes of which are stored in vector {Rk}.

Using eqn (2.90) it is possible to relate the displacement and stress field to the amplitude
vectors in a form,

. -1 . 25 -1 . . 2 T RO r .
iopoCe ) 2iwpsB“Bg iopacCe, -2iopsp“Bg p G99
. -1 . -1 . 2 .
-21copsB2Ag iopBCg 2impsp“A iwpBCe, Rg L Co1
1 P ls P 9 =X 7 (3.1)
oS8y -Bg asg, Bg Tp Uy
-1 -1
. -Ag, -Bsg Ag, Bsgy N1/ Ny
where (see eqn 2.77),
A=1-029H12,  B=(1-p%H12, C=1-2p%2
N _1 . _1
g, = ew)Aa x2, _ e1(:)B[3 Xy (3.2)
Equation (3.1) can be expressed in matrix from as,
- {Rg} _ Jo(x2)
(Vi) = M) { (1)} where (Vitxo)} = g (3:3)
u(x2 ‘

Vector {Vk(x2)} is the stress-displacement vector in the kh layer and matrix ./ﬂk(xz) is, in
general, 4 X 4 complex. In order to obtain a transfer matrix, relating the stress-displacement
field at one boundary to the stress-displacement field at the other boundary, eqn (3.1) can be
used. Figure 3.2 shows the position of the coordinate system used for the evaluation of the
stress and displacement field in the kth layer. The origin of the system has been moved to the
bottom of the layer to simplify derivations. In this local' system of coordinates the vertical-
coordinate takes on zero value at the bottom of the kth and at the top of the layer equals d,
which is the layer thickness. Let us denote the local coordinate system as (x7, x3).

Setting x> = 0 in eqn (3.1), the stress-displacement field at the bottom boundary of the kth layer
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can be expressed as,

V) = 40 {15 } . | (3.4
and, for the top boundary, setting x5 = dx in eqn (3.1), we have,

(Vi) = a0 { 115} (3.5
From eqn (3.4) we have,

{F} =10 ko (3.6)

Substituting eqn (3.5) into eqn (3.6), we have,

(Vi(d} = & (Vi(0)} (3.7
where,
L, = M) M ). (3.8)

< i is the transfer matrix for the kth layer and relates the stress-displacement field on the bottom
boundary of the layer to the the stress-displacement field on the top boundary of the layer.

Relationship between the stress-displacement vectors across a single boundary
between two layers

In certain cases it is useful to account for interfacial imperfections across the layers (see sections
1.4.1 and 2.3.3 of this thesis). In such cases the interface can be given its-own transfer matrix,
relating the stress-displacement field on one side of the boundary to the other side of the
boundary (see fig. 3.3). This relationship can be expressed in the form of eqn (2.107) as,

{(VoiH} = B, (VO - G9

where {V(yk)} and {V(yx*)} are the stress-displacement field at the bottom and the top of the
kth interface. The boundary transfer matrix 9, is given by eqn (2.111).
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Relationship between the stress-displacement vectors at the top and bottom
boundaries of an entire multilayered plate

Having developed the transfer matrices for the layers and the boundaries, it is now possible to
relate the stress-displacement field on one side of the whole plate (ie at xp = y1') to the the other
side of the plate (ie at x2 = yp+). Using eqn (3.31), (3.34) and (3.36) we have,

Vo =0 { T}
{(Viy1M)} = B, {(ViyD}
(Vo)) = &, {(V2r1M)}
{(V(y2h)} = B, {Va2y2)}
{V(y3)} = & {V3(y2h) ,

{Vyn)} = Qn {Va(yn-19} ,
{VynH} = ‘%n {Vn(yn)},

(Vo) = M, 0 { {71 } (3.10)

Back substituting the stress-displacement vectors {V(yx*)} and {V(yx)}, k=1,...,n0+1 in eqn
(3.10) we have,

it {125 } = 2 o0 {11} } o

where & is the stress-displacement transfer matrix for the entire plate,
FP=B &L, - B, QZ B . | (3.12)

Equation (3.11) relates the harmonic plane wave amplitudes on one side of the pIate to the
harmonic plane wave amplitudes on the other side of the plate and constitutes four linear
complex equations. The equation is similar in form to eqn (2.95) and yields the reflected and
transmitted plane wave amplitudes {R1}, {Tn+1}, if appropriate values of incident wave
amplitudes {T1},{Rn+1}, are inserted. For example, in order to calculate the reflection andu
transmission coefficients due to a longitudinal wave incident from medium 1, it is necessary to
set {T1} = {(1)} ,and {Rp+1} = { 8} in eqn (3.11). The solution can then be carried outin a

similar way to the single interface problem, as shown in equations (2.97) and (2.98). Equation
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(3.10) is a generalisation of eqn (2.95) derived for a single interface problem, and can be

reduced to eqn (2.95) by setting the transfer matrix & to unity.

Reflection coefficient from an aluminium plate in water

Figure 3.4 shows the reflection coefficient from a 3.2 mm thick aluminium piate in water as a
function of frequency computed using the frequency domain approach. The excitation was
assumed to be an infinite harmonic longitudinal wave at normal incidence. The phase velocities
of the longitudinal wave in aluminium and in water are shown in table 3.1.

density longitudinal velocity shear velocity
material p (kg/m3) ¢, (m/s) cg (m/s)
aluminium 2820 6348 3120
water 1170 1490 10

Table 3.1 Acoustic properties of aluminium and water used in the reflection coefficient calculations.

As can be seen from fig. 3.4 the frequency domain normal incidence reflection coefficient from
an aluminium plate in water is a periodic function with equally spaced minima, the first one
being at zero frequency. This is in perfect agreement with the derivations presented in Appendix
A (see figures 4 and 8 of Appendix A). It can also be shown (see section 4.2 for details) that at
its minima the reflection coefficient from a perfectly elastic aluminium layer in water assumes
zero value. In fig. 3.4 the curve does not touch zero line because the minima of the reflection
coefficient lie in between the points used for the evaluation of the function.

In order to model the spectrum received by a typical 10 MHz transducer in the pulse-echo
mode, it is necessary to multiply the reflection coefficient from fig. 3.4 by a frequency response
function of the transducer. Figure 3.5 shows the reflection coefficient from fig. 3.4 after it has
been ‘filtered' by a typical 10 MHz transducer. The inverse Fourier transform of the filtered
reflection coefficient yields the time domain response of the reflected field received by the
transducer (see fig. 3.6). Comparing this theoretically calculated response of the platé with the
measurements (see fig. 1 of Appendix A), good agreement between them can be seen.

Figure 3.7 shows the predicted transmission coefficient of a 3.2 mm thick aluminium plate at
normal incidence and fig. 3.8 shows the transmission coefficient filtered by the the same
frequency response function of the receiving transducer as was used in fig. 3.5. Figure 3.9
shows the time domain response of the transmitted field obtained by inverse Fourier
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transformation of the reflection coefficient spectrum shown in fig. 3.8.

The next four figures, from 3.10 to 3.13, show the reflection and transmission coefficients for
the same 3.2 mm thick aluminium plate submerged in water and excited by an infinite plane
wave at an incidence angle of 0.5 degrees. Figure 3.10 shows the frequency résponse of the
aluminium plate computed using the infinite harmonic wave coupling appr(;ach. Shear mode
excitation is clearly visible here. The small 'glitches' visible in the figure are the through-
thickness shear modes of the plate. Figure 3.11 shows the time domain reflection response
obtained from the inverse Fourier transform of the reflection coefficient windowed by the
frequency response function of a typical 10 MHz transducer. The small humps between the
main longitudinal reflections are the mode converted shear waves within the plate. Figure 3.12
shows the frequency domain transmission response of the plate excited at an angle of incidence
of 0.5 degrees, and again, the small glitches visible in the figure are through-thickness shear
resonances of the plate. Figure 3.13 shows the time domain response received by a typical 10
MHZz probe in through-transmission mode.

Reflection coefficient from an epoxy resin plate in water

It has been shown above that the normal incidence response from an aluminium plate in water
can be obtained using either the frequency domain approach, or the time domain analysis,
described in section 3.2 and Appendix A. In both cases it was assumed that the aluminium plate
is perfectly elastic (non-attenuating), for which the time domain response consisted of a family
of equally spaced reflection differing only in their magnitude and maintaining their shape
throughout the whole time of observation (see fig. 3.6 and fig. 1 of Appendix A). However, if
the mechanical properties of the system are frequency dependent then the time domain approach
is no longer applicable. Indeed, since the reflected and transmitted pulses change their shape as
they propagate and interact with boundaries the derivation presented in Appendix A become
approximate or entirely inapplicable. |

The frequency domain approach, however, can cope with these cases accurately and
conveniently by solving equations directly in the frequency domain and, if necessary, the
inverse Fourier transform may be used to obtain the time domain solutions. To illustrate the
idea, a material similar to epoxy resin was chosen, setting the longitudinal phase velocity
frequency dependent and increasing linearly from 2610 m/s at low frequencies to 2810 m/s at
20 MHz, as shown in fig. 3.14. Attenuation of the bulk longitudinal wave was set to 0.01
nepers, which means that the longitudinal wave is attenuated by factor of e-0-01 per wavelength.
The dispersion of this system was studied by considering the longitudinal wave pulse shown in
fig. 3.15(a) to be exited in this material. Figure 3.15(b) shows the longitudinal signal which
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would be received 10 mm away from the point of excitation. It is clear that the pulse shape has
been significantly changed.

To show the application of the frequency domain approach to a more complicated case, a 3.15
mm thick epoxy resin plate with frequency dependent material properties was chosen. The
model consisted of the plate loaded by a water half-space on one side and an air half-space on
the other side. The dispersion characteristics of the bulk longitudinal wave, which is the
frequency variation of its phase velocity and the attenuation, were chosen so that comparisons
with the experiments presented in Appendix A could be made. The velocity was set to vary
linearly from 2610 m/s at very low frequencies to 2690 m/s at 20 MHz. The attenuation was set
to 0.1 nepers, which means that the wave is decreased by a factor of e-0-1 per wavelength.
Figure 3.16 shows the amplitude spectrum of the reflected field at normal incidence, windowed
by a frequency response function of a typical 10 MHz transducer. The spectrum is in a very
close agreement with the measurements shown in fig. 11 of Appendix A. Figure 3.17 shows
the predicted time domain response from the epoxy plate at normal incidence. Changes in the
pulse shape are clearly visible here. Figure 3.17 is in a good agreement with the measured time
domain response discussed in Appendix A and shown there in fig. 10.

3.3.2 Numerical instability of transfer matrices formulation.
Global matrix algorithm

Numerical instability of the wave coupling algorithm

The transfer matrices approach for the solution of the reflection coefficient problem of
multilayered systems seems to be very powerful and neat. However, there are some cases

where the wave coupling algorithm fails to work properly. The method relies on the assumption

that it is always possible to relate the stress-displacement vector on one side of a layer to the

stress-displacement vector on the other side of the layer. During the derivation of the technique

this is done in two stages. Firstly the stress-displacement field on both sides of the layer is

related to the amplitudes of four waves within the layer (eqn (3.2) and (3.3)). Then the plane

wave amplitudes, which are the parameters of the two equations, can be eliminated to yield the

transfer matrix directly linking the stress-displacement conditions on both sides of the layer

(eqn (3.5)), and the relationship is one-to-one. This means that if the stress-displacement vector

on one side of the layer is known then there is only one stress-displacement vector on the other
side corresponding to that vector. In principle, in any physical system this is always the case.

However, when calculations of the stress-displacement field are made on a computer with finite

precision then in some cases the round-off errors may lead to numerical instability. Let us study

this in more detail.
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We learned from the previous chapters that there are at most four plane waves in a layer: two
longitudinal and two shear (see fig. 3.18). For convenience, the waves propagating from the
botom to the top of the layer will be called transmitted waves, and those propagating from the
top to the bottom will be called reflected waves. Let us now consider the case when the
longitudinal type of wave is inhomogeneous in the layer. This means that there are two
inhomogeneous waves in the system: the transmitted longitudinal wave and the reflected
longitudinal wave. These waves are evanescent in the direction perpendicular to the interfaces
of the layer, and the variation of their amplitudes in that direction is given by eqn (3.2),

: _ev2e2v1/2 -1
=elm(locs) Xy

&p (3.13)
The requirement for generation of inhomogeneous waves is that a?s2>1, that is,
(1-02s2)Y2=3f, where { is real. (3.14)
In such a case eqn (3.13) becomes,
-1
g, = @5 07X (3.15)

which describes an exponential decay along the x 5 axis which is frequency dependent.

In order to illustate the situation with some examples let us calculate the rate of decay of
longitudinal waves in an aluminium plate being excited at 20 degrees from water at different
frequencies. We assume a velocity in water ¢ =1490 m/s, and a longitudinal velocity in
aluminium cA1=6400 m/s. Since the longitudinal critical angle for for aluminium in water is
about 13 degrees, the longitudinal wave is evanescent (inhomogeneous) here. Table 3.2 shows
the magnitude of the longitudinal wave 5 mm away from the interface for frequencies of 1
MHz, 2 MHz, 5 MHz, and 10 MHz assuming that its value is unity at the boundary.

Frequency (MHz) AmPhtUdf;Ift&fm; gway from
1.0 5.08 E-3
2.0 25.83 E-6
5.0 3.39 E-12
10.0 11.51 E-21

Table 3.2. Example of decay of inhomogeneous wave 5 mm away from interface.

As can be seen from the table, the inhomogeneous waves decay very abruptly at higher
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frequencies. Therefore, for any finite precision of calculations there will be a frequency above
which the amplitude of the wave will decay to a magnitude which can not be distinguished from
zero a short distance away from the interface, as shown schematically in fig. 3.19. This in turn
means that such an inhomogeneous wave will strongly contribute to the stress-displacement
field on one side of the layer while it will effectively not be present on the the other side at all. A
significant change in the wave amplitude would therefore make a substantiai difference in the
stress-displacement field on one side of the layer while making no difference on the other side.
This violates the one-to-one relationship between the stress-displacement vectors at the two
boundaries of the layer. From the numerical point of view, the transfer matrix & will rapidly
become ill conditioned making calculations erroneous or impossible, for any finite precision of
calculations. Figure 3.20 shows the reflection coefficient from a 5 mm thick aluminium plate in
water computed at an excitation frequency of 6 MHz, using the 64 bit floating point precision of
calculations. From the graph it can be seen that calculations become unstable for angles above
20 degrees.

Global matrix algorithm

A number of researchers have proposed solutions to the instabilty problem of the Thomson-
Haskell technique, mainly for seismological applications (see for example Dunkin 1965, Abo-
Zena 1979). In the approach presented below, the reflection coefficient of multilayered systems
is calculated without using transfer matrices at all. In order to do so we will avoid the
elimination of wave amplitudes in our derivations. The method derived here is similar to that
proposed by Knopoff (1964). However, an important development is introduced. Knopoff
retained the spatial origin for all wave components in each layer as the top of the layer. This
gave him an improvement in stability over the transfer matrices method but the numerical
instability could still occur at high frequency-thickness products. The method proposed here
removes the instability entirely by placing the origin of all waves at their entry to the layer. To
the author's knowledge this is the first time that this has been proposed.

Let us, once again, consider a multilayered system shown schematically in fig. 3.1 and the kth
layer shown in fig. 3.21. In the derivations which will follow here the stress-diplacement field

is expressed in terms of the amplitudes of four waves present in the layer. Let us assume that
the waves propagating in the upward direction in the layer will be expressed in terms of (x7,x5)

coordinates, while the waves propagating 'down' will be expressed in the (x],x3) coordinate

system.

Making use of eqn (3.1) the stress-displacement field at the top boundary of the k! layer can be
expressed as,
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B iopaC 2impsB2B impaC & -2i03psBZBgS ] (Rp) (622
2iopspZA  iwpBC 2impspZAg.  iwpBC ‘Rg 671 L
b 5 < & =3 , (3.16)
os -B asgy Bg, Tp u
L ‘A -Bs Agp -Bsg, ] \1y/ \u, ./ top
and at the bottom of the layer,
[ iopaCg,  2iop sp2B g iopaC 2iopspZB 7 (rp (679
2iopsp?Ag  iopBCg, 2iopspZA  iwppC Rg 01
¥ S G (3.17)
osg, -Bg os B Tp Uy
| _Agp -Bsgs A -Bs  _] \Tg” L u, / bottom
where,
A=(1-a2912,  B=(1-p%H12, C=12p%2
imAorl d ioBpld
gp=¢ k, gg=¢ k. (3.18)

d is the thickness of the kth layer (see fig. 3.21) and can can be expressed in terms of global
coordinates as,

dk = yk - k-1 - (3.19)

Using Knopoff's technique, the stress-displacement field at the bottom boundary of the layer is

given by eqn (3.17), while the stress-displacement field at the top boundary of the layer is
calculated as,

iopoCg’l  2iopsp?Bg]  iwpaC & 2iwpsp2B g (Rp)  ((697)
p S
-2icopsB2Agi)1 i(:)|;>[3Cg's1 2i(ops[32Agp iopBCe, ) Rg Y ) )1 : 620
= ) 20)
-1 -1 F
ocsgp -Bg asgp Bg, Tp uy
-1 -1
B -Agp -Bsgs Agp -BsgS _ LTs) Y uy / top

Let us assume that one of the types of waves is inhomogeneous in the layer, for example the
longitudinal waves (see figures 3.18 and 3.19). As has been shown above (see table 3.2), the
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amplitudes of inhomogeneous waves decay very abruptly across the plate, expecially for high
frequencies of excitation, as given by eqn (3.15). Therefore, the amplitude of &p calculated
over the entire thickness of the layer, given by eqn (3.18), becomes very small. The amplitude
of the inverselof &p therefore becomes very large. This can lead to numerical instability when
calculating &p terms in eqn (3.20). This is not the case when eqn (3.16) is used instead.

The stress-displacement field at a boundary between kth and k+1th layers (top of the kt layer),
given by eqn 3.16, can be expressed in a more concise form as,

(Vo) = { (3] } + where (Veno) = {00 (321)
u(yp)

The same stress-displacement vector can be expressed in terms of plane waves in the k+1th
layer as,

(Vo) =My { EI%}:II}} . (3.22)

If the stress-displacement field is continuous across the boundary then combining eqn (3.21)
and (3.22) we have,

{R) {Rk+1} ) _
Hicop L{Tk) }- bot { {Tie1) } =0 (3.23)
Here the independent variables are the amplitudes of the plane waves in the neighbouring
layers.

Sometimes it is useful to incorporate a spring boundary condition between two layers to
account for some imperfections at the boundary between them (see sections 1.4.1 and 2.3.3 of
this thesis for more details). If there is a spring boundary condition between the kth and k+1th
layer (see fig. 3.3) then the stress-diplacement field is not continuous across the boundary and
equations (3.16) and (3.17) become,

von = {11} 629
and,

(Vo) = A { (TN ] (3.25)

where {V(yk)} and {V(yx*)} are the stress-displacement vectors on the bottom and top of the
interface respectively. In order to link the two vectors the spring model has to be introduced.
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This can be done by utilising the boundary stiffness matrix introduced in section 2.3.3 and used
in section 3.3.1 (see eqn (3.9)),

(Vo) = B, (V) - (3.26)

Combining equations (3.24), (3.25) and (3.26) we can express the discontinuity across
boundaries in the form of two equations as follows,

Mo 11T} - Ve = 01, (3.27)
and,

B, (Vo) - My {17 } =101 (3.28)

Now, using equations (3.23), (3.27) and (3.28), and setting the index k=1,...,n , we are in
position to write the system of equations for the entire multilayered plate.

{R1} N =
iy At - o= 10,

B, (vor) -, {3} =10,

{Ra} L
J{Z top { {T2) -{V(y2)} ={0},

B, (Vo) -y {15} =10,

(Rq)
“top (Ty) J - 1Yo} =10},
B, Vo) - My {1} =10 (3.29)

The first equation of the system of equations (3.29) can be re-written as,

My, (R1) - (V1)) =- My, (T1), (3.30)

where J/{Rl and '/”Tl are 4 X 2 sub-matrices of J/llt . Similarly, the last equation of the”
. op
system of equations (3.29) can be expressed as,

‘%n {V(yn)} - f/ﬂ[‘n_ﬂ {Ths1) = '/”Rn+1 {Rn+1} » (3.31)
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where “”Rn 4 and J(Tn +1 &re 4 X 2 sub-matrices of Jln 1 por Now, using eqn (3.30) and

(3.31), the system of equations (3.29) can be expressed in matrix notation as given by eqn
(3.32) below. |

My | -1 | 0 0 0 0 0 0 0 (R1) - M1 (T1)
0 By |- Myl O 0 0 0 0 0 {(V(y1)) 0
(R2}
0 0 My | -1 0 0 0 0 0 T 0
2 | -1l {:R”)} (3.32)

0o [0 | o [By|- M| 0 | 0 |0 0 {ngl} =

) 0
0 0 0 0 0 o |, |- 0 (Viym)) 0
0 0 0 0 0 0 0 B, |- Ao (Tas1) Mpne1 (Rotll

This is a system of 8n linear complex equations with 8n unknowns and yields the reflected and
transmitted plane wave amplitudes {R1}, {Tn+1} and also all the plane wave amplitudes in the
intermediate layers of the plate {Rx}, { Tk}, k=2....,n if appropriate values of incident wave
amplitudes {T1}, {Rn+1), are inserted. To calculate the reflection and transmission coefficients
due to a longitudinal wave incident from medium 1, it is necessary to set {T1} = {(1)} , and
{Rn+1) = { 8} on the right-hand side of equation (3.32). To calculate the reflection and
transmission coefficients due to a shear wave incident from medium 1, it is necessary to set
(1) = {7}, and (Rps1) = {§} on the right-hand side of equation (3.32).

Figure 3.20(b) shows the reflection coefficient from a 5 mm thick aluminium plate in water at 6
MHz using the global matrix algorithm. This graph corresponds exactly to the case of fig.
3.20(a) where the wave coupling approach was used. It can be seen from fig. 3.20(a) that the
global matrix procedure provides a stable solution to the problem.

3.4 The reflection coefficient of the finite beam from the multilayered,
viscoelastic plate

In section 2.4.3 the reflection of the finite beam from a single interface between two semi-
infinite half-spaces was discussed in detail. It was shown that the incident beam from the finite-.
sized transducer can be decomposed into a series of plane waves, all of them having the same
frequency but each of them propagating in different directions (see fig. 3.21). This plane wave
decomposition can be achieved using eqn (2.120) using the forward Fourier transformation.
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After the decomposition of the incident field into plane waves, evaluation of the reflected field is
relatively straightforward. Indeed, the magnitude and phase of each of the reflected plane waves
can be calculated using the global matrix reflection coefficient algorithm described in detail in
section 3.3.2 and expressed in eqn (3.32). Since the incident field can be formed as the sum (or
an integral) of the incident plane wave components, then the reflected field is the sum (or an
integral) of the reflected plane waves. The summation of the plane waves can be performed
using the inverse Fourier transformation.

As one can see, the solution procedure for both a single interface and a multilayered plate
follows exactly the same steps, namely decomposition into plane wave components (forward
Fourier transformation), evaluation of the amplitudes and phases of each reflected plane wave
component (reflection coefficient), and finally the summation (synthesis) of the reflected plane
waves (inverse Fourier transformation). The only difference between the single and the
multilayered case is in the evaluation of the plane wave reflection coefficient. In chapter 2,
where a single interface problem was considered, the plane wave reflection coefficient, R(k1),
was evaluated using eqn (2.98), and the summation of all plane wave components performed
using eqn (2.134). When a multilayered viscoelastic plate considered, eqn (3.32) rather than
(2.98) have to be employed to calculate the plane wave reflection coefficient R(k1). The
summation of the reflected plane waves is then conducted using eqn (2.134), as in the case of
the single interface problem.

The Fourier decomposition and synthesis method used in this section and in section 2.4.3 can

be implemented in either two or three dimensional space. All the derivations presented here
have been conducted in two dimensions, the (x1, X2) space, assuming plane strain. This, for

example, means that the transmitter (see for example fig. 3.22) has finite dimensions in the (x1,
x2) plane while it extends infinitely in the direction perpendicular to the (x1, X2) plane.

For the purposes of this thesis a computer program was written, capable of solving the problem
of the finite beam reflection from multilayered viscoelastic plates in two dimensions. The
solution procedure follows closely the theory presented in this chapter.
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3.5 Conclusions

It has been shown in this chapter that, in order to predict the response of an elastic
nondispersive plate to the normal incidence pulse excitation, two different approaches can be
taken. The first one is to obtain the time domain response of the plate by calculating the time
delays and amplitudes of echoes coming from the plate. The response of the plate in the
frequency domain can then be obtained by performing the Fourier transformation of the time
domain signal. This technique was developed in the early stages of this project and is presented
in Appendix A. The second approach is to consider the behaviour of the plate under a harmonic
plane wave excitation and therefore to calculate spectrum of the plate response of the system
directly in the frequency domain. The time domain signal can then be obtained by performing
the inverse Fourier transformation of the calculated spectrum.

The frequency domain solution procedure based on the Thomson-Haskell method has been
developed and compared with the time domain approach by studying the normal incidence
response from an aluminium plate in water. Comparison between the two methods showed, as
expected, exact agreement.

It has been shown in this chapter that the time domain approach is only applicable in cases
when the material properties are independent of the frequency of excitation (nondispersive
materials). The frequency domain approach, however, is able to cope with dispersive and
attenuating materials and therefore is more general and more suitable for the purposes of this
thesis.

It has been shown that when the frequency of excitation is high and there are inhomogeneous
waves present in a thick plate then the Thomson-Haskell technique becomes numerically
unstable and produces erroneous results. An alternative approach, the global matrix technique,
has been employed to solve the reflection coefficient problem. |

Finally, the problem of the finite transducer excitation has been addressed in this chapter. The
solution procedure, introduced in chapter 2, has been extended here for the case of multilayered
viscoelastic plates. The theory presented in this chapter, involving spatiai Fourier
decomposition, the global matrix reflection coefficient technique and the inverse Fourier
transformation, has been used to develop a computer program to form a theoretical basis for
comparisons with the experimental investigations presented further in this thesis. |
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Fig. 3.1 Coordinate system for the multilayered plate.
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Fig. 3.2 Plane waves in the Kt layer.

medium k-1

To simplify deriavtions, a local coordinate system has
been introduced with the origin at the bottom of the layer.
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Fig. 3.3  Spring boundary conditions between two layers.
Normal and transverse stress at the boundary is
proportional to the displacement discontinuity
across the interface.
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top interface

T
S
Ty,

bottom interface

V><
—

Fig. 3.18 Schematic diagram of transmitted and reflected waves within
a layer in the case when longitudinal waves are inhomogeneous
and shear waves are homogeneous.



Chapter 3 100

The reflection coefficient from a multilayered viscoelastic plate

top interface

bottom interface

X1

Fig. 3.19 Inhomogeneous waves in the case of higher frequencies
of excitation. Large amplitudes on one side of the layer

decaying to negligible values across the thickness of the
layer.
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Fig. 3.20 Reflection coefficient from the 5 mm thick aluminium plate in water

@

0.00 Angle of incidence (degrees) 45.0
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Angle of incidence (degrees) 45.0
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at a frequency of 6 MHz. (A) Thomson-Haskell transfer matrices algorithm,

(B) global matrix technique.



Chapter 3

The reflection coefficient from a multilayered viscoelastic plate

102

N,

>

>
[\

top boundary . : k+1™ layer X1
yk T T ~ >
waves p =8 \\ waves
propagating propagating
up Rp Rs down \xll
Yk-1 " >
bottom boundary k-1"" layer
A \Xl
1 global
coordinate
system

Fig. 3.21 Plane waves in the kP layer.
To improve numerical stability two local coordinate systems
have been introduced with the origins at the bottom and the

top of the layer.
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Fig. 3.22 Decomposition of the radiated field into plane wave components

in order to solve the finite beam reflection problem.
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CHAPTER 4

Theoretical predictions of the reflection coefficient
from thin layers

4.1 Introduction

This chapter presents a systematic study of the reflection of ultrasonic waves from layers
between semi-infinite half spaces. The intention of this chapter is to provide more insight into
two important problems of ultrasonic nondestructive testing. The first one is the problem of the
detectability of the presence of thin layers, especially embedded thin layers. Here we would like
to know under what circumstances it is possible to detect the presence of a layer of given
thickness and material properties. The second problem is the question of the ultrasonic
evaluation of the properties of thin layers. In such cases we would like to know under what
conditions it is possible to monitor differences in the thickness of a layer or its mechanical
properties. In order to answer these questions, the multilayered viscoelastic plate theory
developed in chapter 3 can be used. To gain better understanding of the physics involved, a
normal incidence reflection theory is derived specifically for a single layer, and later in the
chapter a thin layer approximation theory is derived as a simplification of the matrix formulation
of chapter 3.

The notion of a viscoelastic layer has already been introduced and the exact form of the normal
incidence reflection coefficient from an aluminium plate in water was given in Appendix A. In
section 4.2, the general case of the normal incidence reflectivity from elastic layers is solved.
Simple formulae are derived giving a considerable insight into the behaviour of the reflection
coefficient at normal incidence.

Section 4.3 applies the multilayered plate theory developed in chapter 3, and the simple theory
given in section 2.3, to the case of thin liquid layers between two solid half-spaces. This
section is concerned with the detectability of the presence of liquid layers and the evaluation of
their material properties using ultrasound.

Section 4.4 extends the investigations started in the previous section to the case of thin solid
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layers. The problems of the detectability of the presence of the layers as well as evaluation of
their material properties are addressed here.

A stress-displacement transfer matrix formulation of the mechanical behaviour of layers has
been given in chapter 2. In section 4.5 the concept of a thin viscoelastic layer is introduced.
This is achieved by expanding a stress-displacement transfer matrix in terms of the layer
thickness. Under such an approximation the complicated stress-displacement transfer matrix
considerably simplifies, offering us more insight into the physics of the thin layer reflectivity.
In this section the comparison between the exact and the approximate formulation is given in
order to show the limits of applicability of the simplified formulation.

Section 4.6 repeats the main conclusions of the chapter.

4.2 The reflection coefficient from solid and liquid layers at normal incidence
4.2.1 General

In chapter 3 we were concerned with the response of multilayered viscoelastic media. As an
example, the normal incidence response from an aluminium plate was studied. In Appendix A
the normal incidence longitudinal reflection coefficient from an aluminium plate in water was
derived as a Fourier transform of the time domain response. In Appendix A and section 3.3 we
learned (see fig. 7 of Appendix A and also fig. 3.4) that the normal incidence reflection
coefficient curves feature equally spaced minima at frequencies which correspond to the
resonant frequencies of the aluminium plate in vacuum, the depth of the minima depending on
the ratio between the front face reflection from the plate and a series of the reflections from the
back of the plate.

If the plate is to be between two dissimilar half-spaces, then obviously the balance between the
front face and back face reflections change, affecting the depths of the minima. In this
subsection we would like to answer what governs the shape of the normal incidence reflection
coefficient curves from layers separating half-spaces of different mechanical properties. In
order to do so we take the frequency domain approach introduced in chapter 2 and developed
further in section 3.3. In this approach we will consider the steady state response of the layer to
a harmonic normal incidence excitation. For the sake of the argument we will consider thew
longitudinal excitation bearing in mind that the same analysis applies to the normal incidence
shear wave (if the system can support shear wave propagation).
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Consider a system consisting of a layer separating two half-spaces (see fig. 4.1), being excited
by a longitudinal wave in the direction perpendicular to the the layer. Using the notation

introduced in chapter 2, the displacement field in the left half-space (medium number 1) can be
expressed as the sum of two waves: an incident wave of amplitude Ty, and reflected one of

amplitude Ry. In the layer (medium number 2) we have transmitted and reflected waves of
amplitudes Ty and R», respectively. In the right-hand side half-space, the displacement field
will consist of only a single transmitted wave of amplitude Ts.

In general, a longitudinal plane wave propagating in a direction along the x coordinate can be
expressed as,

) = Ao ED (4.1)

where u is the displacement field in the x direction, A is the amplitude, ® is the frequency and o
is, in general, a complex value characterising the velocity and damping of the wave. When o is
real then the wave propagates without attenuation and o = ¢, where ¢ is the phase velocity of
the wave. The normal stress in the x direction can be calculated from the standard stress-strain
equation of the form,

du
o =Ee, where e£= o “4.2)

and E is an elastic constant, satisfying the relationship,
E = pa?2, 4.3)
where p is the density of the medium. Substituting eqn (4.1) into (4.2), we have,

5 = uxo (4.4
o(x,t) = L0 u(x,t) . 4.5)
a

Substituting eqn (4.3) into (4.5), we have,

o(x,t) = imz u(x,t), (4.6)
where,
z=pa, 4.7

is defined as an impedance of the medium, and relates the amplitude of the normal stress to the
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velocity of the wave.

Using equations (4.1) and (4.6), we are now in position to describe the displacement and stress

-imt
fields in the three media of fig. 4.1. Omitting the common time dependent term e, for
convenience, we can express the displacement and the stress fields in medium 1 as,

iwx/oy -imx/0tg
ul(x) =Te +Rje , 4.8)
i0x/o -i0x/0
o{(x)= iwzg (Tye  “-Rye 1), 4.9)
Similarly, for the layer, we have,
i(l)X/(X2 -i(l)X/(X2 .
W) = The +Rye , (4.10)
i iwx/on -iox/dy
Oy (x) = iwzy (Th e -Rye ). (4.11)
For the right-hand side half-space, we have,
iwx/og
uz(x) = Tze , (4.12)
) iox/og
03(x) = iwzz Tz € . (4.13)

In order to solve the reflection coefficient problem it is necessary to ‘connect' the stresses and
displacements on both sides of the boundaries, so that the stress and displacement fields are
continuous everywhere in space.

Using equations (4.10) and (4.11) we can calculate the stresses and displacements at both
interfaces in terms of the amplitudes of the waves in the layer. At the left boundary of the layer,
x =0, and we have,

u(0) = Ty +Ry , S 41
0(0) = imzy (T -Ry ), (4.15)
and at the right boundary, x = L, we have,

-1
WD) = Tog,+Ryg, (4.16)
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. -1
O'(L) = 10zZy (T2 gp - R2 gp ). (4.17)

In accordance with the notation introduced in chapter 2 (see eqn (2.77)), gp accounts for the

exponential term in equations (4.16) and (4.17),
i(l)L/(Xz

e .

4.1
°p (4.18)
For the purpose of the further derivations, let us assume that the layer is perfectly elastic, that is
0y = Cp, where ¢ is the phase velocity of the longitudinal wave in the layer. For such a case
the argument in the exponential term of eqn (4.18) becomes real, and the magnitude of gp is
unity.

Using equations (4.12) and (4.13), the displacements and stresses at the right-hand side
boundary of the layer can be expressed in terms of the transmitted wave in medium 3 as,

ul) = T3Y, (4.19)

o(l) = inz3 T3y , (4.20)
where,

y= ei(oL/oc3 , 4.21)

is the term arising from the offset of the coordinate system with respect to the right-hand side
boundary by distance L. We could, for example, describe the stress-displacement field in
medium 3 in its own local coordinate system having origin at x = L, and therefore removing vy
from equations (4.19) and (4.20).

Having written equations describing the stresses and displacements for each of the three media
present in the system, we are now in position to derive the reflection coefficient from the layer.
This can be achieved by setting the incident wave amplitude, T1, to unity, and equating the
corresponding equations across the left-hand side boundary and the right-hand side boundary
as we require the stress-displacement field to be continuous everywhere in space.

4.2.2 Reflection coefficient at the resonant frequency of the layer

Let us assume that the incident wave drives the system at the resonant frequency of the layer
(= cores). Using eqn (16) of Appendix A we can express Opes in terms of the layer thickness,
L, and the phase velocity, ¢5, of the wave within the layer,
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nicy
Opeg =M, (4.22)

where m is the resonance number. Now, using eqn (4.22) we can express the exponential term
of eqn (4.18) as follows,

_ eimresL/CZ _ 1 when m is even,

-1 when m is odd (4.23)

Ep

Resonance mode number is odd

If the resonance number, m, is odd then, by eqn (4.23), gp = -1, and equations (4.16) and
(4.17) become,

ul) = - (T +Ry), (4.24)
o(L) = -i@zy (Ty-Ry). (4.25)

Using equations (4.14) and (4.15) we can relate the stress and displacement fields on both
sides of the layer as,

uL) = -u(0), (4.26)

o(L)= -06(0). 4.27

Equations (4.26) and (4.27) reveal a very interesting feature of the stress-displacement field at
the frequency @ = @ When the frequency of the excitation is equal to that of an odd mode of
the layer, then the relationship between stresses and displacements on both sides of the layer is
independent of value of Ty and Ry. This means that the relationship is independent of the
mechanical properties of the media on both sides of the layer as well as independent of the
impedance of the layer itself.

Using equations (4.26), (4.27), and (4.8), (4.9), (4.19), (4.20), we are now in position to link
the stress and displacement fields on both sides of the layer and obtain the relationship between
the incident, reflected and transmitted wave,

Ti+Ry=-T3v, (4.28)
i0peg 21 (T1 -Ry) = -0 23 T3y . (4.29)

Dividing both sides of eqn (4.29) by i, and substituting eqn (4.28) into (4.29) we have,
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z1(T1-Ry)=23(Ty +Rq). (4.30)
In order to obtain reflection coefficient, we have to put T{ = 1, and calculate R{, which gives,

Z1-73
Tes T z{ + 23

(4.31)

As we can see from eqn (4.31), the value of reflection coefficient is independent of the
impedance of the intermediate layer.

Resonance mode number is even

When the resonance number, m, is even then 8p= 1, and equations (4.16) and (4.17) become
ul) = TH+R,y, 4.32)
o(L) = iwzy (Ty-Ry). 4.33)

Using equations (4.14) and (4.15) we have,
u(L) = u(), 4.34)

o(L)= o(0), 4.35)

When the frequency of the excitation is equal to that of an even mode of the layer, then the
relationship between stresses and displacements on both sides of the layer is independent of
value of T, and Ry and given by equations (4.34) and (4.35). Following the same steps as
shown in equations (4.28), (4.29), and (4.30), we arrive at the same value of reflection
coefficient as for the case of the odd-numbered mode frequency, given by eqn (4.31).

No layer between the half-spaces

If the layer between the half-spaces was removed, then we could link the stresses and
displacements in medium 1 to those of medium 3 directly. This is exactly what is stated in
equations (4.34) and (4.35). Therefore the value of reflection coefficient expresséd in eqn
(4.31) is also valid for the case of two semi-infinite media without the presence of the layer.
Therefore, we can state that when the frequency equals the resonant frequency of the layer, the
layer becomes entirely transparent to the acoustic waves, and the reflection coefficient is entirely

defined by the impedances of the materials on both sides of the layer. This statement is only
valid for a perfectly elastic layer, that is when oy = ¢».
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4.2.3 Reflection coefficient at the frequency halfway between two
consecutive resonant frequencies of the layer

Another interesting case occurs when the frequency of excitation is halfway between two

consecutive resonant frequencies of the layer. Let us investigate this case in more detail.

Using eqn (4.22) the frequency halfway between the mth and m+1th resonant frequency o the
layer can be expressed as,

) 1 4
(l)half="'L— (m+§) . 4.36)

When m is even then, using eqn (4.23), the exponential term of eqn (4.18) becomes,

gp =1, and gi,1=-i . (4.37)

Substituting eqn (4.37) into equations (4.16) and (4.17), we have,
ul) =i(Ty-Ry), : (4.38)

o(L) = - 0z (To +Ry). (4.39)

Using equations (4.14) and (4.15) we can relate the stress and displacement fields on both
sides of the layer as,

uL) = o©® , (4.40)
(0Z2

o(L) = - 0zyu(0) . (4.41)

Again, we have obtained the relationship between the stresses and displacements on both sides
of the boundary as functions independent of the amplitudes of the waves within the layer. We

can use this relationship to link the incident, reflected and transmitted waves to calculate the
reflection coefficient at the frequencies ® = @y ;15 Using equations (4.40), (4.41), and (4.8),

(4.9), (4.19), (4.20), we therefore have,
iZl ( Tl - Rl )
)

T3 Y= , (4.42)
iz3 Ty y= -75 (T +Ry) . (4.43)

Substituting eqn (4.42) into (4.43), we have,
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Z] 22
5(T1-R1)=;§(T1+R1), (4.44)

and after setting Ty = 1, and simple algebra, we obtain the following expression for the
reflection coefficient at the frequency ® = @p,4,

2
2123 -2
Rpaif = (4.45)

2 .
Z1Z3 + Z2

It can be easily shown that eqn (4.45) holds also in the case when the index m in eqn (4.36) is
odd, following the steps shown in equations (4.37)-(4.44).

Equation (4.45) gives us a very simple expression for the value of the reflection coefficient for
the frequencies halfway between the resonant frequencies of the layer. It can be easily shown
that eqn (4.45) holds for all frequencies halfway between the resonant frequencies of the layer.

4.2.4 Examples

Equations (4.22), (4.31), and (4.36), (4.45), can be very useful in predictions of the normal
incidence reflectivity from layers separating two half-spaces because they are simple to use. Let
us then apply these equations to some simple cases. We will calculate the normal incidence
longitudinal reflection coefficient from a 100 pum thick aluminium oxide layer between half-
spaces of various mechanical properties. The material properties used in the calculations are
shown in table 4.1, and they are similar to those used in chapter 7, where the ultrasonic
reflectivity from aluminium/epoxy joints are discussed in more detail (see tables 7.1 and 7.2).

) longitudinal longitudinal
material dens1t)§ velocity impedance
p (kg/m?) ¢, (m/s) 71 (kg/m?s)
aluminium 2820 6330 17.85 E6
aluminium oxide 1170 10400 12.17 E6
(70 %porosity)
€poxy resin 1170 2610 3.05 E6
water 1000 1490 1.49 E6

Table 4.1 Acoustic properties of materials used in calculations.
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Using eqn (4.22) and the values in table 4.1 we can calculate the first resonant frequency for
the 100 um thick oxide layer, f..¢ = 52.0 MHz. Figure 4.2 shows the amplitudes of the normal
incidence longitudinal reflection coefficients (R 1) for two different systems. Curve 1 has been
computed for a water/100 um thick oxide/water system, while curve 2 has been calculated for a
water/100 um thick oxide/ epoxy system. As can be seen from the figure, at the resonant
frequencies of the layer (0.0 MHz, 52.0 MHz, and 104.0 MHz) the Ry 1, coefficient reaches
local minima, the value of which can be calculated from eqn (4.31). Halfway between the
resonant frequencies of the layer (26.0 MHz, and 78.0 MHz) the curves attain shallow maxima.
The amplitudes of Ry 1, can be computed at those frequencies using eqn (4.45). The first two

rows of table 4.2 show the results of calculations using equations (4.31) and (4.45).

S a4\ ) 3 Rres Rhatf
ystem 2 2 2
(kg/m~s) (kg/m<s) (kg/m<s) (eqn4.31) (eqn 4 .45)

water/
oxide/ 1496 | 12.17E6 | 149E6 0.0 -0.970
water
ey 149E6 | 1217E6 | 3.05B6 | -0344 - 0.940
epoxy

aluminium/
oxide/ 17.85E6 | 1217B6 | 3.05E6 0.708 - 0.462
€poxy

——

alomioiam/ | 178586 | 121786 | 14986 0846 | -0.696

water

Table 4.2 Amplitudes of Ry [ coefficient at fi.oq frequency and fp4)f frequency.

When the impedances of the two half-spaces are equal (ie z1 = z3) then, by eqn (4.31), the
reflection coefficient at the resonance frequencies of the layer is null. This indeed is the case for
the water/oxide/water system (see fig. 4.2). At 0.0 MHz, 52.0 MHz, and 104.0 MHz the Ry 1,
coefficient decreases sharply to zero. For frequencies in between the resonant ones, the Ry 1,
curve is close to unity. From table 4.2 it can be seen that the impedance of the layer is much
higher than that of water ( z] = z3, z] << z3), and using eqn (4.45) one can clearly see that the
Rhalf will be dominated by the impedance of the layer, which results in the amplitude being
close to unity. Exactly the same behaviour of the reflection coefficient can be observed in fig.
3.4, which was computed for the water/aluminium plate/water system.

Curve 2 of fig. 4.2 has been computed for a system consisting of water/100 pm thick
oxide/epoxy. The resonant minima appear at exactly the same frequencies as for the curve 1,
but are much shallower here than those of the curve 1, and they reach the value of 0.344, which
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is the reflection coefficient of the water/epoxy system. The maximum values of the reflection
coefficient can be found at frequencies equal to fj41¢, where the amplitude of Ry 1, is 0.940.
From fig. 4.2 and table 4.2 it can clearly be seen that the amplitude variation of Ry |, coefficient
for the water/oxide/epoxy system is about half of that of the reflection coefficient of the
water/oxide/water system.

Let us look at another example of the normal incidence reflectivity from the 100 pwm thick oxide
layer. Figure 4.3 shows Ry |, coefficients for two different systems: curve 1 for an aluminium/
100 um thick oxide/water system, and curve 2 for an aluminium/100 pm thick oxide/epoxy
system. The calculations for the Ry |, coefficient at f.og and fj41f for these two systems occupy
the last two rows in table 4.2. From the table 4.2 it can be seen that the reflection coefficients
do not always attain minima at the resonant frequencies of the layer.

The two examples presented in figures 4.2 and 4.3 show that the normal incidence reflectivity
from layers varies substantially from one case to another and depends not only on the property
of the layer itself but also on the impedances of the media on both sides of the layer. Let us
therefore investigate the conditions governing the behaviour of the reflection coefficient curves.

Let us assume for the time being that the impedance of medium 1 is bigger than that of medium
3, that is, z3 < z1. From eqn (4.31) it can be seen that in such circumstances Rpeg is positive.
This is, for example, the case when the aluminium/layer/epoxy system is considered (see table
4.2). The impedance of the intermediate layer zy can have, in general, any positive value. Let
us identify different cases zp can satisfy.

Case 1 ‘z3 <z <2y, then Reeg <-Rpaif

When the impedance of the layer in bigger than the impedances of both half-spaces, then ,
using eqn (4.31) and (4.45), one can show that Ryeg < -Rpgf, or in other words, the amplitude
of the reflection coefficient reaches minima at the resonant frequencies of the layer (including
zero frequency), and attains maxima at the frequencies exactly halfway between the resonant
frequencies.

Case2 z3<zj=2z,, then Ryeg=-Rpqlf

When the impedance of the layer is equal to the larger impedance of the two half-spaces, then it
is easy to show that Rreg = - Rpa1f. In such a case the amplitude of the reflection coefficient
becomes a straight horizontal line.
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Case3 z3<z,<zq, and z;zg <z%, then - Rpa1f < Rpeg

When the impedance of the layer is between the impedanées of the half-spaces, then

- Rpalf < Rreg, which means that the amplitude of the reflection coefficient reaches maxima at
the resonant frequencies of the layer (including zero frequency), and attains minima at the
frequencies exactly halfway between the resonant frequencies.

Case4 z3<z,<zy, and zlz3=z%, then Rpq1=0

When the impedance of the layer is between the impedances of the half-spaces, then there is a
special case when zz4 = z,. Looking at eqn (4.45) one can see that Rpif = 0. In such a case
the minima, which occur between the resonant frequencies of the layer, touch the zero line. The
maximum values are found at the resonant frequencies (including zero frequency).

Case5 z5<z,<zq, and z§<zlz3 , then Rpgif < Rreg

This is a similar case to that of No 3, but Rp41¢ changes its sign and becomes positive. Here the
amplitude of the reflection coefficient has maxima at the resonant frequencies of the layer
(including zero frequency), and reaches minima at the frequencies exactly halfway between the
resonant frequencies.

This case is similar to that of No 2, but Ry 41f is positive rather than negative. When the
impedance of the layer is equal to the smaller impedance of the two half-spaces, then the
reflection coefficient is frequency independent and equal to that of the two half-spaces without
an intermediate layer.

When the impedance of the layer is smaller than the impedances of both half-spaces, then the
amplitude of the reflection coefficient reaches minima at the resonant frequencies of the layer
(including zero frequency), and attains maxima at the frequencies exactly halfway between the
resonant frequencies. This case is similar to that of No 1, but here Rp,1f is positive. |

Let us illustrate all the cases above with a simple example. The system we will use for the.
parametric study is the aluminium/100 pum thick layer/epoxy resin system, the mechanical
properties of the half-spaces being the same as those listed in table 4.1, therefore the
longitudinal impedances of the half-spaces are, z1 = 3.05 E6 kg/m?2s, and z3 = 17.85 E6
kg/m?2s. The mechanical properties of the layer are based around those of the 70 % porous
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aluminium oxide, whose properties are given in table 4.1. The longitudinal phase velocity of
the layer is kept constant to maintain the resonant frequencies at the same position for all cases.
In order to vary the impedance of the layer, we have chosen to alter its density to suit our
purposes. Table 4.3 shows variation of the density of the layer, its longitudinal impedance and
the resulting amplitude of the longitudinal reflection coefficient. The density of the layer was
chosen so that the impedance of the layer falls into the seven cases discussed above, case
numbers in the table corresponding to those above.

case number (kg?mg’) (kg/canZs) (kgj:];ﬂs) (eqirj.ssn (e;hﬁS)
1 200 10400 2.08 E6 0.708 0.853
2 293 10400 3.05E6 0.708 0.708
3 480 10400 4.99 E6 0.708 0.373
4 709 10400 7.37 E6 0.708 0.00
5 1000 10400 10.40 E6 0.708 -0.330
6 1716 10400 17.85 E6 0.708 - 0.708
7 3000 10400 31.20 E6 0.708 - 0.898

Table 4.3 Amplitudes of Ry 1 coefficient at fy.o5 frequency and fy, 415 frequency for different impedances of
the layer between aluminium and epoxy half-spaces. Thickness of the layer is 100 pum.

Figures 4.4(a) and 4.4(b) show the reflection coefficient curves corresponding to the seven
cases of table 4.3. It can clearly be seen from the figures that all the curves start at zero
frequency with an amplitude of 0.708. This is the amplitude of the reflection coefficient at the
frequencies corresponding to the resonant frequencies of the layer in vacuum, denotéd as freg.
All the curves meet again at a frequency of 52.0 MHz, the first resonant frequency of the layer,
then at 104.0 MHz, the second resonant frequency, and so on. The biggest difference in
amplitude between the cases can be seen at the frequencies exactly between the resonant.
frequencies, denoted as f}41f. From figures 4.4(a) and 4.4(b) it can clearly be seen that if the
amplitudes of the reflection coefficient at frequencies freg and fj151f is known then the shape of
the reflection coefficient curves can be quickly and conveniently predicted. The formulae to
calculate these values are given in equations (4.22), (4.31), (4.36) and (4.45).
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4.3 The reflection coefficient from thin liquid layers

This section is concerned with ultrasonic reflectivity from thin liquid layers between two solid
half-spaces. This case is very important in our investigations because liquid can be considered
as a limiting case of a very heavily deteriorated interface between epoxy and aluminium. In such
cases it is usually assumed that the normal stiffness across the interface only changes slightly
while the reduction in shear stiffness across the boundary is significant (see Rokhlin and
Marom 1986, Rokhlin et al. 1990). This means that the deteriorated interface, which from the
geometrical point of view can be modelled as a thin layer, changes its mechanical properties
from those of a solid to those of a viscous liquid. Let us therefore study the reflection
coefficient from the solid/thin liquid layer/solid system in more detail.

In our investigations we would like to answer two important questions. The first one is the
problem of the detectability of a very thin layer between two solids. Here we will be concerned
with the possibility of mere detection of a layer with given mechanical properties. The second
question is the problem of the evaluation of a thin layer. Once the layer can be detected it is
sometimes important to find its material properties and thickness.

4.3.1 Liquid layer between two glass half-spaces

As a first example let us consider a thin silicone fluid layer between two glass half-spaces (see
fig. 4.5). Experimental investigations of the ultrasonic reflectivity from such a system is

presented in chapter 5 of this thesis. Material properties of the glass and the silicone fluid are
given in table 4.4.

) density longitudinal longitudinal | shear velocity shear
material (kg/m3) velocity attenuation (m/s) attenuation
(m/s) (nepers) (nepers)
epoxy resin 1170 2610 0.0 1100 0.0
glass 2490 5808 0.0 3466 0.0
silicone fluid 985 1050 0.0 80.0 6.28
water 1000 1490 0.0 10.0 6.28

Table 44 Assumed properties of materials used in calculations.

Values of density and velocities shown in the table are typical for these two different materials.
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Attenuation in glass and epoxy has been assumed to be negligible and the shear velocity and
attenuation in the silicone fluid were calculated from the Navier-Stokes equation for a fluid of
viscosity of 50 centistokes as shown in Appendix B It can be shown that in a liquid satisfying
the Navier-Stokes equation, the shear waves attenuation is 21 nepers per wavelength for any

frequency.

Figure 4.6 shows a parametric study of the longitudinal-longitudinal reflection coefficient
(Ry 1) from a thin silicone layer separating two semi-infinite glass half-spaces. The thickness of
the silicone layer varies from 1.0 pm to 0.0 pm in 0.2 um steps. As can be seen from the plot,
the sensitivity of the Ry [, reflection coefficient to the layer thickness is very good. For null
thickness of the layer, the silicone interface ceases to exist. In such a case waves in the system
propagate without any obstacles and the reflection coefficient is zero regardless of the frequency
of the incident wave. When the layer is of a finite thickness then the amplitude of the Ry 1,
reflection coefficient starts from a null value at zero frequency and monotonically increases with
frequency up to 50 MHz. The thicker the layer the bigger the amplitude of the reflection
coefficient. It is easy to resolve between thicknesses 0.1 pm apart.

As in all the plots presented in this chapter, the frequency-thickness scaling theorem can be
applied here (see Appendix C). Using this theorem it is possible to generate all the curves for
thicknesses of 0.8 wm and below from the curve for 1.0 um by 'stretching' the frequency axis
so that the frequency - layer thickness product remains the same. For example (see fig. 4.6) the
reflection coefficient curve for the thickness of 0.6 um can be generated from 1.0 um curve by
expanding the 0-30 MHz interval 10/6 times to obtain a 0-50 MHz range so that the point A will
be mapped onto the point B.

Table 4.5 shows the sensitivity of the reflection coefficient to the silicone layer thickness. All
the values in the table were obtained from the corresponding curves of fig. 4.6. As can be seen
from the table, the sensitivity is excellent. In practice, it means that it is possible to detect the
presence of extremely thin liquid layers and in many cases it is even possible to determine their
thickness (if the material properties of the liquid are known).

thickness 1.0um | 08um | o6pm | 04um | o2um | ooum
Rip,

29Nk 0.720 0.639 0.529 0.384 0.204 0.0
han

wit 1.0 0% 11 % 27 % 47% 72 % 100 %

Table 4.5 Ry 1, reflection coefficient sensitivity to the silicone layer thickness between two glass half-spaces at
the frequency of 25 MHz.
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Figures 4.7(a) and 4.7(b) show the theoretically predicted pulse response from a system
comprising two 3.0 mm thick glass plates separated by silicone fluid layer of 0.5 pm thickness
(fig. 4.7(a)) and zero thickness (fig. 4.7(b)). The pulse shape used as an input for the
predictions is the same one we used for the time domain predictions of chapter 3 (see for
example figures 3.6, 3.9 and 3.17), and corresponds to the pulse generated by a typical 10
MHz wideband transducer. In fig. 4.7(a) the reflection from the front face of the glass plate is
marked as FF, while the reflection coming from the 0.5 pm thick silicone layer is marked as
LL. The third pulse coming after FF and LL is the superposition of the pulse coming from the
back face of the back glass sheet and reverberation within the front glass plate. Despite a very
large wavelength-to-layer thickness ratio (more than 1000 here), the reflection from the silicone
can be easily detected and analysed. The pulse shape of the reflection from the silicone layer
(LL) is different from the front face reflection (FF). This is because the reflection coefficient
from the layer is heavily frequency dependent (see fig. 4.6). When the thickness of the silicone
layer is zero (see fig. 4.7(b)) then there is no LL reflection at all.

If a shear wave is used instead of the longitudinal wave then it is theoretically possible to detect
presence of extremely thin layers (far too thin to exist in reality because of irregularities of the
mating surfaces). Figure 4.8 shows the shear-shear reflection coefficient (Rgg) from a thin
silicone layer separating two semi-infinite glass half-spaces. The thickness of the silicone layer
varies from 1.0 um to 5.0 nm. From the plot it can be seen that even a 5 nm thick silicone layer
strongly reflects ultrasound for frequencies as low as 5 MHz. This extraordinary behaviour can
be explained by looking at table 4.4. The shear velocity of the silicone is very low which means
that the tangential stiffness of the liquid is also very low. Therefore, even for extremely thin
layers the shear stiffness is too low to support any significant tangential stress at the
glass/silicone boundary. In such circumstances, the interfacial conditions are close to the free
boundary conditions for which the reflection coefficient is unity. The layer stiffness has to be
dependent on the thickness of the layer; the thicker the layer the lower the fangential stiffness of
the layer. From fig. 4.8 it can be seen that for larger values of the layer thickness (see for
example the curve for 1.0 um) the reflection coefficient is close to unity.

4.3.2 Liquid layer between glass and epoxy half-spaces

So far we have analysed the reflectivity from a thin liquid layer separating two half-spaces of _
the same material and we found that the detectability of such a layer is very good. Using a
longitudinal wave at normal incidence it was possible to resolve layer thicknesses to within 0.1
um. However, this is not the case when the thin layer separates two dissimilar materials. Even

when there is no thin layer at all in such a system, the reflection coefficient can be still of
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significant amplitude. The presence of the thin layer in such cases will modify the reflectivity at
the interface only slightly. Let us use a simple example to illustrate the problem.

Normal incidence reflection coefficients

Figure 4.9 shows the normal incidence longitudinal-longitudinal (R 1) reflection coefficient
from a 1.0 pm thick silicone layer between two glass half-spaces and from a 1.0 pum thick
silicone layer separating glass and epoxy half-spaces. The Ry [, reflection coefficient was
computed in the frequency range between 0 and 1.75 GHz, which is an order of magnitude
higher than the practical testing range. The glass/silicone/glass Ry 1, curve for the practical
testing frequency range was shown in fig. 4.6. Curve A of fig. 4.9 is actually a zoomed-out
version of the 1.0 um curve of fig. 4.6. As can be seen from fig. 4.9, the curve A starts from
null at zero frequency and rapidly increases over the first 100 MHz to attain values close to
unity at around 250 MHz. Then above 250 MHz the curve rapidly dives down to reach zero at
around 500 MHz which is the first resonant frequency of the silicone layer. The curve then
repeats itself over the next S00 MHz to reach the second resonance of the layer at around 1
GHz, and so on. Curve A is a typical reflection coefficient curve from a layer separating two
identical materials. Indeed, exactly the same features can be seen looking at the Ry |, curve of
fig. 3.4, computed for an aluminium layer separating water half-spaces, or fig. 4.2 (curve 1),
calculated for the water/aluminium oxide/water system.

However, if there are dissimilar materials on the opposite faces of the thin layer then, by eqn
(4.31), the reflection coefficient curves no longer start sharply from zero at low frequencies.
Curve B of fig. 4.9 shows the Ry 1, reflection coefficient for exactly the same layer as of the
curve A but between glass and epoxy resin. Because the materials are dissimilar, the Ry [,
amplitude at zero frequency is 0.651, which is the reflection coefficient between glass and
epoxy without any layer in-between. At low frequencies the B curve is still an increasing
function of frequency but the increase is much slower that that of curve A. The resonant
frequency minima are also much shallower than those of curve A. This results in a significant
decrease in the sensitivity of the Ry |, coefficient to the presence of thin layers. Figure 4.10 and
table 4.6 show a parametric study of the Ry 1, reflectivity from thin silicone fluid layers of
different thicknesses. As can be seen from the graph, the sensitivity of Rj 1, reflection
coefficient to the layer thickness is rather low. Without the presence of the thin layer the Ry 1.
coefficient is frequency independent and equal 0.651. When the silicone layer is present, then
the longitudinal-longitudinal reflectivity across the glass/epoxy interface increases slightly, but
only by a few percent.
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thickness 1.0 pm 0.8 pm 0.6 um 0.4 pm 02 pm 0.0 pm
RiL
2123 Mz 0.696 0.681 669 - 0.659 0.653 0.651
ey o 0% 2% 4% 5% 6% 6 %

Table 4.6 Ry y normal incidence reflection coefficient from silicone layers of different thicknesses between
glass and epoxy resin. Frequency 25 MHz,

The curves of fig. 4.10 can be directly compared to the curves of fig. 4.6, and table 4.6 to table
4.5.

Using the theory developed in chapter 2 it is possible to generate the time domain pulse
response of the glass plate/silicone layer/epoxy resin plate system in water. Figure 4.11(a)
shows the theoretically predicted time domain response of a 3.0 mm thick glass plate/3.0 mm
thick epoxy resin system in water being excited by a pulse from a typical 10 MHz transducer.
FF is the front face reflection from the glass plate and LL1 is the reflection coming from the
glass/epoxy interface. The third pulse, LLp, seen in the figure is the second reverberation of the
longitudinal wave within the glass plate. It is the LL{ reflection which will have to be
monitored in order to detect presence of thin layers between glass and epoxy. Figure 4.11(b)
shows what happens when a 0.5 um thick silicone layer is present at the interface. The
amplitude and shape of the L1 reflection of fig. 4.11(b) are practically the same as those of
fig. 4.11(a). It is therefore practically impossible to detect the presence of the 0.5 um thick
liquid layer between the glass and epoxy resin using a 10 MHz transducer at normal incidence.
Some noticeable change can be seen when the thickness of the silicone layer is increased.
Figure 4.11(c) shows the time domain response of the system with a 5.0 um thick layer, that is
10 times thicker than that of fig. 4.11(b). Here it can be seen that LL 1 reflection is 20 % bigger
than those of fig. 4.11(a) and 4.11(b).

The frequency domain and the time domain study presented here show clearly that if thin liquid
layers are entrapped between two different materials then it is not always possible to detect their
presence using the normal incidence longitudinal-longitudinal reflection coefficient method.
This was not the case when analysing normal incidence Ry 1, reflectivity from a thin layer
having the same material on both sides (glass/silicone/glass system).

Let us now investigate the use of the shear-shear (Rgg) normal incidence reflection coefficient
for the case of dissimilar materials across the interface. Figure 4.12 shows a parametric study
of the glass/silicone layer/epoxy resin system with silicone layers of different thickness. When
there is no silicone layer present then the Rgg reflection coefficient is frequency independent
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and assumes a constant value of 0.740. When the silicone layer is present then at zero
frequency the layer is not 'visible' to the shear wave, and Rgg is 0.740. This can be shown in
a more rigourous manner as follows. When the frequency is zero then the frequency - layer
thickness product is zero. Exactly the same value of frequency - layer thickness product can be
obtained when the layer thickness is zero, that is, when there is no layer present. Because the
frequency - thickness is invariant in the wave equation (see Appendix C), then at zero
frequency, the reflection coefficient has to be the same as for the layer of zero thickness.
Frequency - thickness invariance also means that for a layer of zero thickness, Rgg has to be
constant with frequency.

At zero frequency (see fig. 4.12) the Rss coefficient is 0.740 for all layer thicknesses and is
equal to the glass/epoxy resin Rgg reflection coefficient. Then, for higher frequencies, the
presence of the fluid layer becomes visible. Because of the very heavy damping of shear waves
in the fluid, the thin layer effectively decouples the glass from the epoxy at higher frequenciés.
In such cases, the Rgg coefficient is solely a function of the interfacial conditions on the
incident side of the fluid layer, that is, Rgg increases monotonically to reach the value of the
glass/silicone fluid reflection coefficient, which is close to unity.

It can be seen from fig. 4.12 that the normal incidence Rgg coefficient is much more sensitive
than the normal incidence Ry |, coefficient (see fig. 4.10), and can therefore be used to detect
the presence of thin fluid layers. The higher the frequency used, the better the sensitivity of the
method. However, because of inconsistent coupling between shear wave probes and plates,
quantiative measurements of the normal incidence Rgg reflection coefficients are very
cumbersome in practice. Therefore, the normal incidence Rgg method for determination of the
fluid thickness can only be used in a very carefully conducted experiment, provided that the
shear wave velocity and damping in the fluid is known.

Oblique incidence reflection coefficients

From the investigations conducted so far it clearly appears that there is no straightforward
means of detection and quantitative measurement of the properties of thin liquid layers between
two dissimilar materials. It is therefore necessary to investigate the sensitivity of the reflection
coefficient techniques at different angles of incidence.

Since there are two different types of bulk waves in solids then, in general, there are four
different types of reflection coefficients to compute:

Ry |, - longitudinal wave incident and longitudinal wave reflected,

R] g - longitudinal wave incident and shear wave reflected,
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Rgp, - shear wave incident and longitudinal wave reflected,

Rgg - shear wave incident and shear wave reflected.
These four reflection coefficients are functions of frequency and angle of incidence of the
incident wave (longitudinal for R [, and R g, and shear for R, and Rgg).

‘Figures 4.13 - 4.16 show a parametric study of the set of all four reflection coefficients at a
glass/epoxy resin interface with silicone fluid of different thicknesses present. In fig. 4.13 the
amplitude of the Ry [ coefficient is shown. The frequency of the incident longitudinal wave is
kept constant here at 10 MHz, and the angle of incidence varies from 0 to 90 degrees. At
normal incidence (0 degrees) there is virtually no difference between all five cases computed.
This is in agreement with the previous findings presented in fig. 4.10. However, fig. 4.13
shows that the sensitivity of the Ry |, coefficient increases significantly with the angle of
incidence, and at the angle of 52.0 degrees it is rather easy to determine the presence of the
silicone layer, even when it is very thin. Indeed, when the liquid layer is not present at the
interface, the Ry |, coefficient is zero at around 52 degrees and the presence of even a very thin
layer ‘pushes' the amplitude of Ry [, upwards making it possible to detect. Similar features can
be seen in fig. 4.14, where the parametric study of Rgg reflection coefficient was carried out.
Here the best angle of incidence is at around 28.4 degrees. The Rgg coefficient is zero for zero
thickness of the silicone layer, and relatively large even for a thickness of 0.05 pm. At normal
angle of incidence, the Rgg coefficient also shows very good sensitivity to the thickness of the
silicone layer. This is not the case with the longitudinal-longitudinal reflection coefficient (see
fig. 4.13).

In fig. 4.15 parametric study of Ry g reflectivity is presented. The most sensitive angular region
is between 40 and 60 degrees. The difference between Ry g reflectivity with and without the
silicone layer is of the order of 10 percent.

Figure 4.16 shows the shear-longitudinal (Rgy ) reflection coefficients for the same silicone
layer thicknesses as in figures 4.13 - 4.15. Here, all the curves are close to each other
everywhere in the angular domain which means that the Rgy sensitivity to the presence of the
liquid layer is very small.

Figures 4.13 - 4.16 show clearly that for certain angles and certain types of reflection
coefficient we may expect a significant improvement in sensitivity over the normal incidence
technique. It is therefore of practical interest to be able to generate oblique incidence waves at
particular angles within a specimen and to be able to receive them for further signal processing.

Figure 4.17 shows schematically how oblique incidence longitudinal waves can be generated
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within a glass/silicone layer/epoxy plate in water. The angle of incidence of the longitudinal
wave in water is adjusted to be 11.7 degrees, so that the transmitted longitudinal wave in glass
hits the silicone layer at 52.0 degrees. This is the angle of incidence where the biggest
sensitivity of Ry 1, reflection coefficient is expected. (see fig. 4.13). In fig. 4.17, FF is the
reflection from the front face of the glass plate. The amplitude of this reflection is a function of
the material properties of glass and water and does not tell us anything about the glass/epoxy
interface. The further three reflections: SS, LS+SL, and LL, come from the glass/epoxy
interface and are influenced by the presence of the silicone layer. If the thickness of the glass
plate is known then it is possible to calculate times of arrival of these reflections, since the
angles of refraction in glass can be obtained from Snell's law. Let us assume that the thickness
of the glass plate is 3.0 mm. Table 4.7 shows angles of refraction and times of arrivals of the
SS, LS+SL, and LL reflections for the case when the longitudinal wave is incident from water
at 11.7 degrees. Despite the longer distance travelled within the plate, the LL reflection arrives
first, because the longitudinal wave velocity is much greater than that of the shear wave. The
LS and SL reflections arrive exactly at the same time because each of them travel one half of the
way as the longitudinal wave and the other half as the shear wave. The SS reflection comes last
because the shear wave is considerably slower than the longitudinal wave.

Type of reflection Angle of incidence at Time of arrival wrt FF
glass/epoxy (degrees) (us)
LL longitudinal: 52.0 0.64
longitudinal; 52.0
LS+SL shear: 28.0 1.08
SS shear: 28.0 1.53

Table 4.7 Angles of refraction in glass and times of arrival for different reflections coming from glass/epoxy
interface for the longitudinal wave incident at 11.7 degrees in water. Thickness of glass plate is
3.0 mm. See also fig. 4.17. ‘

Figure 4.18(a) shows the time domain response of a 3.0 mm thick glass plate/3.0 mm thick
epoxy resin system in water to an infinite plane wave pulse excitation. The shape and duration
of the pulse is typical for a wideband 10 MHz transducer. The angle of incidence from water is
11.7 degrees. FF is the front face reflection from the glass plate, and (LS+SL)1 is the first
combined longitudinal-shear and shear-longitudinal reflection from the glass/epoxy interface,
and arrives 1.08 us after the FF reflection. The subscript here denotes the reflection number of
a given wave type in the plate. The second reverberation of the LS+SL type arrives 2.16 us
after FF and is denoted as (LS+SL)3. The first reflection of the SS type arrives 1.53 s after
FF, and therefore appears between (LS+SL)1 and (LS+SL)3. The LL{ reflection, with delay
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time of 0.64 ps, should be found between FF and (LS+SL)1. However, LL1 is not present in
fig. 4.18(a) because the Ry 1, reflection coefficient is zero in this case.

When a 0.5 pum thick silicone layer is present then, according to the Ry [, reflection coefficient
predictions of fig. 4.13, we should expect an LLj reflection to be present. This is indeed the
case. Figure 4.18(b) shows the time domain pulse response of the 3.0 mm thick glass/0.5 pm
thick silicone layer/3.0 mm thick epoxy resin system in water. The LL1 reflection is clearly
visible here, and its time of arrival is in agreement with the calculations shown in table 4.7.

Figures 4.18(a) and 4.18(b) have been calculated for exactly the same system as those of
figures 4.11(a) and 4.11(b). Comparison of the plots clearly shows that oblique incidence can
significantly improve the sensitivity of the reflection coefficient method for detection of thin
liquid layers.

4.4 The reflection coefficient from thin solid layers

One of the most significant differences between solids and liquids is that solids can sustain
large shear stresses while liquids cannot. The only mechanism through which liquids can
support shear stresses is viscosity. The higher the viscosity of the liquid, the larger the shear
stresses which can be produced for the same displacements and frequency. In ideal liquids,
therefore, shear stresses cannot exist. Another important feature of real (viscous) fluids is that
the same mechanism which supports the shear wave propagation is also responsible for the
attenuation of the shear waves. It is easy to show that in a liquid satisfying the Navier-Stokes
equation, the shear wave attenuation is 2r nepers per wavelength, and is frequency independent
and the same for all liquids. Therefore, even thin layers of liquids have very low shear stiffness
and heavy attenuation of shear stresses.

Solid materials, however, can support shear stresses in a similar manner as they support
longitudinal stresses, that is, by reacting elastically to deformations imposed on them.
Therefore, viscosity is not the main mechanism for supporting shear wave propagation here.
The Poisson's ratio determines the shear stiffness of materials. Viscosity is responsible for
attenuation of shear waves and affects their velocity only by a small amount.

Let us calculate reflection coefficients at an aluminium/epoxy interface in an adhesive joint. At
first sight, such a case should not pose any theoretical complications as it involves only two
semi-infinite half-spaces. In real adhesive joints, however, aluminium surfaces are electro-
chemically treated prior to bonding in order to form thin oxide layers. The epoxy resin is
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therefore in contact with an oxide layer rather than aluminium. Therefore, in order to model the
aluminium/epoxy interface, a thin oxide layer has to be introduced between relatively thick
aluminium and epoxy layers. These can be considered in our model as semi-infinite half-
spaces.

Normal incidence reflection coefficients
Let us first calculate the normal incidence longitudinal reflection coefficient from a thin oxide

layer between aluminium and epoxy. In table 4.8 the acoustic properties of the different
materials used for calculations are shown.

s longitudinal . sh
material density (kg/m3) long}tudmal :trtlegrl1 ;ftign shear velocity a nenl(:g{ion
velocity (m/s) (nepers) (m/s) (nepers)
aluminium 2820 6330 0.0 3120 0.0
aluminium 3896 10400 0.0 6490 0.0
oxide
€poxy resin 1170 2610 0.0 1100 0.0

Table 4.8 Acoustic properties of materials used in reflection coefficients calculations.

Taking the values of velocities and densities from table 4.8, we obtain the longitudinal
impedances of aluminium and epoxy, zy; = 17.85 E6 kg/mzs, and Zepoxy = 3.05 E6 kg/m2s.
Properties of the aluminium oxide layer, listed in table 4.8, are correct for the material without
any porosity (Wang and Rokhlin 1990). In reality, however, oxide has a porous structure and
therefore its mass will drop accordingly. Let us assume that the longitudinal velocities in oxides
are independent of porosity. Some justification of this is given in section 7.2.2 of this thesis,
where the problem of the theoretical modelling of oxides layers is discussed in more detail.
Table 4.9 shows how the density and longitudinal impedance of the oxide layer changes with

porosity, and fig. 4.19 shows the normal incidence longitudinal reflection coefficients for 50
nm thick oxide layers with different percentages of porosity.

As can be seen from fig. 4.19, there is a significant variation of Ry j reflectivity due to different

densities of the oxide. According to eqn (4.31), all the curves, however, have the same value of
0.708 at frequencies of 0.0 MHz, and at 104.0 MHz, which is the first resonant frequency of
the layer.
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porosity of density longitudinal longitudinal resonant R11,
aluminium (k g/m3) velocity impedance frequency fres | amplitude at

oxide(%) | P L (m/s) | 71 (kg/m2s) (MH?) fiyalf

30 2730 10400 28.39 E6 104.0 0.873

40 2340 10400 24.34 E6 104.0 . 0.831

50 1950 10400 20.28 E6 104.0 0.766

56 1716 10400 17.85 E6 104.0 0.708

60 1560 10400 16.22 E6 | 104.0 0.657

70 1170 10400 12.17 E6 104.0 0462

Table 4.9 Change in reflection coefficient for the aluminium/50 pum thick oxide/epoxy system for different
porosity of the oxide. Ry 1, curves shown in fig. 4.19.

At a frequency of 52.0 MHz the difference in the reflectivity is the biggest, and eqn (4.45) can
be used to calculate the RLL coefficient here. When the oxide porosity is between 30 % and 50
% then the impedance of the oxide is bigger than those of the aluminium and epoxy half-spaces,
that 18, Zepoxy < ZA1 < Zoxide- From eqn (4.45) it can be seen that the larger the oxide impedance
here, the more pronounced is the maximum at the frequency of 52.0 MHz. When the porosity
of the oxide is 56 %, then zgpoxy < ZA1 = Zoxide, and the reflection coefficient becomes a straight
horizontal line. For porosities of the oxide of 60 % and 70 %, the oxide impedance decreases
further and satisfies the conditions Zepoxy < Zoxide < ZAl> AN Zepoxy ZA1 < ngi de-
the amplitude at 52.0 MHz becomes a minimum, and the smaller the value of the oxide

In such a case
impedance, the deeper the minimum.

Figure 4.20 shows the normal incidence Ry 1 coefficients for different oxide layer thicknesses.
Here, the frequency - thickness scaling theorem is demonstrated again (see Appendix C). The
first resonance frequency of the 50 pm thick layer is at 104.0 MHz, while for the 100 pm thick
oxide the first natural frequency is 52.0 MHz. For the 75 pm thick layer the frequeﬁcy of the
first resonance is 69.3 MHz which lies between the two previous cases. The porosity of the
oxide was chosen to be 70 %, which places the impedance of the layer between those of epoxy.
and aluminium. Therefore the curves bend downwards for low frequencies. As the impedance
of the oxide was kept the same for all three curves, then, according to eqn (4.45), all of them
reach the same minimum amplitude at the half the first resonant frequency.
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Figure 4.21 shows the third parametric study of the aluminium/oxide/epoxy system. This time
we have chosen to vary the longitudinal velocities of the oxide layers, keeping their density and
thickness constant, so that the impedance of the layer is between those of epoxy resin and
aluminium. In accordance with the findings discussed previously and shown in figures 4.19
and 4.20, we should expect two major effects. Firstly for the higher velocities the resonances
move towards higher frequencies to satisfy eqn (4.22), and secondly for higher velocities the
impedance of the oxide layer increases and approaches that of the aluminium. Therefore, by eqn
(4.45), the minima of the Ry 1, curves should become shallower when velocity is increased.
Table 4.10 shows the variation of the longitudinal impedance, the first resonant frequency of
the layer, and the minimum value of the Ry |, coefficient at half the resonant frequency of the

oxide.
longitudinal . first resonant longitudinal .
velocity dens1ty3 frequency impedance RLLa tagphtude
cL (m/s) p (kg/m-) fres(MHz) 21 (kg/m3s) alf
8000 1170 80.0 6.84 E6 0.233
10400 1170 104.0 12.17 E6 0.462
12000 1170 120.0 14.04 E6 0.567
13863 1170 138.6 16.22 E6 0.657

Table 4.10 Change in reflection coefficient from the aluminium/50 um thick oxide/epoxy system for different
longitudinal velocities of the oxide. Ry 1 curves shown in fig. 4.21.

With the porosity of the aluminium oxide between 60 % and 70 %, the typical
aluminium/oxide/epoxy system satisfies conditions Zepoxy < Zoxide < ZAl. Zepoxy ZAl < ngi e
Using equations (4.22), (4.31) and (4.54), we can state that

- when the density of the oxide increases then the amplitude of the mlnlmum increases (see
fig. 4.19);

- when the thickness of the oxide increases then the frequency of the minimum decreases (see
fig. 4.20);

- when the velocity of the oxide increases then the frequency of the minimum increases, and ~
the amplitude of the minimum increases (see fig. 4.21).

Figure 4.22 shows schematically possible movement of the minimum point due to changes in
the oxide properties. From fig. 4.22 it can be seen that if the thickness, density or longitudinal
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velocity of the oxide layer changes, then it is possible to use the normal incidence Ry [,
coefficient to monitor the changes.

At this stage, it is important to find out how many independent properties of the layer can be
measured using normal incidence longitudinal reflection coefficient. In general there are four
independent mechanical properties of the layer to be measured: thickness, density, longitudinal
velocity and shear velocity. Examining fig. 4.22 we can see that there are two independent
features the normal incidence curves possess, namely the frequency and the amplitude of the
reflection coefficient at half of the resonant frequency of the layer (see equations (4.36) and
(4.45)). (The Ry 1, amplitude at zero frequency is solely governed by the properties of the half-
spaces and is independent of the layer properties (see eqn 4.31)). These two features are
dependent on three layer properties: density, thickness, and longitudinal velocity. This means
that if the thickness of the layer is known then it is possible to extract the density and
longitudinal velocity of the layer from one normal incidence longitudinal reflection coefficient
measurement. However, if the shear velocity of the layer is to be monitored, then the normal
incidence Ry |, coefficient is not capable of providing any information about it.

Note that the curve shown in fig. 4.22 was generated for a 50 pm thick oxide layer. A typical
thickness of the oxide in aluminium/epoxy joints is about 3.5 um, that is fifteen times thinner.
In such circumstances we can expect a significant deterioration in the sensitivity of the reflection
coefficient method to changes in the properties of the layer. To illustrate this point, fig. 4.23
shows the normal incidence longitudinal reflection coefficient from a 5.0 um thick oxide layer
in between the aluminium and epoxy resin half-spaces. The properties of the aluminium, the
epoxy and of the oxide are given in table 4.11 and are very similar to those shown in table 4.9
which were used to compute the curves of fig. 4.21. Because in fig. 4.23 the layer is 10 times
thinner than that of fig. 4.21, the Ry | reflection coefficient shows very little sensitivity to a
large variation in the longitudinal velocity of the oxide. Indeed, comparing the curves
corresponding to the oxide 1 and the oxide 4 in fig. 4.23 it can be seen that at a frequency of
100 MHz, a 30 % change in velocity (from 10400 m/s to 7280 m/s) results in only a 3 %
change in Ry 1, coefficient (from 0.696 to 0.674).

If, for some reason, the shear velocity of the layer is to be monitored then the normal incidence
Ry 1, coefficient cannot be used for such a purpose. It is useful, therefore to investigate the
normal incidence shear wave reflectivity (Rgg). Figure 4.24 shows the amplitude of the Rgg
coefficient from the 5.0 um thick oxide layer with different shear velocities. For comparison
with the longitudinal reflection coefficient, the mechanical properties of the aluminium and the
epoxy are the same as those of fig. 4.23, and the oxide shear velocity is altered in the same
proportions as the longitudinal velocities in fig. 4.23, as shown in table 4.11.
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material density (kg/m3) longitudinal shear velocity riilllggct’;;;n
velocity (m/s) |. (m/s) wrt oxide 1
aluminium 2820 6330 3120 N/A
€poxy resin 1170 2610 1100 N/A
oxide 1 1170 10400 6500 0%
(70 % porosity)
oxide 2 1170 9360 5850 10 %
oxide 3 1170 8320 5200 20 %
oxide 4 1170 7280 4550 30 %
oxide 5 1170 5200 3250 50 %

Table 4.11 Mechanical properties of the aluminium/5.0 pm thick oxide/epoxy system used for valuation of the
sensitivity of the normal and oblique incidence reflection coefficients.

The Rgg curves of fig. 4.24 show some improvement of sensitivity over the corresponding
curves of fig. 4.23. For example, comparing curves corresponding to the oxide 1 and the oxide
4, it can be seen that at a frequency of 100 MHz, a 30 % reduction in the shear velocity (from
6500 m/s to 4550 m/s) results in an 8 % change in Rgg coefficient (from 0.732 to 0.674). The
Rgg coefficient therefore shows twice the sensitivity of the Ry [, coefficient.

Oblique incidence reflection coefficients

Figures 4.23 and 4.24 show clearly that the normal incidence Rgg and Ry [, coefficients are not
sensitive enough even to large variations in the material properties of a 5 um thick oxide in
adhesive joints over the range of frequencies up to 100 MHz. It is therefore crucial to
investigate whether the oblique incidence reflection coefficients have better sensitivity than the
normal incidence techniques.

The system chosen for the parametric studies is the same as that used to compute the normal
incidence curves of figures 4.23 and 4.24, and comprises a 5.0 um thick oxide between the
aluminium and epoxy resin half-spaces. The density of the oxide layer is kept constant, but its
velocities vary. The initial values of the longitudinal and shear velocities are those of 70 %
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porous oxide, then the velocities are reduced in the same proportions with respect to their initial
values by 10 %, 20 % and so on. The material properties of the aluminium, epoxy, the 70 %
porous oxide, and the modified oxides are given in table 4.11. Figure 4.25 shows variations of
the four reflection coefficients, Ry 1, Rgg, R[S, and Rgy , to the changes in the oxide layer
velocities at a frequency of 50 MHz.

Figure 4.25(a) shows the longitudinal-longitudinal (Ry j ) reflection coefficient from the oxide
layers at a frequency of 50 MHz. It can be seen here that at the normal incidence (0 degrees),
the curves corresponding to oxides 1-4 cannot be separated. However, at angles of incidence in
the range between 55.0 and 85.0 degrees, the sensitivity increases substantially, and good
separation of all the four curves can be seen. Table 4.12 compares the sensitivity of the Ry j,
coefficient at normal incidence (0.0 degrees) and at 65.0 degrees.

angle of IRy 1| of curve 1 [Ry 1 | of oxide 2 IRy 1 | of oxide 3 [Ry 1 ! of oxide 4
incidence (% change (% change (% change (% change
wrt oxide 1) wrt oxide 1) wrt oxide 1) wrt oxide 1)
0.0 deg 0.705 0.704 0.702 0.700
(0.0 %) (-0.1 %) (-0.4 %) (-0.7 %)
65.0 deg 0.473 0.422 0.381 0.356
(0.0 %) (-10.8 %) (- 19.5 %) (- 24.7 %)

Table 4.12 Sensitivity of Ry 1 coefficient to the change in the oxide velocities. Frequency 50 MHz.

From table 4.12 it can be seen that a 30 % decrease in velocities (IR 1 | curve of oxide 4)
reduces the amplitude of Ry [, by as much as 24.7 % at an angle of 65.0 degrees, and by as
little as 0.7 % at normal incidence (0.0 degrees) with respect to the Ry 1, reflection coefficient
from oxide 1.

Figure 4.25(b) shows the shear-shear (Rgg) reflection coefficient from the oxide layers at the
frequency of 50 MHz. As with the Ry [, coefficient, using oblique incidence can increase the
sensitivity of the measurements quite substantially. At normal incidence (0.0 degrees) all four
curves are very close to each other while, for example, at 32.4 degrees, good separation
between the curves can be seen. Table 4.13 compares the sensitivity of Rgg coefficient at
normal incidence (0.0 degrees) and at 32.4 degrees. For example, a 30 % decrease in velocities
(IRggl curve of oxide 4) reduces the amplitude of Rgg by 19.5 % at an angle of 32.4 degrees,
and by 0.7 % at normal incidence (0.0 degrees) with respect to the Rgg reflection coefficient
from oxide 1.
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|Rss| of oxide 1

[Rgg! of oxide 2

[Rgg! of oxide 3

Rgg! of oxide 4

i?lrclig(}zn%fe (% change (% change (% change (% change
wrt oxide 1) wrt oxide 1) wrt oxide 1) wrt oxide 1)
0.0 deg 0.741 0.739 0.734 0.728
(0.0 %) (- 0.3 %) (- 03 %) (- 1.8 %)
324 deg 0.657 0.623 0.581 0.529
(0.0 %) (- 5.2 %) (-11.6 %) (- 19.5 %)

Table 4.13 Sensitivity of Rgg coefficient to the change in the oxide velocities. Frequency 50 MHz.

Figure 4.25(c) shows the longitudinal-shear (Rgy ) reflection coefficient from the oxide layers

at a frequency of 50 MHz. Here, the best sensitivity can be observed at angles around 65.0

degrees. Table 4.14 shows the sensitivity of the Rgy, coefficient at an angle of 65.0 degrees.

angle of [Rgy | of oxide 1 [Rgy | of oxide 2 IRgy | of oxide 3 IRgy | of oxide 4
incidence (% change (% change (% change (% change
wrt oxide 1) wrt oxide 1) wrt oxide 1) wrt oxide 1)
65.0 deg 0.544 0.569 0.586 0.594
(0.0 %) (4.6 %) (7.7 %) (9.2 %)

Table 4.14 Sensitivity of Rgy coefficient to the change in the oxide velocities.Frequency 50 MHz.

Figure 4.25(d) shows the shear-longitudinal (Rgy ) reflection coefficient from the oxide layers

at a frequency of 50 MHz. The practically usable range is between 0.0 degrees and the

longitudinal critical angle, which is 29.5 degrees here. Above the longitudinal critical angle, the

reflected longitudinal wave is inhomogeneous and cannot propagate away from the oxide

interface. Some sensitivity can be found at angles just a few degrees below the longitudinal

critical angle (see fig. 4.25(d)). Table 4.15 shows the sensitivity of the Rgy, coefficient at an

angle of 28.0 degrees.
angle of IRgy | of oxide 1 IRgy | of oxide 2 [Rgy | of oxide 3 ‘ IRg1 | of oxide 4
incidence (% change (% change (% change (% change
wrt oxide 1) wrt oxide 1) wit oxide 1) wrt oxide 1)
28.0 deg 0.610 0.653 0.683 0.700 “
(0.0 %) (7.0 %) (12.0 %) (14.8 %)

Table 4.15 Sensitivity of Rgy coefficient to the change in the oxide velocities.Frequency 50 MHz.

From fig. 4.25 and tables 4.12-4.15 it can clearly be seen that the oblique incidence technique”

can substantially increase the sensitivity of the reflection coefficient method to variations in

material properties of thin layers.
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The last example to be given in this section is the frequency domain shear-shear reflection
coefficient at an angle of 32.4 degrees. This angle of incidence was determined from fig.
4.25(b) as the angle increased sensitivity. Figure 4.26 shows the frequency domain Rgg
reflectivity at an angle of 32.4 degrees. The sensitivity of the Rgg coefficient here is good and
increases with frequency. Figure 4.26 can be directly compared to figures 4.23 and 4.24,
because they were obtained using the same material properties for the alurniniﬁm, the epoxy and
the oxide layers, given in table 4.11. The comparison shows that the 32.4 degree Rgg
coefficient of fig. 4.26 is much more sensitive to changes in the oxide layer than the normal
incidence Ry 1, coefficient of fig. 4.23, and the normal incidence Rgg coefficient of fig. 4.24.

4.5 Thin layer approximation.
Derivation

The theory for calculating the ultrasonic reflectivity from a multilayered viscoelastic plate is
given in chapter 3. This theory is exact and valid for layered systems of any thicknesses. There
are some simple cases, however, where an approximate theory can be obtained as a
simplification of the exact theory. Simplification means that for a specific case, only the most
important parts of a general theory are used. Simplified theory is no longer general, but it can
give us better physical insight into the phenomena. The exact theory can then be used to find the
limits of applicability of the approximation. The derivation of the matrix formulation of the thin
layer approximation has been done together with my co-worker Mike Lowe.

The starting point of our derivations is eqn (3.7) of chapter 3 of this thesis, relating the stress-
displacement vector one side of the layer to the stress-displacement on the other side,

{(Vidp)} = £, {(Vk(©)}, | (4.46)

where the transfer matrix is given by eqn (3.8) as,
L, = M(d) M0 @447

The transfer matrix Sﬁ( is expressed here as a product of two 4 x 4 complex matrices given by
eqn. (3.1). Let us assume that the origin of the coordinate system lies on the bottom boundary
of the layer (see fig. 4.27). Therefore, at the bottom of the layer xo = 0, and at the top of the
layer xp = di, where dy is the thickness of the layer Equation (4.47) can be re-written as,

L= M) M0, (4.48)
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where the subscript, k, was omitted here for clarity. It is possible to calculate the transfer matrix
& in closed form. Its terms are given below:

C - .
L11 =§(gp + gp 1) + stz(gs + & 1) >
asC
Li2=%x% (gp - gp'l) +Bps (-g4 + gs'l) ,
L13 =iopCP2s (g, + g1 - g¢- g )
13 p gp gp gS gS ’
impC2a;
Li4= p (&p- gp'l) + 2iwpBp3s2 (g4 - gD,

Ab2s 1y, CBs ]
L21="_~(&p-g 1)+—2-EB—(-gs+gs b,

1,,C .
L22= BZSZ (gp+gp 1) +§(gs + gg 1) s

2Aimps2p4 impC2
_2800psTBT o 1y pBB

( p'gp (gs'gs-l),

Log=L13,

- S P |
L31—2imp(gp+gp gs-8 >

2

oS
L32 = (gp gp-l) +—

AL (gS gD,

B
2Biw
L3z=L22,

L3g=L12,

Bs?
2Biwp

A - -
L41= (gp'gp 1)+ (gs'gs 1):

201mp
Lg2 =131,
L43=L21,

L4aqg=L11, (4.49)
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where the terms A, B, C, &p and g, are given by eqn (3.2), putting x

A= (102912, B=(1-p%H12, C=1-2p%2

When thickness of the layer, d, becomes small then,

gy =1+ imAorld,

g, ~ 1 +ioBpld,

which gives,

-lz

gp- gp'1 ~ 2imAorld,

go+tgl=2,

g - 81~ 2imBpld.

(4.50)

(4.51)

(4.52)

The approximation here takes into account only the constant and linear terms of the Taylor
expansion with respect to d, around d = 0. Equations (4.51) states therefore the assumption on
which the whole thin layer approximation will be built. Substituting eqn (4.52) into eqn (4.49)
gives the expression for the transfer matrix & as,

1

icos(2B2a‘2-1)d

-isd

1

0
-w2p[1-4s2B2(1-B20r2)]d

1

ios(2p2or2-1)d

-w%px; ]

0

-icosd

1

(4.53)

Equation (4.53) is the thin layer approximation of the stress-displacement transfer matrix of
eqn. (4.49) and is dependent on three parameters: the frequency of excitation ®, thickness of

the layer d, and a variable s, defined in eqn (2.60), characterising the angle of incidence of the.
exciting wave.

When the incident wave propagates in the direction perpendicular to the layer then the direction
cosine of eqn (2.60) N1 =0, and therefore s = 0. The stress-displacement transfer matrix & of
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eqn (4.53) then simplifies to,

1 0 0 -w?pd |

0 1 -a?pd 0

¥ = 1 . (4.54)
0 4 1 o0 :
pp?
a0 o 1
M) _

The form of the matrix & in eqn (4.54) is simple and its terms have a straightforward physical
interpretation, as described below. Using eqn (2.17) we have,

paZ = A4+2u - i(A'+2u"), (4.55)
and therefore,
1 1
W SRl (4.56)

where ky] is the dynamic stiffness per unit area of the layer in the direction perpendicular to the
plane of the layer (normal stiffness). Using eqn (2.18) we have,

pR2 = p-ip, (4.57)
1 1
2T (4.58)

where kT is the dynamic stiffness per unit area of the layer in the direction parallel to the plane
of the layer (tangential stiffness). Since p is the density of the layer and X5 is the layer
thickness then,

pxy=m, (4.59)

where m is the mass of the layer per unit area. Combining equations (4.54), (4.56), (4.58), and
(4.59) we have,

2
1 0 0 w“m (G55 (0-221
0 1 -0?m 0
91 91
) T 0 =9 ¢ - (4.60)
0 - 1 0 uy u
1
| 0 0 1| Ny bottom \u2Jt0P



Chapter 4 137
Theoretical predictions of the reflection coefficient from thin layers

Here we can see that even for a simple normal incidence case the stress components are not
equal on each side of the layer. This is not the case when simple 'spring' boundary conditions,
given by eqn (2.111), are used instead of the thin layer approximation. There we assumed that
stresses are equal on both side of the boundary, ie the layer has a negligible mass.

Comparison of the spring model with the exact theory

There are three different models of the behaviour of thin layers available and discussed in this
thesis. The first one is an exact model, developed in chapters 2 and 3, and used in sections 4.1-
4.4 of this chapter. In the exact model the layer is considered as a volume of continuum material
where the mechanical waves propagate in the same manner as in an infinite medium. The
response of the layer is defined by the boundary conditions at both sides of the layer, and is
obtained in terms of the amplitudes of the bulk waves present in the layer.

The second model presented in this thesis is an 'engineering' discrete model of the layer
behaviour. Here it is assumed that when the frequency of excitation is low, the only important
feature of a thin layer is its stiffness (see section 1.4.1 for more details). Therefore, for low
frequencies, the layer can replaced by a spring. Such a model, if accurate enough, can give us
good insight into the physics of thin layers at low frequencies of excitation. Let us call this
model the spring model. | '

The third model is the thin layer approximation derived directly from the continuous model. In
such a model, it is firstly assumed that the layer conforms to the equations of continuum
mechanics, and the response of the layer is described in terms of the plane wave amplitudes
propagating in the layer. Then the thickness of the layer is assumed to be small and the limiting
case of the stress-displacement relationship on both sides of the layer is derived. The
derivations show that the general case of the thin layer approximation is far from being simple.
The simplest case is when the incident wave strikes the layer at normal incidence. Here, the thin
layer can be modelled it terms of its stiffness and mass. In other words, the derivations show
that the thin layer responding to normal incidence excitation can be modelled as a discrete mass-
spring system rather than a spring only system. :

Let us therefore compare the two approximate models to the exact one. The first example is a
0.1 mm thick epoxy layer between two aluminium half-spaces. Material properties of the
aluminium and the epoxy are given in table 4.1. Figure 4.28 shows the normal incidence
longitudinal reflection coefficient from the layer. The three different curves on the plot show the
predictions of the three different models. As can be seen from the figure, in the low frequency
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range, the spring model and the mass+spring model approximate the exact solution rather well.
The mass+spring model underestimates the exact theory, while the spring model overestimates
it. ‘

In fig. 4.29 the normal incidence longitudinal reflection coefficient from an 0.1 mm thick epoxy
layer in water is calculated (see table 4.1 for the material properties). Here it can be seen that the
mass+spring model approximates the exact theory well, while the spring model is not capable
of providing reasonable results even for very low frequencies.

Figure 4.30 shows the normal incidence longitudinal reflection coefficient from a 50.0 pm thick
oxide, embedded between aluminium and epoxy half-spaces. Material properties of the
aluminium, the oxide and the epoxy are given in table 4.1. The figure shows that the spring
approximation generates a reflection coefficient which is an increasing function of frequency,
which is the opposite to what the exact theory gives. The mass+spring model, however,
approximates the exact theory in the low frequency region rather well.

Figure 4.31 shows the normal incidence reflection coefficient predictions from an oxide wafer
in water. As before, material properties of the oxide and water are given in table 4.1. It can
clearly be seen from the fig. 4.31 that the spring model fails to model the response of the layer
even approximately, while the mass+spring model can be used to accurately predict the
behaviour of the layer in the low frequency range.

Limits of applicability of the spring model

Looking at figures 4.28 - 4.31, one can see that the mass+spring model can be successfully
used as a low frequency approximation of a thin continuous layer. This is not the case,
however, with the spring model which sometimes fails to work well. Let us therefore determine
the conditions in which the spring model can be used as a thin layer apprdximation. In order to
do so the normal incidence reflection coefficient using the mass+spring approximation will be
derived and compared with the reflection coefficient using the spring model.

Consider a layer of thickness L in between two half spaces as shown in fig. 4.32. Let us denote
the half-space, extending downwards from the bottom of the layer as medium number 1, the
layer as medium number 2, and the top half-space as medium number 3. Each of the three_
media are given their own densities and wave velocities, pj and c;, i = 1,2,3. Let us
furthermore assume that the layer (medium 2) has been approximated by a mass+spring
boundary. Using eqn (4.60), which was derived for the mass+spring model, the normal
stresses and displacements at the top of the layer can be described in terms of the stresses and
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displacements at the bottom of the layer as,

1

L) =u(0) + 1~ 6(0), . 4.61
u(@) u()+k26() (4.61)
o(L) = 6(0) - @2 m, u(0), , (4.62)

where, by equations (4.56), the stiffness of the layer is given by,

2
P2 €
ky=—1—, (4.63)

and, by equations (4.59), the mass of the layer is given by,
m2 = p2 L. (4.64)

Setting x =0 in equations (4.8) and (4.9), the displacements and normal stresses at the bottom
of the layer can be expressed as,

u@©0) = Ty +Ryq, (4.65)
o(0) = iwz1 (T1-Ry), (4.66)

where @ is the frequency of excitation, T and Ry are the wave amplitudes in the bottom half-
space, and z1 is the acoustic impedance of medium 1, zy = p{¢y. Similarly, using equations
(4.19) and (4.20), the displacements and normal stresses at the top of the layer can be
expressed as,

ulL) = T3, (4.67)
o(L) = iwz3 T3, | (4.68)

where Tj is the amplitude of the transmitted wave in the top half-space, and z3 is the acoustic
impedance of medium 1, z3 = p 3¢3. Putting equations (4.65), (4.66), and (4.67) into egn
(4.61), we have, |

1.
T3 =T1 +R1 +510)21 (Tl - Rl ) . (469)

Putting equations (4.66), (4.67), and (4.68) into eqn (4.62), we have,

iwz3 T3 =iwzg (T1-Ry)- @2 my (T{+Ry). (4.70)
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In order to solve the reflection coefficient problem, it is necessary to set the amplitude of the
incident wave, T1, to unity and solve for the amplitude of the reflected wave, R;. Putting

Tq =1, and eliminating T3 from equations (4.69) and (4.70) the following expression can be
finally derived,

i 2
z1 - 123 - E(ZIZ3 - 22)

Ry = . : (4.71)
10 2
z1 + z3 - k—2(ZIZ3 + 22)

Equation (4.71) describes the normal incidence reflection coefficient from the mass+spring
boundary in terms of its acoustic impedance and stiffness as well as acoustic impedances of the
neighbouring half-spaces. In order to obtain an expression for the reflection coefficient from the
spring only boundary, it is necessary to set the mass of the layer to zero. Setting, my =0,
means that the density of the layer, py = 0, by eqn (4.64), and therefore its impedance, zy = 0.
The reflection coefficient from the spring boundary can then be obtained by setting z5 = 0 in

eqn (4.71),

iw
21 -23 - @2123
R = : : (4.72)
1M
Z] + Z3 - 1—52123

The normal incidence reflection coefficient from a spring boundary was derived by Tattersal
(1973), and shown in eqn (1.3) of this thesis. Equation (1.3) can be obtained from eqn (4.72)
by taking the frequency, , to be negative, thus conforming to Tattersal's notation convention.

Having derived the expressions for reflection coefficients from mass+spring and spring
boundaries, it is now possible to find the conditions in which the spring model gives poor
approximations. Comparing equations (4.71) and (4.72) it can clearly be seen that the spring
model will be a satisfactory approximation of the mass+spring model only when the square of
the layer's impedance is much smaller then the product of the impedances of the neighbouring
half-spaces, that is, ’

z% << z1z3. 4.73)

It has been shown in this chapter (see equations (4.51) - (4.60)) that the mass+spring model
approximates the behaviour of thin layers satisfactorily only at low frequencies, when the
conditions stated in eqn (4.51) are met. Therefore, the spring model can be applied successfully
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only when both requirements, stated in equations (4.51) and (4.73) are concurrently satisfied.

Let us then analyse figures 4.28 - 4.31 again applying the criterion stated in eqn (4.73). Table
4.16 shows the impedances of the materials used in the reflection coefficients calculations of
figures 4.28 - 4.31 as well as the left hand side and the right hand side terms used in criterion
(4.74). The values of impedances were taken from table 4.1. f

2
Figure system z z z
analysed 1 ) 3 ) 13

aluminium/
epoxy/
aluminium
water/
epoxy/
water
aluminium/
oxide/
epoxy
water/
oxide/
water

Fig. 4.28 17.85 E6 3.05 E6 17.85 E6 93 El12 | 3190EI12

Fig. 4.29 1.49 E6 3.05 E6 149 E6 9.3 E12 22E12

Fig. 4.30 17.85 E6 12.17 E6 3.05E6 | 161.3 E12 544 E12

Fig. 4.31 1.49 E6 12.17 E6 149E6 | 161.3E12 2.2E12

Table 4.16 Application of criterion given in (4.73) to the results shown in fig. 4.28 - 4.31.

Looking at table 4.16 it can now clearly be seen that the system of fig. 4.28,
aluminium/epoxy/aluminium, is the only one which satisfies criterion (4.73). The other systems
fail to do so to a greater or lesser extend indicating that the application of the spring model
approximation will be erroneous there, even at very low frequencies. This is particularly the
case for the system of fig. 4.31 where z% is much higher than z1z3, which is the opposite to
what criterion (4.73) demands. Inspection of figures 4.28 - 4.31 confirms the above findings.

4.6 Conclusions

It has been shown in this chapter that the reflection coefficient method can be used to detect the
presence of thin liquid and solid layers. The liquid layers are rather easy to detect using normal
incidence techniques with either longitudinal or shear waves. If it is impossible to detect the
presence of the liquid layer using the conventional normal incidence longitudinal technique,
then the shear wave normal incidence method is capable of providing the answer. The shear-
stiffness of liquid layers is extremely low, therefore the normal incidence shear wave
reflectivity from these layers is close to unity. However, because the normal incidence shear
wave method suffers from unreliable coupling, it might be desirable to avoid this problem by
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using the oblique incidence technique.

When there are solid layers to be detected, then the reflection coefficient methods may not be
sufficiently sensitive, particularly when the impedance of the solid layer is similar to one of the
neighbouring half-spaces. As the solid layer is stiff in the shear direction, the normal incidence
shear wave reflection coefficient is not as advantageous from the sensitivity point of view as it
was with liquids. However, it has been shown that the oblique incidence method can be much
more sensitive to variations in the properties of solid layers than either the normal incidence
longitudinal or shear wave techniques.

It has been also shown in this chapter that, in general, the 'engineering' spring model
approximation of a thin layer is not accurate enough to be used even at very low frequencies.
The mass plus spring model should be used instead. However, in some circumstances it is
valid to apply the spring model as an approximation of a thin layer.
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AYy
Tl . T2 T3

medium 1 layer (medium 2) medium 3 X

Y

x=0 . x=L

Fig 4.1 System used for the calculation of the normal
incidence reflection coefficient from the layer.
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Fig. 44  Normal incidence reflection coefficient from the aluminium/ 100 pm thick
layer/epoxy system. Properties of aluminium and epoxy are given in table 4.1, and
properties of the layer are given on table 4.3. (a) Curves corresponding to cases 1-3
in table 4.3, (b) Curves corresponding to cases 4-7 in table 4.3.
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incident reflected
longitudinal longitudinal
or shear or shear
V4 V4 Y V4 V4 7/ V4 V4
V4 V4 4 V4 V4 V4 V4
glass V4 7/ V4 V4 7/ V4
glass / 4 V4 V4 4
V2 7/ 7/ Vi Vs % V4
V4 V4 V4 V4 V4 V4 V4 Y
silicone
fluid

Fig 4.5 Thin silicone fluid layer separating glass half-spaces.
Material properties used in reflection coefficient
calculations are given in table 4.4.
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1.00

@ .

Amplitude
c‘?
-2
¢
4

-1.00 0.00 Time (| $) 3.50

1.00
-
BF
3
=
-1.00 :
0.00 Time (W s) 3.50

Fig. 47 Normal incidence longitudinal excitation response of the system comprising two 3.0
mm thick glass plates with and without 0.5 um thick silicone fluid in between. FF
is the front face reflection, LL is the longitudinal reflection coming from the silicone
layer, while BF is the reflection coming from the back of the glass/silicone/glass
system. (a) Silicone layer present, (b) No silicone layer present.
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Fig. 4.11 Normal incidence longitudinal excitation response of the system comprising a 3.0
mm thick glass plate and a 3.0 mm thick epoxy resin with and without a silicone
fluid in between. (a) No silicone layer present, (b) 0.5 pm thick silicone layer
present, (c) 5.0 um thick silicone layer present. FF is the front face reflection, LL1
and LL are the longitudinal reflections reflected from the silicone layer,
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longitudinal wave
incident

11.7 degrees

water
N
V4 P V4 V4
/7 J 3.0 mm
glass V4 Y
CpOXy l
. oo

water silicone
52.0 degrees fluid

Fig 4.17 Generation of the oblique incidence longitudinal wave in glass.
Angle of incidence in water is adjusted to 11.7 degrees
in order to generate the longitudinal wave in glass incident
at 52.0 degrees at the glass/silicone interface.

FF is the front face reflection, |

SS is the shear-shear reflection from the silicone layer,

LS is the longitudinal-shear reflection from the silicone layer,
SL is the shear-longitudinal reflection from the silicone layer,
LL is the longitudinal-longitudinal reflection from the layer.
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1.00

@) .

(LS+SL) 4 (LS+SL) )
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<4:>
q

100 0.00 Time () s) 3.50
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(LS+SL) Ls+SL),
.g LLl L]./Z SSl
% +H T e A -
g (LS+SL);LL,
-1.00 : :
0.00 Time (| 5) 3.50

Fig. 4.18 Oblique incidence response of the system comprising a 3.0 mm thick glass plate and
a 3.0 mm thick epoxy resin with and without a silicone fluid in between.
Longitudinal wave excitation at 11.7 degrees in water. (a) No silicone layer present,
(b) 0.5 pm thick silicone layer present. FF is the front face reflection, LS+SL is the
combined LS and SL reflection, LL is the longitudinal-longitudinal reflection, and
SS is the shear-shear reflection from the glass/epoxy interface.
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A2
L X9 k+1" boundary
[
dk layer
0 k' boundary

Fig. 427 Derivations of thin layer approximation.
Coordinate system position with respect to the layer.
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CHAPTER 5

Validation of the theory. ,
Accuracy of the reflection coefficient measurements

5.1 Introduction

Chapter 5 is concerned with the practical aspects of ultrasonic reflection coefficient
measurements from multilayered viscoelastic plates at normal and oblique incidence. Here a
detailed description of the measurements is given, the validation of the theory developed so far

is carried out, and an error assessment of the experiments is worked out.

In chapters 2, 3, and 4 various theories were developed in order to model the response from
multilayered viscoelastic plates to real ultrasonic transducer excitation. The most complicated
one has been given in section 3.4 where the steady state harmonic field generated by a finite-
sized transducer is represented as a Fourier integral of the plane waves of the same frequency,
but different angles of propagation. Similarly, the plate response to such an excitation is
obtained in the form of the Fourier integral of the reflected plane wave components. Despite its
generality, however, this theory suffers major drawbacks in practical use. First of all, in order ‘
to model responses of multilayered systems to impulse excitation, the input pulse has to be
firstly Fourier-transformed to the frequency domain, and then, for each harmonic steady-state
process, further decomposition of the finite beam has to be carried out (a single Fourier integral
for the two-dimensional case, a the double Fourier integral for the three-dimensional model).
After solving the plane-wave reflection coefficient problems for each of the wave components,
the inverse Fourier integrals, first in the spatial domain and then the frequency domain, have to
be calculated. As one can clearly see, this poses a very substantial demand on the power of the
computer used. For this reason, only the two-dimensional models were used for the purpose of
the theory validation. The second drawback is that the more general theory is complicated and
cumbersome to use, and therefore a better physical insight into the ultrasonic reflection problem
might be obtained using less sophisticated, and perhaps less general, but simpler models. These
simplified models can be less accurate than the exact one, but they are very handy to use, and
therefore more appealing in practice. However, an awareness of their limitations have to be
born in mind, as limits of applicabilty are inherent parts of the simplified theories.



Chapter 5 176
Validation of the theory. Accuracy of the reflection coefficient measurements

The infinite plane wave reflection coefficient model is one of the simplified theories used in this
chapter. Here, the transmitter and receiver are treated as infinite planes, or in other words, the
sizes of the transducers are considered as second order factors and are therefore disregarded.

When a reliable measurement procedure is established and the theoretical mgdels derived, the
most important question is the degree of agreement between the two. First of all we would like
to know how good the most sophisticated theory is in comparison with the measurements and,
if discrepancies are encountered, where the differences come from. Then, the simplified theory
can be validated against the measurements and the more accurate theory. The intention of this
chapter is to give a quantitative answer to these problems.

In section 5.2 the methodology of the reflection coefficient measurements at oblique incidence
is given in detail. Descriptions of the measurement rigs, the transducer arrangements, as well as
the electronic equipment and data processing procedures are given.

In section 5.3 one of the experimental procedures described in section 5.2 is used to measure
the reflection coefficient at a water/aluminium interface, which serves here as an example of an
easily accessible interface. The theoretical predictions using the infinite plane wave model and
the finite transducer theory are compared with the measurements.

In section 5.4 measurements of the reflection coefficients from an aluminium/water interface are
performed. This is the first example of the embedded interface problem, where the
measurement procedure has to take into account different angles of refraction of different
waves, and the pulse reverberations within the plate. The measurements are compared here with
the finite transducer and the infinite plane wave models.

In section 5.5 the system comprising a very thin silicone fluid layer between two glass plates is
analysed both experimentally and theoretically. Comparisons between the theoretical predictions
and the measurements at some chosen angles of incidence are presented to establish the validity

of the theoretical models, as well as the accuracy of the experiments.

Section 5.6 summarises the main points of the chapter.

5.2 Methodology of the reflection coefficient measurements

In section 2.3, the reflection coefficient was defined as the ratio of the amplitudes of the
reflected harmonic plane waves to the amplitudes of the incident harmonic plane waves. Thus
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the reflection coefficient measurement procedure can be performed in two stages. Firstly, in
order to measure the incident wave, a reference signal can be captured in a face-to-face
transducer arrangement as shown schematically in fig. 5.1(a). Subsequently, the probes can be
arranged as shown schematically in fig. 5.1(b), so that the transmitter and receiver are inclined
at a given angle 0 with respect to the perpendicular to the interface. Division of the spectrum of
the reflected signal by the spectrum of the reference signal then yields a reflection coefficient
spectrum for a given angle of incidence 0 and a given frequency range.

5.2.1 Description of the measurement rig

In order to be able to measure oblique incidence reflection coefficients a mechanism for the
probe arrangement was designed and manufactured. Let us illustrate the concept behind the
design of the mechanism. Figure 5.2 shows two ultrasonic transducers, transmitter and
receiver, attached to two arms, the right arm and the left arm, which are in turn attached to‘ a
bearing which is the common axis of rotation for the two arms. Both transducers are positioned
so that they point towards the axis of rotation of the arms. It can clearly be seen from the
drawing that both transducers point towards the axis of rotation of the arms regardless of the
angle, 0, they make with the line perpendicular to the specimen. If the top face of the specimen
lies in the plane of the axis of rotation of the arms, then the transmitter and the receiver are
directed towards the same point on the face of the specimen regardless of the angle 0. This in
turn means that the reflection coefficients from free surfaces can be measured at different angles
of incidence by simple adjustments of the angle 0, and without any repositioning of the
specimen. The specimen, however, has to be carefully positioned before the first measurement
is taken, as its top surface must lie in the plane of the axis of rotation of the arms and be
perpendicular to the vertical plane which bisects the angle between the arms. Therefore, the

measurement rig has to be capable of fine adjustments of the the specimen's vertical position,
(translation along the y direction), pitch (0, rotation), as well as roll (O« rotation).

Figure 5.3 shows the drawing of the reflection coefficient meter (RCM). The whole rig can be
divided into three separate mechanisms, the first being the arm and the transducer holder
mechanism, the second the lead screw and follower mechanism, and the third one the specimen
positioning table mechanism. i

As described above, the arm and the transducer holder mechanism is responsible for the
accurate and reliable positioning of the ultrasonic probes. The axis of rotation of the two arms is
near the base of the RCM, where a large diameter bearing can be seen. This bearing is the most
important element of the RCM design, as it is required that the two transducers stay in plane
regardless of the angle of inclination of the arms.



Chapter 5 178
Validation of the theory. Accuracy of the reflection coefficient measurements

The lead screw and follower mechanism is responsible for the rotation of the arms so that the
angle of incidence of the transducers can be adjusted. The main requirement here is that the
positional links are of the same length and the follower path is a straight line passing through
the axis of the main bearing.

The specimen positioning mechanism is responsible for the adjustment of the position of a
specimen before the reflection coefficients are taken. As described previously, the mechanism
can rotate a specimen about two perpendicular axes (pitch and roll), and can change its
elevation.

5.2.2 Electronic equipment used

The electronic equipment used for the reflection coefficient measurements can be divided into
three main parts, the first being responsible for the dynamic excitation and reception of the
response from the specimen under test, the second one is the data acquisition unit, while the
third performs signal processing of the incoming data (see fig. 5.4).

The system used for the dynamic excitation and reception of the response from the tested
specimen comprises the pulser-receiver and a pair of ultrasonic transducers. The pulser
generates short duration electrical spikes, hundreds of volts high, which are converted into
acoustic pulses by the transmitting ultrasonic transducer. The receiving ultrasonic probe
converts the acoustic pulses coming from the system under test into electrical pulses which, in
turn, are amplified to obtain signals whose amplitudes are of the order of one volt.

A digital oscilloscope has been used as the data acquisition unit. It converts the data coming
from the pulser-receiver system into digital format, which can be stored in a file or processed.

A desktop IBM PC compatible microcomputer has been used for the signal processing. The
microcomputer also controls the digital oscilloscope and other peripheral devices like plotters
and printers.

5.2.3 Description of data processing sequence

The reflection coefficient is defined as the ratio of the amplitude of the reflected wave to the
amplitude of the incident wave. In experimental work, the reflection coefficient is obtained in
two stages. Firstly the transmitter and receiver are carefully arranged face-to-face, as shown in
fig. 5.1(a), and a pulse transmitted between them is captured. This pulse can be regarded as the
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reference signal with respect to which reflected signals can be assessed. After the specimen has
been mounted on the table, carefully aligned, and the angle of the probes adjusted (see fig.
5.1(b)), the reflected pulse is captured and a Fast Fourier Transformation is performed on it.
The division of the spectrum of the reflected pulse by the spectrum of the reference pulse yields
the reflection coefficient curve in the frequency domain. Figure 5.5 shows schematically the
data processing sequence described above. Examples of the reference signal and the reflected
pulse signal are given in section 5.3, where the ultrasonic reflectivity from a water/aluminium
interface is measured.

5.3 The reflection coefficient from the water/aluminium interface

The water/aluminium interface reflection coefficient is the first of several systems used in this
thesis for comparison between the various theoretical models and the measurements. The choice
to run the first comparison on the water/aluminium system is rather natural. Indeed, the
measurements of reflections from exposed surfaces are relatively straightforward; they are
much less complicated than measurements from the embedded interfaces. From the theoretical
point of view, the water/aluminium system involves modelling the reflection coefficient
between two semi-infinite half-spaces, which is one of the simplest cases to compute.

5.3.1 Theoretical predictions using the infinite plane wave model and totally
elastic media

In order to find out what we should expect to get from the measurements in terms of amplitude
variation at different angles of incidence, let us first investigate the water/aluminium interface
reflectivity theoretically. Figure 5.6 shows the calculated reflection coefficient curve as a
function of angle of incidence for a water/aluminium interface when assuming a single infinite
plane wave on the boundary. The water is modelled here as an inviécid liquid, and the
aluminium as a totally elastic solid. From fig. 5.6 it can be seen that there are three important
angular ranges featuring different states of the reflected and transmitted fields.

The first angular zone is between zero and about 13 degrees. Here the transmitted field (the
field in aluminium) consists of simple plane longitudinal and shear waves where the
wavenumbers are real vectors. In other words both longitudinal and shear waves propagate
from the interface carrying energy away from the boundary.

The next angular zone is the incidence range between approximately 14 and 28 degrees. In this
range, by Snell's law, the wavenumber of the longitudinal wave in the aluminium is complex,
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while the wavenumber of the shear plane wave in the aluminium remains real. This means that
the longitudinal wave becomes inhomogeneous and does not propagate from the interface, but
moves in the direction parallel to the boundary. As in the angular range 0 - 13 degrees, the
shear wave is homogeneous and capable of taking some energy away from the boundary.

The third angular range lies between 29 and 90 degrees, where both longitudinal and shear
waves are inhomogeneous. Here both kinds of waves propagate in the direction parallel to the
interface making it impossible to take the energy away from the boundary. Therefore this
angular range is called the range of total internal reflection as the energy input from the incident
wave is returned back to the fluid making the reflection coefficient equal to unity.

5.3.2 Measurements

A 25 mm thick aluminium block was used to measure the reflection coefficient from a single
interface (see fig. 5.7). The data processing procedure used for this experiment is simple and
involves division of the pulse reflected from the interface by the reference pulse captured in the
face-to-face arrangement of the probes at the beginning of the measurement session or
immediately after it.

Figure 5.8(a) shows the time history of the reference pulse obtained during the measurements,
which were carried out using a pair of the 10 MHz Rolls-Royce Mateval wideband transducers.
The characteristics of spectrum of the reference signal, shown in fig. 5.8(b), are typical for
current good quality ultrasonic probes. The centre frequency is around 9.5 MHz, while the
useful bandwidth for accurate measurements lies between about 7 MHz and 14 MHz.

Figure 5.9(a) shows the time history of the pulse reflected from the water/aluminium interface
when the transmitter and receiver were inclined at an angle of 20 degrees with respect to the
normal to the interface (see fig. 5.7).

The division of the reflected pulse spectrum of fig. 5.9(b) by the reference spectrum of fig.
5.8(b) yields the reflection coefficient for the angle of incidence of 20 degrees. Figure 5.10
shows the result of the division. Here it can be seen that in the useful frequency range (between
4 MHz and 14 MHz), the measurement is less noisy than anywhere else, and therefore, it
makes sense to take the measurements only in this frequency band. It is now possible to divide_
this frequency range into ten 1 MHz wide intervals, and plot the average values of the reflection
coefficient for each of the intervals. For the angle of 20 degrees the values of the reflection
coefficient are almost the same indicating that at this angle of incidence the reflection
phenomenon is frequency independent.
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Applying the procedure described above, it is possible to obtain the reflection coefficient curves
for different angles of incidence and different frequency bands. Figure 5.11 shows the results
of measurements performed for angles of incidence in the range between 9.5 and 40.0 degrees.
At the angle of incidence of 9.5 degrees the transmitter and receiver were touching each other. It
was therefore impossible to measure the reflection coefficient below 9.5 degrees. The curve
marked by squares is the average value of the reflection coefficient in the frequency band
between 4.5 and 5.5 MHz, while the curve marked by the dots has been obtained for the
frequency band between 7.5 and 8.5 MHz.

5.3.3 Comparison between the infinite plane wave theory and the
measurements

Comparing the theoretically calculated curve (see fig. 5.6) with the measured one (see fig.
5.11) it can be seen that agreement is good everywhere except for the angular range in the
vicinity of the longitudinal critical angle and the angular range between about 28 and 33
degrees, where the Rayleigh mode is excited. It was therefore necessary to improve the

theoretical model to account for this phenomenon, since the confidence in the measurement was
high.

5.3.4 Refinement of the infinite plane wave model to include viscoelastic
effects in the aluminium

Figure 5.12 shows the reflection coefficient curve for the aluminium/water interface assuming
no attenuation in water, small attenuation in aluminium (longitudinal attenuation 0.002 nepers
per wavelength, shear attenuation 0.0002 nepers per wavelength, frequency 7 MHz) and a
single infinite plane wave input. Comparison between fig. 5.12 and fig. 5.6 clearly shows that
the inclusion of small attenuation in the solid affects the reflection coefficient amplitude around
the Rayleigh angle, but only by a small amount. Therefore, the damping in the aluminium was
increased in order to reach agreement between the plane wave theory and the experiments. In
order to do so, the influence of longitudinal and shear wave attenuation on the reflection
coefficient was studied. .'

Figure 5.13 shows the variation of the reflection coefficient due to different shear attenuation in
aluminium. Here the longitudinal attenuation was removed from the model, and the shear
attenuation set at 0.0001, 0.001, 0.01, and 0.05 nepers per wavelength. The frequency of the
incident wave is 7 MHz. From fig. 5.13 it can be seen that the shear attenuation does not affect
the reflection coefficient amplitude around the longitudinal critical angle, but strongly influences
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the depth of the dip at the Rayleigh angle.

Fig. 5.14 shows the angular variation of the reflection coefficient due to the different
longitudinal attenuation in the aluminium. This time, the shear attenuation was removed from
the system, while the longitudinal attenuation was set at 0.001, 0.01, 0.1, and 0.2 nepers per
wavelength. The frequency of the incident wave is 7 MHz. The figure shows that the
longitudinal attenuation affects the reflection coefficient both in the vicinity of the longitudinal
critical angle and around the Rayleigh angle.

The influence of the material damping on the reflection coefficients in the vicinity of the critical
angle has been reported in a number of papers (see for example Becker and Richardson 1970,
1972)

To achieve agreement between the measurement and the theory, firstly the longitudinal
attenuation was set so that the amplitude of the reflection coefficient around the longitudinal
critical angle (13.45 degrees) was reduced from 1.0 for the non-attenuating system (see fig.
5.6) to about 0.93 (see fig. 5.11), as the longitudinal attenuation is solely responsible for that
change (see fig. 5.13). Subsequently, the shear attenuation was chosen to obtain the required
dip in the vicinity of the Rayleigh angle. The attenuation coefficients were found to be 0.1 and
0.02 nepers at 7 MHz for the longitudinal and shear waves respectively.

Figure 5.15 shows the result of "tuning" the longitudinal and shear attenuation coefficients in
the viscoelastic model, so as to obtain good agreement with the experimental results in fig.
5.11. Good agreement between the two curves can be seen. However, the coefficients obtained
in this way are far too high for aluminium and hence the depth of the dip at the Rayleigh angle
and the reduction of amplitude at the longitudinal critical angle must be due to some other
physical phenomenon. The results shown above indicate that the infinite plane wave theory
cannot fully explain the observed behaviour and it will be shown in the next section that it needs

to be refined to include the finite dimensions of the transmitter and receiver.
5.3.5 Theoretical calculations using the finite transducer model predictions

Figure 5.16 shows the variation of the reflection coefficient at a frequency of 7 MHz, as a

function of angle of incidence for a pair of finite transducers obtained using the model.
discussed in chapter 3. The longitudinal and shear wave attenuation in aluminium was 0.002

and 0.0002 nepers per wavelength. The theoretically obtained curve agrees well with the

experimental results shown in fig. 5.11.
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Comparing the reflection coefficient curve obtained from the infinite plane wave theory (see fig.
5.12), and the same curve obtained using the finite transducer model (see fig. 5.16), a marked
reduction of the amplitude around the longitudinal critical angle and a considerable increase of

the dip magnitude at the Rayleigh angle can be seen.

It can be shown that the decrease in the received signal is caused by the nonspecular reflection
of the bounded beam. Here, the receiving transducer 'misses’' part of the reflected field and
therefore does not capture the whole reflected signal. This phenomenon has been reported in a
number of papers, see for example the experimental work done by Neubauer (1973), Breazeale
et al. (1974, 1977), and the theoretical work done by Bertoni and Tamir (1973).

To illustrate this phenomenon the spatial variation of the reflected field along the
aluminium/water interface was calculated for an incident beam 10 mm wide, and Gaussian
variation of the field amplitude across the beam. Figure 5.17 shows the displacemeht
component normal to the face of the receiver for the arrangement of the probes shown
schematically in fig. 2.14. The horizontal axes in fig. 5.17 correspond to the x'1' axis of the
receiver coordinates in fig. 2.14, but their directions are opposite to that shown in fig. 5.17.

The vertical axes in fig. 5.17 are the amplitudes of the displacement field in the direction of x 5

axis of the receiver coordinates in fig. 2.14.

The frequency of the incident field and the damping coefficients within the aluminium are the
same as used for the calculations presented in figures 5.16 and 5.12.

Figure 5.17(a) shows the profile of the reflected field at normal incidence and the reference field
which was obtained setting the reflection coefficient equal to unity. The reflected field has the
same distribution of displacements as the reference signal and it is effectively the incident field
multiplied by the infinite plane wave reflection coefficient for normal incidence which is about
0.84 (see fig. 5.6). From fig. 5.17(a) it can be seen that at normal incidence the reflection is
specular.

Figure 5.17(b) shows the reflected field at the longitudinal critical angle. Here it can be seen
that the shape of the reflected beam is somewhat changed. Indeed, some non-specular reflection
takes place, caused most probably by the presence of the inhomogeneous longitudinal wave. At
the longitudinal critical angle the longitudinal wave becomes inhomogeneous, being capable of
transmitting energy in the direction parallel to the interface. The presence of water at the
boundary causes the inhomogeneous wave to 'leak’ the energy back to the water causing the
visible deformation of the reflected field by superimposing the leaky type of radiation which
decays exponentially along the interface. If the receiver is positioned to capture the specular
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(geometric) reflection only, then clearly, some reduction in the signal amplitude will take place.

Figure 5.17(c) shows the reflected field at an angle of incidence of 16.5 degrees, which is
about 3 degrees higher than the longitudinal critical angle. From this figure it can be seen that
the reflection is specular. The longitudinal wave is inhomogeneous here, and therefore
transmits some energy along the interface. The energy transmission of an mhémogeneous wave
is closely related to the magnitude and the extent of the displacement field due to that wave. The
bigger the amplitude and the extent of the field, the better the energy transmission. The
displacement field due to the inhomogeneous wave vanishes exponentially in the direction
perpendicular to the interface in the aluminium. The bigger the incidence angle above the critical
angle the more rapid the amplitude decay within the aluminium and therefore the energy
transmission in the direction parallel to the interface is smaller.

Figure 5.17(d) shows the reflected field at an angle of incidence of 25.0 degrees. It can be seen
that the reflection is specular here. The reflected field can be obtained by multiplication of the
reference reflection (see fig. 5.17(a)) by the reflection coefficient calculated for the infinite plane
wave excitation.

Figures 5.17 (e), (f) and (g) show the reflected field around the Rayleigh angle. From these
figures it can be seen that in the vicinity of this angle non-specular reflection takes place. Figure
5.17(f) shows the field at the Rayleigh angle (30.45 degrees). Here, the reflected field consists
of the specular (geometrical) reflection part and the leaky Rayleigh wave part, which increases
quickly within the specular reflection range and then decays exponentially along the interface in
a leaky wave manner. These two components are out of phase with respect to each other and
therefore some cancellation of the signal within the specular reflection range takes place. The
maximum intensity of the reflected signal shifts to the right and a significant part of the overall
signal is therefore not received by a transducer if it is placed to receive specular reflections.
Moreover, as the specular reflection component is out of phase with the léaky Rayleigh wave
component, the integral of the displacement field over the receiver's face may cancel to zero for
a given width and frequency of the incident beam.

Figure 5.17(h) shows the reflected field at an angle of incidence of 35.0 degrees. The reflection
is specular here and the amplitude of the field is almost equal to the amplitude of the reference
field giving a reflection coefficient value almost equal to unity.

Figures 5.18 (a) - (d) show the reflected field at the Rayleigh angle for beamwidths varying
between 5 mm and 40 mm for the frequency of excitation of 5 MHz. The figures show that the
position of the peak with respect to the central line does not appear to be a function of the beam
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width.

Figure 5.19 shows the reflected field at the Rayleigh angle for different frequencies of the
incident field. The beam was 10 mm wide and had a Gaussian variation of displacement across
its width. Figures 5.19 (a), (b), (c), (d), (&), (D), (g), (h) show the field at 2 MHz, 4 MHz, 6
MHz, § MHz, 10 MHz, 15 MHz, 25 MHz, and 50 MHz respectively. From these figures it can
be seen that the beam displacement is larger for lower frequencies and therefore the finite beam
reflection coefficient will be strongly frequency dependent here. For higher frequencies, the
shift is less pronounced causing the reflection coefficient to increase with frequency. This
argument does not take into account the variation of the damping coefficients within the
aluminium which are also frequency dependent. Therefore the reflection coefficient will be
affected by two independent factors. Firstly, the frequency variation of the longitudinal and
shear damping coefficients can cause changes in the reflection coefficient at the longitudinal
critical angle and the Rayleigh angle as has been shown in figures 5.13 and 5.14. Secondly, the
non-specular reflection phenomenon strongly affects the measured reflection coefficient around
these angles. The non-specular reflection effect is dependent on the incidence beamwidth and its
frequency as has been shown in figures 5.18 and 5.19.

It can be also seen from fig. 5.19 that the Rayleigh wave leaks energy more rapidly at higher
frequencies.

The numerical results shown in figures 5.17, 5.18 and 5.19 are in close agreement with the
theoretical and numerical work done by Ngoc and Mayer (1979, 1980), Nayfeh and Chimenti
(1984).

The theoretical and experimental investigations conducted in this section lead us to conclude that
the infinite plane wave theory can be successfully used to predict reflection coefficients from
single interfaces as long as the angle of incidence is not in the vicinity of the Rayleigh angle. At
the Rayleigh angle the leaky surface wave is generated, which is capable of carrying energy
along the interface. The energy, carried away from the area isonified by the transmitter, is
subsequently re-radiated (leaked") back to the fluid as the Rayleigh wave propagates.
Therefore, the presence of the leaky surface wave alters the composition of the reflected beam
and shifts the reflected beam so that a non-specular reflection phenomenon takes place (see fig.
5.17(f)). Here the use of the finite beam model is essential to predict the behaviour of the
system quantitatively. A small beam shift and the effect of energy 'leaking’ can be also seen the
longitudinal critical angle (see fig. 5.17(b)). Therefore, also at the longitudinal critical angle the
finite transducer model should be used for quantitative predictions of the reflection coefficient.
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5.4 The reflection coefficient from an aluminium/water interface

In this section measurements and theoretical investigations of the ultrasonic reflection
coefficient from the aluminium/water interface are discussed. As the interface used for the study
here is the same as that of section 5.3, the work presented here can be considered as a
continuation of the previous section. Indeed, from the theoretical point of view, the
aluminium/water reflection coefficient again involves two semi-infinite half-spaces, one of them
aluminium and the other water. The calculations of reflection coefficient have to be conducted
here in terms of the incident and reflected waves in the aluminium half-space rather than the
water half-space as was in case of the water/aluminium system analysed in section 5.3.

5.4.1 Measurement technique and theoretical predictions.

The experimental work with the aluminium/water system poses some complications which were
not encountered in section 5.3. Because the incident waves have to hit the boundary from the
side occupied by the solid, the transmitter has to be positioned on the side of the solid half-
space rather than the liquid half-space. It is therefore necessary to use an aluminium plate of
finite thickness, and to rely on the refracted waves within the aluminium plate to deliver the
ultrasonic pulse to the interface.

Figure 5.20 shows schematically the idea adopted here to carry out the measurements. The
pulse generated by the transmitter, incident on the top surface of the aluminium plate at the
chosen angle of incidence 0, generates the refracted wave within the solid at the angle of
incidence 01, related to © by Snell's law. The refracted wave hits the aluminium/water at the
angle 01 and is reflected back towards the top surface of the plate. Subsequently, the pulse

transmitted from the plate back to the water is received by the receiver.

The amplitude of the signal at the receiver is defined by the amplitude of the wave generated by
the transmitter, the transmission coefficient across the water/aluminium interface at the angle of
incidence 6, the reflection coefficient from the aluminium/water interface at the angle of
incidence 61, and finally, the transmission coefficient across the aluminium/water boundary at
the angle of incidence ©. It can clearly be seen here that, in order to quantitatively measure the
reflection coefficient from the bottom boundary, the transmission coefficients across the top
boundary have to be known beforehand.

Another very important problem here is the arrangement of the transmitter and receiver with
respect to each other. From fig. 5.20, it can be seen that the receiver has to be positioned at
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exactly the right position in space to capture the reflection coming from within the plate, and
this position is determined by the thickness of the plate and angles at which the waves
propagate in the water and in the aluminium. Note that the refracted wave and the reflected
wave can be either longitudinal or shear, as the solid medium supports these two types of bulk
waves. Let us discuss this problem in more detail.

Figure 5.21 shows a more detailed picture of the measurement concept described in fig. 5.20.
The transmitter generates a longitudinal pulse in water which, at the top surface of the plate,
generates the reflected pulse denoted by the abbreviation FF, and two refracted waves, one of
them being the longitudinal wave, and the other one shear. These two waves propagate in the
direction towards the bottom of the the plate. At the aluminium/water interface, the incident
longitudinal wave mode-converts into reflected longitudinal and shear waves. Each of the
incident shear and longitudinal waves mode-convert into longitudinal and shear waves
propagating in the upward direction towards the receiver. Therefore, there are four different
pulses coming from the back of the plate: the shear-shear (SS) reflection, the shear-longitudinal
(SL) reflection, the longitudinal-shear (LS) reflection, and the longitudinal-longitudinal (LL)
reflection, the amplitude of each of them depending on the corresponding reflection coefficient
for the aluminium/water interface. All the four reflected pulses propagate towards the top
surface of the aluminium plate, where all of them are partially mode-converted to longitudinal
pulses in water. Because the longitudinal wave in solids is about twice as fast as the shear
wave, the different reflections coming from the back of the plate arrive at different times at the
face of the receiver. The angles of refraction for the longitudinal and shear waves are also
different, which means that the two types of waves do not follow the same path within the
plate. This means that the reflections coming from the bottom interface emerge from the plate at
different points. Note that the LS and SL reflection arrive at exactly the same time at the
receiver, and also appear at exactly the same position in space. The two different pulses
therefore merge to form a single pulse, which will be denoted as LS+SL reflection.

From the comments above one can deduce that in order to successfully receive the reflection of
our choice from the back of the plate, the position of the receiver has to be carefully adjusted
with respect to the transmitter. Indeed, fig. 5.21 shows the receiver positioned to capture the
LS+SL reflection. If, for example, the FF reflection was to be captured then the receii?er would
have to be moved to the position marked with the dashed line.

A 4.85 mm thick aluminium plate was chosen for the experiments. The plate density as well as
the longitudinal and shear velocity were measured prior to the experiments using the technique
described in Appendix A. The longitudinal and shear attenuation in aluminium were assumed.
The shear velocity and attenuation in water were calculated using Navier-Stokes equations as
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shown in Appendix B. The longitudinal attenuation in water was assumed. Table 5.1 shows the
acoustic properties of the plate and water taken for theoretical predictions.

. - Sy longitudinal . shear
material (iegr}rs:g) Vgg%}g?;%) attenuation sheazrzzl)oc ' attenuation
(nepers) (nepers)
aluminium 2820 6330 0.01 3120 0.02
water 1000 1495 0.001 10 6.28

Table 5.1 Acoustic properties of materials used for theoretical predictions

It was decided that the comparisons would be conducted at two angles of incidence: 10 degrees
and 20 degrees. Using the material properties of table 5.1, it is possible to calculate the angles
of refraction within the aluminium plate, as well as the time of arrival of the LL, LS+SL, and
SS pulses with respect to the front face reflection, FF. Table 5.2 shows the results of such
calculations, and fig. 5.22 shows the time domain simulation of the response from the plate
being excited at the angle of 10 degrees in water using the infinite plane wave theory.

1 inci . .
Type of reflection Al;i?ﬂ(;ﬁ;gﬁ;l;ggat Time of arrival wrt FF

(degrees) (us)

LLy longitudinal: 47.3 1.04

(LS+SL); longitudinal: 47.3 1.97
shear: 21.2

LLy longitudinal: 47.3 2.08

S8 shear: 21.2 2.90

((LS+SL); LL); longitudinal: 47.3 3.01
shear: 21.2

L3 longitudinal: 47.3 3.12

Table 5.2 Angles of refraction and times of arrival of different reflections coming from the back of the
4.85 mm thick aluminium plate. Angle of incidence in water 10.0 degrees.

From table 5.2 and fig. 5.22 it can be seen that the LL1 pulse comes first after the FF pulse,-
with a delay of 1.04 pus. The (LS+SL) pulse comes next but only a fraction of a microsecond
before the second reverberation of the LL reflection. Indeed, the delay of the (LS+SL)1 pulse
with respect to FF is 1.97 us, and the delay of the LLy pulse is twice the delay of the LL
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pulse, that is, 1.04 x 2 = 2.08 pus. Therefore, the LLy pulse arrives only 0.11 us behind
(LS+SL)1 pulse, and the two pulses are superimposed if standard 10 MHz probes are used for
the experiments. A similar situation happens with the first shear-shear reflection. From table
5.2 it can be seen that two other pulses have a very similar time of arrival to that of SSq. The
LL3 pulse arrives only 0.22 pus behind SS1, and the ((LS+SL){ LL)1, which is the LS+SL
reflection in the first traverse followed by the LL reflection in the second traverse, arrives 0.11
s behind SS1. If 10 MHz probes are used for the experiments, then the pulses generated by
the transducers are about 0.20 us long, which means that the SS1, ((LS+SL)1 LL){, and LL»,
superimpose. Indeed, fig. 5.22 shows that this is the case.

5.4.2 Experiments

The experimental set up used here is described in detail in section 5.2 of this chapter. A pair of
10 MHz Rolls-Royce Mateval probes were used here as the transmitter and receiver. The

measurements were carried out for two different angles of incidence, 10 and 20 degrees, the
transducers being arranged to receive the FF, LL1, (LS+SL)1, and SS1 reflections in turn.

Angle of incidence of 10 degrees

Figure 5.23 shows the response of the 4.85 mm thick aluminium plate to pulse excitation at an
angle of incidence of 10 degrees in water. The transducers were arranged to receive FF
reflection, as shown schematically with the dashed line in fig. 5.21. Comparing fig. 5.23 with
5.22 it clearly can be seen that the two plots do not look similar at all. The front face reflection
(FF), on which the probes were focussed, looks very similar on both plots. However, the
reflections which follow FF are much smaller in fig. 5.23 than in fig. 5.22. These differences
can be explained looking at fig. 5.21, where the spatial positions occupied by different
reflection are schematically shown. Here it can be seen that, if the receiver is positioned to
capture the FF reflection, then the probe 'misses' the zones isonified by LL1, (LS+SL){, and
SS1 reflections, which appear further to the right in fig. 5.21. The biggest reduction in
amplitude is experienced by LL1 as it is farthest away from the receiver. All the other
reflections coming after SS1 practically miss the receiver entirely and therefore do not appear in
fig. 5.23. '

From figures 5.21, 5.22, and 5.23 it can be seen that the infinite plane wave model is not_
capable of predicting the oblique incidence responses from the aluminium plate even
approximately. It is therefore important to investigate whether the finite transducer model can
bring us closer to the reality. Figure 5.24 shows the theoretically calculated response from the
4.85 mm thick aluminium plate in water to pulse excitation at the angle of 10 degrees in the
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liquid. The finite transducer model was used here to calculate the time history. The dimensions
of the transducers as well as their combined frequency response was measured prior to the
calculations and used as the input to the model together with the acoustic properties of the plate
and water, given in table 5.1. The transmitter and receiver were positioned in the model in
exactly the same fashion as during the measurement, that is to receive t{he FF reflection
primarily. Comparing figures 5.23 and 5.24 it can clearly be seen that the finite transducer
model can accurately predict the response of the plate to finite transducer excitation. This is not
the case when the infinite model is used (see fig. 5.22).

When the receiver is moved to receive primarily the SS1 reflection (see fig. 5.25(a)) then the
front face reflection becomes smaller as it is partially 'missed’. At the same time LL1, and
(LS+SL)1 reflections become larger because the receiver is closer to the areas isonified by

them. The shear-shear reflection is still very small in comparison with the others because the
mode conversion from the longitudinal wave in water to the shear wave in the aluminium and
then back from the shear in the aluminium to the longitudinal in the liquid is very weak.
Therefore, despite the best conditions for the reception of the SS1 reflection, its apparent

amplitude is strongly affected by the other pulses coming from the back of the plate at a similar
time to the SS1 pulse (see table 5.2). Figure 5.25(b) shows the finite transducer predictions for
the case showed in fig. 5.25(a). Excellent agreement between the measurements and predictions
can be seen.

Figure 5.26 shows what happens when the transducers are focussed on (LS+SL) reflection.

The arrangement of the probes or this particular case is schematically shown in fig. 5.21. In
fig. 5.26(b) the measured response of the plate is shown. Here, further reduction of the FF
reflection can be seen (note the different vertical scale to those of the previous figures), while
the (LS+SL)1 reflection amplitude substantially increased. Figure 5.26(b) shows the results of
the theoretical predictions for this arrangement of the transducers, again demonstrating excellent
agreement between the finite transducer theory and the experiment. |

The last case left for the comparison is the situation when the transducers are positioned to
receive the longitudinal-longitudinal reflection from the aluminium/water interface. Figure
5.27(a) shows the measurement performed for this case. From the figure it can be seen that the
FF reflection has been reduced to a very small amplitude, and its signature is drastically
distorted. This is because the receiver is further away from the area isonified by the FF pulse,
and the transducer ‘catches' only some parts of the beam. In fig. 5.27(b) the same case has
been reproduced theoretically using the finite transducer theory. Excellent agreement in terms of
the time of arrival for each of the reflections as well as their relative amplitudes can be
appreciated. However, the FF pulse shape in fig. 5.27(b) is somewhat different than that
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obtained in the experiment, shown in fig. 5.27(a). This kind of discrepancy can be expected
here since the receiving transducer is positioned at the fringe of the area isonified by the FF
beam. In such circumstances small differences in the displacement pattern at the face of
transmitter can produce visible changes in the signature of the signal captured by the receiver.
In the theoretical predictions shown here a Gaussian displacement pattern at the face of the
transmitter was assumed (see figures 2.7(a), 2.8(a) and 2.9(a)), and no attempt was made to
alter the displacement pattern function to match that of the real transducer.

Angle of incidence of 20 degrees

The comparisons between the measurements and theory is now continued for the excitation
being at an angle of incidence of 20 degrees in water. Table 5.3 shows the times of arrival of
reflections coming from the back of the aluminium plate. Because the angle of the incident wave
is above the longitudinal critical angle, the longitudinal wave is inhomogeneous here, and LL
reflections do not exist in practice. The (LS+SL) reflections do not exist either because they,
like the LL pulses, rely on the longitudinal wave to propagate towards or away from the
aluminium/water interface. The only wave left to propagate in the aluminium is the shear wave,
and the only reflection from the aluminium/water interface which can be received and measured
here is the SS pulse.

Angle of incid t . .
Type of reflection a%u?n(i)nillr:g\l/vsgfga Time of arrival wrt FF
(degrees) (ns)
LL wave inhomogeneous N/A
B shear: 45.5 2.18
S shear: 45.5 4.36

Table 5.3 Angles of refraction and times of arrival of different reflections coming from the back of the
4.85 mm thick aluminium plate. Angle of incidence in water 20.0 degrees.

Figure 5.28 shows the time domain prediction of the response of the 4.85 mm thick aluminium

plate in water to a pulse excitation, incident from the water half-space at the angie of 20.0

degrees. The infinite plane wave theory was used to generate the curve of fig. 5.28. As

discussed above, the only type of wave able to propagate here is the shear wave. Figure 5.28.
shows the SS reflections coming from the back of the plate. All of them are equally spaced in

time, the delay between them being 2.18 us.

To compare the results of the infinite plane wave theory with the experiment, fig. 5.29(a)
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shows the measured response from the aluminium plate at 20 degrees. The receiver was
positioned in the middle of the area isonified by the front face reflection and misses a significant
part of the area isonified by the SS1 beam. The higher order SS reflections emerge from within
the plate further away from the receiver and therefore they are not present in fig. 5.29(a) at all.
Figure 5.29(b) shows the finite transducer predictions for the case presented in fig. 5.29(a).
Comparing fig. 5.28 with 5.29(a), and 5.29(b) it can be seen that the infinite plane wave model
is not capable of predicting the aluminium plate response to a realistic excitation, while the finite
transducer model gives a very accurate account of what should be expected in practice.

The last figure presented in this section is the comparison between the finite transducer model
with the experiment when the receiver is positioned to capture the SS1 reflection. Figure
5.30(a) shows the result of the experiment for this case. The amplitude of the front face

reflection is much smaller here than that of fig. 5.29 because the receiver misses a significant
part of the FF beam. However, the apparent amplitude of SS1 reflection increased here

substantially. It is interesting to note that in fig. 5.30(b) the receiver captures a little of the $Sp
reflection, which is not the case in fig. 5.29, when the receiver was positioned to measure FF
primarily. Comparing the experimental results of fig. 5.30(a) with the theoretical predictions
using the finite transducer model shown in fig. 5.30(b), again, excellent agreement between
both plots can be seen.

5.5 The reflection coefficient from a thin silicone layer in glass

In this section a theoretical and experimental investigation of the ultrasonic reflectivity from a
thin silicone layer in glass is described. The case of the thin liquid layer between two solid
plates is the next logical step towards quantitative reflection measurements from the interfaces in
the adhesive joints. Indeed, the glass plate/thin silicone layer/glass plate system is as
complicated theoretically and experimentally as the aluminium plate/thin oxide layer/epoxy layer
system in adhesive joints. For the purposes of the comparison of the theory with the
measurements, however, the glass/silicone/glass system is very convenient. The mechanical
properties of the glass plates and the silicone fluid can be accurately measured before making
the glass plate/thin silicone layer/glass plate system ready for the experiments. The measured
material properties can then be used for the theoretical predictions of the system response to
normal and oblique incidence excitation.

5.5.1 Specimen

Figure 5.31 shows schematically the specimen used for the measurements. It comprises two
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5.85 mm thick glass plates and a very thin silicone liquid layer between them. The glass plates
were polished in order to achieve a high degree of flatness before a very small quantity of the
silicone liquid was let between them. The acoustic properties of the glass plates and the silicone
liquid are given in table 5.4. The density of glass and its longitudinal and shear velocity were
measured using the technique presented in Appendix A. The density, the longitudinal velocity
and the kinematic viscosity of the silicone fluid were taken form the manufacturer's
specification sheet. The shear wave velocity and shear wave attenuation in the silicone liquid
and water were calculated from the Navier-Stokes equation, assuming that the kinematic
viscosities of water and of the silicone liquid are 1.0 cSt, and 50.0 cSt, respectively. The details
of the derivations can be found in Appendix B. The longitudinal attenuation in the silicone fluid

and in water were assumed.

) . longitudinal | longitudinal . shear
material dens1t%/ velocity attenuation sheaa;/esl;)c Y1 attenuation
(kg/m>) (m/s) (nepers) (nepers)
glass 2490 5808 0.0 3466 0.0
Dow CS:?O G 985 1050 0.0 79 6.28
silicone fluid
water 1000 1495 0.0 10 6.28

Table 5.4 Acoustic properties of the materials used in theoretical predictions.

Before the measurements were started, the acoustic properties and dimensions of all the
components of the system were known apart from the thickness of the silicone layer. Therefore
the idea of the experiment conducted here was first to find the thickness of the silicone layer
using the longitudinal normal incidence reflection coefficient, and then to use the measured
thickness of the layer for predictions of the oblique incidence responses of the system and to
compare them with measurements at few chosen angles.

5.5.2 Measurement of the silicone layer thickness

As has been described in detail in chapter 4, the glass/thin silicone layer/glass system creates no
serious problem as far as the quantitative evaluation of the thickness of the layer is concerned.
Indeed, looking at table 5.4, it can be seen that the longitudinal impedance of the layer (a-
density-velocity product) is very different from the longitudinal impedance of the glass. This
makes the longitudinal reflection coefficient from the thin silicone layer to be a strongly
increasing function of frequency. The second very important factor which makes the detection
of the silicone layer possible is that the layer separates two half-spaces of exactly the same
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material, and in such circumstances the normal incidence reflection coefficient is very sensitive
to the layer properties. A more detailed discussion of this was given in chapter 4.

The glass/silicone liquid/glass system, shown schematically in fig. 5.31, was submerged in
water, and the system response to normal incidence longitudinal excitation was measured. The
pulse-echo method was used here, which involves the use of a single transducer positioned at
normal incidence to the plate and working as the transmitter and receiver. A 10 MHz wideband
Rolls-Royce Mateval probe of the diameter of 10 mm was used for the experiments. The
distance between the transducer and the tested plate was 45 mm. Figure 5.32 shows the result
of the measurement. There are two reflections present in fig. 5.32, the front face reflection (FF)
from the water/glass interface, and the longitudinal-longitudinal reflection (LL1) coming from
the silicone layer. The amplitude of the FF reflection depends solely on the properties of the the
glass and water and is independent of the properties of the embedded silicone layer interface. It
is therefore convenient to use FF as the reference pulse for the evaluation of the reﬂectivify
from the silicone layer. This involves the division of the Fourier transform of the LL 1 reflection

by the Fourier transform of the FF pulse.

Curve 1 of fig. 5.33 shows the result of the spectral division of LL] by FF of fig. 5.32, while

curves 2, 3, and 4 of fig. 5.33 show the results of theoretical calculations of the longitudinal
reflection coefficient from silicone layers of different thicknesses normalised to the front face
(water/glass) reflection coefficient. The low frequency behaviour of the measured reflection
coefficient: the hump at around 1 MHz and the shallow minimum at about 2 MHz, was ignored
on basis of poor signal-to-noise ratio and a significant beam spread effect at these frequencies.
Since at normal incidence the non-specular reflection phenomenon does not take place, the
infinite plane wave theory was used for quantitative predictions of the reflection coefficient
from the silicone layer. The acoustic properties of the silicone layer and the glass plates were
taken from table 5.4. Curve number 2 of fig. 5.33 was calculated for a 0.15 pum thick silicone
layer, while curve numbers 3 and 4 correspond to layer thicknesses of 0. 17 pm and 0.20 pm.

Since the infinite plane wave theory was used here for quantitative comparisons with the
experimental data, it is necessary to estimate the error of the theoretical predictions due to the
beam spread effect. Using the technique presented by Papadakis (1972) it is possible to
estimate this error, assuming that the transmitter is a circular piston source. Table 5.5 shows the
calculated diffraction loss for FF and LLj reflections at different frequencies. Tabulated integral
functions describing diffraction effects in the ultrasonic field of a circular piston source, given
by Benson and Kiyohara (1974), was used here. Table 5.5 shows that the error is larger for
lower frequencies, and is about 9 % at the frequency of 5 MHz.
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Frequenc Diffraction Diffraction Diffraction Estimated error
re&le) y correction factor | correction factor | correction factor for
for FF for LL for LL; /FF LL/FF
2 0.739 0.636 0.86 -14 %
5 0.807 0.736 091 -9%
10 0.848 0.813 0.96 -4%

Table 5.5 Estimated error of the division LL/FF due to the diffraction loss of the FF and LL1 reflections
when the infinite plane wave theory is used for comparisons with the experimental data.

From fig. 5.33 it can be seen that, using the longitudinal normal incidence technique, it is
possible to determine the thickness of the silicone layer in glass to within a fraction of a micron.
A silicone layer thickness of 0.17 um was taken for further comparisons with the experiments

at the oblique incidence.
5.5.3 Comparisons with theory at the oblique incidence

The oblique incidence reflection coefficient measurements were taken at angles of incidence of
10 degrees and 20 degrees in water. The measurements were conducted according to the
general descriptions of the technique given in section 5.2 of this chapter. This involves the
spectral division of the appropriate reflection coming from the embedded glass/silicone/glass
interface by the reference reflection obtained when the probes were arranged face-to-face (see
fig. 5.1). Subsequently, the measurements were compared with the infinite wave theory
predictions using the mechanical properties of the system given in table 5.4, and assuming that
the silicone fluid layer is 0.17 um thick. The infinite plane wave theory was used here because
at the angle of incidence of 10 and 20 degrees a non-specular reflection at the water/glass
interface does not take place.

Angle of incidence of 10 degrees

At the angle of incidence of 10 degrees, there are three different reflection coefficients to be
measured, namely LL1, (LS+SL)1, and SSy. Figure 5.21 shows schematically the technique
used to extract the appropriate reflection from an embedded interface. For a more detailed”
description of the method refer to section 5.4 of this chapter. Table 5.6 shows the angles of
refraction in the glass as well as the times of arrival of the different reflections coming from the
silicone layer.
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. Angle of incidence at . .
Type of reflection glass/silicone layer Time of zzrur;\)ral wrt FF
(degrees)

LLq longitudinal: 42.4 1.49

(LS+SL)1 longitudinal: 42.4 230
shear: 23.7

LLy longitudinal: 42.4 2.98

$81 shear: 23.7 3.09

((LS+SL)1 LL); longitudinal: 42.4 3.79
shear: 23.7

LL3 longitudinal: 42.4 447

Table 5.6 Angles of refraction and times of arrival of different reflections coming from the embedded silicone
layer between 5.85 mm thick glass plates. Angle of incidence in water 10.0 degrees.

The transducers used for the oblique incidence experiments were the wideband 10 MHz Rolls-
Royce Mateval probes giving ultrasonic pulses about 0.2 [is long. From table 5.6 it can be seen
that, if the pulse duration is around 0.2 s, very good separation between the LL1, (LS+SL)1,
and LLy can be achieved. However, the SS1 pulse is in the vicinity of LLy, which may affect
the accuracy of the SS reflectivity measurements, as it is impossible to separate these two
reflections from each other.

Curve number 1 of fig. 5.34 shows the experimentally obtained division of the L1 reflection
by the reference pulse obtained from the face-to-face arrangement of the probes. Curve 2 of fig.
5.34 shows the theoretically calculated reflectivity (using the infinite plane wave model) at
exactly the same conditions as during the experiments, assuming the layer thickness of 0.17
pm, measured in the normal incidence experiment, and using the acoustic properties given in
table 5.4. Excellent agreement between the two curves can be seen.

Figure 5.35 shows the division of the (LS+SL)1 pulse by the reference signal obtained when
the probes were arranged face-to-face. Curve 1 was obtained experimentally, while curve 2 is
the result of theoretical calculations making use of table 5.4 and setting the layer thickness to
0.17 um. Excellent agreement between the theory and experiment can be seen.

Figure 5.36 is the comparison between the theory and the measurement for the case of the
shear-shear reflection coming from the glass/silicone/glass interface. The comparison between
the measurement (curve 1) and the theoretical results (curve 2) is good. However, the
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predictions are not as accurate here as is the case in figures 5.34, and 5.35. The most likely
cause of this is the presence of the LLy reflection in the vicinity of the SS1 pulse (see table
5.6). The SS1 reflection cannot be cleanly separated in time from the LLo reflection and
therefore, after time domain windowing, some of the LLy reflection still pollutes the SS1
signal, affecting the final results.

Angle of incidence of 20 degrees

At the angle of incidence of 20 degrees, the longitudinal wave is inhomogeneous and cannot
propagate in the glass plate. Therefore, there is only one type of reflection here, the SS1 pulse
and its multiples, which can be received from the embedded silicone layer and compared with
the theoretical model. Table 5.7 shows the angle of refraction and the time of arrival of the
shear-shear reflection pulse from the silicone layer.

Angle of incid t . .
Type of reflection glfs: /(S)ﬂilgg:leellzlicyee? Time of arrival wrt FF
(degrees) (us)
LL wave inhomogeneous N/A
5§ shear: 52.5 2.06
SSp shear: 52.5 4.12

Table 5.7 Angles of refraction and times of arrival of different reflections coming from the silicone layer
between two 5.85 mm thick glass plates. Angle of incidence in water 20.0 degrees.

Figure 5.37 shows the division of the SS pulse by the reference signal obtained when the
probes were face-to-face. The angle of the incident wave is 20 degrees from water. Curve
number 1 shows the results of the experiment. The oscillations visible in the low frequency
range, which are most probably due to a beam spreading effect and a poor signal-to-noise ratio,
were ignored. Curve numbers 2, 3, and 4 are the theoretical predictions for silicone layer
thicknesses of 0.15 pm, 0.17 pm, and 0.20 um, respectively. The infinite plane wave theory
was used to compute these curves. From fig. 5.37 it can be seen that the sensitivity of the
reflection coefficient to the layer thickness is high. Indeed, it is possible to determine the
silicone layer thickness to within a small fraction of a micrometer. Again, the theoretical curve
corresponding to the layer thickness of (.17 pm comes very close to the experimental curve,.
demonstrating excellent agreement between the theory and the measurements.
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5.6 Conclusions

This chapter demonstrated excellent agreement between the measured and predicted reflection
coefficients from a series of model systems.

The accuracy of the measurements depends very much on whether the iriterface is easily
accessible or not. Measurements of the reflection coefficient from an easily accessible surface
can be carried out with an accuracy better than 2 percent of the reference pulse, usually obtained
at the beginning of the measurement session when the probes are positioned face-to-face.

If it is required to obtain the values of the reflection coefficients from embedded interfaces then
the problem of the measurement accuracy is more complex than in the previous case. In
principle, the same accuracy during the experiments should be expected. However, the problem
of small misalignments of the probes with respect to the measured plate can affect the
amplitudes of the received pulses from within the plate much more than those reflected from the
front face.

Another very important problem regarding the embedded interfaces is that in order to
quantitatively measure the reflection coefficient somewhere within the layered structure, full
knowledge of the part of the system between the embedded interface and the receiver has to be
assumed. For example, in order to determine the thickness of the silicone layer in section 5.5 of
this chapter, the material properties of the top glass plate had to be known. The information
about the thickness and the wave velocities in the glass plate also determined the arrangement of
the probes during the oblique incidence tests. The embedded interface reflectivity measurement
is therefore a classical example of a situation where the quality of the first set measurements
(material properties of the system components) influences the quality of the next set of
experiments (reflection coefficients). The overall error of the measurements therefore may vary,
but for a single parallel plate separating the interface from the water half-space the measurement
error is not bigger than 5 percent.

The finite transducer theory used in the investigations of this chapter has been shown to be
capable of predicting the amplitudes of each of the echoes received from multilayered systems.
The error between the experiments and the finite transducer theory predictions is smaller than
10 percent. The finite transducer theory was also able to explain the Rayleigh angle dip
phenomenon which could not be satisfactorily accounted for using an infinite plane wave
model.

It has been shown in this chapter that the infinite plane wave theory can be successfully used to
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predict reflection coefficients from single interfaces measured by finite transducers when two
conditions are satisfied. The first one is that the non-specular reflection phenomenon does not
take place during the measurement, and the second requirement is that the receiving transducer
has to be placed in the middle of the area isonified by the reflected beam which is to be
measured. The measurements of reflection coefficient at the water/aluminium interface
presented at the beginning of this chapter showed that only at two angles of incidence, namely
the longitudinal critical angle and the Rayleigh angle, was it necessary to use the finite
transducer model to achieve excellent agreement with the experiments. The measurements of the
reflection coefficients form the silicone liquid layer between two glass plates, presented at the
end of this chapter, have clearly shown that, when testing at the angles of incidence away from
the critical angles, the infinite plane wave theory can be used with confidence provided that the
receiver is placed at the appropriate spatial position to capture the reflection of interest.

Because of its very modest computing power requirements, the infinite plane wave model is an
excellent tool for fast calculations of the sensitivity of the reflection coefficients to various
changes in the system under investigations. The infinite plane wave theory is also very useful in
the calculations of the time of arrival of various pulses coming from embedded interfaces,
which is extremely helpful information during the experiments.
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Fig. 5.1(b) Reflection measurement.
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Fig 5.2 Concept behind the design of the reflection coefficient
meter (RCM)
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Fig 5.4 Electronic equipment used for experiments.
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Position the transducers
face-to-face

Capture the
reference pulse

Perform FFT on the
reference pulse

I

Mount the specimen and
align it with respect to
the transducers

Adjust the angle of incidence and
position the receiver to capture
the reflection of interest

Capture the
reflected pulse

|

Perform FFT on the
reflected pulse

Divide the spectrum of the reflected pulse by
the spectrum of the reference pulse

l

Reflection coefficient in
the frequency domain

Fig 5.5 Data processing sequence used for the measurement of
the reflection coefficient
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transmitter receiver

7

N % water/aluminium
\Q/)r\} interface ’

N i S
water N S /

aluminium

Fig 5.7 Schematic diagram of the system used for the measurements
of the water/aluminium reflection coefficient.
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Fig. 5.8  The time domain and the frequency domain representations of the reference
pulse obtained when the transducers were positioned face-to-face. A pair of 10
MHz wideband Rolls-Royce Mateval transducers were used for the experiments.
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Fig. 5.9  The time domain and the frequency domain representations of the reflected
pulse from the front face of the 20 mm thick aluminium block. Angle of
incidence was 20 degrees.A pair of 10 MHz wideband Rolls-Royce Mateval
transducers were used for the experiments.
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Fig 5.20 The concept of the measurements of the reflection coefficient
from the embedded interfaces.
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Fig 5.21 Measurements of reflections from an aluminium plate in water
at the oblique incidence. |
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Fig. 5.25 Response from the 4.85 mm thick aluminium plate in water. Angle of incidence
is 10 degrees. The receiver is positioned to capture SS1 reflection. Comparison

between the measurements (a), and theory (b).
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Fig. 526 Response from the 4.85 mm thick aluminium plate in water. Angle of incidence
is 10 degrees. The receiver is positioned to capture (LS+SL); reflection.

Comparison between the measurements (a), and theory (b).
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Fig. 5.27 Response from the 4.85 mm thick aluminium plate in water. Angle of incidence
is 10 degrees. The receiver is positioned to capture LL1 reflection. Comparison

between the measurements (a), and theory (b).
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Fig. 5.29 Response from the 4.85 mm thick aluminium plate in water. Angle of incidence
is 20 degrees. The receiver is positioned to capture FF reflection. Comparison

between the measurements (a), and theory (b).
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Fig. 5.30 Response from the 4.85 mm thick aluminium plate in water. Angle of incidence
is 20 degrees. The receiver is positioned to capture SSj reflection. Comparison

between the measurements (a), and theory (b).
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5.85 mm thick | silicone liquid layer
glass plates (exaggerated thickness)
// // // // // //
// \<>' // / //
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Fig 5.31 Schematic diagram of the glass/silicone/glass system
used for the experiments.



233

Chapter 5

Validation of the theory. Accuracy of the reflection coefficient measurements

19 4

"I90NpSuUBH pURQIpPIM ZHIA O] O WO uonejoxo [eulpmi3uo] J0USPIOUT [BULIOU
oY) 0} Idlem Ul WIISAS sse[3/10Ae; ouooipis/sse[3 oyl woyy ssuodsar urewop sunj, Z¢'S ‘81

(s1) ouny,

00

5%

dd

01-

(A) spmyrdury

01



234

Chapter 5

Validation of the theory. Accuracy of the reflection coefficient measurements

$°S 9|qel wt udAId ame pimbij ouoois pue ssei8 jo somuodoig
'soamo pandwoo A[[Bo10Iooy] pue SJUSWIAINSESW Y] Uoamlaq uosueduio))
"SSB[3 Ul JoAe] QUOOI[IS 9U)] WIOIJ JUAIOIJJI00 UOTIOA[JOI [euIpmISUO[ A0ULPIOUl [BULION €€°S "SI

) (ZHIN) Aouonbaxg - 00
o1l 006

pamseay (1)

| Ty

youp wd ¢1°0 (2)

yorp wrl £1°0 (£)

youp wrl o770 (b)

SO0




235

Chapter 5

Validation of the theory. Accuracy of the reflection coefficient measurements

00t

*SJUSUIQIMSEOW pue AI0SY) Usamlaq uosueduio) rojem woly s9139p (f SI
dousprowt Jo J[8uy "sse[S ur 1oke[ UOSI[IS 9y WO ANANOSR [eurpmiSuol-eutpmido] €S B

(zHN) Aouenboig e 00

JuowINSesN (1)

K109y, (7)

000

| Ty

oro



236

Chapter 5

Validation of the theory. Accuracy of the reflection coefficient measurements

001

‘sjuouwrinsgdul pue

A109y) uoomiaq uosuedwo) ‘Istem wol SIRAIFop Qr ST oudploul Jo 9[Suy -sse[d ur

(zHN) Aouanbolj

. JoAe] QUOJI[IS Y} WIOL ANATOS[JII PoUIqUIO) [BUTPMISUO[-IBSYS pue Ieoys-feupmiSuo| ¢¢'S S

00

Juswramseady (1)

A109yy, ()

000

IS+ Ty

070



237

Chapter 5

Validation of the theory. Accuracy of the reflection coefficient measurements

001

‘SJUSWAINSEOW puUR AIOQU) uoamiaq uosuedwio) ‘Iojem woiy sa0I139p (] St
Qouapioul Jo 9[Suy "sse[S ur IoAe] QUOOI[IS Y} WOL AJIATIOQMJRI Jedys-IedyS 9¢'S i

(zHN) Aouonbarg S 00

juswINSeIN (1)

A109y], (7)

1SSy

01°0



238

Chapter 5

Validation of the theory. Accuracy of the reflection coefficient measurements

‘'S 9[qe) ul uoAld are pinbip suooinis pue ssej3 jo sorpadoig ‘seerSop (g
ST Jojem WIOIJ 0uopidul jo JJ3uy "A1ooy) oaem ouejd Juijui oY) pue SIUWLINSLOW
oY) usemjaq uostredwio)) °sse[3 ul IoAe| QUODI[IS 9} WO ANANOA[JI Iedys-Tedys Y], LS "

091 (ZHIN) Aouonbaig R 00

O
N

Yorp wl gz°0 (b)

Yoy wirl £1°0 (¢)

Yorp wr 170 () /‘ \

pansedy ()

1SSy




239

CHAPTER 6

Monitoring of interfacial conditions at a glass/epoxyt interface
using the reflection coefficient technique

6.1 Introduction

In the previous chapters of this thesis we were concerned with the development and validation of
theoretical and experimental techniques for the monitoring of the interfacial condition in adhesive
joints. The intention of this chapter is to apply all this knowledge to practically monitor changes
in material properties across adherend/adhesive interfaces. The initial study described in this
chapter uses the glass/epoxy system as it is very convenient to make and rather simple to model
theoretically. Two types of specimens are considered here, those with strong and weak adhesion
on the glass/epoxy interface. The specimens with strong adhesion properties were manufactured
by applying liquid epoxy resin onto acetone cleaned glass plates. In the case of joints with
reduced interfacial strength, the adherends were painted with Frekote 44 mould release agent
prior to application of epoxy resin. This the simplest defective interface to produce and the idea
is similar to that of Pilarski er al. (1987).

In section 6.2 experimental work to monitor changes in the normal incidence reflection
coefficient from a glass/epoxy interface while the epoxy is curing, changing its properties from
those of the viscous fluid towards a solid material, is described. The epoxy is applied to glass
plates with and without a very thin layer of mould release agent applied prior to bonding.

In section 6.3 an experimental and the theoretical evaluation of the gléss/epoxy interface at
oblique incidence is described. Here, using the infinite plane wave theory, the angles of
incidence to achieve the best sensitivity of the reflection coefficient to the interfacial conditions
between the glass and the epoxy are determined. The reflection coefficient measurement at two
theoretically determined angles is carried out to demonstrate that it is possible to measure small
changes across the glass/epoxy boundary.

Section 6.4 summarises the main findings of this chapter.
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6.2 Changes in the reflection coefficient across the glass/epoxy resin interface
during cure

There are two important problems in the NDT of adhesive joints which we would like to address
in this section. The first of them is whether it is possible to determine the state of cure of the
epoxy resin using the reflection coefficient method, and to what accuracy the measurements have
to be conducted in order to successfully use this technique in practice. The second question is
whether it is possible to detect a weak bond created by the presence of the very thin layer of
mould release agent between the adherend and the adhesive.

Two sets of measurements were conducted to answer these two questions. The first of them was
to monitor the normal incidence shear and longitudinal reflectivity from the boundary between a
clean glass surface and the epoxy resin during the process of curing. The second set of
experiments was conducted using exactly the same setup as the first one, but the glass adherend
was treated with the mould release agent, Frekote 44, prior to bonding.

6.2.1 Measurements

The monitoring of the shear and longitudinal reflection coefficient at the glass epoxy interface
was performed using the experimental setup shown schematically in fig. 6.1. The longitudinal
probe, 10 MHz wideband unfocussed Rolls-Royce Mateval transducer, was placed on the top of
the glass buffer plate and coupled to the structure with the low viscosity machine oil. The shear
probe, 10 MHz wideband Ultran transducer, was pressed into the glass buffer alongside the
longitudinal probe and coupled to the structure by honey. Since the ultrasonic transducers were
coupled to the structure by thin layers of viscoelastic liquids, lack of cosistency in the coupling
could be expected. It was therefore required to create a thin reference interface in the glass
buffer. The glass buffer (see fig. 6.1) consisted of two glass sheets, 4.85 mm thick and 2.0 mm
thick, bonded together by a very thin layer of epoxy. In this way the reference interface, a
glass/thin epoxy layer/glass, was created with respect to which the longitudinal and shear
reflectivity from the monitored glass/epoxy interface could be accurately measured.

Figure 6.2 shows the time domain responses measured by the longitudinal wave probe at
different stages of the experiment. Figure 6.2(a) shows the longitudinal wave response of the
specimen before the epoxy resin was applied. The first reflection shown in the picture is the
reference pulse coming from the reference interface in the glass buffer, while the second
reflection comes from the glass/air interface. Figure 6.2(b) shows the response of the system
just after the liquid epoxy resin (Ciba Geigy Araldite MY 750 resin and HY 931 hardener) had
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made contact with the glass buffer. For such a case the normal incidence longitudinal reflectivity
should drop because the impedance of the epoxy resin is much higher that that of air. From the
figure it can clearly be seen that the first pulse (reference pulse) did not change its amplitude,
while the second one is visibly smaller than that of fig. 6.2(a), confirming our expectations.
Figure 6.2(c) shows the response of the specimen 4.5 hours after the application of the epoxy.
Here the reflection from the glass/epoxy interface is even smaller than that of fig. 6.2(b)
indicating that the impedance of the epoxy increases during the curing process. Figure 6.2(d)
shows the response of the system 17.5 hours after the epoxy resin was applied, and corresponds
to the case of solid epoxy.

The time domain signal shown in fig. 6.2(a) can be used for the calibration purposes as it is
known that the normal incidence reflection coefficient at the glass/air boundary is practically
unity. Therefore, in order to quantitatively determine the reflection coefficients at the glass/epoxy
boundary at the different stages of the experiment, the following simple procedure can be
adopted. Using the time domain response of fig. 6.2(a) the glass/air reflection can be divided by
the reference pulse in the frequency domain giving the reference transfer function. Then all the
other signals obtained during the experiment can be normalised by the reference transfer function
giving the required glass/epoxy reflection coefficient in the frequency domain.

Figure 6.3 shows the results of the normalisation calculations described above. From the figure
it can clearly be seen that the normal incidence longitudinal reflection coefficient from the
glass/epoxy interface is frequency independent throughout the entire time of the experiment.

Figure 6.4 shows the normal incidence shear time domain response from the tested specimen at
different stages of the experiment. In fig. 6.4(a) the time history of the response from the system
is shown before the epoxy resin was poured in. As in the case of longitudinal wave excitation,
the first pulse coming back from the tested specimen is the echo from the reference interface in
the glass buffer (see fig. 6.1). The second echo visible on fig. 6.4(a) is the reflection from the
glass/air boundary. Figure 6.4(b) shows what happens when the liquid epoxy makes contact
with the glass buffer. Here it can be seen that amplitude of the reflection from the glass/epoxy is
somewhat smaller than that of the glass/air case of fig. 6.4(a) indicating that the reflection
coefficient is smaller than unity here. This phenomenon is in accordance with our expectations.
Indeed, liquid epoxy resin has high viscosity and therefore supports shear wave propagation
(see Appendix B). This means that the shear impedance of the liquid epoxy resin is not zero and
the shear reflection coefficient should be less than unity for such cases. Figure 6.4(c) shows the
response from the system 4.5 hours after the epoxy had been poured in. The reflection from the
glass/epoxy boundary is significantly lower than that of figures 6.4(a) and (b), indicating that the
epoxy considerably increased its shear impedance over that time. Figure 6.4(d) shows the result
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of the measurement performed 17.5 hours from the beginning of the experiment. Comparing this
measurement to that of fig. 6.4(c) it can be seen that there is no significant change in the
response from the specimen, indicating that the major changes in the state of the epoxy took
place within the first 4.5 hours of the experiment.

As in the case of the longitudinal excitation, using the signal of fig. 6.4(a) for the calibration
purposes, it is possible to quantitatively determine the shear reflectivity from the glass/epoxy
boundary. Figure 6.5 shows the experimentally obtained normal incidence shear reflection
coefficient for this case. Looking at the Rgg curves of fig. 6.5 it can be seen that the shear
reflection coefficient measurements are slightly frequency dependent and the frequency
dependence is more pronounced for the measurements taken in the later stage of the experiment.
This oscillation of the Rgg curves is most probably due to unreliable coupling between the shear
transducer and the glass plate which could have changed during the 20 hours long experiment.

The same set of experiments was conducted for the specimen treated with a mould release agent
prior to bonding. Figure 6.1 shows schematically the setup used for the measurements. The
monitored interface in this case was painted twice with Frekote 44 liquid which, after setting,
forms a very thin layer of mould release.

As the thickness of the Frekote layer is very small, the normal incidence shear and longitudinal
reflection coefficient from the glass/Frekote 44/air is practically unity. For both types of bulk
waves, longitudinal and shear, the calibration of the reflections coming from the reference
interface (see fig. 6.1) was conducted by capturing of the reference signal from the glass/Frekote
44/air interface before the epoxy resin was poured. Then, during the experiment, the reflection
coefficient results were obtained quantitatively in exactly the same manner as described at the
beginning of this subsection. The results of the measurements are shown in figures 6.6 and 6.7.

Fig 6.6 shows the normal incidence longitudinal reflection coefficient from the glass/Frekote
44/air interface as epoxy cures.

The normal incidence shear reflection coefficient measurements for the case of the glass/Frekote
44/epoxy interface is shown in fig. 6.7. As in the case of the longitudinal reflection coefficient,
the results are normalised here with respect to the glass/Frekote 44/air shear reflection
coefficient, which was assumed to be unity. From fig. 6.7 it can clearly be seen that the shear
reflectivity drops as the epoxy cures which indicates that the shear impedance of the epoxgz
increases as it changes state from liquid to solid.
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6.2.2 Comparison of results with and without mould release

The results of four experiments described above were plotted in fig. 6.8 for convenient
comparisons.

In fig. 6.8(a) the curve marked 'clean interface' shows the average vahies of the normal
incidence longitudinal reflection coefficient taken from the curves of fig. 6.3. The figure shows
that the amplitude of the normal incidence longitudinal reflection coefficient changes from about
0.77 for the liquid state of epoxy to about 0.66 when the epoxy resin is solid. This demonstrates
that it is possible to monitor changes in the cure state of the epoxy by longitudinal reflection
coefficient measurements provided that the absolute error of the measurements is of order of a
few percent.

Figure 6.8(b) the curve marked 'clean interface' shows the average values of the normal
incidence shear reflection coefficient in the frequency range of between 6 and 12 MHz as the -
epoxy resin cures, taken from the curves of fig. 6.5. The figure shows that the amplitude of the
normal incidence longitudinal reflection coefficient changes from about 0.93 for the liquid state
of epoxy to about 0.71 when the epoxy resin is solid. This demonstrates that it is possible to
monitor changes in the cure state of the epoxy by longitudinal reflection coefficient
measurements provided that the absolute error of the measurements is of order of a few percent.
From figures 6.3 and 6.5 it can be also seen that the sensitivity of the shear normal incidence
reflectivity is higher than that of the longitudinal reflectivity. Indeed, the variation of the
longitudinal reflection coefficient during the experiment is about 15 %, while the variation of the
shear reflectivity is about 24 %.

In fig. 6.8(a) the curve marked 2 coats of Frekote 44' shows the average values of the normal
incidence longitudinal reflection coefficient taken from the curves of fig. 6.6. The figure shows
that the amplitude of the normal incidence longitudinal reflection coefficient chan ges from about
0.77 for the liquid state of epoxy to about 0.66 when the epoxy resin is solid. Comparing
figures 6.3 and 6.6 as well as two curves of fig. 6.8(a) showing the average values of Ry |,
coefficients, it can be seen that the curing speed of the epoxy in the previous experiment was
higher than here. Indeed, the 6 h 30 min curve of fig. 6.3 almost touches the bottom Tevel of the
reflection coefficient range, indicating that 6.5 hours after the application of the epoxy, the
curing process was coming to an end, while the 7 h 30 min curve of fig. 6.6 is still far from the
bottom line. The higher curing speed of the epoxy in the previous experiment is the result of ;1
higher ambient temperature in the laboratory at the time when the measurements were conducted,
as the higher the ambient temperature, the faster the epoxy cures. However, after the curing
process is over, the longitudinal reflection coefficient for both cases is very similar, 0.657 for
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the glass/epoxy interface, and 0.662 for the glass/Frekote 44/epoxy system indicating that, in
both experiments, the epoxy attained very similar mechanical properties.

Figure 6.8(b) the curve marked '2 coats of Frekote 44' shows the variation of the shear
reflection coefficient with time. The average values in the frequency range of 6 - 12 MHz, taken
from the curves of fig. 6.7, are presented here. The figure shows that the amplitude of the
normal incidence shear reflection coefficient changes from about 0.95 for the liquid state of
epoxy to about 0.80 when the epoxy resin is solid.

Looking at fig 6.8(b) it can clearly be seen that the normal incidence shear reflection coefficient
from the glass/Frekote 44/epoxy system (curve marked "2 coats of Frekote 44') is significantly
higher than that from the glass/epoxy interface without the mould release (curve marked 'clean
interface'), even after the epoxy has been cured. Indeed, from the figure it can be seen that by
the end of the experiment, when the epoxy was solid, the amplitude of Rgg coefficient from the
glass/epoxy interface attains the asymptotic value of 0.71. The asymptotic amplitude of the Rgg
coefficient from the glass/Frekote 44/epoxy system is 0.80, which is about 12 % higher that that
of glass/epoxy interface without the mould release.

From figure 6.8(a) and (b) it can clearly be seen that the normal incidence longitudinal wave
reflection coefficient technique was incapable of the detection of the presence of the mould
release agent at the glass/epoxy interface, while using the shear wave probe it was possible to do
so. This results of the experiments indicate that the shear stiffness of the glass/epoxy interface
treated with the mould release prior to bonding was lower than that of the untreated interface.
However, the exact mechanism of the reduction in shear stiffness across the glass/epoxy
interface with the mould release in between is unclear. It might be due to a very low shear
stiffness of the mould release agent layer itself, or perhaps a partial kissing bond (see page 10)
formed between the mould release and the epoxy resin.

As shown above, the normal incidence shear reflection coefficient can be used to detect presence
of Frekote 44 mould release agent between glass and epoxy. However, the shear wave method
suffers a major drawback when it comes to the quantitative reflection coefficient measurements
because of the unreliable coupling between the transducer and the examined specimen.
Differences in shear wave reflectivity of the order of ten percent can only be measured reliably
when the position of the shear transducer is left unchanged for the entire duration of the
experiment, as was the case here. This requirement severely restricts the application of the
normal incidence shear wave technique in an industrial environment.
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6.3 Determination of the presence of the mould release agent between
glass and epoxy half-spaces using the oblique incidence technique.
Problem of detectability.

It was shown in section 6.3 that it is possible to determine the presence of the mould release
agent, Frekote 44, at the glass/epoxy interface using the normal incidence shear wave technique.
This subsection extends the scope of the investigations to oblique angles of incidence. Here the
objective is to find theoretically the angles of incidence for which the reflection coefficient is
most sensitive to the interfacial conditions at the glass/epoxy boundary. Then, the experimental
determination of the reflection coefficients from the glass/epoxy interface and the glass/Frekote
44/epoxy system will be conducted at these chosen angles to verify the capability of the
technique.

Figure 6.9 shows schematically the specimens manufactured for the measurements. The
specimens consist of a 4.0 mm thick layer of epoxy resin poured onto a flat sheet of 5.85 mm
thick float glass and allowed to cure. The surfaces of the glass plates were either cleaned with
acetone prior to bonding or painted three times with Frekote 44 liquid to form a very thin layer of
the mould release on the glass surface before the epoxy resin was applied.

6.3.1 Sensitivity study using the infinite plane wave theory

For the theoretical investigations such an interface can be modelled as two semi-infinite half-
spaces with or without a thin solid interlayer between them. Table 6.1 shows the acoustic
properties of the glass and the epoxy resin as well as the properties of the interlayers used for the
sensitivity studies. The interlayers were assumed to be 10 pm thick, and their acoustic properties
are based on the properties of the epoxy resin. Since the normal incidence measurements, (see
section 6.2.2) indicated that the interface has reduced stiffness in shear direction, the shear
velocities of the interlayers were reduced from 1100 m/s for the interlayer 1, to 1000 m/s for the
interlayer 2, and 800 m/s for the interlayer 3, keeping the longitudinal velocities equal that of the
epoxy resin. |

Figure 6.10 shows the angular variation of the longitudinal-longitudinal (Ry [ ) reflection
coefficient from the glass/epoxy interface with and without the 10 pm thick interlayer in
between. The frequency of the longitudinal incident wave was 10 MHz. Since the longitudinal
properties of the interlayers were kept the same as those of the epoxy resin, the Ry 1, coefficient
does not show any sensitivity at normal incidence. The best sensitivity of the Ry 1. coefficient
can be seen at the angles of incidence of around 54.2 and 72.4 degrees. Indeed, when there is no
interlayer present at the glass/epoxy boundary, the Ry | coefficient is null for these two angles of



Chapter 6

Monitoring of interfacial conditions at a glass/epoxy interface using the reflection coefficient technique

246

) : longitudinal longitudinal . shear
material dens1t3y velocity attenuation Sheaf ;jsl;)c Y | attenuation
(kg/m>) (m/s) (nepers) (nepers)

glass 2454 5815 0.00 3455 0.00
epoxy 1170 2625 0.00 1177 0.00
interlayer 1 1170 2625 0.00 1100 0.00
interlayer 2 1170 2625 0.00 1000 0.00
interlayer 3 1170 2625 0.00 800 0.00
water 1000 1495 0.00 10 6.28

Table 6.1 Acoustic properties of materials used for the oblique incidence reflection coefficient calculations.

incidence. Any small change in the properties of the thin interlayer influence the Ry 1, coefficient

at these angles significantly. Table 6.2 shows the amplitudes of the Ry 1, coefficient at the angles

of 54.2 and 72.4 degrees for the four cases of fig. 6.10. As can be seen from table 6.2 the R [,

coefficient is highly sensitive to the interfacial conditions at the angles of incidence of 54.2 and

72.2 degrees. Indeed, when there is no interlayer present, the Ry 1 reflection coefficient is null

and even a small variation in the interfacial properties (see interlayer 1 curve) raises the amplitude

of the reflection coefficient from the zero level. Therefore, the sensitivity of the Ry |, coefficient

technique at these two angles of incidence is limited primarily by the signal-to-noise ratio of the

equipment used for the experiments.

Table 6.2 The amplitude of the Ry 1 coefficient from the glass/epoxy interface with and without the 10 pm

material Ry 1, coefficient at Ry L coefficient at -
54.2 degrees 724 degrees
A 0.000 0.000
interlayer 1 0.011 0.018
interlayer 2 0.028 0.045
interlayer 3 0.071 0.117

thick interlayers present in between.
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Figure 6.11 shows the angular variation of the shear-shear reflection coefficient (Rgg) from the
boundary between the glass and the epoxy half-spaces separated by 10 um thick interlayers of
different shear stiffnesses. The frequency of the incident shear wave is 10 MHz. The curve
numbers in fig. 6.11 correspond to the interlayer numbers in table 6.1. It can be seen from the
figure that the best sensitivity of the Rqg coefficient is at normal incidence and at around 28.4
degrees, where the reflection coefficient curve for the glass/epoxy bou}ldary without an
interlayer touches the zero line. At such an angle of incidence very small changes in the reflection
coefficient curve can be detected because they are large in proportion to the reference curve
which attains a null value here. Table 6.3 shows the amplitudes of the Rgg coefficient at normal
incidence (0.0 degrees) and at an angle of 28.4 degrees. The absolute changes in the amplitude
of the Rgg coefficient is similar at both angles of incidence. However, in terms of the relative
changes in amplitude, the shear-shear reflection coefficient at 28.4 degrees is much more
sensitive to the interfacial changes than at normal incidence. In practice, the sensitivity of the
technique at 28.4 degrees depends on the signal-to-noise ratio of the equipment used.

material Rgg coefficient at Rgg coefficient at
0.0 degrees 28.4 degrees
A 0.721 0.000
interlayer 1 0.730 | 0.011
interlayer 2 0.749 0.026
interlayer 3 0.814 0.071

Table 6.3 The amplitude of the Rgg coefficient from the glass/epoxy interface with and without the 10 pm
thick interlayers present in between.

Figure 6.12 shows the longitudinal-shear reflection coefficients (R[ g) from the glass/epoxy
boundaries with and without 10 um thick interlayer. The frequency of the longitudinal incident
wave is 10 MHz, and the material properties of the glass, the epoxy and the interlayers are given
in table 6.1. From the figure it can be seen that the sensitivity of the Ry g reflection coefficient is
rather poor.

Figure 6.13 shows the shear-longitudinal reflection coefficient curves (Rgy,) calculated for the
systems comprising the glass and the epoxy half-spaces separated by 10 um thick interlayers,
whose mechanical properties are given in table 6.1. From the plot it can be seen that the
sensitivity of the Rgy  coefficient to small changes at the interface is rather poor.
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6.3.2 Measurements of the oblique incidence reflectivity from the glass/epoxy
system with and without a Frekote 44 layer

It has been shown in subsection 6.3.1 that, using certain angles of incidence and types of
reflections, it is possible to ultrasonically monitor very small changes across the glass/epoxy
interface. In the theoretical investigations, the shear stiffness of the glass/epoxy interface with
the mould release layer in between was reduced with respect to the shear stiffness of the interface
without the mould release present, while the longitudinal stiffness was kept the same. These
assumptions are in qualitative agreement with the normal incidence longitudinal and shear
reflection coefficient measurements, presented in section 6.2.2.

Two types of glass/epoxy specimens were manufactured for the experiments (see fig. 6.9), the
first one being a simple glass/epoxy joint, and the other one containing a thin Frekote 44 mould
release layer applied on the glass surface prior to the application of the epoxy. The measurements
of the ultrasonic reflectivity from the glass/epoxy interface were conducted at four different
angles of incidence using the reflection coefficients Ry [ , Rgs, and (Ry g+Rgy ) at the angles of
incidence corresponding to the best sensitivity of each of the reflection coefficients. Figure 6.14
shows schematically the oblique incidence technique adopted for the measurements. Here the
longitudinal wave, generated by the transmitter, a 10 MHz wideband Rolls-Royce Mateval
transducer, refracts at the water/glass boundary generating oblique incidence shear and
longitudinal pulses in the glass. The reflected pulses from the glass/epoxy interface mode
convert back into longitudinal waves in water to be captured by the receiver, also a 10 MHz
wideband Rolls-Royce Mateval transducer. For a more detailed description of the experimental
setup, the measurement technique, and the data processing sequence used in the experiment,
refer to section 5.2.

Figure 6.15 shows the measured longitudinal-shear and shear-longitudinal (LS+SL) reflection
coefficient from the glass/epoxy interfaces with and without the Frekote 44 mould release at two
different angles of incidence. The measurements involved spectral division of the pulse of
interest (in this case LS+LS pulse) by the reference pulse captured in face-to-face arrangement of
the probes. The reflection coefficient measurement technique from embedded intei'faces was
described in detail in section 5.4. 1

In fig. 6.15(a) the angle of incidence was set to 11.8 degrees in water which, in glass,
corresponds to an angle of incidence of 52.7 degrees for the longitudinal wave and 28.2 degrees
for the shear wave. From fig. 6.15(a) it can be seen that the LS+SL reflection coefficient is
practically the same for the glass/epoxy interface with the Frekote 44 layer and without it. This
result is in accordance with our expectations. Indeed, the (LS+SL) reflection at the angle of
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incidence of 11.8 degrees is the summation of two different reflection coefficients, the Ry g
coefficient at 52.7 degrees (see fig. 6.12), and RgJ, coefficient at 28.2 degrees (see fig. 6.13). It

can be seen from figures 6.12 and 6.13 that the sensitivity of both reflection coefficients at their
corresponding angles of incidence is rather poor which means that the (LS+SL) reflectivity is not
sensitive enough to be used successfully for the detection of the presence of the Frekote 44 layer
across the glass/epoxy interface. t

Figure 6.15(b) shows another example of the (LS+SL) reflectivity measurement, this time at an
angle of incidence of 13.9 degrees from water which corresponds to angles of incidence of 69.1

degrees for the longitudinal wave, and 33.7 degrees for the shear wave in the glass. As the
(LS+SL) reflectivity at 13.9 degrees is the summation of the Ry g coefficient at 69.1 degrees

(see fig. 6.12), and Rgy, coefficient at 33.7 degrees (see fig. 6.13), then the sensitivity of the

measurement to the presence of the mould release should be practically the same as for the angle
of incidence of 11.8 degrees. Again, no significant change between the reflection coefficient
over the glass/epoxy interface with and without the Frekote 44 layer can be seen.

A more interesting result can be obtained when, at the angle of incidence from water of 11.8
degrees, instead of measuring the (LS+SL)1 reflection, the SS1 pulse is taken for the analysis.
Using Snell's law it can be shown that the shear wave refracts in the glass at the angle of 28.2
degrees which, looking at fig. 6.11, is the angle at which the shear-shear reflection coefficient
becomes most sensitive to the interfacial properties across the glass/epoxy boundary. Figure
6.16(a) shows the time domain response of the glass/epoxy plate to a 10 MHz wideband pulse
excitation at the angle of incidence of 11.8 degrees from water. The transmitter and receiver were
arranged so that they captured the SSq reflection primarily. Table 6.4 lists the angles of

refraction and the times of arrival of different pulses reflected from the glass/epoxy interface.

Note that the vertical scales of figures 16(a) and (b) were chosen primarily to show the
amplitudes of the SS1 pulses coming from the glass/epoxy interfaces. Some other pulses of
much bigger amplitudes than those of SS1 type are clipped by the boundaries of the drawings.

Looking at table 6.4 and fig. 6.16(a) it can be seen that the first pulse arriving from the
glass/epoxy boundary is the LL1 reflection, arriving 1.22 us behind the front face reflection
(FF). The (LS+SL)1 pulse arrives together with the LL> reflection but is not really affected by
it. This is because the receiver effectively misses the area isonified by LL, as the pulse emerges
from within the glass plate far away from the receiver. The next reflection received by the probé
is the SS1 reflection which is slightly superimposed on the ((LS+SL){LL){ pulse arriving 0.34
us later. As with the LL» pulse, the ((LS+SL)1LL)1 reflection is almost entirely missed by the
receiver and therefore appears very small on fig. 6.16(a). The last significant pulse visible on
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Type of reflection Anglglggs'/ug;)ig:r;ce at Time of arrival wrt FF
(degrees) (us)
LLy longitudinal: 52.7 1.22
LLy longitudinal: 52.7 2.44
589 shear: 28.2 2.98
R
LL3 longitudinal: 52.7 3.66

Table 6.4 Angles of refraction and times of arrival of different reflections coming from the back of the 5.85 mm
thick glass plate. Angle of incidence in water 11.8 degrees.

fig. 6.16(a) is the (LS+SL)> reflection, arriving 0.88 us behind the ((LS+SL){LL){. From fig.
6.16(a) it can be seen that the amplitude of the SSq reflection is very small here. This
observation is in accordance with the theoretical predictions of fig. 6.11, which show that the
Rgg coefficient is very close to zero at the angles of incidence around 28.4 degrees.

Figure 6.16(b) shows the time domain response from the glass/epoxy plate with the mould
release applied prior to bonding. The excitation and the transducer configuration was exactly the
same here as in the case of fig. 6.16(a). As one can see, the FF, LL1, (LS+SL)1 and (LS+SL)>
pulses have almost identical signatures in figures 6.16(a) and (b), which indicates that the
reflection coefficients Ry 1, and Ry g at 52.7 degrees as well as Rgp, at 28.2 degrees are not
sensitive to the presence of the Frekote 44 layer. However, looking at fig. 6.16(b), it can clearly
be seen that the SS1 reflection from the glass/epoxy interface treated with the mould release prior
to bonding is about three times larger than that obtained from the glass/epoxy boundary without
the Frekote 44 layer present and showed in fig. 6.16(a). This finding clearly indicates that the
28.2 degree shear-shear reflection coefficient technique is capable of detection of ‘the mould
release layer between glass and epoxy.

Another very interesting result can obtained at an angle of incidence of 12.0 degrees from water.
Table 6.5 shows the angles of refractions and times of arrivals of different pulses coming from
the glass/epoxy boundary and fig. 6.17(a) shows the time domain response of the glass/epoxy
plate to a 10 MHz wideband pulse excitation. The receiver was positioned so that it primarily
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received the LL{ pulse.

Type of reflection Anglglgi S./Hé i:gi;ce 3 | Time of arrival wrt FF
(degrocs) (us)
LLg longitudinal: 54.0 1.18
R
LLy longitudinal: 54.0 2.36
S$1 shear: 28.7 2.97
TEEINTE IR
LL3 longitudinal: 54.0 3.54
e

Table 6.5 Angles of refraction and times of arrival of different reflections coming from the back of the 5.85 mm
thick glass plate. Angle of incidence in water 12.0 degrees.

As the angle of refraction for the longitudinal wave is 54.0 degrees, in order to fully receive the
LLq pulse, the receiver had to be positioned far away from the area isonified by front face
reflection (see fig. 6.14), which resulted in a severe deterioration of the FF signal, as can be
seen in fig. 6.17(a). The LL reflection, which comes first after the front face pulse, is the one
we are interested in. Its amplitude in fig. 6.17(a) is very small as theoretically predicted on fig.
6.10, where at around 54.2 degrees the glass/epoxy Ry 1, coefficient touches the zero line.
Figure 6.17(b) shows the response of the glass/Frekote 44/epoxy plate to the exactly the same
excitation and for the same probe arrangement as in fig. 6.16(a). Here it can be seen that the
longitudinal-longitudinal reflectivity is double that for the case of the glass/epoxy boundary
without the Frekote layer.

6.4 Conclusions

It has been shown in this chapter that it is possible to monitor small interfacial changes across the
glass/epoxy boundary using the ultrasonic reflection coefficient method.

Normal incidence longitudinal reflection coefficient measurements are not capable of the

detection of the presence of a thin mould release layer between glass and epoxy. The normal
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incidence shear reflection coefficient, measured over the glass/epoxy interface treated with
Frekote 44 prior to bonding, increases its amplitude by about 10 percent with respect to the
untreated glass/epoxy interface at a frequency of around 10 MHz. This finding provides us with
a means of detection of the presence of the mould release agent at the glass/epoxy boundary at
least in a laboratory environment.

Theoretical and experimental investigations using the oblique incidence technique showed that
there are certain angles of incidence where the reflection coefficient becomes very sensitive to
small interfacial changes at the glass/epoxy boundary. The angles of increased sensitivity were
identified as those at which the reflection coefficients from good interfaces assume a null value.
The measurements carried out to monitor the longitudinal-longitudinal and shear-shear
reflectivity at the appropriate angles confirmed the theoretical predictions and showed that the
oblique incidence technique can be used to detect the presence of the Frekote 44 layer.
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Fig 6.8 Variation of the average reflection coefficient amplitudes
in the frequency range 4 - 12 MHz from the glass/epoxy
interfaces with and without the mould release being applied
to the glass prior to the application of the adhesive.

(A) normal incidence longitudinal reflection coefficient,
(B) normal incidence shear reflection coefficient.
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Fig 6.9 The glass/epoxy specimen manufactured for the oblique incidence
experiments. Two types of the specimens were manufactured, with
and without a thin layer of the Frekote 44 mould release applied
on the glass surface prior to bonding.
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wave waves

water
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7/ Y V4 Y 5.85 mm
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Fig 6.14 Method of generation of the oblique incidence longitudinal
and shear waves in glass.

FF is the front face reflection,

SS is the shear-shear reflection from the silicone layer,

LS is the longitudinal-shear reflection from the silicone layer,
SL is the shear-longitudinal reflection from the silicone layer,
LL is the longitudinal-longitudinal reflection from the layer.
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Fig. 6.15 Measured longitudinal-shear and shear-longitudinal combined (I.S+SL)
reflectivity from glass/epoxy interfaces with and without a mould release layer.
(a) angle of incidence 11.8 degrees from water, (b) angle of incidence 13.9
degrees from water. Results normalised with respect to face-to-face signal.
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Fig. 6.16 Measured time domain response from glass/epoxy interface to a 10 MHz pulse
excitation at the angle of incidence 11.8 degrees from water, which corresponds
to 28.2 degrees for shear wave and 52.7 degrees for longitudinal wave in glass.
(a) clean glass surface prior to bonding, (b) glass surface coated with the Frekote
44 mould release agent prior to bonding.
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Fig. 6.17 Measured time domain response from glass/epoxy interface to a 10 MHz pulse
excitation at the angle of incidence 12.0 degrees from water, which corresponds
to 28.7 degrees for shear wave and 52.7 degrees for longitudinal wave in glass.
(a) clean glass surface prior to bonding, (b) glass surface coated with the Frekote
44 mould release agent prior to bonding.
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CHAPTER 7

Sensitivity of the reflection coefficient method for the
determination of the interfacial properties in adhesive joints

7.1 Introduction

In this chapter an analysis of the problem of the determination of the interfacial properties in
adhesive joints using the reflection coefficient technique is attempted. More specifically, the
chapter addresses the question whether it is possible to detect the presence of a thin oxide layer
between aluminium and epoxy half-spaces and whether the method is capable of detection of the
degradation of the interface due to surface contamination before bonding or environmental attack
of the adhesive joint during service.

In section 7.2 the infinite plane wave theory is used to determine the angles of incidence, the
frequency of excitation as well as the type of reflection coefficient which give the best sensitivity
of the oblique incidence method to the interfacial conditions across the aluminium/epoxy
boundary. The interface is modelled here as an isotropic elastic layer having its own thickness,
density and longitudinal and shear wave velocities. Theoretical predictions are then compared with
experiments conducted on aluminium/epoxy joints with SAA and CAA oxides to determine the
degree of agreement between theory and practice.

Section 7.3 summarises the most important points of the chapter.

7.2 Choice of frequency and angles of incidence for the detection of interfacial
properties in adhesive joints

A typical aluminium-aluminium joint used in the aerospace industry consists of two aluminium
sheets bonded together by epoxy resin. Before the epoxy resin is applied to form the adhesive
joint, the aluminium plates undergo surface treatment procedures in order to increase the joint's
resilience to environmental attack (Kinloch 1983). In order to model the mechanical properties of
an aluminium/epoxy interface layer successfully, it is necessary to know its composition and
morphology.
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7.2.1 Description of the aluminium/epoxy joint used in aerospace industry

There are four different surface preparation procedures which are commonly applied to the
aluminium surface prior to bonding (Allen 1989), namely the Forest Products Laboratory (FPL)
etch, Phosphoric Acid Anodising (PAA), Chromic Acid Anodising (CAA), and Sulphuric Acid
Anodising (SAA). The first two treatments, FPL etch and PAA, are used in the USA industry,
while the third one, CAA, is used in the European and British aerospace industries. The Sulphuric
Acid Anodising (SAA) is not commonly used in aerospace applications, but it has been used in
this thesis for comparison purposes in experimental work. Let us briefly describe each of these
surface treatment procedures; a fuller description can be found in Davies (1989).

Forest Products Laboratory (FPL) etch pretreatment

This is the simplest surface pretreatment of all three, and starts with solvent and alkaline
degreasing (see fig. 7.1). After the grease contamination has been removed from the surface, the
aluminium plate is etched for 10 minutes in a water solution of sulphuric acid and sodium
dichromate for 10 minutes at a temperature of 70° C. In this process, the aluminium plate is
stripped of its thin protective layer comprising a mixture of the oxide and other random chemicals
present when the plate was manufactured. The subsequent rinsing of the aluminium plate in
running tap water builds the layer again, but this time it consists of almost pure aluminium oxide.
The oxide layer produced using the FPL etch process is about 0.07 um thick. Fig 7.2 shows a
schematic diagram of the FPL etch oxide structure (Davies 1989).

Phosphoric Acid Anodising (PAA)

In the PAA procedure, after the solvent and alkaline degreasing and FPL etching process (see fig.
7.1), the aluminium plate is anodised in a 10 % solution of orthophosphoric acid at a temperature
of 22° C for 20 minutes at 10 Volts, while the oxide layer is formed at the aluminium surface. The
oxide layer obtained after this process is about 0.6 um thick (Davies 1989). Fig 7.3 shows a
schematic diagram of the PAA oxide structure. |

Chromic Acid Anodising (CAA)

The CAA process initially follows the same path as the previous two, namely the solvent and the
alkaline degreasing (see fig. 7.1). Then, following alkaline etching and chromic acid etching, the
plate is anodised in a 10 % solution of chromic acid at temperature of 40° C for 40 minutes, while

the aluminium oxide is built on the surface of the plate. The voltage is changed several times
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during the process of anodising being raised in two steps from zero to 40 V in the first 10
minutes, then maintained at the 40 V level for 20 minutes and gradually raised up to 50 V over the
next 5 minutes and then maintained unchanged for the last 5 minutes of the anodising. The
thickness of the oxide layer obtained in the CAA process is about 3.5 pm (Dav1es 1989). Fig 7.4
shows a schematic diagram of the CAA oxide structure.

Sulphuric Acid Anodising (SAA)

The SAA surface treatment initially follows the same process as the FPL etch. After the FPL
etching and rinsing in running tap water the aluminium surface is anodised in 10 % sulphuric acid
solution at a temperature of -5° C for 12 minutes maintaining the electric current density at 4
A/dm?2 (Davies 1989). The oxide layer obtained during the anodising is about 12 pm thick. Figure
7.5 shows a schematic diagram of the SAA oxide structure. It is interesting to note here that it is
possible to obtain different thicknesses of SAA oxide by anodising aluminium samples for
different lengths of time. If, for example, the sample is kept in the bath for 50 minutes then the
oxide is about 50 pm thick.

7.2.2 Theoretical model of the aluminium/epoxy joint

As can be seen from subsection 7.2.1, the aluminium adhesive joint does not simply consist of the
aluminium material directly bonded to the epoxy resin. Since even 'as received' aluminium plate
has a thin oxide layer, a 'barrier' layer is always present regardless of whether the surface is
anodised or not. In other words, the epoxy resin is bonded to the interlayer formed on the
aluminium surface rather than to the aluminium itself. The surface treatments presented in
subsection 7.2.1 make this interlayer thicker and more uniform. It is therefore important to
account for the presence of the oxide layer in our theoretical model.

Figure 7.6(a) shows schematically the aluminium/epoxy interface with the oxide layer in between
formed using CAA process. From fig. 7.4 it clearly can be seen that the structure of the CAA
oxide is very complicated. However, because the layer is very thin, the theoretical model of the
aluminium/epoxy interface used for the reflection coefficient predictions assumes a simplified
model consisting of aluminium and the epoxy half-spaces separated by a 3.5 um thick isotropic
layer with mechanical properties similar to those of the oxide structure. The acoustic properties of
the interlayer were calculated using the properties of solid aluminium oxide and the assumed
porosity of the anodised oxide as follows.

Let us denote the density, longitudinal and shear velocities of the solid oxide as p, cf, and cg,
respectively. The moduli of the material in the longitudinal and shear directions will be denoted as
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E and G, respectively. The density, longitudinal and shear velocities of the anodised oxide are
denoted as p*, c1* and cg¥, respectively. The porosity of the anodised oxide will be denoted as {
here. The moduli of the porous oxide material in the longitudinal and shear direction are denoted
as E* and G¥, respectively. Using the symbols introduced above the density, the moduli in the
longitudinal and shear directions of the porous oxide can be calculated as,

p*=(1-0p, (7.1)
G*=(1-0G. (7.3)

Equations (7.2) and (7.3) state that the longitudinal and shear moduli of the oxide layer changes
linearly with porosity. No account has been taken here of the stress distribution around the pores
which can alter the moduli values to some extend.

In an isotropic material like the solid aluminium oxide, the longitudinal and shear velocities are
related to the longitudinal and shear moduli and the density by the following equations,

E=pct, (7.4)

G=pcg. (7.5)

In the theoretical investigations, it is assumed that the interlayer between aluminium and epoxy is
isotropic, and therefore satisfying similar relationships between the moduli of elasticity and the
wave velocities as the bulk oxide.

* \1/2

e * =( h‘;* ) (1.6)
* \1/2

cg* =( (;* ) 1.7

Substituting equations (7.1) - (7.5) into equations (7.6) and (7.7), we have,

*

CL™ = CL, (7.8)

*

cs* = cg. (7.9)

Equations (7.1), (7.8), and (7.9) were used to calculate the equivalent acoustic properties of the
porous oxide layer. The equations show that in the theoretical model the longitudinal and shear
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velocities of the oxide layers are independent of the oxide porosity. The only property which
changes its value is the density of the interlayer as given by eqn (7.1). However, due to the very
complicated morphology of oxide layers (see figures 7.2, 7.3, 7.4 and 7.5), equivalent acoustic
properties calculated from equations (7.1), (7.8), and (7.9) should be considered as approximate.
Indeed, the layer has been modelled here as an isotropic material which means that its acoustic
properties, like phase velocities of the longitudinal and shear waves, are not dependent on the
direction of wave propagation, which is not the case in reality. However, because the thickness of
oxide layers are usually very thin in comparison with the wavelength of the ultrasound used in
experiments, and the isotropic layer model is relatively simple and readily available, the decision
was made to use it here as an approximation.

Table 7.1 shows the assumed acoustic properties of the solid aluminium oxide and the acoustic
properties of the interlayer representing porous oxides obtained using equations (7.1), (7.8), and
(7.9).

material p(}ir;int% ) longitgiirgrz;l/:)elmity shiasr zf;l/c:):ity

aluminium oxide 3900 10200 6500

10 % porous oxide 3510 10200 6500
20 % porous oxide 3120 10200 6500
30 % porous oxide 2730 10200 6500
40 % porous oxide 2340 10200 | 6500
50 % porous oxide 1950 10200 6500
60 % porous oxide 1560 10200 6500
70 % porous oxide 1170 10200 6500

Table 7.1 Acoustic properties of porous aluminium oxides calculated from equations (7.1), (7.8) and (7.9).

The acoustic properties of the aluminium and epoxy half-spaces used for the reflection coefficient
calculations are given in table 7.2.
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. density longitudinal velocity shear velocity
material o g/m3) ) cg (m /s)
aluminium 2820 6330 3120
epoxy 1170 2610 1100

Table 7.2 Acoustic properties of aluminium and epoxy resin used for the reflection coefficient calculations.

7.2.3 Normal incidence longitudinal reflection coefficient from aluminium/
epoxy joints

Figure 7.7 shows a parametric study of the normal incidence longitudinal reflection coefficient at
the aluminium/oxide/epoxy interface calculated using the properties given in tables 7.1 and 7.2.
The oxide layer was assumed to be 50 [im thick, which is one order of magnitude thicker than that
obtained using the CAA treatment employed in the British and European aerospace industries.
From fig. 7.7 it can be seen that if the porosity of the oxide is small (10 % - 20 %) then the
longitudinal normal incidence reflection coefficient from the oxide layer is greater than the
reflection coefficient from the aluminium/epoxy interface without the oxide layer present, and the
curve is bending in the upward direction for low frequencies. For oxide porosity between 50 %
and 60 % the longitudinal normal incidence curve is very close to that of the reflection coefficient
from the aluminium/epoxy without any oxide layer at all, making the presence of the oxide layer
impossible to detect regardless of the oxide thickness or the frequency range used. When the
porosity of the oxide is big (60 % - 70 %) then the reflection coefficient curve is bending
downwards for low frequencies. It has been discovered empirically (Sullivan and Wood 1970,
Arrowsmith et al 1985, Xu et al 1985, Arrowsmith and Moth 1986) that the porosity of anodised
oxides depend on the electrolyte type, its concentration and temperature. More extensive
theoretical analysis of the normal reflection coefficient from thin oxide layers is given in chapter 4
of this thesis. k‘

The experimental investigation of the normal incidence longitudinal reflectivity was carried out
using single-interface aluminium-epoxy joints with a 50 jim thick SAA oxide layer anodised on
the aluminium surface prior to bonding (see fig. 7.8). Three types of samples were prepared,
'healthy' SAA oxide joints, 'hydrated' SAA oxide joints and the reference joints. The 'hydrated'
type of oxide layer was obtained by keeping the anodised aluminium plates for 48 hours in a water
bath at 55° C, while the 'healthy' samples were kept in dry air for this period of time. The
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reference samples were manufactured by cleaning the aluminium surfaces with acetone. Then all
the samples, the 'hydrated’ and the 'healthy' SAA samples as well as the reference ones, were
bonded at the same time and using the same adhesive system (Ciba-Geigy Araldite AY 103 with
Hardener HY 951).

The procedure of the reflection coefficient measurement involving the time domain gating and
spectral division by a reference signal has been described in detail in chapter S of this thesis.
Figure 7.9 shows the normal incidence reflection coefficient from the healthy and hydrated 50 pm
thick SAA oxide normalised with respect to the reflection coefficient from the sample without the
oxide layer present (the reference sample). From the figure it can clearly be seen that it is relatively
easy to detect presence of 50 um thick oxide layer between aluminium and epoxy. The reflection
coefficient from the healthy oxide bends downwards indicating that the porosity of the layer is
greater than 60 %. The reflection coefficient from the hydrated 50 pm thick oxide layer moved in
the upward direction with respect to the healthy oxide indicating that the longitudinal impedance of
the layer is higher than that of the healthy layer. More detailed discussion about the behaviour of
the normal incidence reflection coefficient from the interlayer as a function of its impedance is
presented in section 4.4 of this thesis.

Figure 7.10 shows the theoretically calculated normal incidence longitudinal reflection coefficient
from a 50 pum thick 67 % porous oxide layer and table 7.3 shows the material properties of the
oxides taken for the reflection coefficient calculations. The acoustic properties for the hydrated 67
% porous layer were calculated assuming that after 48 hours in water bath the pores in the oxide
were filled with water, and applying similar reasoning to that given by equations (7.1) - (7.9).

. density longitudinal velocity shear velocity
maeral p (kg/m3) cr, (m/s) cg (m/s)
67 % porous
healthy oxide 1287 10200 6500
67 %
hydrgw%oéi?dse 1957 8510 5400

Table 7.3  Acoustic properties of healthy and hydrated aluminium oxides assumed in calculations shbwn in fig.
7.10.

Comparison between figures 7.9 and 7.10 indicates that at normal incidence the theoretical model
is capable of quantitative predictions of the reflection coefficient from the oxides. This will need to
be verified by measuring the levels of porosity, probably by sectioning the samples and using
optical microscopy. Further tests with different levels of porosity will also be required.
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The experimental and theoretical results shown in figures 7.7, 7.9 and 7.10 considered an oxide
layer of the thickness of 50 wm, which is one order of magnitude higher than the CAA anodised
oxide whose typical thickness is about 3.5 pm. Figure 7.11 shows the normal incidence
longitudinal reflection coefficients calculated for 70 % porous oxide layers of different
thicknesses. From the figure one can see that while the presence 50 um thick oxide is rather easy
to detect, the 20 um thick oxide of the same properties is very unlikely to be detected in practice
using frequencies up to 50 MHz. If it is assumed that in the frequency range up to 50 MHz the
presence of the 30 um thick oxide is detectable then the presence of a 3.5 um thick oxide of the
same properties will require frequencies up to 500 MHz to secure successful detection of the
presence of the oxide. This requirement cannot practically be met in ultrasonic nondestructive
testing which uses frequencies up to 100 MHz. It is therefore concluded here that at normal
incidence the detection of the presence of 3.5 um thick CAA oxide layer, let alone its hydration, is

impossible.

In order to illustrate this, the normal incidence longitudinal wave reflection coefficient was
measured from aluminium/epoxy boundaries with 15 um thick SAA oxide, 3.5 pm thick CAA
oxide and 0.07 pum thick FPL etch oxide layers created on the surface of the aluminium plates
prior to the application of epoxy resin. The thickness of the SAA oxide was checked with an
electromagnetic gauge, while the thicknesses of the CAA and the FPL etch oxides were taken from
the surface pretreatment specifications (see fig. 7.1). The specimens manufactured for the
experiments were the single-interface type (see fig. 7.8) and the signal processing sequence was
exactly the same as that used to obtain results of fig. 7.9, and involved the time domain gating of
pulses reflected from interfaces of interest and spectral division of the data by the reference signal.
Figure 7.12 shows the normal incidence longitudinal reflection coefficient from the aluminium/
epoxy interfaces with 15 pum thick 'healthy' SAA oxide and 3.5 um thick 'healthy' oxide layers
normalised with respect to the normal incidence longitudinal reflection coefficient from the
specimen with the 0.07 um thick FPL etch oxide layer. The results presented in the figure show
that the reflection coefficients from the three interfaces cannot be distinguished from each other.
This is in agreement with the theoretical predictions shown in fig. 7.11.

7.2.4 Oblique incidence reflection coefficients from aluminium/epoxy joints

Figure 7.13 shows the theoretically calculated longitudinal-longitudinal (Ry 1), shear-shear
(RsS), longitudinal-shear (R[ ) and shear longitudinal (Rgy ) reflection coefficients from an

aluminium-epoxy interface with and without oxide layer as a function of the angle of incidence
in the aluminium half-space. Curves number 1 in fig. 7.13 correspond to the case of a 3.5 um
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thick 60 % porous oxide excited at the frequency of 30 MHz. Curves number 2 correspond to
the same case as those bearing number 1 but being excited at a frequency of 10 MHz. Curves
number 3 correspond to the case of an aluminium/epoxy boundary without the oxide layer
present, the reflection coefficients being frequency independent in this case.

There are three important observations which can be drawn from fig. 7.13. The first one is that
the sensitivity of the reflection coefficient method is frequency dependent. Indeed, it can clearly
be seen that the reflection coefficient method is more sensitive at the frequency of 30 MHz
(curves number 1) in comparison with the results obtained at the frequency of 10 MHz (curves
number 2). However, since none of the curves shown in fig. 7.13 touches the zero line, the
sensitivity of the reflection coefficient method will be significantly lower for the
aluminium/epoxy interface than for the glass/epoxy interface studied in chapter 6. Indeed, it
was shown in chapter 6 that at the angles of incidence where the reflection coefficients form the
glass/epoxy interface are zero (see figures 6.10 and 6.11 and compare them with figures
7.13(a) and (c)), the sensitivity of the reflection coefficient method substantially increases. The
third observation is that the biggest sensitivity of the reflection coefficient method is when the
shear-shear reflection coefficient (Rgg) at an angle of incidence of around 32.0 degrees in

aluminium is used (see fig. 7.13(c)). Table 7.4 shows the amplitude of the shear-shear
reflection coefficient (Rgg) obtained from the curves of fig. 7.13(c).

curve number | description of the interface | frequencyof |Rgg amplitude| change wrt
excitation at 32.0 deg curve No 3

1 60 % orit homable 7.1 | 30 Mz 0.574 52%

2 60 % oriit bom able 71 | 10 Mz 0.458 21%

3 No oxide present infgegp‘g;‘ggm 0.374 0%

Table 7.4 The amplitude of the Rgg coefficient at 32.0 degrees taken from fig. 7.13(c)

There is also a very important practical consideration in favour of the use of the shear wave at this
angle. When the shear wave is incident on the boundary, reflected longitudinal and shear wave
will be generated. However, when the incident shear wave angle is greater than 29.5 degrees, the
longitudinal wave is inhomogeneous so only the shear wave is seen. Indeed, taking tfle
longitudinal and shear phase velocity values for aluminium from table 7.2 the maximum shear
wave angle for which the longitudinal wave is homogeneous can be calculated as sin‘l(cs/cL )=
sin"1(3120/6330) = 29.5 degrees. Above this angle the longitudinal wave becomes
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inhomogeneous. This means that the only propagating pulses in the aluminium are the shear wave
pulses which greatly simplifies the process of capturing them and data processing. Let us
investigate the sensitivity of the Rgg reflectivity at the angle of 32.0 degrees in aluminium.

As we mentioned before, during the process of CAA anodising, an approximately 3.5 pm thick
aluminium oxide layer is produced on the surface of the adherend. Due to the nature of the
anodising process, it is sensible to assume that the thickness of the oxide may vary + 0.5 pm over
the tested sample. This means that, in practice, the lower and the upper bounds for the oxide layer
thickness are 3.0 um and 4.0 um, respectively. Therefore, to be useful in practice, the reflection
coefficient variations due to the fluctuations in the layer thickness have to be well separated from
the changes in the reflectivity caused by the absence of the interlayer or by changes of its
properties.

Figure 7.14 shows a parametric study of the shear-shear reflection coefficient at an angle of
incidence of 32.0 degrees in the frequency domain. The horizontal line corresponds to the case
when the oxide layer does no exist at the interface, or in other words, when its thickness is null.
The remaining three curves on this figure correspond to oxide layer thicknesses of 3.0 pm, 3.5
pm, and 4.0 pm with 60 % porosity. The area of the fluctuation of the reflection coefficient due to
the variation of the oxide thickness is contained between the lines corresponding to the 3.0 um and
4.0 um thick oxides, and is shaded.

It is easy now to find the frequencies at which the detection of the presence of the oxide layer is
possible. For example if we require a 20 percent difference in the reflectivity between the interface
with and without the oxide, then the the frequency for which the shaded zone is above the 0.37 x
1.2 = 0.45 level can be found from the fig. 7.14 as 10.6 MHz.

The theoretical investigations shown in figures 7.13 and 7.14 were carried out assuming the oxide
porosity of 60 %. It is most likely that 3.5 pm thick CAA oxide will have porosity between 10 %
and 20 %. Figure 7.15 shows a parametric study of the shear-shear reflection coefficient from
aluminium/3.5 pm thick oxide/epoxy interfaces at an angle of incidence of 32.0 degrees in
aluminium for different porosities of the oxide layer. It can clearly be seen from the figure that the
smaller the porosity of the oxide the better the chances of the detection of the oxide layer. Looking
at figures 7.15 and 7.14 we can therefore conclude that the detection of the presence of 3.5 um

thick oxide layer between the aluminium and epoxy half-spaces should pose no problems if the
shear-shear reflection coefficient at the angle of 32.0 degrees is used.

Experimental investigations were carried out to validate the theoretical predictions of figures 7.14
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and 7.15 on the three types of aluminium-epoxy joints, which were used for the normal incidence
longitudinal reflection coefficient measurements of fig. 7.12. The first type of specimens were
aluminium/0.07 pwm thick FPL etch oxide/epoxy joints, the second type were aluminium/3.5 pm
thick CAA oxide/epoxy joints, while the third type of specimens were aluminium/15 pm thick
SAA oxide/epoxy joints. Figure 7.16 shows the shear-shear reflection coefficients from the CAA
oxide and SAA oxide layers at an angle of 32.0 degrees normalised with respect to the reflection
coefficient from the FPL etched oxide interface. Since the FPL oxide thickness is 0.07 um, the
reflection coefficient from the aluminium/FPL etch oxide/epoxy is practically the same as the
aluminium/epoxy coefficient without the oxide layer present.

Comparing the experimental results presented in figures 7.12 and 7.16, a significant improvement
of sensitivity of the oblique incidence technique over the normal incidence method can be seen.
Indeed, it was impossible to detect the presence of the 15 um thick SAA oxide using the normal
incidence longitudinal wave technique operating in the frequency range up to 50 MHz (see fig.
7.12), while the shear-shear reflection coefficient at 32.0 degrees readily revealed the presence of
the oxide layer in the frequency range up to 15 MHz (see fig. 7.16). Also the reflection coefficient
from 3.5 um thick CAA oxide appears to be slightly higher than that from 0.07 pm thick FPL etch
oxide and the difference between them increases with frequency. This is qualitatively in agreement
with the theoretical predictions shown in fig. 7.13.

However, according to the theoretical predictions shown in fig. 7.15 we should expect significant
differences in amplitude (at least 30 %) between the CAA and FPL curves of fig. 7.16. This is not
the case here. The shear-shear reflection coefficients from the 3.5 um thick CAA oxide and 0.07
pm thick FPL etch oxide look practically the same in the frequency range between 5 MHz and 15
MHz. This indicates that the theoretical model used for the oblique incidence reflection coefficient
calculations is incapable of accurate quantitative predictions of the behaviour of the real aluminium/
oxide/epoxy systems. The problem here lies in the oversimplification of the mechanical behaviour
of the oxide which was modelled as an isotropic layer rather than an anisotropic honeycomb-like
structure (see figures 7.4 and 7.6).

The curves of fig. 7.15 were obtained assuming that the longitudinal and shear velocities in the
oxide layer are as high as 10200 m/s and 6500 m/s and that they are independent of the direction
of propagation in the oxide (isotropic model). This assumption also means that the moduli of
elasticity of the layer are direction independent. The schematic diagrams of the PAA oxide (fig
7.3), CAA oxide (fig 7.4) and SAA oxide (fig 7.5) show that all three types of anodised oxides
have a vertical cellular structure suggesting that the oxides have the highest stiffness in the vertical
direction and the lowest stiffness in the horizontal direction. It is therefore very possible that,
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when testing at oblique incidence, the equivalent wave velocities are significantly lower than
calculated in table 7.1.

Figure 7.17 shows the theoretically calculated shear-shear reflection coefficient at an angle of
incidence of 32.0 degrees in aluminium from 60 % porous oxide layers in between aluminium and
epoxy half-spaces, when the longitudinal and shear velocities have been reduced to 60 % of the
values of table 7.1. Table 7.5 shows the acoustic properties used for the calculations.

material density longitudinal velocity shear velocity
p (kg/m3) cp, (m/s) cg (m/s)
oxide 1560 6210 3900

Table 7.5 Acoustic properties of aluminium oxide used for the reflection coefficient calculations shown in fig.
7.17.

The theoretically obtained curves of fig. 7.17 are much closer to the experimentally determined
reflection coefficients presented in fig. 7.16 than those of fig. 7.14. However, the acoustic
properties of the oxide material shown in table 7.5 were deliberately chosen so that figures 7.16
and 7.17 are in a reasonably good agreement. The example shown in fig. 7.17 has been solely
devised to show the need for the development of an anisotropic model of the aluminium oxide
interface, in which the directionality of the material properties of the layer can be taken into
account.

7.3 Conclusions

It has been shown in this chapter that the normal incidence reflection coefficient technique
operating up to a frequency of 100 MHz is capable of the detection of the presence of an oxide
layer in adhesive joints provided that the oxide layer is at least 30 um‘thick and its effective
porosity is not between 50 % and 60 %. Detection of the 3.5 um thick CAA oxide is not possible
using this technique because the oxide is one order of magnitude thinner than the minimum
detectable thickness.

A theoretical analysis of the oblique incidence reflection coefficient from the
aluminium/oxide/epoxy systems shows that at certain angles of incidence and for certain types of
reflection coefficients the sensitivity of the method is much greater than at normal incidence. In
order to show this in practice, the normal incidence longitudinal reflection coefficient and the 32.0
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degrees incidence shear-shear reflection coefficient from 15 pum thick SAA oxide layer at an
aluminium/epoxy boundary was experimentally determined. A significant improvement of the
oblique incidence method over the conventional normal incidence technique could be seen and the

measurements were in qualitative agreement with theory.

The theoretical study of the oblique incidence reflection coefficient from the aluminium/epoxy
interface shows that the sensitivity of the technique to the interfacial changes is not as good as in
the case of the glass/epoxy system, analysed in chapter 6. This is because there are certain angles
of incidence where the oblique angle reflection coefficients from the glass/epoxy interface attain
null values. At these particular angles, the reflection coefficient method substantially increases its
sensitivity. The oblique incidence reflection coefficients from the aluminium/epoxy interface,

however, do not attain any zero value within the entire permissible range of angles of incidence.

The theoretical predictions indicated that, if the shear-shear reflection coefficient at an angle of
incidence 32.0 degrees is used, then it should be possible to detect the presence of a 3.5 pm thick
CAA oxide layer in the adhesive joint using a frequency as low as 10 MHz. However, the
experiments carried out to monitor the shear-shear reflectivity from CAA oxides in adhesive joints
at an angle of incidence of 32.0 degrees in the frequency range from 5 to 15 MHz showed only
very small sensitivity to the presence of 3.5 pm thick CAA oxide layers. It has therefore been
concluded that the isotropic model of the oxide layer is too simplistic to quantitatively predict the
mechanical response of the layer when excited by an oblique incident wave.

In order to quantitatively predict the oblique incidence reflection coefficient from complicated
systems like oxides it will be necessary to take into account their strongly anisotropic properties.
The mechanical properties of oxide layers depend on porosity, morphology and composition of
the layers and these are affected by the type of anodising process used as well as the concentration
and temperature of the electrolyte used. It is therefore expected that there will be significant
dependence of the mechanical properties on the thickness of the oxide layers. Further work is
therefore needed to incorporate an anisotropic layer model into the éxisting theory, to find
appropriate material constants and to validate the model on aluminium/ oxide/epoxy systems.

The preliminary experimental study performed here indicates that it will be very difficult to see the
presence of a 3.5 um thick CAA oxide layer in the adhesive joint, let alone the detection of
degraded properties of the layer due to, for example, hydration. However, this conclusion may
change if, for example, the anisotropic model suggests other test angles or types of reflection
coefficient.
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Aluminium bonding Aluminium bonding
USA specification European specification
solvent degrease solvent degrease
dry: warm air, 30 min dry: warm air, 30 min
alkaline deg;ease alkaline degrease
rinse: 1. tap water, 5 min rinse: 1. tap water, 5 min
2. deionised water, 3 min 2. deionised water, 3 min
FPL etch (BAC 5514) * FPL etch (BAC 5514) * alkalir];tch
rinse (as above) rinse (as above) | rinse (as above)
dry (as above) PAA (BAC 5555) ** chromic acid etch proccs?l
apply primer rinse (as above) CAA (DEF. STAN. 03-24/1) **=*
dry (as above) rinse (as above)
apply primer dry (as above)
apply primer

Fig. 7.1 General comparison between European and American surface pretreatments
(after Davies 1989).

* Chromic acid etch to BAC 5514, Boeing Aircraft Specification 5514.
** Phosphoric acid anodising to BAC 5555, Boeing Aircraft Specification 5555.
*** Chromic acid anodising to UK Defence Standard 03-24/1.
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oxide 130 nm

\ .
70 nm
/

- aluminium

Fig 7.2 Schematic of FPL oxide (after Davies 1989).
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0.6 pm thick oxide

aluminium

50 nm

Fig 7.3 Schematic of PAA oxide (after Davies 1989).



Chapter 7 286
Sensitivity of the reflection coefficient method for the determination of the interfacial properties in adhesive joints

TOUUOUOOOION ™
NNNAN 7
%%\ .

'‘branch like' structure

3.5 um with varying pore size

LOWER PART OF OXIDE
largest pore size and
a regular structure

Fig 7.4 Schematic of CAA oxide (after Davies 1989)
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40 nm thick 'crust’

/

< A

12 pum thick oxide

A SR 4

Fig 7.5 Schematic of SAA oxide (after Davies 1989).
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3.5 um
thick oxide

3.5 pm thick
X isotropic interlayer

Fig 7.6 Theoretical model used for the reflection coefficient calculations.
(a) Structure of the aluminium/epoxy interface, :

(b) Theoretical model of the interface incorporating an isotropic
interlayer between the aluminium and epoxy half-spaces
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transmitter/receiver

water
aluminium l l 4.5 mm
7 mm
aluminium/epoxy

interface

Fig 7.8 Normal incidence longitudinal wave reflection coefficient
measurements from the aluminium/epoxy boundary.
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CHAPTER 8

Conclusions and suggestions for further work

8.1 General

The application of adhesive joints in industry has been limited by the lack of reliable
nondestructive testing procedures for assessing the integrity of joints.

Substantial research effort has been put towards the development of such testing techniqués,
and methods have been devised to test for disbonds and porosity. The problem of poor
cohesion has been addressed recently by many authors and some progress has been noted in
this field. Dewen (1992) showed that it is possible to determine the longitudinal bulk wave
velocity in a bond line to within 6 % of its nominal value and the bond line thickness to within a

micron.

There is no currently available technique for testing the interfacial properties between the
adhesive and adherend. The problem here lies in the thickness of the interfacial layer which is
usually smaller than 5 microns. This excludes all standard ultrasonic testing techniques.

It was suggested by Pilarski and Rose (1988) that oblique incidence methods might be
employed in order to improve the sensitivity of the reflection coefficient technique. The
technique uses two ultrasonic transducers inclined at an angle with respect to the tested joint and
operating in a pitch-catch mode. This thesis has reported the investigations‘ carried out to assess
the viability of this idea for the nondestructive testing of adhesive joints, and in particular, for
characterisation of the adherend/adhesive interface.

The oblique incidence technique has been shown to be far more complicated, both:' from the
theoretical and experimental point of view, than the standard normal incidence method. When a
specimen is excited at normal incidence, the theory required to explain the observed phenomena
is essentially a one-dimensional model involving propagation of a single wave type (shear or
longitudinal). However, at an oblique angle of incidence the complication of the model
increases substantially. The theory of the response of the structure is now two-dimensional,

involving concurrent shear and longitudinal bulk wave propagation, and embracing problems of
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surface wave, interface wave, and plate wave excitation and propagation. The theory of wave
propagation, transmission and reflection from multilayered viscoelastic plates has been
developed and implemented in a package of computer programs for the prediction of the
response of multilayered viscoelastic plates to finite transducer excitation.

Also, from the experimental point of view, the oblique incidence method reqﬁires substantially
more sophisticated experimental procedures than the standard normal incidence technique. It
was therefore necessary to design and build a very accurate mechanism (Reflection Coefficient
Meter) to carry out the tests.

The conclusions reported below can be divided into those associated with the development of
theory and those arising from experimental work.

8.2 Theoretical model for predictions of reflection coefficients from adhesive
joints

Numerical instability of Thomson-Haskell formulation

An adhesive joint has been modelled in this project as a multilayered viscoelastic plate and
initially the Thomson-Haskell wave coupling algorithm was used for computation of the
reflection coefficients from the plates. However, it has been shown in this thesis that in cases
when inhomogeneous waves are generated in plates and the frequency of excitation is high,
then the wave coupling algorithm becomes unstable. It has been shown in this thesis that the
global matrix technique avoids the instability problem, and therefore has been adopted for the
purposes of this project.

Infinite model versus finite model

When the reflection coefficients are to be measured from a single interface then the infinite
model can be used successfully provided that the angle of incidence is away from the critical
angles and the receiver is located in the middle of the area isonified by the reflected beam.
However, at angles of incidence close to the critical angles of the interface, the finite transducer
theory should be used in order to obtain quantitative agreement with experiments.

Initial tests performed on a single interface water/aluminium system revealed that the infinite
plane wave model cannot fully describe the Rayleigh angle phenomenon at which the surface
wave in the aluminium was excited. It was therefore required to develop the theoretical model
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further to include the finite transducer excitation of the multilayered plate and the finite
transducer reception of the ultrasonic field reflected from the tested structure.

When measuring the response from multilayered systems, for example a plate, due to multiple
reflections within the plate, the energy is carried along the plate and the receiver misses a
significant part of the reflected signal. In such circumstances it is necessar); to use the finite
transducer model to obtain quantitative agreement between theory and measurements. This has
been demonstrated in chapter 5 of this thesis where the measured response from an aluminium
plate in water was compared with theoretical predictions using the infinite plane wave theory
and the finite transducer theory.

However, if it is required to measure the reflection coefficient from embedded interfaces then
the infinite theory can be successfully applied provided that the beam generated by the
transmitter does not excite any surface or interface waves on its path from the transmitter down
to the monitored interface and back, from the measured interface to the receiver. In other
words, the infinite theory is a sufficient approximation of the finite beam theory when there is
only a specular reflection and transmission of the beam in the measured system. The second
requirement is that the receiver has to be placed in the centre of the area isonified by the
reflection of interest coming from the embedded interface. This has been demonstrated using a
glass/silicone fluid/glass system where a simple plane wave theory was used to quantitatively
predict the reflection coefficient from an embedded interface. The measured reflection
coefficient amplitudes have been found to be within 5 % of the predicted values. If non-
specular reflection or transmission takes place during the experiment, then the finite beam
theory is required to quantitatively predict the measured response.

Modelling of the interfacial layers in aluminium/epoxy joints

In aerospace applications aluminium adherends undergo well defined surface treatment
procedures prior to bonding in order to form porous oxide layers on those surfaces. Epoxy
resin, therefore, bonds to the porous aluminium oxide rather than to the aluminium adherend
itself. In this way the oxide layer becomes an interface layer between the aluminium and epoxy.
This interface layer has very complicated morphology, usually a cellular, irregular:‘ structure
with 'columnar-like' topography and the thickness of the layer is of the order of 1 micron or
less depending on the specific surface preparation procedure.

Because of its small thickness, the interface layer in theoretical investigations is frequently
approximated by a spring model. It has been shown in this thesis that the spring model can only
be used in specific circumstances and, in general, it is prone to produce erroneous results. A
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better thin layer approximation, the mass+spring model, has been proposed in this thesis. This
has been shown to approximate the behaviour of thin layers at low frequencies very
satisfactorily.

It has also been shown in this thesis that the spring model or even the mass+spring model
becomes a poor approximation when the layer is excited at oblique incidence.{ Therefore, a thin
isotropic layer has been used in this project to model the behaviour of the interface layer
between the adherend and the adhesive.

8.3 Monitoring of the interfacial properties between adherend and adhesive
using the reflection coefficient technique

Degree of agreement between the theory and measurement

It has been shown in this thesis that it is possible to achieve agreement between the
measurement of the oblique incidence reflection coefficient from embedded interfaces and
theoretical predictions to within 5 %. This has been demonstrated in chapter 5 where the normal
incidence and the oblique incidence reflection coefficients from a thin silicone layer between
two glass substrates were measured and compared with the infinite plane wave theory.

Monitoring of interfacial properties in glass/epoxy joints

It has been demonstrated in this thesis that it is possible to detect the presence of a thin layer of
mould release (Frekote 44) between glass and epoxy using the normal incidence shear reflection
coefficient technique, while it was impossible to detect the Frekote layer using the normal
incidence longitudinal reflection coefficient method.

It has also been demonstrated here that the oblique incidence method can be very sensitive to the
interfacial properties at the glass/epoxy boundary. It has been shown both theoretically and
experimentally that the sensitivity of the method is greatly enhanced at the angles of incidence
where the reflection coefficients from a good interface are zero. "

Monitoring of interfacial properties in aluminium/epoxy joints
It has been shown that the normal incidence longitudinal reflection coefficient operating in the

frequency range up to 100 MHz cannot be used successfully to detect the presence of oxide
layers whose thicknesses are of the order of 1 micron in aluminium/epoxy joints. In order to
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secure positive detection of such thin oxide layers, the frequency of excitation would have to be
as high as 1 GHz. This requirement cannot be satisfied in practical NDT applications.

Theoretical investigations have shown that the oblique incidence reflection coefficients from the
aluminium/ epoxy interfaces have no zeroes over the entire possible range of angles of
incidence. This finding makes the technique devised to monitor the glasé/epoxy interface
inapplicable to the case of the aluminium/epoxy interface. Therefore the sensitivity of the
reflection coefficient method to interfacial changes across the aluminium/epoxy boundary is
expected to be significantly lower than in the case of the glass/epoxy system.

The experimental and theoretical investigations showed that the theoretical predictions of the
oblique incidence reflection coefficients from aluminium/oxide layer/epoxy interfaces are not in
good quantitative agreement with the measurements. The most probable reason for this
discrepancy is the oversimplification of the mechanical behaviour of the oxide layer. The model
which has been used for the predictions assumed that the oxide layer can be approximated to a
thin isotropic layer. However, the results obtained suggest that an anisotropic model should be
used in order to achieve quantitative agreement between theory and experiments.

8.4 Detectability of presence of oxide layers in aluminium/epoxy joints using
reflection coefficient technique

Theoretical and experimental work has been carried out to find the optimal arrangement of the
probes, frequency range and type of reflection in order to achieve maximum sensitivity to
changes in the adherend/adhesive interfaces. It has been found that the oblique incidence
techniques can offer a substantial increase in sensitivity to interfacial properties over the current
standard inspection techniques, but the results obtained indicate that the improvement is
unlikely to be sufficient for the technique to be used as a new reliable nondestructive procedure.
There is a small chance that the development of an anisotropic layer model may indicate a test
configuration where improved sensitivity may be obtained.

8.5 Suggestions for future work

It has been shown in this thesis that the isotropic model of the oxide layer is too simplistic to be
used for quantitative comparisons with experiments at oblique angles of incidence. Further
refinement of the theory is therefore recommended, which will extend the existing isotropic
model of the layer to incorporate the anisotropic properties of the oxide.
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The theoretical and experimental results presented in this thesis suggest that the detectability of
oxide layers between the aluminium and epoxy is very dependent on the level of porosity in the
oxide layer, and if the porosity is between 50 % and 60 % then the detection of the oxide at
normal incidence is impossible regardless of the thickness of the layer. It is therefore suggested
that further work can be carried out to quantitatively relate the reflection coefficient to the oxide
porosity, the level of porosity being obtained independently by optical measurements on
sections takes through the interface.
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Appendix A

Amplitude spectrum method for the measurement of phase velocity

This paper was based on work carried out by T. P. Pialucha, the contribution of Dr P. Cawley
being that normally associated with the supervision of PhD students. Dr C. C. H. Guyott was
involved in early work on the topic. The presentation in the paper was developed entirely by T.
P. Pialucha.
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An amplitude spectrum technique for the measurement of the phase velocities of waves in
media, which can be dispersive and attenuating is presented. In this method the variation
of phase velocity with frequency is calculated from the longitudinal resonant frequencies,
the corresponding mode numbers and the distance between the boundaries of the tested
material. The amplitude spectrum method has been found to be superior to the existing
phase spectrum technique when testing thin specimens, where the different reflections from
the two boundaries cannot be separated in the time domain. Comparison between the
phase spectrum technique and the amplitude spectrum method has been carried out on a
3.2 mm thick aluminium plate (non-dispersive medium) and a 3.15 mm thick epoxy resin
(dispersive medium), excellent agreement being shown between the two methods.

Keywords: material property measurements; ultrasonic dynamic measurements;

phase velocity: ultrasonic resonances

Ultrasonic velocity measurements are widely used in
non-destructive testing to check elastic constants and to
monitor residual stress! 7. It is frequently necessary to
obtain very accurate velocity values, particularly for stress
measurements, since the influence of stress on velocity is
relatively small. Measurements can be made in either the
time or frequency domains. In the time domain approach,
the transit time between two parallel faces of a specimen
is determined by the velocity of sound in the tested
material and the distance between its boundaries. The
major limitation of this technique is the difficulty of
resolving the consecutive echoes from the plate when the
thickness of the sample is small, and therefore deconvolution
theory has recently been applied to enhance the resolution”.
The time domain technique, however, is unable to cope
with dispersive media, where the pulse changes its shape
as it propagates, which is the case when some non-metals
are to be tested. To cater for these applications, frequency
domain techniques have been employed®.

The first frequency domain methods used to measure
phase velocities employed continuous monochromatic
waves or narrow band pulses®. Subsequently, the
application of the Fourier transform of wide band pulses
in the experimental determination of phase and group
velocities has been discussed®. Here the phase spectra of
the pulses were used to evaluate the variation of phase
and group velocities in the material. Sachse and Pao®
compared the results obtained using this method with
those from the existing narrow band ‘z-point’ phase
comparison technique, where the half-wavelength of a
harmonic wave is determined by varying the distance
between the transmitting and receiving probe and
determining the shift required to change the phase of the
receiving signal by n (Reference 9). The experimental
results of the two methods showed very good agreement.
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However, if it is necessary to measure the phase velocity
in a thin layer of, for example, adhesive, it may not be
possible to separate the consecutive reflections from its
boundaries, making it impossible to use the phase spectrum
approach. In this Paper an amplitude spectrum'®~'3
method is proposed to evaluate the variation of the phase
velocity in dispersive, attenuating media. To compare the
amplitude spectrum approach with the existing theories,
the phase spectrum method is reviewed and phase
velocities are obtained experimentally using both the
amplitude and phase spectrum techniques.

Theory
Background

If it is assumed that a harmonic wave propagating in an
unbounded medium in a positive direction can be
expressed as®

u(x, t)y=A4 exp[i(wt—k.quﬁ)]exp[—ax] (1)

where A is an arbitrary amplitude, w is the angular
frequency of the wave, k denotes the wave number
(k= w/c, where ¢ is the phase velocity of the harmonic
wave and in general can be frequency dependent), ¢ is
the phase, and « denotes the decay constant as the wave
propagates through the medium. It can be shown that
any permissible waveform propagating in a positive
direction can be expressed as a linear combination of all
harmonic waves of Equation (1)&, that is

+ .z + o

u(x, t)=1/(2n) f {JA((U, t)cxp[—iqb]dr/)}

-

x exp[i(mt — kx)] exp[ —ax] dw (2)
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For x =0 the equation above reduces to

tw  +ow

u(0, t)=1/(2n) f { f A(w, t) exp[ —i¢p] dqb}

x exp[iwt] dw (3)
Applying forward and inverse Fourier transforms, the
time history u(0, ¢) at x =0 can be expressed as

towo +x

u(0, t)=1/(2n) f { f u(0, t) exp[ —icwt] dt}
x exp[iwt] dw (4)
Comparing Equation (3) with Equation (4) it can be seen

that the inner integral of Equation (3) must be equal to
the Fourier transform of the waveform at x =0, i.e.

j Ao, tyexp[ —i¢p]dp = j u(0, t)exp[ —iwt]dt

=F(u(0, 1)) (5)

where F denotes the Fourier transform operator. Therefore
Equation (2) takes the form

+ 0

u(x, t)=1/(2n) J F(u(0, t)) exp[i(wt — kx)

x exp[ —ax] dow (6)

which can be re-written as

+

u(x, t)=1/(2n) J {F(u(O, t)) exp[ —ikx] cxp[—ax]}

x expliot]dw (7

Using the same argument as in Equation (4), the expression
in curly brackets is the Fourier transform of u(x, t) so
finally

F(u(x, t))=F(u(0, t)) exp[ —ikx] exp[ —ax] (8)

An expression of this form was obtained by Sachse and
Pao in reference 9.

The phase spectrum approach

Sachse and Pao® presented a method of obtaining the
phase velocity of a wave from two separate measurements.
For the first measurement, two transducers operating in
through transmission mode were placed in intimate
face-to-face contact to obtain a reference phase spectrum.
For the second measurement, one transducer was
positioned on each face of the test specimen to find the
phase spectrum of the pulse propagating through the
material. The phase velocity was then calculated from
the difference between these two phase spectra.

A minor modification of this technique is to use a single
transducer, working in pulse-echo mode at normal
incidence, to excite a specimen immersed in water. In this
case, the phase spectrum of the reflection the front face
can be taken as a reference, and may be used with the
first reflection from the back face to calculate the phase
velocity. The time history of the signal reflected from a
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Figure 1 Response of 3.2 mm thick aluminium plate to pulse at
normal incidence. F is the front face reflection and B; are successive
reflections from the back face

plate of thickness L consists of the reflection from the
front face of the plate followed by a family of consecutive
reflections from the back of the specimen (see Figure 1).
The time-lag between two consecutive reflections is
determined by twice the thickness of the plate as the wave
has to traverse the specimen twice to be received back
by the probe. The front face reflection is out of phase
with the reflections from the back of the specimen because
the impedance of the tested material is higher than the
impedance of water.

Consider the face reflection and the first reflection from
the back of the specimen. If the first reflection from the
back of the plate is denoted as u(0, t), then the front face
reflection can be expressed as

U(t)= —qu(—2L, t); q>0 9)

where ¢ is a real constant and the minus sign accounts
for the change of phase of the front face reflection with
respect to the reflections from the back of the plate. From
Equation (8) the Fourier transform of the front face
reflection is given by

F(U(t))=F(—qu(—-2L, t))= —qF(u(0, t))
x exp[ik2L]} exp[a2L] (10)

where a2 L represents the apparent damping of the system
‘seen’ from the point of view of the receiving probe. The
apparent damping is not only dependent on the attenuation
of the wave within the plate, but also on the impedance
of the tested material compared with that of the media
on both sides of the specimen. In many cases (e.g.
aluminium or glass plates immersed in water) the
attenuation of the wave within the test piece is negligible
compared with the loss due to transmission into the
medium behind the plate, and since the transmission
coefficient is frequency independent it is reasonable to
assume that the apparent damping coefficient, a, is
constant with frequency. If @ =g exp[a2L]

F(U(t))= —QF (u(0, t))exp[ik2L] >0 (11)
Therefore
F(u(0, t))=| F(u(0, t))|explig] (12)

where | F(u(0, t))} is the amplitude spectrum of the first
back face reflection, and ¢ is the corresponding phase
spectrum. From Equation (11) the Fourier transform of
the front face reflection can be expressed as

F(U(t))= ~QF (u(0, t)) exp[ik2L]
= | QF(u(0, t))|exp[igo] (13)
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where | QF (u(0,t))] is the amplitude spectrum of the front
face reflection, and ¢, = ¢ + 2kL + nis the corresponding
phase spectrum. The constant = in the expression for ¢
appears because the front face reflection is out of phase
with the back face reflection. To remove this constant,
the front face reflection can be multiplied in the time
domain by —1 and the Fourier transform F(—U(t))
rather than F(U(t)) can be calculated in Equation (13).
The difference in the phase spectra of these two reflections
is then A¢ = ¢, — ¢ =2kL = 2Lw/c, so finally the phase
velocity can be calculated from®

c=2Lw/A¢ (14)

Amplitude spectrum approach

An alternative technique using the amplitude spectrum
has been developed, which overcomes the requirement
for the separation of successive pulses in the time domain.
The analytical derivation of the equation from which the
phase velocity can be evaluated is presented below in two
stages. First, the spectrum of the front face reflection and
the first back face reflection alone is discussed. Then the
whole time history received from the tested specimen (the
front face reflection and the family of the back face
reflections) is analysed, and the equation for the
determination of the phase velocity is derived.

Front face and the first back face reflection onfy. The
time history consisting of the front face and the first back
reflection from the tested plate can be expressed as
U(t) + u(0, t). Therefore, from Equations (12) and (13),
the Fourier transform of the sum of the two reflections
can be written as

F{u(0, 1)+ U(1)} = | F(u(0, 1))| {exp[i¢]

—Q exp[i(¢ +k2L)]}
=F(u(0, t})[(1 — @ exp[ik2L])
x expli¢] (15)

From Equation (15) it can be seen that the amplitude
spectrum is | F(u(0,t))| (1 — Q exp[ik2L]), so if | F(u(0, t})|
is a slowly varying function of frequency then, since Q is
a positive constant, the minima of the amplitude spectrum
will occur when exp[ik2L] = 1, that is when

2Lw/c =2nm; m=0,1... (16)

If the frequency of a minimum is measured and the index,
m, of the minimum is known, it is possible to determine
the phase velocity from

c=2Lw/2um=2LfIm (17)

where f=w/2n. Equation (17) can also be derived
directly from Equation (14) by setting A¢ =2mm.
Comparing the two approaches, it is immediately seen
that the phase spectrum method gives an estimate of the
phase velocity as a continuous function of frequency,
while the amplitude method gives values of phase velocity
only at discrete frequencies. Therefore, if good separation
of the reflections can be achieved, the phase spectrum
approach gives more points on the graph (a continuous
function). However, when successive reflections captured
by the transducer are superimposed (which can occur
when the thickness of the plate is small, or when different
families of waves with different velocities are excited, for
example when longitudinal and shear waves are present),
the amplitude spectrum technique can still extract the
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phase velocities. However, in this instance it will not be
possible to analyse the front face and the first back face
reflection alone since the first back face reflection will
not be separated from the subsequent reflections. Therefore
it is necessary to consider the complete time history of
the received signal.

Front face and all back face reflections. The time history
R(t) of the signal received by the transducer can be
expressed as the sum of the reflection from the front face
and the series of the reflections from the back of the test
plate

R(t)=U@)+ 20 u(2Ln, t) (18)

Let us concentrate on the second term of Equation (18).
From Equation (8) the Fourier transform of the family
of reflections from the back of the specimen can be
expressed as

F{,.Zo u(2Ln, t)} = "20 F{u(2Ln, 1)}

X

=Y {F(u(0,t)) exp[ —ik2Ln]

n=0 -
x exp[a2Ln]} (19)
so
F{ S u(Ln, t)}=F(u(0, 1) S {exp[ —ik2Ln]
n=0 n=0
x exp[ —o2Ln]} (20)

Setting z = exp[ — 2L(ik + )], the summation in Equation
(20) can be expressed as a geometric series

ks

> {exp[ —ik2Ln] exp[ —a2Ln]} =3 =" (21)
n=0 h=0

and assuming that « >0 so that |z| <1, which is the
requirement for convergence of the geometric series

Y z"=1lim (1-2M/(1-2)=(1—2)"! (22)
n=0 N—oox

The assumption that « is positive means that each
consecutive reflection from the back of the specimen is
smaller than the previous one, which is the case in reality.
From Equations (20) and (22) and putting k = w/c

F{ S u(2Ln, r)}=F(u(o, )
n=0

x {1l —exp[ —2L(iw/c+ )]} !

: (23)

From Equation (23} it can be seen that the spectrum of
the family of reflections from the back of the test sample
is equal to the spectrum of the first reflection multiplied
by {1 —exp[ —2L(iw/c+a)]}~'. The term F(u(0, t))
characterizes the properties of the pulser-receiver and the
probe, while the infermation about the plate is contained
in the term {1 —exp[ —2L(iw/c+a)]} L

If it is assumed that the apparent attenuation, o,
is independent of frequency, the locus of the points
described by the expression 1 —exp[ —2L(iw/c+ a)] in
the complex plane forms a circle with its centre at Re = 1,
Im =0 and radius, r =exp[ —2La]. Therefore the term
{1 —exp[ —2L(iw/c +«)]} ! in Equation (23) is the
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Figure 2 Circle described by expression 1 — exp[ —2L (iw/c + a)]
and its inverse mapping. 2L0=0.7, L =3.2 mm, x=109.4 m~
2nk<2ler/c<2r(k+1), k=0,1,.

inverse mapping of this circle. Since « > 0 and r < 1, the
locus of the circle will never include the origin of the
complex plane. Hence the inverse mapping will always
transform the circle into another circle. The smaller circle
in Figure 2 is the locus of the points described by the
term 1 —exp[ —2L(iw/c +a)]. The triangles mark the
positions of points equally spaced in frequency, with
frequency increasing in the clockwise direction. The larger
circle is the inverse mapping of the smaller one and is
described by the term {1 —exp[ —2L(iw/a)]} !, which
characterizes the sum of all the reflections from the back
face. Note that points whose frequencies satisfy the
equation 2Lw/c — 2k = const, k=0, 1, ... appear at the
same point on the circle.

In the complex plane, the inverse mapping may be
regarded as a change in the magnitude of the position
vector of the point from r to 1/r followed by reflection
about the real axis. Thus, in Figure 2, P is mapped to Q
and finally to S. The dotted lines show the geometric
construction performed to obtain the inverse mapping
so that the points marked by the triangles are mapped
into the points marked by the squares. As can be seen
from the graph, the loci of the points described by the
term {1 —exp[ —2L(iw/c +«)]} ™! orbit the circle non-
un1formly, the rate of change of phase increasing near
points of maximum amplitude. If it is assumed that
| F(u(0, 1))| is a slowly-varying function of frequency,
then the maxima in the amplitude spectrum
F{ Y

n=0

u(2Ln, t)}

will be defined by the term {1 —exp[ —2L(iw/c +«)]} ™!
alone.

Hence the peaks in the amplitude spectrum of the
Fourier transform of the family of reflections from the
back of the plate occur when the circle in Figure 2,
describing all the reflections from the back face, crosses
the real axis. Therefore the condition for the occurrence
of the maxima can be expressed as,

exp[ —2Liw/c]=1 (24)

which is equivalent to Equation (16). From Equations
(11) and (23) the spectrum of the whole time history
captured by the probe including the reflection from the
front face can be expressed as

F{ S u(Ln, 1)+ U(t)} = F(u(0, 1))
n=0
{1—exp[ ~2L(iw/c+a)]}~ ' — Q exp[i2Lw/c]
, (25)

The term Q exp[i2Lw/c], characterizing the reflection
from the front face in Equation (25), can be visualized
in the complex plane as a circle with its centre at
the origin and radius Q as seen in Figure 3. The
term {1 —exp[ —2L(iw/c+ &)}~ !, which was already
discussed and plotted in Figure 2, is also shown for
convenience in Figure 3. The Fourier transform of the
whole time history, calculated from Equation (25), which
is the sum of the Fourier transforms of the back face
reflections and the front face reflection, forms a kidney-
shaped curve in the complex plane (see Figure 3). The
points equally spaced in frequency, marked by squares,
show that for the majority of the frequency range, the
amplitude (which is represented by the radius from the
origin of the complex plane) is roughly constant, with
rapidly decreasing magnitude near the minimum. Note
that the frequencies of these minima correspond to those
of the maxima of the spectrum of the reflections from
the back face, and therefore satisfy the conditions of
Equation (16).

For the condition stated in Equatlon (16)(w=mmc/L)
the absolute value of the expression in the curly brackets
in Equation (25) goes to a minimum value given by

{(1 _exp[—ZL(lw/c+ a)])_l - Q CXPDZLCU/C]} lm:mm‘/L
={(1 —exp[ —2La])"' - @} (26)

From the above equation it can be seen that the depths
of the minima depend on the apparent attenuation a of
the wave as well as on the relationship, Q, between the
amplitudes of the reflections from the front and back
faces of the specimen. The value of Q depends on the
impedances of the medium between the transducer and
the specimen, the tested material and the medium at the
back of the plate.

Figure 4 shows the Bode plots of the three terms
discussed above, namely Q exp[i2Lw/c] (characterizing
the front face reflection), {1 —exp[ —2L(iw/c + )]} ™!

/m Front face
reflection

we
3
[ Ali reflections
Back face
Wo 2| reflections (front+back)
Point of
w,/ minimum

arnplifude‘\\I [
. Wwo s

-4 Re
\ Increusmg J B
Wy frequency
Wz Wi -2
Increasing
frequency -3
w2

Figure 3 Nyquist plot of the term {1 —exp[ —2L (jw/c+a)]}~ 1
from Equation (23) characterizing the spectrum of all the reflectlons
from the back face and the term {1 —exp[—2L (iw/c+a)]1}~!
Qexp[i2Lw/c] from Equation (25) characterizing the spectrum of
the whole time history received from the plate at normal incidence.
20a=07, L =32 mm, a=109.4 m~!, @=3.4, c=6348 ms~',
2nk<2lw/c<2n(k+1), k=0, 1 ... w, denote points equally
spaced in frequency
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Figure 4 The amplitude variation of the term {1 —exp[ ~2L (iw/
c+a)]}~" from Equation (23) characterizing the spectrum of all
the reflections from the back face and the term {1 —exp[ —~ 2L (iw/
c+a)l} ~1_Qexp[i2Lw/c] from Equation (25) characterizing the
spectrum of the whole time history received from the plate at normal
incidence. 2£4=0.7,L =3.2mm, «=109.4 m~1,Q=3.4,c=6348
ms

(characterizing the sum of all the reflections from the
back face), and their sum (characterizing the whole
response from the plate). In Figure 4 the amplitude of
the Fourier transform of the front face reflection becomes
a straight horizontal line of amplitude Q. The spectrum
of all the reflections from the back face shown in
Figure 4 produces a family of maxima, whose sharpness
depends on the apparent attenuation of the system, and
whose spacing depends on the phase velocity, ¢, of the
wave within the tested medium and the distance, L,
between its boundaries. The amplitude spectrum of the
whole time history from the tested plate (see Figure 4)
produces a family of minima, which occur at the same
frequencies as the maxima of the Fourier transform of
the reflections from the back of the plate. Therefore, when
the Fourier transform of the time history including the
front face reflection is known, the phase velocity can be
calculated from Equation (17), the frequencies being
those where the amplitude spectrum is a minimum.

Experiments

Equipment

To compare the amplitude spectrum method with the
phase spectrum technique, three experiments were carried
out. As an example of a non-dispersive medium, a
3.2 mm thick aluminium plate was taken. Then, to
investigate the variation of phase velocity with frequency
in a dispersive material, a 3.15 mm thick sample of epoxy
resin (Ciba-Geigy MY750) modified by ATBN rubber
was examined. In the third test, to show the application
of the amplitude spectrum method to data in which the
front and back face reflections could not be separated, a
0.40 mm thick steel shim was used.

The setup used for the test was similar to that described
in reference 14 and is shown schematically in Figure 5.
The ultrasonic transducer (10 MHz Rolls Royce MatEval,
unfocussed) was excited by a Panametrics 5052 PRX75
pulser-receiver. The time history received by the same
transducer was amplified in the pulser-receiver unit
and digitized at a 50 MHz sampling rate using the LeCroy
9400 oscilloscope. The signal captured by the oscilloscope
was averaged 50 to 100 times to improve the signal-to-
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(Panametrics 5052
PRX75)

Figure 5 Setup to perform the measurements

Ultrasonic
transducer

noise ratio. To perform an FFT of the captured waveform,
the time data was passed via a Hewlett Packard 9816
microcomputer to a B&K 2033 High Resolution Spectrum
Analyser. The time record consisted of between 1000 and
2500 points at a 50 MHz sampling rate from the
oscilloscope, which were padded with zeros to form a
10240-point data record. The complex spectrum from the
spectrum analyser was then transferred back to the
microcomputer to carry out the necessary calculations.

Aluminium plate

To test the new method on a non-dispersive material, a
3.2 mm thick aluminium plate was examined. Figure |
shows the time history of the captured signal. The time-lag
between the consecutive reflections is determined by the
distance between the front face and the back face of the
test plate and the velocity of sound in the material.
Figure 6 shows the amplitude spectra of the front face
reflection and the train of the back face reflections from
Figure 1. The variation in the amplitude spectrum of the
front face reflection (corresponding to Equation (11))
characterizes the property of the pulser-receiver and the
probe and the impedances of water and aluminium. The

80 Front face

reflection

50 Back face
reflections

40

30

20

Amplitude (dB, arbitrary reference)

0 Frequency (MHz) 19

Figure 6 Spectra of the front face refiection and the family of the
reflections from the back face from the 3.2 mm thick aluminium
plate. The mode numbers of the Jongitudinal modes are indicated

on the spectrum of the back face reflection. The time domain
response is shown in Figure 1



Amplitude spectrum method for the measurement of phase velocity: 7. Pialucha et al.

plot reaches its maximum value at a frequency of
~ 10 MHz, which is in agreement with the specification
of the probe used for the experiment. The amplitude
spectrum of the reflections (corresponding to Equation
(23)) follows the same trend as the front face reflection,
with the superposition of a series of maxima (corresponding
to the term {1 —exp[ —2L(iw/c+a]}~! in Equation
(23)). The double peaks seen in Figure 6 at frequencies
of about 3, 5 and 7 MHz are caused by the presence
of shear modes in the plate due to the generation of
edge waves by the probe. This phenomenon is discussed
in detail elsewhere!®. Figure 7 shows the amplitude
spectrum of the whole time response from Figure I. The
minima in Figure 7 occur at the same frequencies as the
maxima of the amplitude spectrum of the reflections from
the back face shown in Figure 6.

Equation (23) shows that the ratio of the amplitude
spectrum of the reflections from the back face of the
specimen to that of the front face reflection is given by

F{ 3 u(2Ln, t)}/F(U(t))

=0
= {1—exp[ ~2L(iw/c +a)]}"1Q"! 27

and Equation (25) shows that the ratio of the amplitude
spectrum of all reflections to that of the front face
reflection is given by

F{ Y w(2Ln, 1)+ U(z)}/F(U(t))

=0
= ({1 —exp[ —2L(iw/c +a)]}}
— Qexp[i2Lw/c])Q 1! (28)

Figure 8 shows the experimentally determined ratios of
the spectra from the data of Figures 6 and 7, while Figure 4
shows the theoretically computed plots of the terms
{1—exp[ —2L(iw/c+a)]} " and {1 —exp[ —2L(iw/
c+a)]} ! — Q exp[i2Lw/c] using values of L, ¢ and «
appropriate to a 3.2 mm thick aluminium plate immersed
in water. There is a good agreement between the form of
the two diagrams; the noise seen at high and low
frequencies in Figure 8 is due to the low signal levels
produced by the transducer in these regions (see Figure 6).

The points on Figure 9 show the phase velocities
calculated from Equation (17) for each of the minima in
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Figure 7 Spectrum of the whole time history (front face and the
all back face reflections) shown in Figure 1. Mode indices of the
longitudinal modes are shown .
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Figure 8 Division of the spectrum of the reflections from the back
face by the spectrum of the front face reflection, corresponding to
Equation (27}, and division of the spectrum of the whole time
history by the spectrum of the front face reflection, corresponding
to Equation (28)
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Figure 9 Measured phase velocity in 3.2 mm thick aluminium
plate. Comparison between the phase spectrum (solid line) and
amplitude spectrum (discrete points) technique

Figure 7 and so indicate the relationship between phase
velocity and frequency. As expected, since aluminium is
non-dispersive, there is very little variation of phase
velocity with frequency. The phase velocity was then
calculated using the phase spectrum technique. This was
achieved by gating out the front face and first back
reflections in turn and computing their spectra. The phase
spectrum of each reflection is then given by

¢(w) = arctan(Im(w)/Re(w)) — 2mm (29)

where Im(w) and Re(w) are the imaginary and real parts
of the spectrum and m is an integer, which increases with
frequency to give a continuous phase spectrum. This
presents no problem if reliable data are obtained at low
frequencies since m can be taken as zero at zero frequency
and can be indexed at each successive discontinuity in
arctan(Im(w)/Re(w)) as the frequency is increased.
However, if noise is present in the lower frequency range,
as is usually the case (see Figure 6), this procedure is
unreliable and the appropriate value of m at the start of
the usable frequency range of the probe must be estimated
by considering the frequency spacing of the discontinuities
in the region of high signal-to-noise ratio. This procedure
is satisfactory provided that the variation of phase
velocity with frequency is modest. Another way of
obtaining an appropriate value of m is to use the
amplitude spectrum approach to find phase velocity
values at discrete points and then to use the phase
spectrum technique to determine more data points in the
frequency range where the signal-to-noise ratio is
satisfactory.
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The solid curve in Figure 9 shows the phase velocities
calculated using the phase spectrum technique. There is
excellent agreement between the two methods, the
maximum difference between them being under 0.1%.
From Equation (17) it can be seen that the error in the
velocity calculation is dependent upon the errors in the
measurements of the plate thickness and the resonant
frequencies. The determination of the resonant frequencies
depends on the frequency resolution, Af, of the spectrum.
In the experiment, Af = 4.88 kHz giving a velocity error
due to frequency resolution of +15.4/m (ms™!), where
m is the mode number. The plate thickness was measured
with an uncertainty, AL = 0.005 mm leading to a velocity
uncertainty of + 5 m s™!, so the overall uncertainty was
+(154/m+5) ms™ 1.

3.75 mm thick resin plate

A similar procedure was applied to measure the phase
velocity in a 3.15 mm thick epoxy resin plate (Ciba-Geigy
MY750 modified by 15% ATBN rubber, HYCAR
1300 x 16 manufactured by BF Goodrich Chemical UK).
Figure 10 shows the time history of the response from
the plate. In this test, to enhance the strength of the signal
reflected from the back face, the plate was air-backed.
This was achieved by bonding a thin walled cylindrical
cap to the reverse side of the specimen at the test position.
Transmission losses into the water when the specimen
was immersed were then greatly reduced. Figure 11 shows
the amplitude spectra of the front face reflection and of
the family of the back face reflections. Here it can be seen

5 B8,

10
Time (psec)

Amplitude (arbitrary linear scale)
o
—

Figure 10 Response of 3.15 mm thick epoxy resin sample to pulse
at normal incidence. F is the front face reflection and B; are
successive reflections from the back face

60r

Front face
501 reflection

All refiections

40} (front +back) Back face

refiections

30¢

Amplitude (dB, arbitrory reference)

Frequency (MHz)

Figure 11 Spectra of the front face reflection, the family of
reflections from the back face and the whole time response of
3.15 mm thick epoxy resin plate. Time response is shown in Figure 70
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that the apparent attenuation of the wave is no longer
constant and increases with frequency. Indeed, in the low
frequency region (1.5 to 5.5 MHz), the two amplitude
spectra are of roughly the same amplitude, while as the
frequency goes higher, the two plots diverge substantially.
This is in contrast with the experiment with the aluminium
plate, where the amplitude spectrum of the reflections
from the back face followed the same trend as the
amplitude spectrum of the front face reflection (see
Figure 6), producing the series of minima of similar depths
(see Figure 7) throughout the whole working frequency
range of the transducer used.

When the Fourier transform of the whole time response
of the resin plate is performed (see Figure 11), the deepest
minima occur in the range between &~ 1.5 and 5.5 MHz,
that is when the amplitude spectrum of the family of the
back face reflections is nearly equal to the amplitude
spectrum of the front face reflection, and in this frequency
range the phase velocity can be calculated from Equation
(17) with little error. At higher frequencies the accurate
determination of the frequencies of the minima is more
difficult. To obtain sharper minima in the higher frequency
region, it is possible to divide the amplitude of the front
face reflection or to multiply the back face reflections by
a real constant (in the time domain) to reduce the
differences between the Fourier transforms of the front
face reflection and the family of reflections from the back
face.

Figure 12 shows the FFT of the edited signals. Here it
can be seen that it is possible to highlight the different
ranges of the spectrum by means of simple multiplications
or divisions of the different reflections from the test plate
in the time domain. Multiplication of the back face
reflections is equivalent to the division of the front face
reflection by the same constant. For example, muitiplication
of the back face reflections by 24 or division of the front
face reflection by 24 would have a similar effect to
multiplication of the back face reflection by 6 and division
of the front face reflection by 4 (which can be more
convenient when, for example, the waveform in the
computer is represented in integer form). The validity of
this approach is demonstrated in the Appendix. In
practice, the multiplication or division is achieved by a
multiplication of the reflection of interest by a window
function's.

Figure 13 shows the variation of the phase velocity
calculated from Equation (17) together with the
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Figure 12 Spectra of the edited time history from Figure 710. Mode
numbers of longitudinal modes are shown
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Figure 13 Measured phase velocity in 3.15 mm thick epoxy resin
plate. Comparison between: —, phase spectrum; O, amplitude
spectrum method

corresponding plot obtained using the phase spectrum
technique. Again, there is excellent agreement between
the two methods. The variation of the phase velocity with
frequency in Figure 13 indicates that the epoxy resin is
weakly dispersive. In the experiment, the frequency
resolution of the spectrum, Af'=4.88 kHz and the plate
thickness measurement uncertainty, AL = 0.005 mm, giving
an overall velocity uncertainty of +(15.4/m+2) ms™?!,
where m is the mode number.

Steel shim
To test the amplitude spectrum method for the case when
the different reflections are superimposed, a 0.40 mm thick
steel shim was used. Figure 14 shows the response of the
shim when excited by the 10 MHz transducer used in the
earlier tests. From the plot it can be seen that it is
impossible to distinguish between the reflections, while
in the frequency domain (see Figure 15) the minima give
the opportunity to extract the required phase velocity if
the thickness of the plate is known. Table I shows the
results obtained from Figure 15 using Equation (17).
The Table shows that it is still possible to obtain the
variation of the phase velocity with frequency though the
points are widely spaced in frequency.

Conclusions

It has been shown that the phase velocity of a given wave
can be accurately measured using the amplitude spectrum
technique. One of the biggest advantages of this method
over the phase spectrum method®, is that measurements
can be obtained even when successive reflections from
the boundaries of the plate cannot be separated in the
time domain. The method will therefore be particularly
useful when a thin layer of, for example adhesive, must
be tested. Excellent agreement between the amplitude
spectrum and phase spectrum methods was obtained on
both non-dispersive and dispersive materials when the

specimens were sufficiently thick for the different echoes

to be separated. In cases when the different reflections
from the test specimen can be separated, the phase
spectrum technique is advantageous because many more
data points are computed. This facilitates the calculation
of group velocity since this effectively requires differentiation
of the phase velocity with respect to frequency®. However,
it has been shown that the implementation of the phase
spectrum technique is difficult when the signal-to-noise
ratio is poor in the low frequency region. It is therefore
suggested that a combination of the two methods may

§
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Figure14 Response of 0.40 mm thick steel shim to pulse at normal
incidence
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Figure 15 Spectrum of the time history shown in Figure 74. The
mode numbers of the longitudinal modes are shown

Table 1 Phase velocity calculated from Figure 15
Phase velocity
Index of minimum Frequency (MHz) (ms")
1 7.510 6008
2 165.068 6027

give satisfactory results. Firstly the amplitude spectrum
technique can be used to determine values of the phase
velocity at discrete points, then the phase spectrum
method can be applied to obtain more data points in the
region of frequencies where the signal-to-noise ratio is
adequate to obtain a continuous phase spectrum without
ambiguity.
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Appendix

Position of minima in amplitude spectrum when the
apparent damping is frequency dependent

Consider the Fourier transform of the family of the back
face reflections. From Equation (20) we have

F{i u(2Ln,t)}=F(u(0,t)) i {exp[ —ik2Ln]
n n=0

=0
x exp[ —a2Ln]} (20)

where both k& and & are now frequency dependent
functions. Variation of k with frequency effectively means
that the points forming the smaller circle shown in
Figure 2 will not be equally spaced, but the radius of the
circle will remain the same. Therefore the shape of the
inverse mapping of this circle, shown in the same figure,
will be also unchanged. When « is frequency dependent,
the circle shown in Figure 2 will be distorted to a spiral,
which will be of decreasing radius if a increases with
frequency. It is necessary to check whether the minumum
condition stated in Equation (16) still holds for this case.
To simplify the calculations, the spectra of the front and
the back reflections will be expanded as a first order
polynomial (the first two terms of the Taylor series) in
the vicinity of the frequency for which the condition stated
in Equation (16) is satisfied. Next the difference between
the expansions will be evaluated to determine the position
of the minimum.

Let us first calculate the values of the Fourier transforms
of the front and back reflections at the points satisfying
conditionin Equation (16), thatisexp[ik2L] = 1. Putting
F(u(0, t)) = 1, as this term is of no importance here, from
Equations (11) and (23), the front and back reflections
can be written as

F(U(t))|w=nmc/L= —Q (30)
F{i u(2Ln, I)} ={l—exp[-2L«]}"' (31)
n=0 lw=nmec/L

where m=0, 1, ... and

Q=qexp[ —2La] qg>0 (32)
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Now let us calculate the frequency derivative of

F{ Y w(2Ln, t)}. Putting F(«(0, t))=1 and setting

=0

B(w)= 20 {exp[ —ik2Ln] exp[ —o2Ln]}

dB/dw =~ Y {exp[—ik2Ln] exp[ —a2Ln]
n=0

x 2Ln(i dk/dw + da/dw)} (33)
Now setting b = exp[ —ik2L] exp[ —a2L], the equation
above can be expressed as

hee)

dB/dw= ~2L(idk/dw +da/dw) Y. (nb") (34)

n=0

The polynomial ¥ (nb")is the z transform*®
n=0

F(z)= io(f(n)z'")q-l/(l —2hy (35)
where z=b"1! and f(n) = n. Therefore
20 (nb") = b/(1 — b)? (36)

Equation (34) can now be expressed as
dB/dw= —2L(idk/dw + da/dw) exp[ —ik2L]
x exp[ —a2L]/(1 —exp[ —ik2L]
x exp[ —a2L])? 37
For the condition stated in Equation (16), exp[ —ik2L] =1,
and Equation (37) becomes
dB/dw = —2L(idk/dw + da/dw) exp[ ~a2L]
/(1 —exp[ —a2L])? (38)
The frequency derivative of the Fourier transform of the
front face reflection can be evaluated from Equation (10).
Putting F(u(0, t)) =1, as before
d{F(U())}/dw=d(—q exp[«2L] exp[ik2L])/dw
= —q exp[a2L] exp[ik2L]
x 2L(idk/dw + do/dw) (39)

For the condition stated in Equation (16),exp[ik2L] =1,
and the equation above becomes

d{F(U(1))}/d 0 e/ = —4 exp[«2L12L(i dk/dw
+ da/dw) (40)

Figure Al shows the Nyquist plot of the Taylor
expansions of the front and the back reflections. This is
effectively an expanded version of Figure 3 in the vicinity
of the point where the front face reflection and the family
of the back face reflections cross the real axis for the case
when the apparent damping of the system, , increases
with frequency w. The notation used in-Figure Al is as
follows '

Vi, = —2LP do/dw; Vi, = — 2LP dk/dw;
Vie = —2LQ da/dw; Vi, = —2LQ dk/dw (41)

where V;, and V4, are the radial and tangential components
of the back face spectrum derivative; Vg, Vf,, are the
radial and tangential components of the front face
spectrum derivative; P = exp[ —a2L]/(1 — exp[ —22L])%;
O0=¢q exp[—2La]; and D=0 — (1 —exp[ —~x2L])" ..
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Linear expansion of Linear expansion of
the spectrum of the the spectrum of the
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Figure A1 Linear expansions of the reflections from the front face

and the family of reflections from the back face

From Figure A/

Vo + Vi, _ da/do
Voot Ve dk/dw
dxDtand=[Q — (!l —exp[—a2L]) '] tané (43)
V=V + Vi) + (Ve + Vi )2 1V? (44)
d=—-VAw (43)
where Aw denotes the frequency error between the points
where the minimum of the difference between the linear
expansions occurs and the points where the condition in

Equation(16) is satisfied. After simple conversions, it may
be shown that ‘

_da/dw [(1~exp[—a2L])"! - Q]
" dk/dw 2L(P + Q)[(da/dw)? + (dk/dw)? ]2

tan 0 =

(42)

Aw

(46)

If it is assumed that da/dw > 0O, then the sign of the error
function, Aw, is defined by the sign of the term in the
square brackets in the numerator, that is by the sign of
the difference between the amplitude spectra of the front
face reflection and that of the family of the back reflections.
Therefore, when the amplitude spectrum of the back face
reflections is greater than the amplitude spectrum of the
front face reflection, the shift Aw > 0 occurs, which means
that the velocity will be overestimated if Equation (17)
is used. In the case when (1 — exp[ —a2L]) ! is less than
Q, the shift Aw < 0 occurs, which means that the velocity
will be underestimated if Equation (17) is used. If the
dmplitudes of both spectra are equal, then the numerator
of Equation (46) equals zero, and Aw=0. From our
previous calculations (see Equation (26)) it is known that
this is the requirement for the deepest minima. Therefore
the deeper the minima the better the estimation of the
phase velocity from Equation (17). If the attenuation «
is independent of frequency, that is when da/dw = 0, then
Equation (46) reduces to Aw = 0.

Multiplication or division of the amplitude of the front
face reflection in the time domain is equivalent to a change
of the constant ¢ in Equation (32), which depends on the
impedances of the tested material and the media on
both sides of the specimen. Therefore, multiplication or
division of the front face reflection or of the family of the
back face reflections in the time domain is similar to a
change of the relationship between the impedances of the
elements of the system under test. It is therefore valid to
adjust the relative sizes of the different reflections by
multiplication or division to obtain sharper minima in
the amplitude spectrum, and so to improve the accuracy

-of the determination of the frequencies, and also to reduce
the error term Aw.
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Appendix B

Phase velocity and attenuation of the shear wave in viscous fluids

The phase velocity and the attenuation of the shear wave in a viscous fluid can be readily
obtained by substituting the plane wave equation into the constitutive equation.

In a viscous fluid the one-dimensional constitutive equation for shear stresses can be written as
(see for example Malvern 1969),

d 0Ou
T=ﬂ§§(g) ) (B.1)

where T is the shear stress component in the y direction in the plane perpendicular to the x axis,
1 is the dynamic viscosity of the liquid, u is the displacement in the y direction, and % (%%) is
the gradient of the velocity in the y direction along the x axis (see fig. B.1).

Consider a shear harmonic plane wave propagating along the x axis as shown in fig. B.1. The
displacement field for the shear wave is,

. -1
u(x,t) = elm(x[3 t) , (B.2)

where o is the frequency of the harmonic process, and  characterises the phase velocity and
damping of the wave. For the harmonic wave described by eqn (B.2), the operator of eqn (B.1)
becomes,

£ = -io, - (®3)
and eqn (B.1) becomes,
T = -ion 5, . (B.4)

Equation (B.4) can be also written as,

T =Ee, (B.5)
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Phase velocity and attenuation of the shear wave in viscous fluids

where,

(B.6)

om
I
QJIQ)
»le

is the shear strain component in the plane perpendicular to the x axis and acting in the direction
of y axis, while E is the shear stiffness of the liquid and is given by,

E = -ion. (B.7)

Equation (B.5) is the shear stress - shear strain relationship for the viscous fluids, from which
the expression for the value of B can be obtained as follows.

The equation of motion for the transverse displacements and shear stresses can be easily
obtained by writing the equilibrium equation for the infinitesimal cube and considering the plane
stress assumption,

o1 0%u

x = Poe> oo
which states that the transverse acceleration of the liquid volume is caused by the difference in
the shear stresses acting on this volume. N ow, using the stress-strain equation (B.S5), as well as
the definition of the shear strain given by eqn (B.6), the equation of motion can be expressed in
terms of the displacement field as,

Je 02 '
ox = Pﬁl’ (B.9)
and also,
Eodu o&
;)‘ x = a—tz‘ , (B.10)

which, after the substitution of the displacement field u, given by eqn (B.2), provides us with
the following equation, ‘

2 E .
= -V, (B.11)

where v is defined as the kinematic viscosity of the fluid, and is defined as,

(B.12)

<
Il
© i3
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Phase velocity and attenuation of the shear wave in viscous fluids

where M is the dynamic viscosity of the fluid. The result of eqn (B.11) can be also obtained
directly from eqn (2.18) of chapter 2,

1

p2 = oI < (B.13)
p .

by setting |L' = N, and W = 0, which is the case for all viscous fluids. From eqn (B.11) the
following expression for B can be derived,

B =¢-ig, (B.14)
where,
¢ = %cov. (B.15)

ulx,t) = e e , (B.16)

The first term of eqn (B.16) is responsible for the propagation of the shear wave, while the
second one characterises the attenuation of the wave. From eqn (B.16) it can be seen that the
phase velocity of the shear wave is given by,

¢ =20 = Qo)1 = @antw)l/? | (B.17)

where f is the frequency of the shear wave. Equation (B.17) states that the liquid satisfying the
Navier-Stokes equation supports the shear plane waves whose phase velocities are an
increasing function of the kinematic viscosity of the liquid and the frequencies of the waves in
the liquid. The attenuation of the shear wave in nepers per wavelength can be obtained from the
second term of eqn (B.16) by setting x = A, where A is the shear wavelength given by,

A= (B.18)

—hl O

Setting x =1 in the argument of the second term of eqn (B.16) and using eqn (B.18) and
(B.17), we have,

o
—A =2m. .
2 T (B.19)
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Phase velocity and attenuation of the shear wave in viscous fluids

Equation (B.19) states that all viscous fluids which satisfy the Navier-Stokes equation attenuate
shear waves by the constant amount per wavelength. Substituting equations (B.17) and (B.19)
into (B.16)the shear wave can be now described as,

oG- 1) -21% :
ux,t) = e e , (B.20)

where the expressions for the wavelength A and the phase velocity ¢ are given by eqn (B.18)
and (B.17).

Example 1

Let us calculate the phase velocity and attenuation of the 10 MHz shear wave in water at the
temperature of 20 degrees Celsius.

The kinematic viscosity of water at 20° C is 1 ¢St, therefore,

v = 1¢St = 10 -6 m2/s . (B.21)

Using eqn (B.16), for the frequency of 10 MHz the phase velocity can be calculated as,

¢ = Gnt)2= (4r x 10x 10 ®x 10 &2 = 11 (ys). (B.22)

By eqn (B.19), the attenuation of the shear wave in nepers per wavelength is equal 2.
Example 2

The second example is the calculation of the phase velocity and the attenuation of the 10 MHz
shear wave in the silicone fluid whose kinematic viscosity is 50 cSt.

Using eqn (B.16), and putting f = 10 E6, and v = 50.0 E-6, the phase velocity can be
calculated as, ‘
¢ = (@dnfv)12= (4x x10x 10 6% 50x 10 '6)1/2 = 79 (m/s). (B.23)

By eqn (B.19), the attenuation of the shear wave in nepers per wavelength is equal 27 for all

viscous liquids.
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Fig. Bl The stress and displacement fields of the shear wave.
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Appendix C

Frequency-thickness product invariance of the wave equation

In problems of reflections from thin layers it is often convenient to consider the variations of
parameters with frequency-thickness product rather than frequency and thickness
independently. The validity of this approach for all dynamic problems may readily be
demonstrated by considering the wave equation, given by eqn (2.4),

_ W29 A _ 2 _ -
uVia +('A+u)V(Vou)+%Vza%u+ ;”V(Vo%u)= pg?u (C.1)

For a harmonic process of frequency o the time derivative operators become,

Jd _ . 02 2
o = o and =5 =-0”. (€2

After substitution of eqn (C.2) into eqn (C.1) we have,

P 2o () + VL) V(Ved) = - 020 . (C.3)
p Y

Using eqn (2.17) and (2.18), the equation above becomes,
B2V2i + o2 V(Veill) = - 01 . (C.4)

Equation (C.4) can be used as a general equation of motion for any continuous mechanical
medium. The mechanical property of the medium is characterised by two functions o and 3

which, in general, are continuous functions in space and can be frequency dependent.’

Let us consider two mechanical systems, one being a scaled-down version of the other (see fig

C.1). Each of these systems has its own coordinate system, again, one being a scaled-down
version of the other. If we denote the first coordinate system as (xy, X3, X3), and the second-

system as (y1, Y9, y3) then the relationship between these two coordinate systems is,

y = sX, ' (C.5)
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Frequency-thickness product invariance of the wave equation

where s is the scaling factor. For example if we measured the distance in inches using the x
coordinate system, and in millimetres using the y coordinate system, then s = 25.4 .

If we furthermore assume that both mechanical systems are built from the same material then o
and [ are the same in both systems. From equations (2.17), (2.18) it can be seen that,

distance

o and B have units of pra, (C.6)

Units of time are the same in both coordinate systems. Units of distance are different and
related by eqn (C.5). Therefore, if we denote variables in the first coordinate system by
subscript x, and in the second system by subscript y then, for the same medium in both
systems, the relationship is

oy =say,and By=sPy. (C.7)

Equation (C.7) is always valid when o, = @y If o, # 0y then we will have to assume that o

and P are frequency independent.

Now, we are in position to write equations of motion for the two mechanical systems, each
equation being written in its own coordinates.

B2V + o2 V(Veii) = -l (C.8)

B2 Vi + o2 V(o) = - o

v U (C.9)

Using eqn (C.7) (bearing in mind the assumption about the frequency independence of o and
B), eqn (C.9) becomes,

202~ . 2uves 2 —2-
By VU + oy V(Ve) = - s u, (C.10)

In order to yield the same amplitude fields, equations (C.10) and (C.8) have to be the same,
which means that the right-hand sides of the equations have to be equal, :

(C.11).

which means that,
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Frequency-thickness product invariance of the wave equation

my = S M,. (C.12)

Equation (C.12) states that in order to maintain the same displacement field in a scaled-down
model of a given mechanical system, we have to drive it with a frequency scaled-up by the
same scaling factor. For example, if we had a solution of eqn (C.4) for a 10 mm thick plate at a
frequency of 1 MHz, then we can immediately obtain the displacement field for a 1 mm thick
plate at a frequency of 10 MHz as a scaled-down model version of the first solution, with the
scaling factor s = 10. The reflection coefficient computed for the 10 mm thick plate at a
frequency of 1 MHz is exactly the same as the reflection coefficient for a 1 mm thick plate of the
same material at a frequency of 10 MHz (provided that the phase velocity and attenuation per
wavelength for longitudinal and shear waves in both systems are frequency independent).
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Fig. C1 Two mechanical systems, one being the scaled-down version of the other



