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Abstract

This thesis investigates some aspects of the fundamental science necessary for the
development of an integral structural inspection system based on the use of ultrasonic
Lamb waves. It is particularly concerned with the long range propagation of Lamb wave
modes, the selection of suitable modes and the design of permanently attached
transducers.

An analytical investigation into the effect of plate curvature on Lamb wave propagation is
presented, since this is highly relevant to the inspection of structures such as pipes and
pressure vessels. It is shown that when the radius of plate curvature to plate thickness
ratio is greater than approximately 10:1, the effect of curvature on the propagation of
lower order Lamb wave modes is negligible. Quantitative studies into the effects of
dispersion on the long range propagation of Lamb waves are presented. It is demonstrated
that at any point on any dispersion curve, there is an optimum number of cycles required
in an input signal to maximise the spatial resolution obtainable over a particular
propagation distance.

The design of inter-digital transducers (IDTs) made from the piezoelectric polymer PVDF
for the transmission and reception of Lamb waves is investigated. A one-dimensional
transducer model is used to investigate the frequency response of PVDF bulk wave
transducers. Results from this model are used to develop various types of PVDF IDTs
which work over a frequency range from 65 kHz to 2.5 MHz. These transducers are
shown to be able to propagate Lamb waves over several metres in structures between 1
and 13 mm thick.

A model based on Huygens’ principle of superposition is developed for predicting the
acoustic field from an IDT. This model has been shown to be of equal accuracy to an
existing finite element model and several orders of magnitude faster. The model has also
been successfully validated against experimental data and used to elucidate guidelines for
the design of two common configurations of IDT.
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1. Introduction

1.1 BACKGROUND

In the hypothetical ‘smart material’ of the future, it is anticipated (Clark 1998) that
monitoring, data processing and actuation will all take place at a microscopic or even
molecular level. Unfortunately, other than in nature, genuinely smart materials are still a
long way from being engineered. However, there are many existing situations in which
some form of continuous structural monitoring and assessment would be desirable, even
if this is not achieved at a microscopic level. This leads to the concept of integrated
structural inspection systems and the somewhat misleading notion of ‘smart structures’.
Potential candidates for integrated structural inspection systems include pressure vessels,
storage tanks, airframes, pipelines and so forth.

By using ultrasonic Lamb waves a large area of a structure can be monitored by
transducers at only one or two fixed locations. If these transducers are permanently
attached or even integrated into the structure, then with the appropriate telemetry and
information processing, continuous monitoring of the structure becomes feasible. This
type of monitoring is particularly well suited to detecting and locating defects, such as
corrosion pitting or fatigue cracks.

The Lamb wave inspection of large structures is a relatively new field and there is still
much work to be done before a practical integrated structural inspection system can be
developed. This thesis examines some of the fundamental issues and aims to provide a
foundation for future work in this area. Experimental results and theoretical models which
address various aspects of the topic are presented, and where appropriate, conclusions are
drawn. In particular, the selection of Lamb wave modes for testing, and the construction
and modelling of inter-digital transducers are investigated.

In section 1.2 below, a general review of the subject area is given in order to provide a
context for the work described in the rest of the thesis. For readability, this section does
not include detailed literature reviews which may be found at the appropriate points in the
relevant chapters. An overview of this thesis is given in section 1.3.

1.2 LAMB WAVES, TRANSDUCERS AND SMART STRUCTURES

1.2.1 Conventional ultrasonic inspection

The use of bulk stress waves at sonic and ultrasonic frequencies in many non-destructive
and non-invasive inspection applications is a well documented subject (see for example
the text by Szilard 1980). This type of ultrasonic inspection will be referred to as
conventional ultrasonic inspection to distinguish it from ultrasonic inspection using Lamb
waves and other guided waves. In most conventional ultrasonic inspection some form of
transducer is used to transmit a pulse of ultrasonic energy into a structure. After this, two
modes of operation are possible: either the same transducer can be used to listen for
reflected echoes of the original signal (pulse-echo mode) or a second transducer can be
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used at a separate location to detect the arrival of the original signal (pitch-catch mode).
In pulse-echo mode, internal defects in the structure can be detected and located by the
existence and arrival time of echoes. Single sided thickness measurement is also possible
by the same principle. In pitch-catch mode, the velocity of sound and attenuation within
the structure can be calculated, and these can be used to infer the condition of the
material. In both modes of operation, only the area of the structure immediately below the
transmitting transducer is inspected at any one time. Although, such testing methods
allow very accurate and reliable inspection, the time and effort needed to inspect an entire
structure can be considerable.

1.2.2 Lamb wave inspection and applications

Lamb waves are guided acoustic waves which propagate in the plane of a plate and, like
bulk acoustic waves, their interaction with defects means that they can be used for
inspection purposes. Because they propagate in the plane of a plate, a reasonably large
area of a suitable structure can potentially be inspected from a single location although
with some reduction in resolution and sensitivity compared to the conventional single
point ultrasonic inspection  described above.

In unbounded isotropic solids longitudinal and transverse modes of acoustic wave
propagation are possible and these are generally non-dispersive. However, in the case of
Lamb waves an infinite number of modes can exist, all of which are dispersive, hence the
use of Lamb waves for inspection purposes is, in general, not as straightforward as the use
of bulk waves.

Although Lamb produced his famous dispersion equations for acoustic wave propagation
in plates in 1917, it was not until Worlton (1961) provided ‘experimental confirmation of
Lamb waves at megacycle frequencies’ that the possibility of using Lamb waves for non-
destructive testing began to be investigated in earnest. Since then, much work has been
done on the use of Lamb waves and other guided waves for inspection purposes. A
comprehensive review of applications may be found in Alleyne (1991). Very broadly
speaking, the use of Lamb waves for non-destructive inspection purposes falls into two
categories depending on the distance of propagation. Firstly, there are short range
applications, where Lamb waves and other guided waves are used to obtain information
which cannot be obtained by more conventional means. These areas include the
determination of the elastic properties of materials (Chimenti and Nayfeh 1990), the
detection of defects near to interfaces such as in the inspection of adhesive joints (Mal et
al. 1990), and temperature and thickness measurement of thin films (Khuri-Yakub et al.
1996). In these cases, sensitivity is of key importance and generally this is the main
selection criterion for a suitable Lamb wave mode. Effects such as dispersion are not so
important as the propagation distances are small.

The second area which is of greater relevance here is in applications where the
propagation distance is large. Applications of long range Lamb wave inspection include
the detection of delaminations in rolled steel (Lehfeldt and Höller 1967, Ball and
Shewring 1973) and composites (Guo and Cawley 1992), and pipeline inspection
(Alleyne and Cawley 1994a). In long range applications, the aim is to inspect large areas
rapidly. Major considerations are the minimisation of coherent noise by using pure mode
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excitation and maximising the propagation distance by using modes with minimal
dispersion.

1.2.3 Permanently attached transducers and smart structures

Conventional active ultrasonic techniques are not a feasible basis for a permanently
attached structural inspection system, due to large number of transducers needed to
monitor an entire structure. A possible solution is to only monitor certain areas where it is
known a priori that defects such as corrosion or cracks are likely to occur. This has
proved to be viable in some circumstances as in the case of the Fleximat transducer
system (manufactured by AEA Technology plc.) which is used for monitoring pipes and
fixtures in the petrochemical industry. However, if an entire structure is to be monitored,
then a single transducer must be capable of inspecting a reasonable area of the
surrounding structure. Potentially this can be achieved by using permanently attached
Lamb wave transducers. Several methods are available for the excitation and detection of
Lamb waves which are reviewed in chapter 4, but in this thesis attention is focused on the
use of inter-digital transducers. Inter-digital transducers are low profile and can be
designed to have a minimal impact on both the appearance and mechanical performance
of the structure to which they are attached.

The transducers described here use the piezoelectric polymer PVDF as the transduction
element. However, the conclusions which are drawn in most cases are not specific to this
material and would be applicable to the design of inter-digital transducers made from
other piezoelectric elements, such as 0-3 composites (Tran-Huu-Hue et al. 1997) or
ceramic platelets embedded in a polymer matrix (Gachagan et al. 1996).

1.2.4 Towards an integrated structural inspection system

Although the work described in this thesis concentrates on the development of the basic
ultrasonic and transduction science for integrated structural inspection systems, it is
important to be aware of the wider issues which are likely to arise later. These include
considerations such as transducer lifetime, data telemetry, data processing and very
importantly, economics.

Furthermore, there are several fundamental issues which are relevant to general long
range Lamb wave testing which have been intentionally omitted from this thesis. These
topics include the interaction of Lamb waves with defects (for example, Alleyne and
Cawley 1992a and Datta et al. 1991) and the effect which fluid loading on structures and
other attenuation mechanisms have on Lamb wave propagation (for example Alers 1994,
Rose 1995). The work in these areas complements the work described in chapter 2 and
will help to provide further criteria for the selection of suitable Lamb wave modes.

1.3 OVERVIEW OF THESIS

Each of the following five chapters in this thesis is largely self-contained and describes
work on a particular aspect of the project. The order of the chapters approximately
follows the chronological order in which the work was carried out by the author. Much of
the work can also be found in the publications list given in appendix C.
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Theoretical aspects of Lamb waves are covered in chapter 2. First, the mathematical
analysis of their propagation in a flat plate is summarised following the method of
Viktorov (1967). The investigation of the effect of plate curvature on Lamb wave
propagation is then investigated. It was thought, at the time when this work was
performed by the author, to be the first time it had been done. Subsequently, however, Qu
et al. (1996) have presented a similar analysis for wave propagation in a curved plate,
although they do not offer comparisons with the familiar flat plate case. The final section
in this chapter presents quantitative assessments of the relative dispersion of different
Lamb wave modes as functions of frequency. It is thought that this is the first time any
quantitative studies of this type have been performed.

Chapter 3 describes work on the development of a one-dimensional computer model for
polymer film transducer systems which was carried out by the current author and his
colleague Mr. R. Monkhouse with technical advice from Prof. B. Auld, whose
contributions at several stages of this project are gratefully acknowledged. The
contribution of the author was predominantly in the mathematical development of the
model and its manipulation to perform specific calculations. Although one-dimensional
transducer models have existed for around half a century since the work of Mason (1948),
a variety of approaches have been taken, and most literature does not give details on how
general models are used to perform specific calculations. Here, a modular, matrix based
approach is adopted, and use of the model is described in some detail. This model is used
later in chapters 4 and 6 in order to gain an understanding of the frequency response
characteristics of more complex transducers.

The concept of inter-digital transducers (IDTs) for the transmission and reception of
Lamb waves is introduced in chapter 4 together with a review of other methods. The
chapter goes on to describe the design, fabrication and testing of the first generation of
PVDF IDTs on 1-2 mm thick aluminium plates which was carried out by the author, again
in conjunction with his colleague Mr. R. Monkhouse. The success of these initial tests has
stimulated further work in this field by other workers at Imperial College including Mr. R.
Dalton, Mr. P. Marty and Mr. A. Bernard. The author then discusses the use of IDTs of a
similar design to transmit and receive higher order Lamb wave modes (A2 and S4) in a
thicker (6.5 mm) structure. The experimental test results show some success, but suggest
problems of obtaining mode purity. It is concluded that the use of higher order modes is
not a good strategy for the long range Lamb wave inspection of thick structures.

In order to use an IDT to monitor a structure using Lamb waves, it is important to know
what area of the structure the IDT is inspecting. Chapter 5 moves away from the physical
construction of IDTs and describes the development of a model based on Huygens’
principle to predict the acoustic field generated by an IDT. Subject to certain assumptions
being satisfied by the transducer, the model is valid for all IDTs. The chapter begins by
defining an excitability function for Lamb waves which may be viewed as a modal
property in much the same way as the phase or group velocity. Using the excitability and
other modal properties enables the exact Lamb wave acoustic field from a point source to
be predicted as a function of distance and time and this has been implemented in software
by the author. This model, finite element predictions and experimental measurements are
all compared. Next, the discretisation of an IDT into point sources and the summation of
the acoustic field from each to obtain the total acoustic field from the IDT is described.
This forms the basis of the software implementation of the Huygens’ model. Results from
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the Huygens’ model are compared with FE predictions and experimental measurements of
the acoustic field from an IDT.

The construction of IDTs is returned to in chapter 6, in which the development of low
frequency PVDF transducers is described. Use of the one-dimensional model from
chapter 3 in conjunction with further experimental tests with bulk wave transducers
indicates that by using a heavy backing layer, transducers which operate at around
100 kHz may be constructed from 110 µm thick PVDF. Successful tests using PVDF
IDTs with such a layered construction to transmit and receive Lamb waves at 97 kHz in a
12.5 mm thick aluminium bar are presented. The section concludes with an example of a
more complex design of low frequency IDT which has also been fabricated and tested.

The large size and simple construction of low frequency IDTs has been exploited to
provide further experimental data for comparison with Huygens’ model. The remainder of
chapter 6 uses such experimental data in conjunction with Huygens’ model to elucidate
several guidelines governing the geometry of IDTs with either straight or curved fingers.
An improved experimental technique for making measurements of the strength of the
Lamb wave field from an IDT using point transducers is also described.

The main conclusions of chapters 2 to 6 in this thesis are summarised in chapter 7.
Specific issues which have been raised in this thesis and require further investigation are
summarised and possible future work is proposed.
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2. Lamb wave theory

2.1 INTRODUCTION

The modal properties of acoustic waves which propagate along the free surface of a semi-
infinite isotropic elastic solid were first identified by Rayleigh (1885), after whom this
class of waves were named. Although the propagation of waves in layered media was of
considerable interest to seismologists, before the age of digital computers such cases were
too complex to be solved numerically . Lamb realised that a preliminary step would be to
algebraically solve the problem of wave propagation in a flat isotropic plate in vacuum
which he succeeded in doing in 1917.

In this chapter, attention is focused on theoretical aspects of Lamb wave propagation,
starting with a summary of the derivation of the basic two-dimensional equations for
Lamb waves in flat plates, which follows the method of Viktorov (1967). Section 2.3
contains an analysis of two-dimensional Lamb wave propagation in curved plates and a
comparison with the case of a flat plate. Section 2.4 investigates the effect of dispersion
on Lamb wave propagation and its implications for long range non-destructive testing.

2.2 BACKGROUND

This section summarises the derivation of the Lamb wave dispersion equations, starting
from the wave equations which must be satisfied by all waves in elastic isotropic media.

2.2.1 Wave propagation in isotropic elastic media

The propagation of elastic waves in an infinite isotropic, homogeneous solid is well
understood and the derivation of the wave equations may be found in numerous texts (for
example, Brekhovskikh and Goncharov 1985). Only the key equations will be reproduced
here, as they are the foundation of all acoustic wave theory and will be a starting point for
several later calculations.

The wave equations

A system of fixed Cartesian axes in the x, y and z directions is defined in the material
being studied. If the material has density ρ, then by considering the equilibrium of an
infinitesimal cube of material and using Hooke’s law (see for example Howatson et al.
1972) to relate stresses to strains the following differential equation for the displacement
field may be deduced (Brekhovskikh and Goncharov 1985):



2. Lamb wave theory

Page 24

( )

( )

( )

ρ
∂
∂

λ µ
∂
∂

∂
∂

∂
∂

∂
∂

µ
∂
∂

∂
∂

∂
∂

ρ
∂

∂
λ µ

∂
∂

∂
∂

∂
∂

∂
∂

µ
∂
∂

∂
∂

∂
∂

ρ
∂
∂

λ µ
∂
∂

∂
∂

∂

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

u

t x

u

x

u

y

u

z x y z
u

u

t y

u

x

u

y

u

z x y z
u

u

t z

u

x

u

x x y z
x

y x y z
y

z x

= + + +






 + + +











= + + +






 + + +











= + +
y z

zy

u

z x y z
u

∂
∂
∂

µ
∂
∂

∂
∂

∂
∂

+






 + + +











2

2

2

2

2

2

(2.1)

where ux, uy and uz are the components of the displacement field in the x, y and z
directions, λ and µ are the Lamé stiffness constants for the material and t represents time.
These are the differential equations of motion which must be satisfied by all elastic waves
propagating in the material and will be referred to as the wave equations. Any
displacement field which satisfies the wave equations implicitly satisfies the equilibrium
and compatibility conditions, so the only remaining constraints on the displacement field
must come from external boundary conditions. It should be noted that the wave equations
are linear and hence the superposition of two or more valid solutions for the displacement
field will still yield a valid solution. The wave equations cannot be solved directly, but
various displacement fields can be shown to satisfy them, as will be demonstrated in
subsequent sections.

Longitudinal and transverse waves

The solution of the wave equations that will be considered here is for continuous
homogeneous plane waves propagating in the positive x direction. In such a wave, each
wavefront is an infinite plane parallel to the yz plane, and the displacement field is
independent of the y and z directions. Hence a harmonic spatial dependence, given by
exp(ikx), is included in any proposed solutions, where k is the wavenumber and i is

defined as − 1 . Two forms of solution are possible, depending on whether or not the
particle displacement is parallel or perpendicular to the direction of wave propagation.

Consider the case where the particle displacement is parallel to the direction of wave
propagation. The displacement field is then given by:

( )u A kx i t

u

u

x x
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= −
=

=

exp ω
0

0

(2.2)

where Ax is an arbitrary constant, ω represents an angular frequency. This solution may
easily be shown to satisfy the wave equations. Also, this displacement field can be shown
to be irrotational, the wave propagation being effected by localised compressions and
rarefractions of the material. By substitution into equation 2.1, the angular frequency and
wavenumber can be shown to be related by:

ω λ µ
ρk

vl=
+

=
2

(2.3)

The ratio of angular frequency to wave number, vl, defines the phase velocity of the
waves, that is, the velocity at which the wave crests propagate. In this case, since the
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particle motion has been constrained to being in the direction of wave propagation, the
waves are usually described as being longitudinal waves, and hence vl is referred to as the
bulk longitudinal wave velocity.

The second solution to the wave equations is when the particle displacements are
perpendicular to the direction of propagation. Hence the displacement field may be
described by:

( )
( )
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u A kx i t

u A kx i t
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y y

z z
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0

exp

exp

ω

ω

(2.4)

where, again, Ay and Az are arbitrary constants. Unlike, the displacement field for
longitudinal waves, this displacement field is purely rotational and has zero divergence.
Hence, there are no localised changes in volume of the material as the wave propagates.
Substitution of equation 2.4 into equation 2.1 yields the following relationship between ω
and k:

ω µ
ρk

vt= = (2.5)

Again, the quantity vt is the phase velocity of the propagating waves, and is referred to as
the bulk transverse or bulk shear wave velocity, since the particle motion is at right angles
to the direction of propagation. The direction of particle motion is in a specific direction
in the yz plane (given by the vector [0 Ax Ay]

T) which is referred to as the polarization
direction of the transverse waves.

The bulk transverse and longitudinal wave velocities are both material properties and they
are widely used in wave propagation calculations. It should be stressed that the bulk wave
velocities derived above only apply to waves with infinite plane wavefronts. The same
solutions are not, in general, valid for other geometries of propagation, such as in the case
of waves with concentric spherical wavefronts propagating away from a point.

Potential functions

An elegant way of manipulating the wave equation (equation 2.1) is by using potential
functions to decompose the displacement field u into two fields, one associated with
longitudinal waves and one associated with transverse waves.

As shown, the displacement field associated with longitudinal waves is irrotational and
that associated with transverse waves is non-divergent. If a displacement field is defined
as being the grad of some scalar field φ, then basic vector identities (see for example,
Howatson et al. 1972) show that the displacement field is irrotational. Likewise, if a
displacement field is defined as being the curl of some vector field ψ, then the  
displacement field can be shown to be non-divergent. Since it can be shown (Malvern
1969) that any vector field can be decomposed into an irrotational component and a non-
divergent component, so any particle displacement field can be written as:

u = ∇ + ∇ ×φ ψ (2.6)
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where φ and ψ are the potential functions. Provided they are both continuous functions,  
with continuous derivatives, the displacement field will also be a continuous function and
hence compatibility will be satisfied. The wave equations may now be rewritten in terms
of the potential functions to obtain:
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where the first equation is for longitudinal waves, and the second is for transverse waves.

2.2.2 Waves in a free flat plate

Boundary conditions and reduced wave equation

Attention is now turned to the consideration of waves propagating in a flat isotropic plate
in vacuum. The derivation of the Lamb wave equations summarised here follows the
method of Viktorov (1967), although some changes of nomenclature are introduced for
consistency with other calculations in this thesis.

Cartesian axes are defined with the x and y axes in the plane of the plate and the z axis
normal to the plane of the plate. The plate is assumed to extend to infinity in the x and y
directions, and the origin of the z axis is located midway through the thickness of the plate
as shown in figure 2.1. The thickness of the plate is d and hence the boundary conditions
which all waves within the plate must satisfy are given by:
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In this calculation only straight crested Lamb waves propagating in the x direction will be
considered. This means that the wavefronts are assumed to be infinite in the y direction as
illustrated schematically in figure 2.1, and that the behaviour of the waves is independent
of the y coordinate, hence ∂ ∂y = 0 . Plane strain conditions in the xz plane are therefore
assumed. A final condition necessary to reduce the solution set to include only genuine
Lamb waves (and not to include, for example, SH waves which are transverse waves with
rotation about the z axis) is to require that there is no component of particle displacement
in the y direction, so uy=0. To ensure that there is rotation only about axes in the y
direction, the vector potential function defining shear waves, ψ, only has a component in  
the y direction, ψy. Under these conditions, the wave equations (equation 2.7) reduce to:
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Defining longitudinal and transverse wave numbers, kl and kt respectively, as follows:
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and assuming a temporal harmonic dependence of exp(iωt) enables the wave equations to
be further reduced to:
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Solution of wave equations

The calculation is concerned with waves propagating along the plate, hence a new
wavenumber, k, in this direction is introduced. As the wave crests are straight, a spatially
harmonic solution of the potential functions governed by exp(ikx) is assumed (this is the
fundamental difference between the solution for straight crested Lamb waves and that for
circular crested Lamb waves as will be shown later in chapter 5). It can be shown that the
following potential functions satisfy the reduced wave equations (equation 2.11 above):
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where q k kl l= −2 2  and q k kt t= −2 2 .

Satisfying boundary conditions

The displacement field associated with the potential functions given in equation 2.12 is
then calculated using equation 2.6. From the displacement field, the strain field may be
calculated and finally Hooke’s law (Howatson et al. 1972) is used to obtain the relevant
components of the stress field:
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The equations for the stresses, σzz and σxz, may be evaluated at z = +/- d and set to zero to
satisfy the boundary conditions at the free surfaces. In this way, four homogeneous
equations are found:
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For non-trivial solutions to this equation, the determinant of the 4 x 4 matrix must be
zero. This is an Eigenvalue problem, which yields a modal solution for waves which can
propagate along the plate without the external input of energy. The determinant of the
4 x 4 matrix in equation 2.14 can be shown to be the product of the two factors ∆A and ∆S

given below:

( )
( )
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∆

S t l t t l t l

A t l t t l t l

k q q d q d k q q q d q d

k q q d q d k q q q d q d
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= + − =
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cosh sinh cosh sinh

sinh cosh sinh cosh
(2.15)

These are the famous Lamb wave dispersion relationships, originally derived by Lamb
himself (1917). The first equation is associated with waves propagating along the plate
with symmetrically distributed displacements about the centre line of the plate, and the
second is associated with similar waves with anti-symmetric displacements. As the
determinant of the 4 x 4 matrix in equation 2.14 will be zero when either ∆A or ∆S equals
zero, either of part of equation 2.15 may be solved independently. For any frequency, ω,
one or more values of wavenumber, k, can be found which satisfy either ∆A = 0 or ∆S = 0.
In this way two sets of dispersion data are obtained, one giving frequency-wavenumber
pairs which correspond to anti-symmetric waves and the other giving frequency-
wavenumber pairs which correspond to symmetric waves.

Mode shapes

Valid wavenumber-frequency pairs may be plotted against one another to yield
wavenumber-frequency dispersion curves. The curves are an infinite set of continuous
lines, each of which is called a mode of the system. At any point on a curve, there is a
distribution of particle displacements through the thickness of the plate which is
associated with that particular combination of wavenumber and frequency. For a flat plate
in vacuum, the particle displacements associated with a particular modal solution may be
evaluated by calculating the appropriate Eigenvector of equation 2.14 and then using
equation 2.12 to obtain the potential fields.

The distribution of particle displacements through the thickness of the plate is called the
mode shape, but this name is slightly misleading as the mode shape varies with frequency
along each mode.
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For a single flat plate in either vacuum or fluid, a naming convention for the modes exists
based on their mode shapes. The first identifier in the name is either A or S depending on
whether or not the particle displacements are symmetric or anti-symmetric about the
centre line of the plate, and the second identifier, the mode number or order, is used to
differentiate between the modes within each type. The higher the mode number, the
greater the complexity of the mode shape. For example at low frequencies, the
fundamental A0 mode corresponds to simple flexural waves and the S0 mode corresponds
to simple compression waves propagating along the plate, while the higher order modes
correspond to more complex displacement fields. Some examples of mode shapes are

shown in figure 2.2. The dimensionless frequency, f , referred to in figure 2.2 is defined

as f fd vt= .

Dispersion curves

Although the solution of the modal problem yields wavenumber-frequency pairs, it is
more usual to present dispersion curves of phase velocity vs. frequency. The phase
velocity, vph,  is defined thus:

v
kph =
ω

(2.16)

The phase velocity is the velocity at which the wave peaks of a continuous wave at a
single frequency propagate. If the phase velocity is plotted against the product of
frequency and the characteristic dimension of the system (the plate thickness) rather than
the absolute frequency, the dispersion curves become independent of the actual size of the
system. For generality, both axes can be made dimensionless by dividing the phase
velocity by a characteristic velocity, which is taken as being the bulk transverse wave
velocity in the plate material.

An interesting consequence of plotting phase-velocity dispersion curves on such
dimensionless axes, is that they are then only dependent on the ratio of the bulk
longitudinal and transverse wave velocities of the plate material. This can readily be seen

by re-arrangement of the dispersion equation 2.15, using the v ph  to denote dimensionless

phase velocity (vph/vt), ω  to denote dimensionless circular frequency (ωd/vt) and

v v vl l t= :
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The ratio of the bulk velocities of a material, vl , can be written in terms of the Lamé
constants of the material, or perhaps more usefully in terms of the elastic constants E and
ν:
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Hence the shape of the dimensionless phase velocity dispersion curves for a flat plate in
vacuum is dependent only on the Poisson’s ratio of the plate material.

The dimensionless phase-velocity dispersion curves for aluminium (Poisson’s
ratio = 0.34) are shown with continuous lines in figure 2.3 and those for steel (Poisson’s
ratio = 0.30) are shown with dashed lines. It can be seen that the differences are minimal
on the fundamental modes but become significant on the higher order modes. A much
more detailed investigation into the effect of Poisson’s ratio on the shape of the dispersion
curves may be found in the three works by Freedman (1990a, b and c).

The phase velocity describes the velocity of wave peaks in a continuous single frequency
wave, but a wave packet of finite duration and therefore of finite bandwidth will
propagate at a different velocity. This is called the group velocity, vgr, and is defined as:

v
kgr =

∂ω
∂

(2.19)

Again, examples of the group-velocity dispersion curves for aluminium and steel are
plotted on dimensionless axes and are shown in figure 2.4, with the dimensionless group

velocity being defined as v v vgr gr t= . The group velocity is also the velocity at which

energy propagates.

Multi-layer systems and general solution methods

The Lamb wave dispersion equations given above are specific to the case of a flat
isotropic plate in vacuum. Several approaches to modelling wave propagation in general
layered media systems are possible. In the first case, the transmission line method may be
used, as developed by Thomson (1950) and Haskell (1953). However, Disperse
(Pavlakovic et al. 1997), the software which was used for most dispersion calculations
described in this thesis uses the alternative global matrix method, as it is numerically
more stable at high frequency thickness values (see Lowe 1995 for a discussion of why
this is the case). A detailed description of the global matrix method may be found in
Lowe (1995).

2.3 EFFECT OF CURVATURE ON LAMB WAVE PROPAGATION

2.3.1 Introduction

The previous section summarised the well known analysis for wave propagation in a flat
plate under 2-dimensional plane strain conditions. In this section, a similar analysis is
presented for the case of waves propagating in plates with a constant radius of curvature.
Unfortunately, the results of this calculation have not lead to elegant dispersion equations
analogous to those for a flat plate given in equation 2.15. However, expressions have been
derived for the stress and displacement fields associated with waves propagating in
curved plates, and these have been used in the global matrix formulation used by Disperse
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in order to obtain dispersion curves. Dispersion curves for plates with varying degrees of
curvature will be compared to those for a flat plate of the same thickness in section 2.3.3.

Much work has been reported on the axial propagation of waves in cylinders (Gazis 1958,
1959, Pao and Mindlin 1960 and Fitch 1963 amongst others), including work on fluid
filled cylinders in vacuum (Kumar 1971, 1972) and vacuum filled cylinders in fluid
(Metsaveer and Klauson 1996). All these cases are fundamentally different systems to that
which is under consideration here, primarily because the propagation is in the axial
direction, but also because continuity of displacements and stresses is assumed around the
circumference of the cylinder. In the analysis presented here, for reasons which will be
discussed below, the angular co-ordinate is assumed to extend to infinity and this
continuity condition is not applied.

Work has been reported on wave propagation in the circumferential direction in various
curved systems. Surprisingly, these cases are almost invariably more complex than the
simple curved plate in vacuum considered here. A particular avenue of research has been
concerned with examining the reflection of bulk compression waves in a fluid by
immersed spheres and cylinders (Numerich and Dale 1984 for instance). The size of the
reflections have been found to depend on whether the immersed body is solid or not, and
this observation has stimulated interest in the mechanics of the wave propagation around
the body. A component of the reflected signal may be attributed to the superposition of
Lamb and Rayleigh type waves which are excited and propagate around the surface of the
body, re-radiating energy into back into the fluid as they do so. If the circumference of the
body coincides with an integral number of wavelengths of the excited Lamb or Rayleigh
waves, a resonance in the reflection is observed. For this reason, much of this work has
been concerned with examining what are effectively standing Rayleigh and Lamb waves,
which satisfy the continuity condition described in the preceding paragraph. Recently,
Kaduchak and Marston (1995) have investigated the effect of exciting a hollow immersed
cylinder with a short toneburst, to set up two packets of Lamb type waves (equivalent to
the S2 mode) which propagate circumferentially in opposite directions around the
cylinder. They also present a portion of the phase and group velocity dispersion curves for
this mode.

Work on Rayleigh wave propagation on curved substrates is considerably more
developed. In particular, the work of Rulf (1968) examined the effect of arbitrary
substrate curvature on Rayleigh wave propagation, Epstein (1976, 1979) and Kawald et
al. (1996) have examined circumferential wave propagation for thin layers on solid
cylindrical substrates. The problem formulation by Kawald et al. (1996) forms the basis
of that which is used here for Lamb waves. Recently Hassan and Nagy (1997) have
investigated the propagation of so-called ‘creeping waves’ around a cylindrical fluid filled
cavity in an elastic host medium, with emphasis on the coupling of the wave modes in the
fluid and the Rayleigh type wave modes in the host medium.

It appeared that no work had previously been reported on the modal propagation of Lamb
waves in an unloaded curved plate, although the algebraic basis of the calculation could
be constructed from other work, in particular Kawald et al. (1996), Hassan and Nagy
(1997) and even Rulf (1968).

Subsequent to the analysis described here being completed, conference proceedings of
work by Qu et al. (1996) have been published which investigate the same problem. Their
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results are presented in the form of angular wavenumber vs. frequency plots for various
degrees of curvature, but somewhat surprisingly the results are not directly compared to
those for a flat plate. They do not offer any qualitative remarks on the degree of curvature
which a plate must have before it should be regarded as a curved plate rather than a flat
plate, and nor do they present group velocity dispersion curves.

2.3.2 Theoretical analysis

The analysis concerns waves propagating in the circumferential direction around an
infinitely long cylinder. Cylindrical coordinates (r, θ and z) are used throughout the
analysis, and isotropic material is assumed. The plane perpendicular to the axis of the
cylinder (the z direction) contains the r (radial) and θ (circumferentially) directions, as
shown in figure 2.5. Plane strain is assumed in the plane of r and θ, and the wavefronts
are considered to be infinitely long in the z direction. The angular direction, θ, extends
from zero to infinity, with no account being made for the continuity of displacements and
stresses around the circumference of the cylinder (i.e. at 0, 2π, 4π etc.), hence the number
of wavelengths around the circumference need not be an integer (unlike in the case of
axially propagating waves discussed by Gazis 1959 for example). For this reason, the
system being modelled cannot exist physically. However, in practical applications where
tonebursts rather than continuous waves are used, the analysis will be valid providing that
the spatial length of a toneburst is smaller than the circumference of the cylinder.

The analysis is performed using the scalar and vector potential functions, φ and ψ  
discussed previously. The associated wave equations (equation 2.7) are independent of
the coordinate system used and are therefore still valid for the cylindrical geometry, as
long as the correct form of the vector operators is used.

Calculation of suitable potential functions

In the same manner as for the flat plate case, a basic form for the potential functions is
proposed which specifies wave propagation in the desired direction. In the curved case, a
harmonic spatial dependence on the angle θ is assumed, hence both potential functions
have an exp(ikθθ) term, where kθ is the angular wavenumber. Again, rotation is only
permitted about axes in the z direction. Hence the vector potential field only has a
component in this direction. The following functions for φ and ψ are used (after Kawald  
et al. 1996):
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0
(2.20)

The remaining terms, f(r) and g(r), in the potential functions are functions of the radius, r,
and specify that there will also be a dependence on the radial position in the cylinder.
These functions are not yet known and the next stage of the calculation is to determine
them.

The ∇2  operator in cylindrical co-ordinates is (Howatson et al. 1972):
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Using this definition, the scalar potential function given in equation 2.20 may be
substituted into the wave equation 2.7 to obtain:
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ω/vl is now replaced by kl, the longitudinal bulk wavenumber. Then, by substituting x/kl

for r and defining a new function f2(x)=f(x/kl), equation 2.22 can be manipulated to obtain:
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which is Bessel’s differential equation. As kθ can be any real number (i.e. not necessarily
an integer), the solution for f2(x) is:
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where H(1) and H(2) are Hankel functions of the first and second kind. Al- and Al+ may be
interpreted as the amplitudes of two partial waves, the former propagating inwards
towards the centre of the cylinder and the latter propagating outwards.

The calculation of g(r) follows the same procedure and yields an almost identical result.
When the wave equation 2.7 is applied to the vector potential function, ψ, only the  
following equation is obtained, since the components of ψ in the r and θ directions are  
both zero.
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So replacing ω/vt with kt (the bulk transverse wavenumber) the solution for g2(rkt)=g(y/kt)
is:
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At- and At+ may be interpreted as the wave amplitudes of two partial waves, again with the
former propagating inwards towards the centre of the cylinder and the other propagating
outwards.

The following potential functions have now been found which satisfy the wave equations
(and hence equilibrium and compatibility conditions) and which also specify wave
propagation in the circumferential direction:
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Calculation of field matrix

The displacement field is straightforward to calculate using the cylindrical form of the
vector operators in equation 2.6 to give:
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The relevant components of the strain field may then be calculated from the strain-
displacement relationships, which in cylindrical coordinates are:
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Finally Hooke’s law (Howatson et al. 1972) may be applied to the strain field to obtain
the required stress components. The equations obtained are not reproduced here (see
appendix A) as they are exceedingly cumbersome. Due to the Hankel functions and the
fact that the geometry of the curved plate is not symmetrical about the centre line of the
plate, it is not possible to obtain elegant dispersion equations for curved plates which are
analogous to the dispersion equations 2.15 for flat plates.

However, a field matrix for a particular curved layer can be calculated which gives the
stresses,σrr and σrθ, and the displacements, ur and uθ, at any radius r, for use in the global
matrix method. This matrix has been added to Disperse (Pavlakovic et al. 1997) which
uses it to calculate the dispersion characteristics of waves propagating in curved plates in
the direction of curvature. Some results which illustrate the effects of curvature on Lamb
wave propagation in plates are illustrated in the following section.

2.3.3 Dispersion curves for waves propagating in curved plates

In the case of curved plates, the modal solution will calculate pairs of angular
wavenumber, kθ, and frequency, ω, values which satisfy the wave equation and the
relevant boundary conditions. The angular phase velocity, θ’ph , and group velocity, θ’gr ,

are then given by similar relations to those used to calculate the linear phase and group
velocities for a flat plate:
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For comparison with a flat plate, it is preferable to convert these angular velocities to
linear velocities by multiplying them by a distance, which is taken as the mean radius of

the cylinder, ( )r r ri o= +1
2 , where ri = inner radius and ro = outer radius.

The dispersion curves will again be independent of the actual size of the system if they
are expressed as functions of frequency-thickness product and the thickness to radius

ratio, r d: , is maintained. In figure 2.6 dimensionless phase velocity curves for aluminium

are plotted for r d:  ratios of 10:1, 5:1, 2:1 and for a flat plate. The apparent cut-off of
some modes at low frequencies is actually an artefact of the calculation. This is due to
certain elements in the field matrix containing the terms ( )Jkθ −1 ... , ( )Jkθ −2 ... , ( )Ykθ −1 ...

and ( )Ykθ −2 ... . Unfortunately, the current calculation routines are unable to evaluate these

if the order of the Bessel function is negative, as will occur if the angular wavenumber is
small. In the future it is intended to use Bessel function recurrence relationships to re-
write these terms so that only Bessel functions of order kθ or higher are required for the
field matrix.

Figure 2.7 shows the dimensionless group velocity curves corresponding to the
dimensionless phase velocity curves shown in figure 2.6.

It can be seen from figure 2.6 that for a radius:thickness ratio of 10:1, the difference
between the phase velocity dispersion curves for a flat plate and a curved plate appear to
be minimal for all modes. It is not until the radius:thickness ratio falls to below 5:1 that
significant curvature effects can be visually observed on the phase velocity dispersion
curves.

Consider the point where the A2 and S2 modes cross in the case of a flat plate, as shown
in the inset in figure 2.6(a). In the curved case, the corresponding modes do not cross, but
instead ‘repel’ and ‘swap’. This means that the mode which at one side of the crossing
point followed the locus of the A2 mode afterwards follows the locus of the S2 mode and
vice versa. This swapping effect is much more apparent on the group velocity dispersion
curves shown in figure 2.7(a) even at this relatively large radius:thickness ratio. It can
also be seen to be occurring on several pairs of higher order modes, most notably in the
region close to the maximum of the S4 mode in the flat plate.

2.3.4 Conclusions

It has been shown that the effect of plate curvature on the phase velocity dispersion curves
is negligible if the radius:thickness ratio is greater than around 10:1. However, the effect
of curvature at certain points on the group velocity dispersion curves is significant, even
at this radius:thickness ratio. There is obviously a considerable amount of further
investigation required into these effects and their practical implications need to be
assessed and validated.
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Another interesting avenue of research is where a structure contains plates with abrupt
bends or folds separating flat areas. If it is desired to propagate Lamb waves from one flat
section to another around the fold, the analysis presented above will give an indication of
the difference between the wave propagation characteristics in the flat and folded areas.
From the difference in phase velocity of a mode between the flat and folded regions, it
should be possible to infer an approximate value for the reflection coefficient of that
mode when incident on the fold. This assumes that the material properties of the plate
remain constant around the fold, which may not be a valid assumption in cases where the
folded structure is manufactured by plastic deformation of an initially flat plate, such as in
vehicle body panels.

2.4 EFFECT OF DISPERSION ON LAMB WAVE PROPAGATION

2.4.1 Introduction

In most long range Lamb wave testing applications, Lamb waves are not excited
continuously. Instead they are excited by short bursts of energy applied at one location on
a plate and after propagation through the material and interaction with any defects they
are received by transducers at either the same location (pulse-echo) or at other locations
(pitch-catch).

A direct consequence of using an excitation signal of finite duration is that single
frequency excitation can never be achieved; the excitation must have a finite bandwidth.
In bulk wave ultrasonic testing this is not important since, to a first approximation, bulk
waves are non-dispersive in all elastic isotropic materials. For this reason, many bulk
wave NDT systems, such as thickness gauges and flaw detectors, use short pulses of
energy with broadband frequency spectra. In such systems, the pulse of energy propagates
without dispersion, i.e. its shape does not change as it propagates.

However, when exciting Lamb waves, broadband excitation is not ideal for two reasons:
firstly because of the problems of interpreting results if more than one mode is excited
(which will generally be the case if broadband excitation is used), and secondly because
each Lamb wave mode is, in general, dispersive. This section is concerned with
quantitatively examining the effect of dispersion on the propagation of Lamb waves. To
the best knowledge of the author, this is the first time such quantitative studies have been
undertaken.

Manifestation of dispersion effects

The effect of broadband excitation of a dispersive Lamb wave mode is that the energy at
different frequencies propagates at different speeds. This manifests itself physically as a
spreading of the Lamb wave in space and time as it propagates through the material.

This is illustrated in figures 2.8(a) and 2.9(a) (a full discussion on the calculation of these
figures may be found in chapter 4), which show graphically the propagation of packets of
Lamb waves in space and time. The greyscale indicates the amount of out-of-plane
displacement on the plate surface at any point. In figure 2.8, the A0 mode is excited with a
five cycle toneburst in aluminium plate at 1.343 MHz mm, which is a point of reasonably
low dispersion. As can be seen, the ‘size’ of the packet remains fairly constant as it
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propagates, and this is confirmed by the three cross sections on the right of the figure
which represent the time signal that would be received at locations 0, 50 and 100 mm
from the source. However, figure 2.9 shows the effect of exciting the S0 mode at
2.0 MHz mm with a five cycle toneburst. Here, the energy packet can be seen to be
spreading out in distance and time. This is demonstrated in the cross sections shown in
the figure which again represent time signals that would be measured at 0, 50 and
100 mm from the source. In these graphs, the effect of dispersion is manifested as an
increase in the duration of the signal in time and a decrease in its amplitude.

Both the dispersion effects of signal spreading and the reduction in signal amplitude are
undesirable in long range Lamb wave testing.

The spreading of wave packets in space and time reduces the amount of resolution
available. Consider a packet of Lamb waves which have propagated a distance l from a
transmitting transducer when they arrive at a reflector. Some of the energy packet is
reflected back towards the transducer and some continues past the reflector. A distance δ,
which is assumed to be small compared to l, beyond the first reflector is a second reflector
from which a second packet of energy is reflected back towards the transducer. If the
transducer is being used in pulse-echo mode, then the presence of both reflectors will only
be detectable if the two reflections can be resolved. A common practical situation is when
one of the reflectors is the edge of a plate which produces a large reflection, and the
second reflector is a defect near the edge which produces a smaller reflection. In such a
case, the defect can only be detected if the two reflections can be resolved.

As an example, figure 2.10 illustrates the effect of two reflectors generating two signals in
a received time-trace. Both reflected signals are assumed to be identical tonebursts with a
centre frequency of 1 MHz although they differ in amplitude by a factor of two. In
figure 2.10(a), the spatial separation of the reflectors is such that the two reflected signals
are completely separated in time. As the separation between the reflectors is reduced, the
reflected signals being to overlap, as illustrated in figure 2.10(b) and (c) until they become
indistinguishable as shown in (d). However, if the received signals from the two reflectors
were 5 rather than 20 cycle tonebursts, then the two signals would be separated in time as
shown in (e), although the separation of the reflectors is the same as in (d). This simple
example shows how the resolution of a long range inspection system is improved if the
duration of received signals can be reduced. The exact separation at which the two signals
become indistinguishable is somewhat subjective and in a practical application would
depend on the sophistication of any signal processing techniques being used. However, it
is assumed for the purposes of this work, that the signals must be completely separated in
time to guarantee resolvability.

The reduction in amplitude of a dispersive signal reduces the sensitivity of the testing
system, and hence the maximum propagation distance which can be achieved before the
signal becomes undetectable is also reduced. The studies presented here are primarily
concerned with the temporal effects of dispersion, but as a first approximation it can be
assumed that the fractional change in amplitude is inversely proportional to the fractional
change in duration of a signal due to dispersion.
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Avoiding dispersion effects

Lockett (1973) stated that to avoid dispersion effects when using broadband pulses of
energy, the operating point on a Lamb wave mode should be at a point where the phase
velocity is independent of frequency. Practically, this constrains the operating point on a
mode to be well into the high frequency thickness region, in which all Lamb wave modes
tend towards being Rayleigh waves on the surfaces of the plate. If tonebursts of limited
bandwidth are used instead of pulses, many more operating points appear to become
viable in regions where the group velocity curves are stationary with respect to frequency,
as noted by Alleyne and Cawley (1992). Operating points of this type are marked by
circles on the group velocity dispersion curves for aluminium shown in figure 2.11. As
will be shown in the following sections, this qualitative method of selecting operating
points is not only limiting, but also somewhat misleading in terms of predicting the
amount of dispersion likely, particularly when looking at higher order modes.

By developing a quantitative measure of the dispersion associated with any point on the
Lamb wave dispersion curves, this section will show how this measure can be used to:

• increase the size of perceived suitable operating regions on the
fundamental and lower order modes.

• demonstrate that points of stationary group velocity on higher order
Lamb wave modes may still be unusable for NDT applications.

• select the optimum input signal for a particular operating point

2.4.2 Dispersivity

Consider a packet of Lamb wave energy propagating as a single mode through an
isotropic, lossless plate in vacuum. The plate is also assumed to be two dimensional, that
is, the Lamb waves are straight crested and are assumed to extend to infinity in the
direction normal to the direction of propagation. The packet of Lamb waves starts to pass
a fixed station at some position in the plate at time t1 and finishes passing at time t2. Some
distance, l, further along the plate the same packet of energy later passes a second station,
starting to pass at time t3 and finishing passing at time t4. At the first station, the duration
of the wave packet in time is t2-t1, and at the second station the duration is t4-t3. If the
wave packet is propagating without dispersion then (t4-t3)=( t2-t1), but if dispersion is
present then (t4-t3)>( t2-t1). Thus a change in signal duration, ∆T, may be defined:

( ) ( )
∆T T T

t t t t

out in= −

= − − −4 3 2 1

(2.31)

If the packet of Lamb waves contains waves with a range of group velocities from vmin to
vmax, then the temporal limits of the wave packet as it passes the second station may be
expressed in terms of these velocities. The time, t3, when the wave packet first reaches the
second station cannot be earlier than the time taken for the fastest propagating waves to
travel the distance l starting at time t1. Similarly, the time, t4, when the signal finishes
passing the second station cannot be later than the time taken for the slowest propagating
waves to travel the distance l starting at time t2. Hence:
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And equation 2.31 can be re-written as:
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(2.33)

This shows, as should be expected, that the duration of the wave packet will increase
linearly with the distance travelled. This obviously assumes that the exact bounds of the
group velocity range can be identified, which in turn means that the frequency bandwidth
of the input signal must be exactly defined. In practice the bandwidth of the input signal
can only be specified in terms of the points where its spectrum drops below n dB with
respect to its maximum value. Within this bandwidth, x % of the energy of the signal is
contained. If the group velocity limits are calculated within this frequency bandwidth,
equations 2.32 and 2.33 then give the temporal limits of the wave packet in which x % of
the total energy is contained. Without a priori knowledge of the relationship between
group velocity and frequency over the signal bandwidth, it is not possible to infer directly
what the amplitude of the signal at the times t3 and t4 are, with respect to the peak
amplitude - i.e. these times are not necessarily the times at which the signal drops n dB
below the peak value.

Although a spreading of a signal in time is the way in which dispersion will generally be
observed, it is the spatial size of a signal which will limit the spatial resolution which can
be obtained. However, at a particular point in space, the spatial duration will actually be
increasing as the signal passes that point, so in order to convert the change in temporal
size of a signal given by equation 2.33 to a change in spatial size, equation 2.33 is
multiplied by a nominal group velocity, v0, to give a measure of the mean spatial size of a
signal as it passes a point in space:

( )∆L v l v v= −0 1 1min max (2.34)

Finally, equation 2.34 can be differentiated with respect to distance, l, to obtain the rate of
increase in spatial duration:

( )d

dl
l v v v∆ = −0 1 1min max (2.35)

This quantity is constant for a particular signal, and will be defined as the dispersivity of
the signal. The dispersivity is therefore a dimensionless quantity that measures the rate of
spatial increase in size of a signal with respect to distance travelled.

The dispersivity is a measure of the dispersion of a packet of Lamb waves generated by a
particular input signal, the input signal being associated with a particular frequency. But
in order to investigate the dispersivity at different frequencies and hence different points
on the dispersion curves, the frequency associated with the input signal must be variable.
Hence, equation 2.35 cannot, in itself, provide a measure of the relative dispersion of
different points on the Lamb wave dispersion curves. In order to obtain a relative measure
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of this type, the frequency content of the input signal must be altered, and this can be
effected in two ways which are discussed below.

Dispersivity curves calculated using a constant shape of input signal

Firstly, consider an input signal with a particular shape, such as a Hanning windowed
toneburst of n cycles. To adjust the frequency content, this signal is stretched or
compressed in time. For a Hanning windowed toneburst of n cycles and a centre
frequency fc, the bandwidth is between the frequencies fmin and fmax. These frequency
limits can be shown (see appendix B) to be given by the following equations:

f f
k

n

f f
k

n

min

max

= −



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= +
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0

0

1

1

(2.36)

where k is a constant depending on the bandwidth measure being used. In this section the
bandwidth will be considered to be defined by the 40 dB down points of the spectrum (the
points where the frequency spectrum drops below 40 dB with respect to its maximum
value) in which case a value of 2.8 is used for k. Clearly, if the number of cycles, n, in the
toneburst is kept constant then the absolute bandwidth of the signal is proportional to the
centre frequency, fc.

In order to use this method to calculate the amount of dispersivity as a function of
frequency for a given Lamb wave mode, a standard input signal with a fixed number of
cycles must be selected. For a particular centre frequency, f0, the bandwidth limits, fmin

and fmax, of the toneburst are calculated using equation 2.36. The maximum group
velocity, vmax, and minimum group velocity, vmin, of the Lamb wave mode being
examined are then found in that frequency range, and the value for the nominal group
velocity, v0, is taken as being the group velocity of that mode at the centre frequency, f0. A
measure of the dispersivity at any centre frequency, f0, may then be calculated from
equation 2.35.

As an illustration, figures 2.12(a), (b) and (c) show the dispersivity curves for 10, 20 and
50 cycle Hanning windowed tonebursts in aluminium plate.

The sharp dips in all the curves shown in figures 2.12(a), (b) and (c) are points of
minimum dispersion, and comparison with the group velocity curves in figure 2.11 reveal
that these points correspond, as expected, with the points of stationary group velocity. It is
interesting to compare the relative amplitudes of the minimum dispersivity between
modes. Considering figure 2.12(a) only, it can be seen that the minimum in dispersivity of
the A0 mode at a dimensionless frequency of 0.487 is almost zero, whereas none of the
minima for other modes fall much below 0.2, except in the case of the S0 mode as the
frequency tends to zero. Even for larger numbers of cycles in the toneburst, the absolute
values of the dispersivity are reduced, but the ratio between the minimum dispersivity of
A0 and the minima in dispersivities of the other modes is approximately maintained. The
obvious conclusion is that the almost negligible dispersivity which can be achieved by
using the A0 mode at a dimensionless frequency 0.487 can never be matched when using
higher order modes at their points of stationary group velocity.
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Another interesting feature of the graphs in figures 2.12(a), (b) and (c) is the dispersivity
of the A0 mode at dimensionless frequencies below 0.487. Although rising, the level of
dispersivity in this region is still lower than can be achieved using most higher modes.
This result appears somewhat surprising, due to the rapidly changing group velocity in
this region (see figure 2.11) but becomes understandable if the dispersion curves are re-
plotted on logarithmic axes, as has been done in figure 2.13. This type of scale means that
the bandwidth of a tonebursts with a fixed number of cycles is represented by a vertical
band of fixed width, independent of the centre frequency. It can be seen that in the low
frequency region, the group velocity of the A0 mode in figure 2.13(b) is not changing
particularly rapidly with respect to the logarithmic frequency, hence explaining the low
dispersivity in this region.

The method described above for calculating the dispersivity is straightforward to compute
and presents an immediately obvious measure of relative dispersion.

However, this method is biased towards predicting higher dispersivities at higher
frequencies since the bandwidth of the input signal is increasing linearly with frequency.
But as the frequency is increased, the temporal duration of the input signal decreases, so a
greater degree of dispersion ought to be tolerated for a given target resolution. An
alternative method of calculating the relative dispersivities of different points on a Lamb
wave mode is to maintain an input signal of constant duration, and this is described
below.

Dispersivity curves calculated using a constant duration of input signal

The duration of a Hanning windowed toneburst of n cycles at a centre frequency, f0, is
n/f0. Hence for a toneburst of duration T0, the number of cycles must be made equal to
T0f0. If this is done then the bandwidths in equations 2.36 become:
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Hence, the bandwidth fmax-fmin is now frequency independent. The dispersivity curves for
a 1 mm thick aluminium plate may now be recalculated. Using the ratio of the plate
thickness, d, to the bulk shear velocity, vs, as a measure of time, figures 2.14(a), (b) and
(c), show dispersivity curves with durations of 10, 20 and 50 vs/d respectively.

The graphs in figure 2.14 show a somewhat different picture of the dispersivity to those in
figure 2.12. In particular, the lower order modes now look considerably less attractive,
with the minimum in the dispersivity of the A0 mode no longer significantly lower than
the minima on many higher order modes. From this perspective, the use of higher order
modes appears more feasible, but there are other concerns which make them less
attractive, such as the problems of modal selectivity and attenuation, both of which will
be covered in later chapters.

If the examination of dispersivity using a toneburst with a fixed number of cycles
corresponds to the dispersion curves plotted on a logarithmic frequency scale, then the
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method described above, using a fixed duration of toneburst corresponds to the dispersion
curves plotted on a linear frequency scale.

2.4.3 Resolvable distance

The two methods of investigating the effects of dispersion described above are based on
examining the rate of signal spreading in space - the dispersivity. However, there is an
alternative route of investigation that lends itself to a more direct physical application,
and which also removes the ambiguity of how to compare different points on the
dispersion curves.

Instead of considering the rate of signal spreading, the propagation of waves over a fixed
distance, l, is examined. From equations 2.31 and 2.33, the duration of a signal received a
distance l from the source is:
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l v v t t
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= − + −
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The temporal duration of the received signal, Tout, may again be converted to a spatial
duration, lout, by multiplying by a nominal group velocity v0, which is again taken as being
the group velocity of the mode at the centre frequency, f0, of the input signal. To obtain a
dimensionless quantity, the spatial duration, lout, is divided by the thickness of the plate d:

( )( )
l d

v l v v T

dout

in
=

− +0 1 1min max
(2.39)

The quantity lout/d will be termed the resolvable distance, as it indicates the spatial
duration of a Lamb wave signal a distance l from a source, as a multiple of the plate
thickness.

On first inspection, the concept of resolvable distance has merely introduced another
variable into the problem, namely the propagation distance, l, in addition to the variable
nature of the input signal. However, as will be shown below, for any particular
propagation distance, l, and at any point on the dispersion curves, a single input signal can
be found which minimises the resolvable distance.

Minimum resolvable distance curves

Let the input signal again be constrained to being a Hanning windowed toneburst of
n cycles and centre frequency fc. The resolvable distance given by equation 2.39 can be
seen to be governed by two components, firstly the duration of the input signal, Tin, and
secondly by the increase in duration of the signal due to dispersion given by
l(1/vmin-1/vmax). At a particular frequency, and with a small number of cycles in the input
toneburst, Tin will be small, but the bandwidth will be large and dispersion effects will be
significant. As the number of cycles is increased, the bandwidth is reduced and dispersion
effects become less significant but Tin becomes larger. At some point in between, a
minimum in the resolvable distance will be found. This is demonstrated for the S1 mode
at a centre frequency of 4.03 MHz mm in figure 2.15. The figure shows a graph of
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resolvable distance vs. number of cycles in the input signal for various propagation
distances. Hence, at any particular centre frequency the duration of the received signal,
Tout, may be minimised by adjusting the number of cycles. The dotted line through the
minima of the resolvable distance curves in figure 2.15 shows clearly how the number of
cycles in the input signal should be varied, depending on the propagation distance, to
minimise the resolvable distance. The only condition for a minimum to exist, is that the
Lamb wave mode being examined must exhibit some dispersion, otherwise the duration
of Tout will increase monotonically with n, and the minimum of Tout will always be zero.
Example resolvable distance curves calculated at distances of 100, 500 and 1000 d from
the source are shown in figure 2.16. It should be stressed that the resolvable distance
curves do not simply scale linearly with distance, due to the non-linear nature of the group
velocity curves.

It can be seen from the figure that at low frequencies, the A0 mode has a minimum
resolvable distance at a dimensionless frequency of 0.487 which is around half that of the
other modes. This will be a common operating point for the inter-digital transducers
which will be described in later chapters. Even at frequencies of around half of this value,
the A0 mode still has smaller resolvable distances than the low frequency minima of the
A1 and S1 modes. The abrupt increase in resolvable distance of the S0 mode at very low
frequencies arises because the software written to perform the calculation does not allow
the input signal to contain less than one cycle. Figure 2.16(c) indicates that several points
on modes at higher frequencies have minimum resolvable distances which are comparable
to the A0 mode at its low frequency minimum, notably the S1, A2, S2, A3 and S3 modes.
However, the resolvable distance of the A0 and S0 modes at higher frequencies is always
lower than the minima in other modes. At these frequencies, the fundamental Lamb
waves are effectively propagating as two Rayleigh waves, one on each surface of the
plate. Although such waves exhibit low dispersion, it should be noted that the energy
within them is concentrated close to the surfaces of the plate. Hence, as the fundamental
Lamb wave modes tend towards Rayleigh waves, so their sensitivity to defects within the
thickness of the plate is reduced.

2.4.4 Optimum number of cycles in input signal

An obvious by-product of the minimum resolvable distance curves is that the optimum
number of cycles in the input signal is also calculated. These are plotted for the same
distances in figure 2.17. As expected, the optimum number of cycles tends to increase as
the propagation distance is increased and dispersion effects outweigh the initial duration
of the signal. Even in the case of the A0 mode at the dimensionless frequency of 0.487,
the optimum number of cycles required increases from 5 to 10 as the propagation distance
is increased. An obvious question which arises from this observation is whether or not the
number of cycles required reaches a limit as the propagation distance is increased further.
Although such a study has not been performed, it is the opinion of the author that such a
limit will not be reached, and that the optimum number of cycles at any operating point
will increase monotonically (but not linearly) with propagation distance.

2.4.5 Conclusions

In this section, the effect of dispersion on the propagation of Lamb wave signals has been
quantified. The two ways of calculating the dispersivity which have been described have
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been shown to correspond to two different ways in which the group velocity dispersion
curves can be viewed. If the input signal is a toneburst with a fixed number of cycles then
the group velocity dispersion curves must be considered on a logarithmic frequency scale.
On the other hand, if the input signal is a toneburst with constant duration the group
velocity dispersion curves may be considered on a linear frequency scale.

The concept of a minimum resolvable distance which is associated with any point on the
dispersion curves has been introduced and used to provide a comparison of the resolution
which may be obtained between different modes over a particular propagation distance.

2.5 CONCLUSIONS

This chapter has been concerned with theoretical considerations of Lamb wave
characteristics. In addition to reviewing the existing theory of Lamb wave propagation in
free flat plates, two new topics have been addressed, the effect of curvature and the effect
of dispersion.

The effect of curvature has been shown to have a minor effect on the phase velocity
dispersion curves for moderate degrees of curvature. However, the group velocity
dispersion curves which have been produced for curved plates indicate that mode
repulsion takes place at some of the locations where modes cross in the flat plate case,
even at moderate degrees of curvature. These effects have not been verified here since
they are of somewhat academic interest from the perspective of the work described here.
However, if more work is to be done on the propagation of Lamb waves along plates with
bends, this area will become more important.



2. Lamb wave theory

Page 45

Figure 2.1 Diagram of flat isotropic plate, showing orientation of axes, wave
propagation direction and wavefronts.
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Figure 2.2 Examples of Lamb wave mode shapes in aluminium, showing, on the left,
the variation of in-plane (ux), out-of-plane (uz) particle displacements and
strain energy density (SED) through the plate thickness. The diagrams on
the right show the deformation of the plate for each case. The modes and
dimensionless frequencies are (a) A0 at 0.44, (b) S0 at 0.05, (c) S0 at 0.80
and (d) S4 at 4.17.
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Figure 2.3 Phase velocity dispersion curves for aluminium (continuous lines) and
steel (dashed lines) on dimensionless axes.
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Figure 2.4 Group velocity dispersion curves for aluminium (continuous lines) and
steel (dashed lines) on dimensionless axes.



2. Lamb wave theory

Page 49

Figure 2.5 Schematic diagram showing nomenclature for wave propagation in curved
plates.
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Figure 2.6 Phase velocity dispersion curves for aluminium on dimensionless axes for
radius:thickness ratios of (a) 10:1, (b) 5:1, (c) 2:1 and (d) 1:1. The
dispersion curves for a flat plate of the same thickness are indicated by the
dotted lines.
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Figure 2.7 Group velocity dispersion curves for aluminium on dimensionless axes for
radius:thickness ratios of (a) 10:1, (b) 5:1, (c) 2:1 and (d) 1:1. The
dispersion curves for a flat plate of the same thickness are indicated by the
dotted lines.
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Figure 2.8 Example of low dispersion. (a) Distance-time plot showing propagation of
A0 mode Lamb waves at 1.343 MHz mm. (b), (c) and (d) show time-traces
that would be received at distances of 0, 50 and 100 mm from the source.

Figure 2.9 Example of high dispersion. (a) Distance-time plot showing propagation of
S0 mode Lamb waves at 2.000 MHz mm. (b), (c) and (d) show time-traces
that would be received at distances of 0, 50 and 100 mm from the source.
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Figure 2.10 Predicted time-traces showing (a) two 20 cycle tonebursts completely
separated in time. The effect of reducing the separation is shown in (b), (c)
and (d). (e) shows the effect of reducing the number of cycles to 5 while
maintaining the separation shown in (d).
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Figure 2.11 Group velocity dispersion curves for aluminium with stationary points
marked by the white circles.
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Figure 2.12 Dispersivity curves for aluminium using input signals with (a) 10, (b) 20
and (c) 50 cycles.
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Figure 2.13 (a) Phase and (b) group velocity dispersion curves for aluminium plotted
on dimensionless logarithmic axes.
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Figure 2.14 Dispersivity curves for aluminium using input signals with durations of (a)
10, (b) 20 and (c) 50 d/vt, where d is the plate thickness and vt is the bulk
transverse wave velocity.
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Figure 2.15 Resolvable distance vs. cycles in input toneburst for the S1 mode in
aluminium at 4.03 MHz mm (its maximum group velocity), for various
propagation distances. The dotted line marks the location of the minima in
resolvable distance as the propagation distance is varied.
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Figure 2.16 Minimum resolvable distance curves for aluminium at propagation
distances of (a) 100, (b) 500 and (c) 1000 d, where d is the plate thickness.
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Figure 2.17 Optimum number of cycles in input signal for aluminium at propagation
distances of (a) 100, (b) 500 and (c) 1000 d, where d is the plate thickness.
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3. Development and validation of one-dimensional
transducer model

3.1  INTRODUCTION

In this chapter, the development of a one-dimensional transducer model is described.
Although the model is not directly applicable to transducers for transmitting and receiving
Lamb waves, it provides a useful starting point in understanding the frequency response
of thin piezoelectric polymer films which form the basis of the inter-digital transducers
that will be described in later chapters.

The work in this chapter forms the basis of the Wilcox et al. (1998a) paper. The model
was developed jointly by the current author and his colleague R. Monkhouse, in
consultation with Prof. B. Auld. The contributions of the current author were mostly in
the original mathematical derivation of the model and the subsequent improvements
which were made to the model as experimental data was obtained. The original software
implementation of the model, which was designed for a fairly standard transducer
configuration was written by R. Monkhouse who was also responsible for setting up the
pulse-echo specimens used for model validation. The later, more general software
implementation of the one-dimensional model was written by the current author, and is
the software used to produce the predictions in this thesis.

A one-dimensional transducer model can be used to predict the performance of a layered
transducer system transmitting or receiving bulk longitudinal or transverse waves,
although here, only bulk longitudinal waves will be considered. In such a layered
transducer system, the length and breadth of each layer is assumed to be large compared
to the thickness, hence the three dimensional transducer system may be reduced to a one-
dimensional one. The one-dimensional assumption allows the mechanical elements in the
system to be modelled as two port electrical networks, and hence the complete
electromechanical system may be represented by a purely electrical network.

Numerous workers (beginning with Mason 1948) have used one-dimensional electrical
networks for transducer analysis. In this chapter, a modular matrix based approach to one-
dimensional transducer modelling is presented which is easily adaptable and intuitive to
understand. The matrix method used here is compatible with that used by other workers
such as Sittig (1967) and Lewis (1980). An alternative method proposed by Hayward et
al. (1984) is to use a systems based approach with feedback loops in order to account for
the various transduction phenomena.

The pulse-echo response of transducers which have been predicted by one-dimensional
models are often presented (Desilets et al. 1978, Silk 1983, Ohigashi et al. 1988, Kimura
and Ohigashi 1988, Brown and Carlson 1989, Hayward and Hossack 1990, Dias et al.
1993, Lockwood and Foster 1994 and many more), but the exact method by which these
results are obtained is not always clear. Using the reciprocity theorem (see for example
Sachse and Hsu 1979 or Auld 1990), the assumptions inherent in the calculation of pulse-
echo response are considered and justified in section 3.2.2.
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The first part of this chapter is concerned with the mathematical basis of the one-
dimensional transducer model, and its implementation in software. The remainder of the
chapter focuses on the piezoelectric polymer, PVDF, which is used as the piezoelectric
element in most of the transducers described in this thesis. Although PVDF has been
studied as a transducer material using one-dimensional models before (Bui et al 1977,
Kimura and Ohigashi 1988, Brown and Carlson 1989, Dias et al. 1993 amongst others),
most work has been concerned with the development transducers for high frequency
(10 MHz and higher) applications and the transmission of acoustic energy into fluids such
as water (e.g. Bainton et al. 1980) or human tissue (e.g. Swartz and Plummer 1980). In
the context of the work covered in this thesis, the emphasis is on the properties of PVDF
when bonded to a solid substrate and operated at frequencies below 10 MHz. Impedance
and pulse-echo measurements on layered transducers made from PVDF are described in
section 3.3, these experiments enabling the model to be both tuned and validated as it was
developed. The final section of the chapter uses the model to perform parametric studies,
firstly by examining the relative significance of the input parameters, and secondly by
investigating the effect of several major parameters on the overall performance of a
transducer.

3.2 DEVELOPMENT OF ONE-DIMENSIONAL TRANSDUCER MODEL

The one-dimensional model is based on mapping a complete electromechanical
transducer system shown in figure 3.1(a) into a purely electrical network (figure 3.1(b))
which may then be analysed using conventional electrical circuit analysis techniques.
After describing how the circuit equations for the different elements in the model are
developed in section 3.2.1, section 3.2.2 will describe the assembly of the complete model
to perform specific calculations.

3.2.1 Modelling the different elements in the transducer system

The complete transducer system may be divided into two parts: a layered mechanical
system through which bulk acoustic waves may propagate in a direction perpendicular to
the plane of the layers and an electrical system. The two systems are coupled in a
piezoelectric layer, which converts electrical signals into mechanical strains and vice
versa. As well as the piezoelectric layer, which is of finite thickness, the model also
requires that the mechanical system is terminated by two semi-infinite end layers which
may be either continuous media or vacua. Between the piezoelectric layer and either of
the semi-infinite layers, there may be any number of finite thickness layers of other
materials, such as electrodes or adhesives, as indicated in figure 3.1(a). The electrical
system may contain any number of linear passive components as well as current and
voltage sources. In this section, each of the layers in the mechanical system is described
and an equivalent electrical network is presented. Finally the electrical network analogue
of the complete transducer system is assembled.

Piezoelectric layer

For the piezoelectric material, equivalent circuits were proposed originally by Mason
(1948) and refined by Krimholz, Leedom and Matthaei (Krimholz et al. 1971) who
developed the so called KLM model. The governing circuit equations in these models are
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the same, the differences being in the components used within the circuits. The equations
can also be derived directly (for example, Auld 1990) by fitting solutions of the coupled
wave equations for plane waves propagating in a piezoelectric material to the boundary
conditions. All methods result in the circuit equation shown below in equation 3.1.

Figures 3.2(a) and (b) show respectively the piezoelectric layer and its representation as a
three port electrical network described by the 3x3 impedance matrix:
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where A is the area of the transducer, Z0 is the characteristic acoustic impedance of the
piezoelectric material, k is the acoustic wave number (note that the wave number k used
here is equal to iγ where γ is the propagation constant used by some authors such as Bui et
al. 1977), d is the thickness of the film, hx1 is the piezoelectric charge constant (in
Newtons per Coulomb) for the material corresponding to longitudinal plane waves
propagating in the x direction, ω is the angular frequency and C0 is the clamped
capacitance of the piezoelectric layer (the capacitance that would be measured if zero-
strain conditions could be achieved in the piezoelectric material).

The properties at ports one and two are acoustic ones, current representing particle
velocity (vi) and voltage representing force (Fi) due to normal stress (Txx). It should be

noted that the sign convention for this circuit is that positive current flows in at all ports.

Non-piezoelectric layers

A layer (L) of an acoustic medium with characteristic acoustic impedance Z0, finite
thickness t and area A can be modelled as a length of transmission line (for example, Dias
et al. 1993) in the electrical model, the two port network representation of which is shown
in figure 3.3. The relationship between the output variables (F2 and v2) and input variables
(F1 and v1) is then given by (see for example Howatson et al. 1991):
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where TL is known as the transfer matrix for that particular layer. It should be noted that
when using transfer matrices, the sign convention used for particle velocity v (current in
the electrical analogue) is important, and it is for this reason that the matrix to convert
from F1 and v1 to F2 and v2 is not the same as that given above but instead is:
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Semi-infinite layers

For a semi-infinite medium, the impedance seen looking into it is just the characteristic
acoustic impedance of that material multiplied by the area of the transducer A. Hence the
semi-infinite media at the front and back of the transducer are represented as impedances
connected across the terminals of the last transmission lines.

Equivalent electrical network of the complete transducer

A complete system as shown in figure 3.1(a) consists of the layer of piezoelectric
material, a number of layers of other materials on either side of it and beyond them, two
semi-infinite media. For clarity, one of the semi-infinite media will be defined as
corresponding to a material under interrogation by the transducer and the other to a
backing medium. The layer of piezoelectric material is then defined as having a back (B)
and front (A), the back being the side towards the backing material and the front being the
side towards the material under interrogation. The layers between the back of the
piezoelectric material and the backing material are denoted as B1, B2, etc. (counting away
from the piezoelectric material) and the layers on the front as A1, A2, etc. All the layers,
including the piezoelectric one, make up what will be defined as the transducer.

The electrical network analogue of the transducer is shown in figure 3.1(b). It has a three
port network representing the piezoelectric layer (PZ) described by a 3x3 impedance
matrix (equation 3.1), a number of two port layers representing non-piezoelectric layers
(Ai and Bi) which are described by 2x2 transfer matrices (equation 3.3) and two
terminating impedances to represent the material under interrogation (ZA) and the backing
medium (ZB).

3.2.2 Assembly of the model components to perform specific calculations

Except for any external electrical components (which may easily be added directly to the
network) the description of the transducer system as an electrical network is now
complete. This section is devoted to describing how the model is manipulated in order to
obtain certain quantities of interest.

Calculation of the input impedance of the transducer system

The input impedance of a transducer system is a readily measurable function of
frequency, and is hence a useful parameter for the model to be able to predict.

Firstly, the transfer matrices, TAi, describing each of the front layers may be multiplied
together to obtain a single transfer matrix, T A’ , which relates the force, F1, and particle
velocity, -v1, at the interface of the piezoelectric layer and the first front layer to those
quantities measured between the last front layer and the material under interrogation (FZA
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and vZA) as shown in equation 3.4. The minus sign for v1 is necessary since v1 has already
been defined by equation 3.1 and figure 3.2 as being into the piezoelectric layer.
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Since the ratio of FZA to vZA is given by the acoustic impedance of the material under
interrogation, ZA, the ratio of F1 and -v1 may then be expressed as an impedance, Z A’ ,
given by:
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(3.5)

This process has reduced a system of multiple layers and terminating impedance, ZA, to a
single impedance, Z A’ , as shown in figure 3.4.

The same process may be used to reduce the backing medium and intervening layers to a
similar impedance, Z B’ , connected across the back port of the piezoelectric material.
These impedances, Z B’  and Z A’ , provide ratios between F1 and -v1 and F2 and -v2

respectively in equation 3.1. Thus the symmetrical 3x3 matrix from equation 3.1:
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may be reduced to a 2x2 matrix, ZPZ, by using F1/v1=-Z’B:
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which, it should be noted, is still symmetrical. Then, by using F v Z A2 2 = − ’ , the ratio
between V3 and I3 may be found, which is the electrical input impedance, ZIN, of the
transducer:
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Calculation of acoustic response

The acoustic response is a somewhat abstract quantity which will be defined here as the
ratio of the force measured at the interface of the material under interrogation to the
current driving the transducer. It can be used to give an indication of the acoustic power
being generated by the transducer, but, as will be shown in the next section, it is also an
important intermediate quantity in the calculation for determining the pulse-echo response
of the transducer.

In equation 3.8, the piezoelectric layer, backing layers and backing material were reduced
to a two port network represented by the 2x2 impedance matrix, ZPZ. This has been
achieved by effectively closing the back port of the three port network representing the
piezoelectric layer, to leave a two port network, which will be referred to as the backed
piezoelectric layer. One port of the backed piezoelectric layer is the electrical terminals
and the other is the mechanical interface with the first of the front layers. As the backed
piezoelectric layer is a two port device, the impedance matrix, ZPZ, may be re arranged
into a transfer matrix, TPZ. In terms of the model network, the backed piezoelectric layer
may then be treated in the same way as the other layers. For consistency with the other
transfer matrices in the system it is necessary to change the sign convention for the
piezoelectric layer, so that the particle velocity v2, is now positive out of port two.
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The system is now extended back on the electrical side to include a pulser-receiver
instrument used to drive the transducer. This is represented as a Norton equivalent circuit
with an ideal current source (IP) in parallel with an output impedance ZP as shown in
figure 3.5. The transfer matrix representing the system from the terminals of IP to the
electrical terminals of the backed piezoelectric layer is defined as TP. Hence, if the
transfer matrix, TPZ, for the backed piezoelectric layer is pre-multiplied by the matrices
representing the layers in front of it (A1, A2, etc.) and post-multiplied by TP, a single
transfer matrix, T, is obtained:
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T represents the entire backed transducer, from input electric quantities, VP and IP, to the
resulting mechanical output quantities, FOUT and vOUT, and includes the output impedance
of the driving instrument, ZP. VP and IP are the voltage and current at an ideal driving
current source, and FOUT and vOUT are the force and particle velocity at the interface with
the material being interrogated.

The acoustic response is the ratio of force, FOUT, at the interface with the material under
interrogation to the current, IP, applied by the ideal current source. Since the ratio of FOUT

and vOUT at the interface with the material under interrogation is ZA, equation 3.10 may be
rearranged to give the acoustic response:
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Calculation of pulse-echo response

The pulse-echo response of a transducer when it is bonded to a solid substrate of finite
thickness is, like the input impedance, readily measurable experimentally. Although
simple and in some ways intuitively obvious, the method by which the model is used to
predict the pulse-echo response is quite subtle and deserves some further justification.

The goal is to predict the voltage which would be measured at the electrical terminals of
the transducer as the first echo is received from an acoustic pulse generated by an input
electrical pulse. The echo is that reflected back from a free surface normal to the
transducer element which is assumed to exist somewhere within the material being
interrogated. This signal therefore must make two passes through the backed transducer
network described in the previous section, once in the electrical to mechanical direction
and once in the mechanical to electrical direction.

A possible method to proceed with this calculation would be to consider the material
under interrogation as finite and terminated with a free surface (a short circuit across the
port furthest from the piezoelectric layer in the electrical analogue). This would enable the
response of the entire system to be predicted in the frequency domain. Then, by using an
inverse Fourier transform, the time domain response to a current  impulse at the electrical
terminals could be predicted and this would implicitly include echoes from the free
surface. However, the time between pulse and echo is long compared to the portion of the
signal which is of interest (the reflected echo), hence the amount of temporal resolution
that could be obtained on the echo itself for a given size of inverse Fourier transform is
small.

The method used in this analysis makes the assumption that the material under
interrogation is very much thicker than any of the layers in the backed transducer system.
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Thus the approximation that the backed transducer is connected to an infinite non-
dispersive and non-attenuating medium (a reasonable approximation for the materials
likely to be encountered in many practical applications) is justifiable. As will be shown,
this enables the transmission and reception cases to be considered separately, with
parameters in the transmit case being denoted by a t superscript and those in the receive
case by a r superscript. Superposition of these two cases is then used to achieve the
required boundary condition of a free surface at some point in the material.

Consider the complete system represented as the block diagram shown in figure 3.6.
Again, it has been extended back at the electrical end to include a Norton equivalent
circuit to represent the pulser-receiver instrument used to drive the transducer, with its
own output impedance, ZP, and an ideal current source, IP, connected at point P, which
supplies the pulse. In the transmit case, IP

t can be calculated from the measurable voltage,
VP

t, as the input electrical impedance of the system, ZIN, has already been calculated:

I
Z Z

Z Z
VP

t IN P

IN P
P
t= +

(3.12)

At the acoustic end the final front layer is connected to the material under interrogation
(Material A) at interface Q. Point R in the model corresponds to the position of the free
surface in the real material from which the pulse will be reflected.

In the transmit case, the material is represented up to this point R as a length of
transmission line with characteristic impedance ZA and length d, as shown in figure 3.7(a).
The continuation (to infinity) beyond point R is represented as an impedance, ZA, equal to
the characteristic impedance of the material multiplied by the area of the transducer. It can
be shown using the method described in equation 3.5 that the apparent impedance looking
from point Q into the material is just ZA, hence the material still appears to be infinite
looking from point Q. Furthermore, the force, FR

t, and particle velocity, vR
t, at point R are

the same as those at point Q except for a time delay due to the distance d. It is thus
reasonable to replace the length of transmission line and terminating impedance, ZA, with
the same impedance connected directly at point Q and to say that the force measured there
would be the same as that measured in the material at point R, except for the time delay.
For the transmit case, the block diagram of figure 3.6 may now be re-drawn as that shown
in figure 3.7(b), where the input is an electrical current, IP

t, at point P and the output is a
mechanical force measured (for consistency with the receive case) at the new terminals at
point S. FS

t is equal to the force, FR
t, generated at the point R in the material except for a

time delay.

In the receive case it is necessary to generate a force, FR
r, at the point R in the medium as

shown in figure 3.8(a), such that FR
r equals -FR

t. This means that when superposition of
the transmit and receive cases is applied, the boundary condition required for a free
surface at R will be achieved:

F FR
t

R
r

+ = 0 (3.13)

This cannot be simulated by connecting a forcing device directly at the point R in
figure 3.8(a), as the length of material between points R and Q, would no longer be semi-
infinite, as required for consistency with the transmit case. Instead a Thévenin type
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driving circuit with an ideal voltage source (i.e. a forcing device), FT
r, in series with an

output impedance, ZA, must be used as shown in figure 3.8(a), which due to the
impedance matching means that the material does now appear to be semi-infinite looking
away from the transducer. Unfortunately, it is the size of force at point R, FR

r, that is the
known quantity and not the force FT

r. In order to be able to calculate FT exactly, the
impedance looking towards the transducer from point R would need to be known.
However, it is a reasonable approximation to say that the length of material between
points R and Q is large enough compared to the other layers involved to be considered as
presenting an impedance of just ZA to the driving circuit. Therefore FT

r needs to be twice
the size as the force required at point R, FR

r. For reasons that will become apparent, it is
more useful to use a Norton equivalent circuit (rather than a Thévenin one) with a current
source (i.e. a shaking device) of magnitude vN

r equal to FT/ZA in parallel with an
impedance ZA as shown in figure 3.8(b). Thus:

v
F

ZN
r R

t

A
≈ −2 (3.14)

The receive model may now be further reduced by combining the transmission line
between Q and R and the Norton circuit connected at point R, into a single Norton circuit
connected at point Q. It can be shown that this has an output impedance still equal to ZA

and a current source of the same magnitude as in the original circuit but time delayed due
to the length of intervening material. If, as in the transmit case, this time delay is ignored,
the receive model is now as shown in figure 3.8(c), where the output is an electrical
potential, VP

r, measured at point P and the input is a mechanical displacement, vN
r,

imposed at point S.

Normally the transmit and receive models would now be superposed to satisfy the
boundary condition at point R and so to fully predict the electrical pulse-echo response
equal to the sum of VP

t and VP
r. This cannot be done in this case as both models have

neglected the time delays within the material, hence the transmitted and received pulses
would occur simultaneously. Instead, it is assumed that in practice the time interval
between pulse and echo is sufficiently long for the effects of the transmitted pulse within
the transducer to have completely died away before the echo is received. Thus the pulse-
echo output is approximated as being solely due to the voltage VP

r at the electrical
terminals that is predicted by the receive model.

Comparison of figure 3.7(b) and figure 3.8(c) reveal that between points P and S, the
circuits in the transmit and receive cases are now identical. The backed piezoelectric layer
has a symmetrical impedance matrix, and all other components within the network are
linear resistive, capacitive or inductive elements. This means that the impedance matrix
relating properties for the entire network between points P and S will also be symmetrical.
Writing this out for a general case gives:
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In the transmit case FS=FS
t, IP=IP

t and vS=0, so
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In the receive case VP=VP
r, vS=vN

r and IS=0, so
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But z12=z21, so
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and using equation 3.14:
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The pulse-echo response is VP
r/VP

t and is obtained by combining equations 3.12 and 3.19
to give:
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However, FS
t/IP

t is just the acoustic response as calculated previously. Hence, given the
approximations described, the pulse-echo response is found simply to be proportional to
the square of the acoustic response.

3.2.3 Inclusion of losses in the model

Loss mechanisms in the transducer system are in two categories. Mechanical losses due to
scattering and true absorption are incurred by propagating acoustic waves in all the layers,
the absorption ultimately converting all the non-propagating energy to heat. In the
piezoelectric layer there are also dielectric losses to be considered, which manifest
themselves as the conversion of some of the stored capacitative energy to heat.

Dielectric Losses

The dielectric losses in the piezoelectric layer are modelled by making the permittivity a
complex value, where the imaginary component is associated with losses and is usually
expressed as a loss tangent (the work of Leung and Yung 1979, Chen 1983 and Ohigashi

et al. 1988 is particularly relevant), so that ε xx  becomes ( )ε δxx ei1− tan . The loss tangent

is generally frequency dependent.
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Mechanical Losses

The mechanical losses in any acoustic medium can be modelled by making the material
stiffness include an imaginary loss tangent term, so that c11 becomes c11(1+i tanδm) where
the imaginary term may be frequency dependent. If this is then used to solve the wave
equation the wavenumber, k, must now also contain an imaginary term:

( )k
c i m

=
+

ω
ρ

δ11 1 tan
(3.21)

where ρ is the material density and ω is the angular frequency of the waves. If tanδm is
assumed to be considerably less than unity, so that terms of order tan2δm or higher are
negligible, then the complex wavenumber can be approximated as:
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Since the characteristic acoustic impedance of the material is defined as being:

Z c0 11= ρ (3.23)

then, using the same approximation as above, this becomes for a lossy material:
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Various models have been suggested to predict the variation of the mechanical loss
tangent with frequency, the most common being the Kelvin-Voigt model which represents
a solid as a continuum of springs and ideal viscous dampers (see Malvern 1969 for a full
description). This leads to a loss tangent term which is proportional to frequency. If the
wavenumber is split into its real and imaginary components, then the imaginary
component is the attenuation of a wave with distance. Based on the Kelvin-Voigt model,
it can be seen from the above that, since tan δm is proportional to ω then the attenuation
must increase with the square of the frequency, although the approximations must break
down at higher frequencies when tanδm ceases to be small compared to unity. Other
workers (Lowe 1995 for example) have assumed that the attenuation per metre is
proportional to frequency, which has the physical significance that the attenuation per
wavelength is constant. From equation 3.22 it can be seen that this assumption requires
that the mechanical loss tangent, tan δm, is constant at all frequencies. This assumption
also agrees well with measurements made on common structural materials in the
frequency range used in ultrasonic NDT, and is the assumption that is used in the model
described here.
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3.2.4 Software implementation of model

The model was initially implemented in an interactive program written in Borland Pascal
by R. Monkhouse, (who worked with the present author on the work described in the
Wilcox, Monkhouse et al. 1998a paper). This program enabled very fast studies of
transducer systems in a particular configuration to be performed. The second
implementation of the model was written by the present author as a Matlab M-file, and
was designed to be more general, and also enabled more complex modelling functions to
be included if desired. The drawback of this implementation was that it did not have an
interactive user interface. Results presented in the remainder of this thesis are from the
second implementation.

3.3 VALIDATION OF ONE-DIMENSIONAL MODEL USING PVDF TRANSDUCERS

Attention is now turned to the piezoelectric polymer, polyvinylidene fluoride (PVDF),
which forms the piezoelectric element in the majority of transducers described in this
thesis. Kawai (1969) published the first description of the piezoelectric properties of
PVDF. Subsequently, it has been used in many transducer applications as reviewed by
Chen and Payne (1995).

Poled PVDF film (un-poled PVDF is not piezoelectric, but has applications as a general
purpose thermoplastic engineering material in certain chemical processing applications) is
supplied in a variety of thicknesses, the thickest which is available commercially is
110 µm, including thin printed electrode layers. The PVDF used in this work was
supplied by Amp (Harrisburg, USA), and their published data values which are shown in
table 3.1 will be used unless stated otherwise. Its relatively low cost compared to
piezoelectric ceramics, such as PZT, make it an attractive material for permanently
attached transducers. In later chapters, the use of PVDF to make inter-digital Lamb wave
transducers will be described, but in this chapter, the use of PVDF as a bulk wave
transducer material will be examined using the one-dimensional transducer model
described in the previous section.

3.3.1 PVDF as a transducer material

PVDF is acoustically a much higher loss material than piezoelectric ceramics, its
mechanical loss tangent, tanδm, is of the order of 0.1 compared to 0.02 for PZT 5A (all
piezoelectric ceramic properties are taken from Morgan-Matroc technical data book). This
means that PVDF film in vacuum has a low Q value and broadband frequency response
characteristics. However, its piezoelectric coupling constant, kt, is only around 14 %
(compared to around 60 % for PZT 5A), and this fact combined with the low Q value of
PVDF means that even resonant PVDF transducers tend to be significantly less sensitive
than their ceramic equivalents. A major attraction of PVDF as a transducer material is due
to its low acoustic impedance (~4 Mrayl) compared to piezo-ceramics (~30 Mrayl for
PZT 5A), which enables it to couple much more efficiently to water and human tissue.
For this reason, PVDF has been suggested for use in medical imaging (see for example
Swartz and Plummer 1980, Ohigashi et al. 1984). For the applications considered in this
thesis, the low acoustic impedance of PVDF is if anything a negative factor, since the
PVDF is usually coupled directly onto a metallic substrate which will have high acoustic
impedance (17 MRayl for aluminium, 45 MRayl for steel). However, the low cost, high
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flexibility and ease of cutting make PVDF an ideal material for laboratory based
experiments, as will be demonstrated in later chapters.

High frequency (~20 MHz) monolithic transducer arrays which utilise a PVDF elements
fabricated directly onto MOSFET gates have been the source of some interest (for
example Swartz and Plummer 1980) in imaging applications. However, in this thesis, the
very high frequency characteristics are not important since the applications which will be
discussed are in the frequency range below 5 MHz. This enables several simplifying
approximations to be made in the model which are described below.

Numerous workers (Ohigashi 1976, Leung and Yung 1979, Swartz and Plummer 1980,
Chen 1983, Ohigashi et al. 1984, Ohigashi et al. 1988, Dias et al. 1993, Kimura and
Ohigashi 1988, Brown and Carlson 1989, Brown and Mason 1995) have made detailed
investigations of the mechanical and dielectric losses, and the piezoelectric coupling
parameter, kt, all of which exhibit both frequency and temperature dependence. These
results are also indicated in table 3.2. It will be shown later in section 3.4.1, that the exact
value of the loss tangents has a very small effect on the results obtained from the model
over the frequency range of interest. For this reason, they are both given constant
(frequency independent) values, although it is recognised that if PVDF was being used at
very high frequencies, the exact behaviour of the loss tangents would need to be included
in the model. The variation of kt over the frequency range of interest is also assumed to be
minimal and is therefore taken as being constant. The complete list of material properties
for PVDF and the non-piezoelectric materials which are used in the model is given in
table 3.2.

3.3.2 Experimental methods

PVDF film may be supplied with electrodes of various materials (Cu/Ni, Ni/Al, Ag ink)
printed on both surfaces. Although the silver ink electrodes are the heaviest per unit area
which significantly modifies the mechanical behaviour of the PVDF film, they also have
the lowest resistivity. This factor is important when making electrical connections to a
sheet of PVDF, since if the resisitivity is high, there will be significant spatial variations
in the potential difference between the electrodes, which will render the one-dimensional
model invalid and will also make the design of efficient transducers difficult. For this
reason, all PVDF used in this work has the low resistivity silver ink electrode option. A
variety of techniques was explored to make the electrical connections to the film.
Soldered connections are impossible, as the PVDF melts very easily. The most successful
solution was to use fine multi-strand (10/0.1 mm) insulated wire bonded to the silver ink
electrode on the PVDF by means of silver loaded epoxy resin (supplied by RS, UK). Due
to the fragile nature of these connections, additional mechanical strength was achieved
using a small quantity of hot-melt glue. For experimental purposes, all specimens were
rigidly mounted in die-cast boxes to provide electrical screening and mechanical
protection. The connections to the PVDF were made via BNC electrical connectors
mounted in the box walls. A typical transducer configuration would be approximately
20 mm by 30 mm in area. These dimensions are two orders of magnitude greater than the
thickness of the transducer, hence the assumptions inherent in the one-dimensional model
should be valid.
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Input impedance measurements

The input impedance of PVDF (with silver ink electrodes) in air was measured using a
Schlumberger complex impedance meter, over the range from 10 kHz to 20 MHz. The
specimen was mounted in a die-cast box as described above.

Pulse-echo measurements

Samples of PVDF were bonded to substrates of different materials as shown in table 3.3.
The substrate thickness was typically between 10 mm and 20 mm. Studies with the one-
dimensional model indicated that in the frequency range below 20 MHz, the bond layer
thickness is only significant above about 15 µm. In order to make bond layers below this
thickness, a low viscosity epoxy without fillers (Araldite 2019) was used. The effect of
using thicker bond layers was also investigated by using one or two layers of double sided
adhesive tape, each layer of adhesive tape being approximately 75 µm thick. The
completed samples were mounted in die-cast boxes as described above. For the water
backed cases, the diecast boxes were simply filled with water, the electrical impedance
due to the water being sufficiently higher that the output impedance of the pulser-receiver
for its effects to be ignored. The results from these tests were compared with time-traces
predicted by the one-dimensional model using the values shown in table 3.2.

The pulse-echo response was then measured using a Panametrics 5052PR pulser-receiver
using the experimental set-up shown in figure 3.9. It was shown in section 0 that the
pulse-echo response depends on the output impedance of the pulser-receiver used, which
in this case was variable from 10 Ω to 1000 Ω by a ‘damping’ control on the pulser-
receiver. For consistent results and to minimise electrical reflections within the
connecting cables, the damping control was set to maximum and a 50 Ω terminating
impedance was connected externally to give a combined impedance of 47.5 Ω. The length
of the connecting lead between the pulser-receiver and the transducer configuration under
test was also kept as short as possible. Treating the input/output impedance of the pulser-
receiver instrument as being this purely real value is known to be a gross approximation
since the circuitry also contains capacitive and inductive elements. However, good
agreement is still obtained between model predictions and experimental results, as will be
demonstrated.

3.3.3 Results

Input impedance measurements

The measured complex impedance of the PVDF film in air is plotted as a function of
frequency in figure 3.10. It can be seen that there is a resonance (a peak in the real part of
the input impedance) at around 7.5 MHz. This can be attributed to the half wavelength
resonance of the film. It is interesting to note that for 110 µm PVDF film without
electrodes, the half wave resonance would occur at around 10 MHz (this can be calculated
by dividing the speed of sound in PVDF, 2.2 mm/µs, by twice the thickness of the film,
220 µm). The depression in resonant frequency is due to the mass loading effect of the
electrodes.
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Pulse-echo measurements

Figures 3.11(a) and (b) show respectively the measured and predicted pulse-echo
responses of an air-backed layer of PVDF bonded to a perspex substrate with a 15 µm
thick bond layer. Excellent agreement is achieved. Good agreement with the model is
demonstrated with the PVDF bonded to an aluminium substrate as shown in figure 3.12.
If the transducer is water backed, the results shown in figure 3.13 indicate that the
duration of the signal is reduced. This is to be expected, as the water provides a second
medium for the PVDF to dissipate energy into. The effect of using a thicker bond layer is
dramatically illustrated in figure 3.14. The thicker bond layer reduces the acoustic
impedance presented to the PVDF on the substrate side sufficiently for the PVDF to
resonate in its half wavelength mode at around 7.5 MHz. This effect will be demonstrated
more clearly in section 3.4.2.

In all cases, the agreement between the experimental results and the one-dimensional
model are good. Any discrepancies are likely to be due to experimental limitations at high
frequencies, rather than actual phenomena. For instance, the material layers may not be
perfectly flat, which will lead to a time smearing of received signals and a corresponding
roll-off in frequency response at high frequencies.

Comments

In this section, the accuracy of the one-dimensional model has been demonstrated for
PVDF transducer systems which satisfy the one-dimensional criteria. By developing the
model in parallel with these experiments, it has been possible to gain an intuitive grasp of
the relative importance of the various parameters. In particular, the exact values of the
loss tangents actually make very little difference to the pulse-echo response at the
frequencies which are of interest here. In the next section these effects will be quantified
more accurately.

3.4 PARAMETRIC STUDIES MADE USING ONE-DIMENSIONAL MODEL

3.4.1 Effect of parametric perturbations

The one-dimensional transducer model requires seven material parameters to describe the
piezoelectric layer, four material parameters to describe each finite layer and one
parameter to describe each of the semi-infinite layers. In practice, accurate values may not
be available or readily measurable for all of these parameters. For this reason, it is
instructive to quantitatively examine the effect which small perturbations of each input
parameter have on the output of the model. By doing this, key parameters which must be
accurately specified may be identified, and parameters which have only minor effects on
the output may be given nominal values, without the overall accuracy of the output of the
model being compromised.

Method

To investigate the effect of every parameter for every possible transducer system would
require the examination of an infinite number of permutations. Instead, a standardized
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PVDF transducer configuration was examined which consisted of the following layers: a
5 µm thick back electrode, a 100 µm thick PVDF layer, a 5 µm thick front electrode and a
15 µm thick bond layer. This transducer was considered to be bonded to an aluminium
substrate without backing (i.e. there was assumed to be a vacuum behind the back
electrode). The effect of separately adjusting each of the input parameters required in the
model by either +10 % or -10 % was then examined. The output of the model which was
monitored was the prediction of pulse-echo response over the range 0-20 MHz, which is
plotted as a solid line in figure 3.15. This exhibits two resonant peaks at f1 (~4 MHz) and
f2 (~12 MHz) with amplitudes of a1 and a2 respectively. When a particular input
parameter, for example the thickness of PVDF, was perturbed by -10 %, the pulse-echo
response was re-plotted, as shown by the dotted line in figure 3.15. Although the general
shape of the pulse-echo response remains the same, the positions of the two resonant
peaks shift in both frequency and amplitude, and it is the amplitudes of these shifts which
are used to quantify the effect of the perturbation of the input parameter. After the
perturbation, a numerical algorithm was used to calculate the magnitudes of the change in
frequency of the two resonant peaks, ∆f1 and ∆f2, and the magnitudes of their change in
amplitude, ∆a1 and ∆a2.

Results

The complete results are given in table 3.4, which shows the effect of either increasing or
decreasing each parameter on the position of both resonant peaks.

For clarity, these results are averaged in two stages. Firstly, the average fractional changes
in frequency and amplitude are calculated:
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1
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10%
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10%

6 744 844 6 744 844

6 7444 8444 6 7444 8444
(3.25)

Secondly, an overall measure of the input parameter perturbation effect is obtained by
averaging these two quantities. These results are shown in table 3.5.

Conclusions

It can be seen from table 3.5 that the parameters which have the greatest effect on the
pulse-echo response are those of the PVDF. It is surprising to note that the longitudinal
wave velocity and, to a lesser extent, the density of the bond layer are also fairly
significant, despite the thickness of the bond layer being only 15 µm. This is because the
acoustic impedance which the electroded PVDF ‘sees’ on the substrate side is a
combination of the substrate impedance and the intervening bond layer. It is instructive to
note that in the case of the electrodes, the longitudinal wave velocity has almost no effect
whereas the thickness and density do. At the frequencies used here, the wavelength of the
waves in the electrodes is significantly longer than their thickness, and the electrodes
therefore appear as mass loading rather than layers of finite thickness. It is also interesting
to observe how little effect the loss parameters have on the pulse-echo response.
Furthermore it should be noted that all the loss parameters, together with the PVDF
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coupling, the PVDF permittivity and wave velocity in the electrodes only affect the
amplitude and not the frequencies of the peaks in the pulse-echo response.

3.4.2 General parametric studies

Acoustic impedance of material under interrogation

The effect of varying the acoustic impedance of the material under interrogation is shown
in figure 3.16, where the transducer is a layer of electroded PVDF bonded to the substrate
with a 15 µm bond layer. For substrate impedances of less than about 7 MRayl, the pulse-
echo response is dominated by the half wavelength resonance of the electroded PVDF at
around 7.5 MHz. For substrate impedances in excess of 7 MRayl, the pulse-echo response
changes to one which is dominated by two resonances, one tending to a frequency of
3.75 MHz and the second tending to a frequency of around 11.25 MHz. These correspond
to the quarter and three quarter wavelength resonances across the PVDF film, where a
node exists at the interface with the substrate.

Acoustic impedance of backing material

Next, consider a similar transducer bonded to an aluminium substrate and backed by a
semi-infinite medium which is not necessary a vacuum. The effect of increasing the
acoustic impedance of the backing medium on the pulse-echo response is shown in
figure 3.17. With no backing material, the pulse-echo response is again dominated by the
quarter and three quarter wavelength resonances across the electroded film. As the
acoustic impedance of the backing medium is increased, these resonant peaks are rapidly
reduced and the frequency response becomes increasingly flat. It is also interesting to note
that at very low frequencies the pulse-echo response is actually increased. This effect will
be exploited in the work described in later chapters.

Effect of bond layer thickness

The effect of varying the bond layer thickness for an unbacked transducer on an
aluminium substrate is demonstrated in figure 3.18. The effect of increasing the bond
layer thickness is to effectively reduce the combined impedance presented by the bond
layer and the substrate to the PVDF. As expected from the previous studies, this causes
the half wavelength resonance of the PVDF at 7.5 MHz to become dominant when thick
bond layers are used. This also explains the increased ringing that was predicted and
observed experimentally in the case of a water backed transducer with a 75 µm thick bond
layer, the pulse-echo response of which is shown in figure 3.14.

3.5 CONCLUSIONS

In this chapter a one-dimensional transducer model has been developed, and its accuracy
has been proven for the case of planar bulk wave transducers made from 110 µm thick
PVDF film. Although the interest in PVDF in this thesis is not as a bulk wave transducer
material, it is instructive to examine exactly what occurs when it is used for this purpose
before designing inter-digital Lamb wave transducers.
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In air, 110 µm thick electroded PVDF exhibits a heavily damped resonance at around
7.5 MHz corresponding to a standing wave, half a wavelength long, through the thickness
of the material. When unbacked transducers made from this thickness of PVDF are
bonded to a substrate with a high acoustic impedance, they behave as damped quarter or
three quarter wavelength resonators, the quarter wavelength resonance being between 3
and 4 MHz. It has been demonstrated that if the substrate impedance is reduced below
approximately 7 MRayl, the half wavelength resonance of the PVDF at a frequency of
7.5 MHz again dominates. It is interesting to observe that even on a substrate with a high
acoustic impedance, the PVDF can still act as a half wavelength resonator if the bond
between it and the substrate is made sufficiently thick. In most applications, this is
probably an undesirable effect, as transducers which resonate in such a manner tend to
reverberate for a considerable length of time after receiving an impulse of energy.

The effect of backing a PVDF layer bonded to a solid substrate with a medium other than
air is a concept which will be shown to be very important in later chapters. In this chapter,
only the effect of backing the transducer with a semi-infinite medium of variable acoustic
impedance has been investigated. This has been shown to have the effect of deadening the
quarter and three quarter wavelength resonances and making the response reasonably
broadband from very low frequencies up to around 20 MHz, where there is a full
wavelength resonance through the thickness of the film. The pulse-echo response always
drops to zero (rather than exhibiting a resonant peak) when there is an integral number of
wavelengths across the PVDF, because the net electrical charge generated by the
piezoelectric effect is zero. A distinction should be made at this stage between the effects
of backing a PVDF transducer with a semi-infinite layer of high acoustic impedance
material and finite thickness layer of the same material. If the finite thickness is many
times greater than the wavelength in the material, then it will behave in a similar manner
to an infinite medium. However, if the thickness of the layer is significantly less than the
wavelength, it will appear as a rigid mass which loads the PVDF in much the same way as
the thin silver ink electrodes do. In chapters 4 and 6, this effect will be exploited to reduce
the resonant frequency of PVDF inter-digital transducers. If the thickness of the backing
layer is of the order of a wavelength, then resonances will occur within it, and it must be
treated carefully in the model.
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Parameter Symbol Value Units Comments
Thickness d 110 µm including 2 µm think silver ink electrodes

Density ρ 1780 kg m-3

Bulk
longitudinal

velocity

cl 2.2 mm µs-1 through thickness (plane strain conditions)

Dielectric
permittivity

εxx 62.7 pF m-1

Piezoelectric
coupling

kt 14 per cent

Dielectric
loss angle

δe 15 degrees quoted at 1 kHz

Table 3.1 Material properties of PVDF from Amp Inc. published data.

Material Parameter Symbol Value Units Comments
PVDF Acoustic

impedance
Z0 3.9 MRayl Calculated from z0 = ρ cl

Density ρ 1780 kg m-3 From Amp Inc. Data
Mechanical loss

angle
δm 5 degrees Estimated and assumed frequency

independent. Leung and Yung (1979)
measured values in the range 4-5° in the

frequency range below 20 MHz.
Permittivity εxx 62.7 pF m-1 From Amp Inc. Data

Dielectric loss
angle

δe 15 degrees From Amp Inc. data and assumed frequency
independent. Leung and Yung (1979), Swartz

and Plummer (1980) and Chen (1983) all
measured values in the range 10-15° in the

frequency range below 10 MHz
Piezoelectric

coupling
kt 14 per cent From Amp Inc. data

Silver ink Acoustic
impedance

Z0 14.2 MRayl From Z0 = (cink ρink)
1/2, where ρink is the

measured density of the ink and cink  is its
stiffness which is estimated from:

cink=csilver x ρink/ρsilver  where
csilver=11.9 kN mm-2 and ρsilver=10500 kg m-3.

Density ρ 4190 kg m-3 Measured by weighing known area of film with
and without electrodes

Mechanical loss
angle

δm 5 degrees Estimated

Epoxy Acoustic
impedance

Z0 3.6 MRayl From Krautkramer and Krautkramer (1983)

Density ρ 1250 kg m-3

Mechanical loss
angle

δm 5 degrees Estimated

Vacuum Acoustic
impedance

Z0 0 MRayl From Krautkramer and Krautkramer (1983)

Density ρ 0 kg m-3

Mechanical loss
angle

δm 0 degrees

Water Acoustic
impedance

Z0 1.5 MRayl

Density ρ 1000 kg m-3

Mechanical loss
angle

δm 0 degrees

Aluminium Acoustic
impedance

Z0 17.0 MRayl

Density ρ 2700 kg m-3

Mechanical loss
angle

δm 0 degrees

Perspex Acoustic
impedance

Z0 3.2 MRayl

Density ρ 1180 kg m-3

Mechanical loss
angle

δm 0 degrees

Table 3.2 Material properties used in one-dimensional model.
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Backing material Substrate Bond thickness
(µm)

Results

Air Perspex 15 figure 3.11
Air Aluminium 15 figure 3.12

Water Aluminium 15 figure 3.13
Water Aluminium 75 figure 3.14

Table 3.3 Pulse-echo tests performed.

5 MHz resonant peak 13 MHz resonant peak

-10 % change in +10 % change in -10 % change in +10 % change in
Parameter parameter parameter parameter parameter

∆f1/f1
(%)

∆a1/a1

(%)
∆f1/f1
(%)

∆a1/a1

(%)
∆f2/f2
(%)

∆a2/a2

(%)
∆f2/f2
(%)

∆a2/a2

(%)
PVDF thickness 10.0 17.1 -6.7 -13.9 8.6 24.7 -6.2 -18.5

PVDF coupling 0.0 -19.0 0.0 20.9 0.0 -18.7 0.0 20.5

PVDF longitudinal velocity -10.0 0.5 10.0 -2.4 -7.4 -17.9 7.4 19.8

PVDF permittivity 0.0 -9.7 0.0 9.6 0.0 -9.0 0.0 8.8

Bond longitudinal velocity -3.3 -8.0 3.3 6.1 -2.5 11.7 2.5 -9.1

PVDF mechanical loss 0.0 3.6 0.0 -3.4 0.0 5.4 0.0 -5.0

Substrate properties (*) 0.0 -4.3 0.0 3.6 0.0 -1.2 1.2 0.8

Electrode density 0.0 -0.2 0.0 -0.1 1.2 2.2 -1.2 -2.2

Bond density 0.0 -4.0 0.0 3.0 -1.2 5.9 1.2 -5.0

Electrode thickness 0.0 0.2 0.0 -0.5 1.2 1.6 -1.2 -1.6

Bond thickness 0.0 3.3 0.0 -3.5 1.2 -4.9 -1.2 4.7

Bond mechanical loss 0.0 0.9 0.0 -0.9 0.0 1.8 0.0 -1.7

PVDF dielectric loss 0.0 -0.9 0.0 1.0 0.0 -0.6 0.0 0.8

PVDF density 0.0 7.7 0.0 -7.1 1.2 -7.0 0.0 6.5

Electrode longitudinal velocity 0.0 -0.5 0.0 0.4 0.0 0.8 0.0 -0.6

Electrode mechanical loss 0.0 0.1 0.0 -0.1 0.0 0.1 0.0 -0.1

(*) perturbations in either substrate density or longitudinal velocity both have identical effects

Table 3.4 The effect of parametric perturbations on the location of the resonant peaks
in the one-dimensional transducer model.

Parameter
∆f/f
(%)

∆a/a
(%)

Overall
effect (%)

PVDF thickness 7.9 18.5 13.2

PVDF coupling 0.0 19.8 9.9

PVDF longitudinal velocity 8.7 8.7 8.7

PVDF permittivity 0.0 9.3 4.7

Bond longitudinal velocity 2.9 1.7 2.3

PVDF mechanical loss 0.0 4.3 2.2

Substrate properties (*) 0.3 2.5 1.4

Electrode density 0.6 1.1 0.8

Bond density 0.6 1.0 0.8

Electrode thickness 0.6 1.0 0.8

Bond thickness 0.6 0.7 0.7

Bond mechanical loss 0.0 1.3 0.7

PVDF dielectric loss 0.0 0.8 0.4

PVDF density 0.3 0.3 0.3

Electrode longitudinal velocity 0.0 0.1 0.1

Electrode mechanical loss 0.0 0.1 0.0

(*) perturbations in either substrate density or longitudinal velocity both have identical effects

Table 3.5 Summary of parametric perturbations on one-dimensional model.
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Figure 3.1 (a) Physical transducer configuration and (b) representation as an electrical
network.

Figure 3.2 (a) Piezoelectric layer and (b) representation of the piezoelectric layer as a
three port network.
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Figure 3.3 Representation of a non-piezoelectric layer as a two port network.

Figure 3.4 (a) Reduction of two port network and impedance to (b) a single
impedance.

Figure 3.5 Model used to predict acoustic response. ZA is the apparent impedance
looking into the semi-infinite medium, A.

Figure 3.6 Model of the complete system, including the output impedance of the
pulser.
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Figure 3.7 (a) The network used in the transmit case and (b) the corresponding
network ignoring the time delay in medium A.

Figure 3.8 (a) The network used in the receive case using a Thévenin driving circuit,
(b) using a Norton diving circuit and (c) ignoring the time delay in
medium A.
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Figure 3.9 Experimental set-up for measuring the pulse-echo response of PVDF
transducers bonded to solid substrates.

Figure 3.10 Comparison of experimentally measured and predicted input impedance of
PVDF film in air.
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Figure 3.11 (a) Experimentally measured and (b) predicted pulse-echo time-traces for
the case of an air-PVDF-perspex transducer configuration.

Figure 3.12 (a) Experimentally measured and (b) predicted pulse-echo time-traces for
the case of an air-PVDF-aluminium transducer configuration.



3. Development and validation of one-dimensional transducer model

Page 86

Figure 3.13 (a) Experimentally measured and (b) predicted pulse-echo time-traces for
the case of a water-PVDF-aluminium transducer configuration.

Figure 3.14 (a) Experimentally measured and (b) predicted pulse-echo time-traces for
the case of a water-PVDF-aluminium transducer configuration with a
thicker (75 µm) bond layer between the PVDF and the aluminium.
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Figure 3.15 Example predicted pulse-echo response vs. frequency graph, showing the
effect of perturbing an input parameter (in this case the thickness of the
PVDF layer) by ± 10 %.

Figure 3.16 Effect of varying the acoustic impedance of the material under
interrogation on predicted pulse-echo response.
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Figure 3.17 Effect of varying the acoustic impedance of the backing material on
predicted pulse-echo response.

Figure 3.18 Effect of varying the bond layer thickness on predicted pulse-echo
response.
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4. High frequency PVDF inter-digital transducers

4.1 INTRODUCTION

The previous chapter described the implementation and validation of a one-dimensional
transducer model, with particular emphasis on the use of the piezoelectric polymer PVDF
(polyvinylidene fluoride) as the piezoelectric material. That model was specifically for
transducers which transmit and receive bulk waves into the structure on which they are
mounted. However, as noted in chapter 1, the use of permanently attached bulk wave
transducers is not a satisfactory method of inspecting an entire structure, as the number of
transducers required is very large. Hence, in this chapter, attention is turned to the design
and construction of permanently attached transducers, which again use PVDF as the
piezoelectric material, but which can transmit Lamb waves into the structure and receive
reflections from features in the structure including defects. Potentially, the use of Lamb
wave transducers will enable an entire structure to be monitored by a small number of
transducers, and the remainder of this thesis will be concerned with investigating the
design and behaviour of such transducers.

This chapter begins by discussing the requirements for transducers to transmit and receive
Lamb waves, and a brief review of existing methods is presented. This is followed by a
description of the design and construction of the first generation of inter-digital PVDF
Lamb wave transducers. Experimental data is presented which shows the successful
operation of these IDTs on thin plates. It will then be shown that the same IDT technology
can be used to transmit and receive higher order Lamb waves in thicker structures, but
that this is not an ideal strategy for their inspection.

4.2 BACKGROUND

4.2.1 Requirements for the transmission and reception of Lamb waves

Lamb waves are excited in plate structures to varying degrees by almost any type of
acoustic excitation, whether intentionally or not. The reason why more specialised
techniques need to be employed to excite and detect them if useful information is to be
obtained from experimental results is due to the need for modal selectivity. More details
can be found in the works of Alleyne and Cawley (1992b and 1994b) but the main
conclusions are summarised below.

In the next chapter, software will be described which can be used to predict the surface
displacement as a function of time that would be received some distance away from an
acoustic source. Here, that software is used as a tool to provide the example time-traces
shown in figure 4.1 which illustrate the effect of different types of excitation. Exciting a
plate with a brief pulse of force, as would be the case if a bulk wave transducer was
placed on the surface and connected to a conventional pulser-receiver, imparts energy to
the structure over a wide bandwidth of frequencies. Figure 4.1(a) shows a typically
confused signal that would be received if this type of excitation was used. Reference to
typical Lamb wave dispersion curves such as those shown in figure 2.4 indicates that this
broadband excitation will potentially excite a large number of Lamb wave modes which
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are generally dispersive. It is the superposition of numerous dispersive modes which
causes the received time-trace to be so complicated. This is clearly not an ideal testing
scenario. Some improvement can be obtained by constraining the frequency bandwidth of
the excitation by using a toneburst rather than a pulse, as shown by the predicted results in
figure 4.1(b). But again reference to figure 2.4 shows that this constraint alone is not
sufficient to select a single mode, as there are always two or more modes present at any
one frequency. Thus, a second constraint is necessary to selectively excite a single mode,
and this is achieved in all practical methods of Lamb wave excitation by constraining the
wavelength of excitation, which can produce a ‘clean’ time-trace as shown by the
example in figure 4.1(c). (This technique is effectively matching the surface excitation of
the plate to the sinusoidal shape of the desired Lamb wave mode in the direction of its
propagation - in a finite element model, single mode excitation can also be achieved by
imposing displacements through the thickness of the plate and matching the distribution
of these to the mode shape of the desired mode - Alleyne and Cawley 1992b)  To
constrain the wavelength as well as the frequency, excitation is required that applies
spatially as well as temporally varying surface tractions to a structure.

4.2.2 Transducers to transmit and receive Lamb waves

Immersion coupling and wedge transducers

To obtain the required spatial distribution of surface tractions, a commonly used
laboratory technique is to immerse a portion of the plate under test in water or other
liquid. A conventional plane bulk longitudinal wave transducer is then positioned in the
water so that its axis is at some angle θ to the normal of the surface of the plate, as shown
schematically in figure 4.2(a). When excited at a particular frequency f, the beam of plane
compression waves produced by the transducer in the water impinges on the plate at an
angle, and this creates a normal surface stress distribution on the surface of the plate
which varies harmonically in space with a wavelength λ given by:

λ θ=
c

f
l

sin
(4.1)

where cl is the bulk longitudinal wave velocity in water. An obvious drawback of such a
system is the need for a coupling fluid, which precludes its use in many practical
situations. Air may be used as a coupling fluid (Farlow and Hayward 1994, Safaeinili et
al. 1995). However, great care is needed as the mismatch in acoustic impedance between
air and most solids is large and hence only a small fraction of the incident acoustic energy
will be converted into Lamb waves, the majority being reflected back into the air. Also,
the angle of incidence for air coupled Lamb wave transducers is much more critical than
for fluid coupled Lamb wave transducers.

A further alternative is to use a solid coupling medium such as perspex, and to couple this
to the structure using a thin layer of gel couplant. Such a system is typically in the form of
a variable angle wedge transducer (fixed angle wedge transducers are also used in some
applications) as shown in figure 4.2(b). Again the angle of the incident waves, and hence
the wavelength of the tractions imposed on the surface of the structure, can be varied by
adjusting the angular position of the bulk wave transducer on the perspex wedge.
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The mathematical analysis of immersion coupling and wedge transducers for Lamb wave
excitation may be found in Viktorov’s work (1965) and a more advanced analysis which
takes into account reflections and radiation in the coupling fluid may be found in the work
of Jia (1996).

Inter-digital transducers

A second class of excitation method which enables different Lamb wave modes to be
excited selectively may be described as inter-digital transducers (IDTs). In this type of
transducer, the spatially varying tractions on the surface of the structure are created within
the transducer itself, rather than by the oblique incidence of bulk waves generated in an
intervening medium. Certain types of electromagnetic acoustic transducers (EMATs),
surface acoustic wave (SAW) devices and piezoelectric comb transducers are all
examples of IDTs.

EMATs transmit and receive acoustic waves (including Lamb waves) in electrically
conductive materials using the Lorentz principle. A magnetic field is produced in the
material beneath the EMAT using either permanent magnets or DC electromagnets which
are built into it. Also contained within the EMAT is a conducting wire, usually in the
form of a meander or pancake coil. When the EMAT is transmitting, an alternating
current is passed through the wire, eddy currents are induced in the material beneath the
EMAT. These currents interact with the magnetic field to generate forces within the
material which in turn generate acoustic waves. The orientation of the magnetic field and
the position of the conducting wires can be configured in different ways in order to
produce different types of acoustic waves (see for example Alers and Burns 1987 or
Maxfield et al. 1987 for discussions of different types of EMAT). For generating Lamb
waves, an EMAT with a meander coil as shown in figure 4.3(a) is used. The spacing
between the meanders creates the necessary spatial variation of forces in the material. If
the magnetic field is arranged as shown in the figure, the directions of the forces
introduced into the plate will be normal to the plate surface as indicated. If instead the
magnetic field was arranged to pass downwards through the meander coil, the forces
generated would be parallel to the plate surface. The latter configuration makes EMATS a
very attractive method for the transmission and reception of Lamb wave modes in which
the particle motion is predominantly in-plane at the surface of the plate. Such modes
cannot be efficiently excited by the immersion or air coupling techniques described
above, as the bulk waves in the coupling medium do not couple well to the in-plane
motion of the Lamb wave mode in the plate. A further advantage of EMATs is the fact
that they do not need to be in physical contact with the surface of the plate and do not
need to be used with a coupling fluid, which makes them ideal for measurement of high
temperature plate inspection (Whittington 1989 for example). This attribute has also seen
EMATs being used on ‘pigs’ for internal pipe inspection (Thompson et al. 1979) and on
moving cold-rolled steel sheets (Murayama et al. 1996). The major disadvantage of
EMATs is their lower sensitivity than piezoelectric devices, which is mainly due to
limitations on the strength of magnetic field which can be achieved in a practical device
(Alers and Burns 1987). The efficiency of EMATs is also affected by variations in the
magnetic properties of materials on which they are used which can be significant.

SAW devices have many applications in signal processing to transmit and receive
Rayleigh waves in the 10 MHz to 2 GHz frequency range with wavelengths ranging from
a few microns up to around 0.25 mm. The non-dispersive nature of Rayleigh waves and
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the fact that they can be readily excited on piezoelectric substrates mean that complicated
tapped delay lines can be easily fabricated directly into integrated circuits. The term
‘SAW device’ in a signal processing context usually encompasses an inter-digital
transmitter, inter-digital receiver and acoustic delay line. A typical SAW device is shown
in figure 4.3(b) and consists of fingered electrode patterns deposited on a piezoelectric
substrate such as quartz or lithium niobate. The purpose of the inter-digital finger patterns
in an SAW device is to obtain the required signal processing characteristics rather than to
select a particular wavelength of acoustic wave, which is not necessary since the devices
use Rayleigh waves. Despite this difference, several important aspects of the design of the
PVDF inter-digital transducers described here can be traced back to SAW devices, hence
their inclusion in this discussion. A general description of some of the many devices of
this type may be found in the text by Kino (1987) and considerable literature is available
on the electrical characteristics of SAW devices for signal processing applications.
However, this is not generally relevant to the initial development of inter-digital
transducers for long range testing applications.

Although most SAW devices are concerned with Rayleigh waves, the use of SAW
technology to generate Lamb waves has been reported in a few cases. Toda and Ikenohira
(1980) demonstrated the use of an inter-digital PVDF Lamb wave device as an infrared
temperature sensor. This device transmitted, propagated and received Lamb waves within
the PVDF film itself. Jin and Joshi (1991) present a detailed theoretical investigation into
an SAW device in which Lamb waves were propagated along a lithium niobate delay line
which they propose as a liquid sensing device. Toda and Sawaguchi (1992) report the
construction of an ingenious variable focus bulk wave transducer based on a leaky Lamb
wave SAW device. The SAW device with concentric fingers generates Lamb waves in a
two layer piezoelectric plate. When operated in water, the Lamb waves leak energy into
the liquid in the form of bulk waves which are focused due to the circular finger pattern.
The angle at which the bulk waves leak, and hence the position of the focal spot, could
then be adjusted by altering the frequency. In all these devices, the emphasis was on
Lamb wave propagation within the device, but not in an external structure.

Of much greater relevance to the work described here is an inter-digital PVDF transducer
to transmit and receive Rayleigh waves in a non-piezoelectric substrate for potential non-
destructive testing applications. This was reported by Mattiocco et al (1980) who used
25 µm thick PVDF to launch Rayleigh waves on the surface of a silica substrate at a
frequency of 8 MHz. Although successful, they were limited by the frequency response of
the thin PVDF, and its high internal losses at the high frequency used. This device is very
close in the principle of its operation to the PVDF IDTs described in this chapter.

Also highly relevant, albeit in terms of potential application rather than construction, is a
device built by Demol et al. (1996). This is what might be described as a comb transducer
(Viktorov 1967) which uses rectangular strips of PZT to excite Lamb waves in a
composite laminate plate for non-destructive testing purposes. The PZT strips are bonded
onto a supporting glass layer and the device is placed, PZT side down, onto the plate
under inspection. The method of coupling is not specified but the presence of the
supporting glass layer renders the transducer completely inflexible and would almost
certainly cause coupling problems on anything other than a perfectly flat surface. They
also found that the presence of the transducer appeared to significantly perturb the Lamb
wave propagation in the structure beneath it - a result that will be observed for some of
the transducers described later in chapter 6. The same workers (Blanquet et al. 1996) have
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attempted to embed a type of inter-digital device within a sheet of perspex, in order to
excite Lamb waves in it. Their results from both the embedded transducer and the comb
transducer are not particularly good but this is probably due to the practical difficulties of
attempting to propagate Lamb waves in a composite plate, rather than the transducer
design.

Ditri et al. (1993) and Rose et al. (1996) have both worked on comb transducers for the
transmission and reception of axially propagating guided waves in hollow pipes.
Although they do not give exact details of the construction of their comb transducers, it
appears that they comprise a monolithic layer of piezoelectric material behind a front
wear plate, which is machined into the required comb shape. The fingers of the comb are
therefore driven in phase. The transducer is designed to be movable (i.e. not permanently
attached) and although the method of coupling is not specified, it is assumed that
conventional gel couplant is used.

In collaboration with Imperial College, workers at Strathclyde University have
investigated the construction of inter-digital devices of similar design to those which are
described here,   except using a matrix of piezo-ceramic platelets embedded in soft epoxy
rather than PVDF as the piezoelectric material. These IDTs have the potential to be much
more sensitive than those made from PVDF, due to the higher piezoelectric coupling in
piezo-ceramic material. Although not as flexible as PVDF, the ceramic platelet matrix can
still be made to conform to gently curving surfaces, which would not be possible if
monolithic piezo-ceramic material was used. The epoxy matrix has the added bonus of
deadening any resonances which could be set up along the length of the transducer which
could be a major problem if monolithic ceramic material was used. Some prototype
piezo-ceramic platelet devices have been tested (Gachagan et al. 1996) with very
promising results.

4.3 PVDF INTER-DIGITAL TRANSDUCER DESIGN AND CONSTRUCTION

From section 4.2.2 and the experiments described in the previous chapter, it would appear
that a rudimentary IDT could be fabricated from parallel strips of PVDF bonded to a plate
structure, the spacing of the strips corresponding to the wavelength of the desired Lamb
wave mode. However, there are several practical considerations which render this type of
construction unfeasible, all of which stem from the frequency response of PVDF when
bonded to a substrate with a high acoustic impedance. The physical construction of the
first generation of PVDF IDTs is described below in section 4.3.1. After this the
important features in the design are discussed in more detail.

4.3.1 Construction of PVDF inter-digital transducers

A schematic diagram showing the assembly and construction of a PVDF IDT is shown in
figure 4.4. The IDT is assembled from two separate components, the PVDF film itself and
the electrode pattern which is printed on thin polyamide film. The PVDF is the same
110 µm thick film as that which was used in the previous chapter, except that the silver
ink electrodes with which it is supplied are removed using acetone prior to assembly of
the IDT.

The polyamide film is 50 µm thick and is of the type used in flexible printed cable and
printed circuit board (PCB) assemblies. Its sole purpose is to provide a substrate onto
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which the electrode pattern is printed using conventional PCB technology before the
transducer is assembled. The layout of the electrode pattern will be discussed in more
detail below. Before assembly of the IDT, the electrode pattern is also copper plated to a
total thickness of around 125 µm (approximately equivalent to a ‘4 oz ft-2’ plating) in
order to obtain the necessary low frequency response characteristics for the IDT. The
reasons for this will also be explained in greater detail below. Thin polyamide film (rather
than conventional 1.6 mm thick PCB board) is used for two reasons: firstly to maintain
the flexibility of the complete IDT and secondly so that Lamb waves are less likely to be
generated within it, which may cause ringing within the transducer. A more attractive
solution would be to selectively etch off the silver ink electrodes already on the PVDF
film using PCB techniques and then copper-plate the remaining silver ink to the necessary
thickness. However, several attempts at this method proved unsuccessful as the silver ink
tended to separate from the film when plated.

The electrode pattern consists of equi-spaced parallel lines called fingers. In the simplest
form these are configured in the manner shown in figure 4.5(a). It is the spacing of the
fingers which determines the wavelength of Lamb waves which the IDT will transmit and
receive. In this case the spacing between the fingers is equal to the wavelength of the
desired Lamb wave mode. When an electrical signal is applied between an electrode
finger and the substrate (i.e. the structure) a localised electrical field is created in the
PVDF film in the region below the finger, leading to localised straining of the PVDF
induced by the piezoelectic effect, which in turn generates tractions at the interface of the
PVDF and the substrate. Applying the same signal to a set of parallel fingers creates the
required spatial distribution of surface tractions as shown in figure 4.5(b). In practice, two
sets of interleaved parallel fingers are usually used as shown in figure 4.5(c). Both sets of
fingers are excited simultaneously but in anti-phase with respect to the substrate. This sets
up the spatial variation of surface tractions shown in figure 4.5(d). In this case the spacing
between the fingers needs to be equal to half the wavelength of the desired Lamb wave
mode. The wavelength selectivity of the IDT will be discussed further in section 4.3.3

The IDT is assembled in-situ as follows. First the surface of the structure is smoothed and
cleaned at the transducer location. The PVDF sheet is then bonded to the structure using
cyano-acrylate adhesive (Loctite 406). Finally, the polyamide is bonded, copper side
downwards, onto the PVDF again using cyano-acrylate adhesive. Later IDTs used low
viscosity epoxy as the bonding agent as the longer curing time enabled the transducer to
be assembled more carefully.

4.3.2 Frequency response

When considering which Lamb wave mode to use for a testing application, frequencies
below the cutoff point of the A1 mode are highly attractive, since only the two
fundamental modes, A0 and S0, can propagate. In aluminium, the A1 cutoff
frequency-thickness is 1.57 MHz mm and in steel the value is very similar at
1.63 MHz mm. From the dispersivity considerations given in chapter 2, the ideal
operating points in the region below the cutoff frequency-thickness of the A1 mode are the
A0 mode at 1.343 MHz mm and the S0 mode at frequency-thicknesses below around
1 MHz mm. In the IDT configuration described here, PVDF generates predominantly out-
of-plane surface tractions on the surface to which it is bonded. Examination of the mode
shape of S0 in the low frequency-thickness regime shows that the particle motion at the
plate surface is predominantly in-plane and therefore this mode is unlikely to be excited
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efficiently by a PVDF IDT.  Thus the S0 mode will be discarded at present and attention
concentrated on the A0 mode at a frequency-thickness of 1.343 MHz mm.

It was shown in chapter 3 that the acoustic response of a single sheet of 110 µm thick
PVDF film with silver ink electrodes bonded to an aluminium or steel substrate is poor at
frequencies below the quarter wavelength resonance of the film at 3.75 MHz. With this
low frequency limit, the A0 operating point at 1.343 MHz mm can only be achieved on
plates less than 0.4 mm thick. This is clearly not an ideal situation since firstly, the range
of plate structures below this thickness would severely limit the number of applications
and secondly, from an experimental point of view, the wavelength of the A0 mode in such
structures would be 0.36 mm or less, which would make the construction of suitable
transducers difficult.

Methods of improving low frequency response

It is clearly necessary to reduce, or ideally remove completely, the constraint on the
lowest operating frequency. It has already been observed in chapter 3 that this can be
achieved by increasing the acoustic impedance of the semi-infinite medium behind the
PVDF, which also damps out the resonant peaks in the response spectrum. In principle,
this is an ideal method of boosting the low frequency response, except that it requires a
layer of material with high acoustic impedance behind the transducer, the thickness of
which, if not infinite, must at least be many wavelengths long. This is not desirable for
two reasons: firstly, the size and weight of the transducer will be significantly increased,
which is in diametric opposition to achieving the goal of constructing a low profile
transducer which has minimal impact on the structure to which it is attached. Secondly, as
the backing layer cannot be made infinitely thick, there are likely to be reverberations of
bulk waves from the back of it, which may be confused with other signals in the PVDF.
Even if these bulk wave reverberations are minimised by selecting a material with high
losses such as tungsten loaded epoxy (Silk 1984), there may also be reverberations of
interface waves excited on the interface between the PVDF and the backing material.

Instead of attempting to simulate the presence of a semi-infinite layer behind the PVDF,
an alternative means of altering the frequency spectrum of the PVDF is to back it with a
layer of high density material which is considerably less than one wavelength thick. This
method has been successfully used for the relatively high frequency IDTs described in this
chapter using a copper layer around 125 µm thick. In chapter 6, the method will be shown
to work at considerably lower frequencies by using a 1.3 mm thick layer of lead plate.

Effect of using thick back electrode

To investigate the effect of using various thicknesses of backing layer, the one-
dimensional model was used in conjunction with results obtained in the experiments
described below.

The experimental set-up is shown in figure 4.6. Several transducers were constructed with
various thicknesses of brass shim to act as the backing layer. Brass rather than copper was
used for the backing layers to suit the available materials, but this is unlikely to have a
significant effect on the experimental results due to the similarity of the acoustic
properties of brass and copper. The bonds between the layers in each transducer were
made using cyano-acrylate adhesive (Loctite 406). All transducers were made from
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approximately 30 mm by 25 mm rectangles of PVDF  with a 25 mm by 25 mm square
being backed and bonded to the structure. The remaining area was used for making the
electrical connections which were again made using silver loaded epoxy (supplied by RS,
UK). Due to equipment limitations, it was not possible to perform low frequency pulse-
echo tests on the transducers. However, by using a conventional unfocused 5 MHz
transducer and a pulser-receiver (Panametrics 5052PR) operating in pitch-catch mode,
through transmission tests could be performed, as shown in the figure. A through
transmission test was first performed using two matched 5 MHz transducers. By
measuring the frequency content of the input signal, the frequency response of a single
5 MHz transducer could then be calculated. This was achieved by dividing the frequency
spectrum of the received signal by the frequency spectrum of the input signal and then
square rooting it in order to obtain the frequency response of a single 5 MHz transducer.
Next one 5 MHz transducer was used as a receiver, and a PVDF transducer was used as a
transmitter, as shown in figure 4.6. The frequency spectrum of the received signal was
then normalised by the frequency response of the 5 MHz transducer and the input signal
to give the frequency response of the PVDF transducer alone. The results of these tests
are shown in figure 4.7(a).

The one-dimensional model was also used to predict the acoustic response of a 110 µm
thick PVDF layer backed with various thicknesses of brass backing. In the model, the
bond layers and the silver ink electrode layers were omitted. These results are shown in
figure 4.7(b).

From figure 4.7, it can be seen that reasonable agreement is obtained between the
experimental and theoretical results, although the position of the peak for a transducer
without backing is somewhat different between the two graphs in the figure. The reason
for this difference is because the one-dimensional model did not include the silver ink
electrodes on the PVDF, but these were present on the PVDF used in the experiment. In
the cases where the PVDF is backed, the total mass behind the PVDF is dominated by the
mass of the brass and the omission of the silver ink electrode layer does not significantly
affect the results.

It is interesting to compare the graph shown in figure 4.7(b) to that shown in figure 3.17,
the latter showing the effect of increasing the acoustic impedance of a semi-infinite
backing material. In both graphs it can be seen that the response at low frequencies is
increased, but there is an important distinction to be made between the two cases. In
figure 3.17, the acoustic impedance of a semi-infinite layer behind the transducer is
increased thus providing something for the PVDF to ‘push on’, hence improving the low
frequency response. However, acoustic energy is also dissipated into this semi-infinite
layer and any resonances in the system are almost completely damped out. On the other
hand, when a thin layer of a reasonably dense backing material is added to the PVDF as
shown in figure 4.7(b) no further means of energy dissipation are introduced, and the
system remains resonant although the frequency at which the resonance occurs is reduced.
This effect will be discussed further in chapter 6, when the design of lower frequency
IDTs is considered.

From both the model and the experimental results described above, it can be seen that the
pulse-echo response at low frequencies is substantially improved when even a thin layer
of brass backing is added. As the thickness of the backing is increased, the response at
low frequencies also increases, albeit at a decreasing rate. For the type of IDTs described
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in this chapter, copper rather than brass was used to provide the backing layer as it can be
readily electro-plated onto the electrode pattern printed on the polyamide film using
conventional printed circuit board technology. As noted previously, any differences
between using copper and brass will be negligible, due to their similar densities. The
electro-plating process limits the copper backing thickness to maximum value of around
125 µm, although this value can be somewhat lower if the fingers are very closely spaced.
The limit on the backing thickness sets the lowest practical operating frequency of this
type of PVDF IDT to around 0.75 MHz. As far as using the A0 mode is concerned, this
imposes an upper limit of 1.8 mm on the thickness of plate which can be inspected.

4.3.3 Wavelength selectivity

It should be stressed that the diagrams shown in figure 4.5(b) and (d) are estimations of
the likely distribution of surface tractions due to the electrode patterns. In practice, the
distribution of surface tractions may be significantly more complex due to the interaction
of the electric fields from adjacent fingers, and the interaction of the stress fields below
the fingers. For the purposes of understanding the wavelength selectivity of an IDT, an
even more idealised model will be used where the surface traction distribution is assumed
to be a perfect sinusoid over the length of the IDT. Consider a cross section through the
plate, which at some section cuts through the IDT perpendicular to its fingers as shown in
figure 4.8(a). The assumed spatial distribution of surface tractions along the length of the
plate are shown in the graph in figure 4.8(b). It can thus be seen that in space, the IDT
appears in much the same way as a toneburst appears in time. By taking a spatial Fourier
transform of the surface tractions along the length of plate shown in figure 4.8(b), the
wavenumber spectrum of the IDT may be obtained, figure 4.8(c), which is the spatial
analogue of the frequency spectrum of a time signal. In much the same way as a finite
length toneburst is associated with a finite bandwidth of frequencies, an IDT of finite
length is associated with a finite bandwidth of wavenumbers. Similarly, the longer an IDT
(in terms of the number of wavelengths it spans), the narrower the wavelength bandwidth.

The effect of the distribution of the actual surface tractions not being a perfect sinusoid is
to introduce harmonics into the wavenumber spectrum at multiples of the fundamental
wavenumber. In the extreme case where the IDT is assumed to apply only a concentrated
line of force under each finger, the distribution of surface tractions appears as a series of
impulses at each of the finger locations, and is the spatial analogue of a digitalised
temporal signal. Using the temporal analogy, it is not too difficult to see that with only
one set of fingers (i.e. one finger per wavelength) aliasing will occur at all multiples of the
fundamental wavenumber. Similarly, if two sets of fingers are used, as is the case for all
the IDTs described in this chapter, aliasing occurs only at the odd multiples of the
fundamental wavenumber.

Lines of constant wavenumber may be plotted on Lamb wave phase velocity dispersion
curves, and appear as straight lines which pass through the origin. The gradient of such a
line is equal to the reciprocal of the wavenumber, the wavelength. Therefore, an IDT
associated with a finite bandwidth of wavenumbers can be represented on phase velocity
dispersion curves as the region between two straight lines passing through the origin.
Similarly, a toneburst signal is represented by the region between two vertical lines.
Hence, an IDT excited with a toneburst is associated with a region on the phase velocity
dispersion curves which is the intersection of the regions corresponding to the toneburst
and the IDT, as demonstrated in figure 4.9. The intersection of these regions will be
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referred to as the operating region, and the point at which the centre frequency of the
toneburst and the centre wavenumber of the IDT intersect as the operating point. It should
be noted that achieving the operating point is an unobtainable goal, as to do so would
require the use of an infinitely long IDT and infinitely long toneburst. It should also be
noted that for a particular IDT on a particular plate, the wavenumber boundaries of the
operating region are fixed, but the frequency boundaries may be varied by changing the
input signal, subject of course to the physical limitations of the IDTs frequency response.
The effect of wavenumber aliasing is also indicated in figure 4.9.

An elegant way of representing the above concepts is to plot the phase-velocity dispersion
curves for a plate of a particular material on dimensionless logarithmic axes. Such a plot
will be referred to as a DLV (Dimensionless Logarithmic phase Velocity) plot. The
definitions of dimensionless frequency and dimensionless phase velocity may be found in
chapter 2. A DLV plot for aluminium is shown in figure 4.10. Lines of constant
wavenumber now appear as parallel diagonal lines of unity gradient. It was noted in
chapter 2 that on a logarithmic frequency axis, the bandwidth of a toneburst of n cycles
appears as a vertical band of fixed width, independent of the centre frequency. On a graph
with logarithmic frequency and logarithmic phase velocity axes, the wavenumber
bandwidth of an IDT which is m wavelengths long appears as a diagonal band of fixed
width, independent of the wavelength of the IDT. Using a DLV diagram enables the
proximity of other modes to a particular operating point to be assessed visually. Hence the
number of cycles required in an excitation toneburst and the required size of an IDT in
wavelengths can be estimated.

4.4 TRANSMISSION AND RECEPTION OF FUNDAMENTAL ANTI-SYMMETRIC MODE IN

THIN PLATES

4.4.1 Introduction

A readily obtainable thickness of aluminium and steel plates is 1.2 mm (18 SWG) which
is well within the thickness range which can be inspected using the IDT design described
above. In fact, several iterations in the design of PVDF IDTs took place on 1.2 mm thick
aluminium plates before the final construction was arrived at. The experiment described
below in section 4.4.2 documents the first successful use of PVDF IDTs to propagate
Lamb waves over a reasonable distance. The second experiment, which is described in
section 4.4.3, demonstrates the use of two PVDF IDTs to detect the presence of an
artificial defect in a 1.2 mm thick steel plate.

4.4.2 Transmission and reception of A0 mode in 1.2 mm thick aluminium plate

Selection of operating points and transducer geometry

It was decided to operate at the maximum group velocity of the A0 mode which occurs at
1.02 MHz in 1.2 mm thick aluminium plate. The wavelength of 2.4 mm associated with
this point may be readily obtained from the dispersion curves shown in figure 4.11. The
geometry of the IDTs which were constructed is shown in figure 4.12. It will be observed
in the figure that the geometry of the IDT is such that the width of the fingers increases
towards the centre of the IDT, the spacing between the centres of the fingers remaining
constant. This effect is known as apodisation. The objective is to achieve a smooth
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window (e.g. Hanning or Gaussian) in the spatial excitation distribution, rather than a
rectangular one, the assumption being that the size of the surface traction associated with
a finger is proportional to its width. The fabrication of the transducer imposes physical
limits on both the minimum finger width (around 0.25 mm) and the minimum spacing
between adjacent fingers (also around 0.25 mm) which can be achieved in practice.
Fingers which are less than 0.25 mm wide become increasingly prone to breakages and
inter-finger spacings less than 0.25 mm make short circuits likely.

Experimental set-up

The experimental set-up is shown in figure 4.13. At this stage in the project, pulse-echo
facilities were not available, hence one IDT was used as a transmitter, and the other as a
receiver. The input toneburst was generated by an arbitrary function generator
(LeCroy 9101) and passed through a RF power amplifier (ENI 240L) to the IDT. As the
power amplifier output is single ended, a 1:1 high frequency toroidal transformer was
used to provide two floating signals which were then fed to the two sets of IDT fingers.
With this configuration, the two sets of fingers electrically balance themselves with
respect to the plate, which may then be earthed. A similar arrangement was used to obtain
a single ended output from the two sets of fingers at the receiving IDT. This signal from
this IDT was then fed through a low noise pre-amplifier (Macro design custom model) to
a digital oscilloscope (LeCroy 9400). The 1.5 kΩ resistors shown in the figure were
necessary to damp out electrical resonances which are set-up between the capacitance of
the IDTs and the inductance of the transformers.

Results and comments

The complete time-trace (after 100 time averages) from the receiving IDT when the
transmitting IDT was excited with a 20 cycle toneburst with an amplitude of 200 V (peak-
peak) at 1.02 MHz is shown in figure 4.14(a). In all time-traces shown in the figure, the
time origin is set at the temporal centre of the transmitted signal. The first arrival is from
the wave packet which propagates along the direct path between the IDTs. After this,
three further arrivals can be clearly seen, which are associated with waves reflecting of
the ends of the plates. The latest of these is associated with a wavepacket reflecting off
both ends of the plate and propagating a total distance of 2.56 m.

The effect which varying the number of cycles in the input signal has on the first arrival in
the received signal is assessed in figures 4.14(b) to (e). With only 5 cycles, the amplitude
of the received signal is ~3 mV, and the signal appears untidy which is due to either
dispersion effects or the generation of a second mode. When either 10, 20 or 50 cycles are
used, the signal is visibly cleaner and the amplitude remains constant at ~5 mV. The
distance between the IDTs is 338 mm, or in terms of the plate thickness d, 282 d. From
the work on dispersivity in chapter 2, the optimum number of cycles for propagation over
a distance of 500 d is around 10. This is reasonably consistent with these results, since
when more than 10 cycles are used, the received signal increases in duration but not
amplitude. In all cases, there is a small trailing signal behind the main wave packet in the
first arrival. This corresponds to two wave packets which are transmitted obliquely to the
direct path between the IDTs and are then reflected off the sides of the plate to the
transmitting IDT. This path is of course slightly longer than the direct path between the
IDTs and hence results in the later arrival of the signals. This fact can easily be
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demonstrated by holding the sides of the plate at the approximate locations where the
reflections take place in order to damp these waves and remove the trailing signal from
the received time-trace.

An experiment was also performed in which the frequency of excitation was adjusted
from 0.5 MHz to 2.7 MHz in increments of 0.05 MHz, in all cases using a 20 cycle
toneburst. At each frequency, the received time-trace was captured and stored. These can
be plotted in a waterfall or F-scan plot as shown in figure 4.15. These plots demonstrate
the effect of moving the operating point up the operating line of the IDT on the phase
velocity dispersion curves shown in figure 4.11(a). Each time the operating line intersects
a mode, a signal will be sent and received. In the figure, signals associated with the A0, S0

and A1 modes can be clearly identified. Reference to the group velocity dispersion curves
shows that while both the A0 and A1 modes are excited at points of low dispersion (i.e.
stationary group velocity), the S0 mode is excited at a point where its group velocity is
rapidly changing. This leads to highly dispersive S0 signals which are of much longer
duration than the input signal. The changing group velocity of the S0 mode is also
manifested as a changing arrival time of the S0 signals as the frequency is varied, whilst
the temporal locations of the A0 and A1 signals remains fairly constant as the frequency is
varied. The inverted group velocity dispersion curves (i.e. group delay) may also be
superimposed on the F-scan as has been done in the figure, and it can be seen that they
coincide with the locations of the received signals.

From figure 4.11(a), it is clear that the operating line of the same IDTs is also close to the
point of least dispersivity on the A1 mode, hence when operated at the correct frequency
these IDTs can also be used to transmit and receive this mode. The complete time-trace
received when transmitting the A1 mode using a 20 cycle toneburst at 2.51 MHz is shown
in figure 4.14(f). The amplitude of the first arrival is actually higher than the equivalent
signal when using the A0 mode (the input signals being of approximately the same
amplitude in both cases). However, in the case of the A1 mode, there are no signals which
correspond to later arrivals of this mode (these would be expected at approximately the
same times as when using the A0 mode due to the similarity in group velocities) although
there is a second small signal shortly after the first arrival. From its temporal location, the
mode associated with this second arrival is thought to be the first arrival of a slower
mode, such as S1 or S0 which the IDTs are inadvertently sensitive to. This is exactly the
sort of undesired signal which could lead to erroneous conclusions in a practical
application where it could be mistaken for an echo from a feature in the plate. The lack of
any further signals corresponding to the A1 mode after the first arrival indicates that the
attenuation of this mode is higher than that of the A0 mode. This type of effect will be
discussed further when thick plates are considered.

4.4.3 Transmission and reception of A0 mode in 1.2 mm thick steel plate with
artificial defect

Selection of operating points and transducer geometry

On 1.2 mm thick steel plate, the least dispersive point on the A0 mode is around
1.12 MHz, but in this case, the wavelength is 1.9 mm, as shown by the phase velocity
dispersion curves in figure 4.16(a). However, the experiment described in this section was
performed using the same geometry of transducers as those used in the previous
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experiment (these are shown in figure 4.12) which have a wavelength of 2.4 mm. This
means that the actual operating frequency on the A0 mode is reduced to 1.04 MHz in 1.2
mm thick steel plate and therefore slightly below the ideal frequency. However, the
relatively slowly changing group velocity of the A0 mode in this frequency range (see
figure 4.16(b)) means that the increase in dispersion will be negligible.

Experimental set-up

The experimental set-up is shown in figure 4.17. The salient feature of the steel plate is
the quarter thickness notch which is machined across the width of the plate at right angles
to the wave propagation direction. The width of the notch was approximately 1 mm.
Other than the different plate the experimental set-up is identical to that described for the
previous experiment.

Results and comments

The complete time-trace received at the receiving IDT (RX) when the transmitting IDT
(TX) was excited with a 10 cycle toneburst at the operating frequency of 1.04 MHz is
shown in figure 4.18(a). Once again, the first arrival (labelled TXRX in the figure) and that
with the largest amplitude corresponds to direct transmission between the IDTs. The
arrival with the next largest amplitude (TXE1RX) corresponds to waves which have
reflected off the end (E1) of the plate before reaching the receiving IDT. In between these
two arrivals is a third wave packet which is that reflected from the artificial defect (D).
After these three arrivals, further arrivals are visible, two of which can be identified as
indicated in the figure. However, the reverberation pattern rapidly becomes very complex
due to the multiple reflection paths that are provided by the three reflectors, E1, E2 and D,
and further arrivals cannot be reliably identified.

Again the effect of transmitting signals with different numbers of cycles has been
investigated, and these results are shown in figure 4.18(b) to (e). As would be expected,
the optimum number of cycles is again around 10. It is interesting to note that when
50 cycles are used, the reflection from the defect can no longer be distinguished from the
end reflection, due to the overlap of the two signals. This highlights the need to use the
optimum number of cycles to maximise the resolution, as discussed in chapter 2.

As was the case in the previous experiment, the same IDTs can also be operated at a
higher frequency to excite the A1 mode at 2.58 MHz. The received time-trace is shown in
figure 4.18(e), and the first three arrivals can again be readily identified. Between the first
arrival (TXRX) and the second arrival (TXDRX) there is considerably more noise than in
the time-trace shown in figure 4.18(f). This can be attributed to the presence of the
dispersive S1 mode, which is being inadvertently transmitted and received by the IDTs
due to its proximity in phase velocity-frequency space to the A1 mode. It is interesting to
note that no further arrivals are visible after the first three, which again indicates that the
A1 mode has greater attenuation than the A0 mode.

4.4.4 Conclusions

In this section, results have been presented which demonstrate the successful use of
PVDF IDTs to transmit and receive pure Lamb wave modes in two thin metallic
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structures. In the case of the aluminium plate, propagation was possible over a distance of
around 2.5 m when using the A0 mode. Propagation over a reduced distance was shown to
be possible when the same IDTs were used to excite the A1 mode, although an unwanted
mode was also excited. In the case of the steel plate, both the A0 and A1 modes were
shown to be sensitive to an artificial defect.

These experiments, as well as demonstrating that the transducers operate, have raised
several important points, some of which will take on more significance in the following
section. The number of fingers on the transducer and the number of cycles in the
toneburst have been seen to be important in determining the selectivity of the transducers
to a particular mode. It has also been observed that the A1 mode suffers potentially greater
selectivity problems due to the proximity of other modes than the A0 mode does.
Although the materials have been considered lossless, the difference between the A0 and
the A1 received signals in both experiments has qualitatively demonstrated the large
decrease in maximum Lamb wave propagation distance possible when using the A1 mode.

Since these early experiments, much further work has been undertaken at Imperial
College using this type of IDTs on thin plate, some of which has been published
(Monkhouse et al. 1997a and b). However, the next consideration in this thesis is to
determine whether or not this technology can be successfully transferred to thicker plates.

4.5 TRANSMISSION AND RECEPTION OF HIGHER ORDER MODES IN THICKER PLATES

4.5.1 Introduction

The PVDF IDTs described above are clearly highly successful at transmitting and
receiving the A0 and A1 modes in thin plates. It has already been shown that with this
design of IDT, the minimum operating frequency is around 0.75 MHz, which precludes
the use of the A0 mode on plates which are greater than 1.8 mm thick. However, it was
hoped that the same type of IDTs could still be used to transmit and receive higher order
modes in thicker plates.

To this end, a series of experiments on ductile iron pipe, steel pipe and steel plate were
carried out. It should be stated that at the time when these experiments were executed, the
work on dispersion effects described in chapter 2 had not been carried out and the effect
of the finite wavelength bandwidth of an IDT had been given only limited consideration.
Had the extent to which these problems are encountered when using higher order modes
been more fully understood, this line of investigation may have been abandoned at an
earlier stage. For this reason, only the results of two experiments on ductile iron pipe are
reported below.

These experiments were performed on ductile iron pipe with an nominal internal diameter
of 6", a mean wall thickness of 6.5 mm and wave propagation in the circumferential
direction. The radius to thickness ratio of the pipe is around 11.5:1. According to the
phase velocity dispersion curves for curved plates presented in chapter 2, this degree of
curvature is sufficiently low for it to be ignored. Hence, for wave propagation purposes,
the pipe will be regarded as a flat ductile iron plate of the same thickness.
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4.5.2 Transmission and reception of A2 mode in ductile iron pipe with 6.5 mm thick
walls

Selection of operating points and transducer geometry

In 6.5 mm thick ductile iron plate, the first point of low dispersion on a mode above the
minimum IDT operating frequency of 0.75 MHz is at 0.99 MHz on the A2 mode, as
shown in figure 4.19(a). It can be seen from the figure that this operating point is very
close to the S1 and S2 modes, and by examining the group velocity dispersion curves
shown in figure 4.19(b), it can be seen that the three modes all have similar group
velocities. This is not an ideal situation, as firstly, the proximity of the adjacent modes in
phase velocity space means that it will be hard to avoid exciting them, and secondly, their
proximity in group velocity space means that if they are excited, it will be hard to separate
them from the desired mode in time. Nonetheless, a pair of IDTs with 6.0 mm wavelength
to transmit and receive the A2 mode was constructed, the geometry of which is shown in
figure 4.20.

Experimental set-up

Again, pulse-echo facilities for IDTs were not available at the time when these
experiments were performed, hence two transducers were used in a pitch-catch
configuration, using the same electrical apparatus as described in section 4.4.2. The
transducers were arranged as shown in figure 4.21. The detailed electrical connections
have been omitted for clarity in the figure. It should be noted that there are two possible
direct paths between the transducers which are intentionally chosen to be different lengths
so that the signals associated with both paths may be resolved in time.

Results and comments

An example of a received time-trace is shown in figure 4.22(a), when the input signal was
a 20 cycle toneburst at 1.05 MHz. The amplitude of the signals received at this frequency
was higher than at the analytically predicted operating frequency of 0.99 MHz. Two
distinct signals can be identified in the figure, and these are associated with waves
propagating in each of the two directions around the pipe. In each signal, the wave packet
with the larger amplitude can be identified as the desired A2 mode, by measuring the
group velocity. The slightly slower wave packet of lower amplitude, which is visible
more clearly in the second arrival signals, may likewise be identified as belonging to the
dispersive A1 mode. From the dispersion curves, it is likely that there may also be a signal
associated with the highly dispersive S2 mode, which propagates at a similar or slightly
faster speed than the A2 mode.

Figures 4.22(b) to (d) show how the received signal associated with waves travelling
around the shorter path between the IDTs changes as the number of cycles is varied.
When 5 or 10 cycles are used in the input signal, as shown in figures 4.22(b) and (c)
respectively, the presence of the faster S2 mode is clearly visible ahead of the A2 mode.
When the number of cycles in the input signal is increased to 20 as shown in
figure 4.22(d), the signal from the S2 mode overlaps the signal from the A2 mode so much
that it is impossible to comment on whether or not the relative amplitudes of the two
modes have changed. Comparison of figures 4.22(c) and (d) may indicate that the tail
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behind the main signal has been slightly reduced in amplitude by increasing the number
of cycles to 20, but the overlap and interference of the modes again make it hard to be
certain.

The earlier work on dispersivity described in chapter 2 indicates that for a propagation
distance of 100 d (d = plate thickness) the optimum number of cycles to use for the A2

mode is around 30. The shorter propagation path around the pipe is around 20 d, hence it
would be expected that the 20 cycle toneburst used experimentally is reasonably close to
the optimum from a dispersion point of view. Unfortunately this does not take any
account of the number of cycles necessary to achieve single mode excitation and from the
experiment described above, it can be seen that even with 20 cycles extraneous modes are
still being excited. With hindsight, the wavelength selectivity of the IDT itself is not
adequate and it should have been made a greater number of wavelengths long. However,
reference to the DLV plot in figure 4.10 (for this purpose the DLV plots for aluminium
and iron can be assumed to be the same) indicates that the proximity of the adjacent
modes is such that single mode operation could probably never be achieved at this point
on the A2 mode in practice.

4.5.3 Transmission and reception of S4 mode in ductile iron pipe with 6.5 mm thick
walls

Selection of operating points and transducer geometry

An examination of the dispersion curves shown in figures 4.19(a) and (b) shows that the
maxima in group velocity (i.e. where the minima in dispersivity occur) of all the higher
order modes whether symmetric or anti-symmetric, correspond to locations on the phase
velocity dispersion curves where adjacent modes are in close proximity. With this in
mind, it is hard to see how pure mode excitation can ever be achieved when using a
higher order mode. However, if the maximum group velocity of one of the symmetric
modes is used as an operating point, the group velocity will always be considerably higher
than the group velocity of any of the surrounding modes. Hence, even if other modes are
excited, the faster symmetric mode will be the first arrival, and should be resolvable in
time from the unwanted modes. This cannot be achieved if the maximum group velocity
of one of the anti-symmetric modes is used as an operating point since the group
velocities of the surrounding modes are all of a similar magnitude. With this in mind, it
was decided to attempt to transmit and receive a symmetric mode.

The mode shapes at each of the symmetric mode maxima in the iron plate were examined
using Disperse (Pavlakovic et al. 1997). Unfortunately, for the first four symmetric
modes (i.e. S0 to S3) in ductile iron plate, the ratio of the out-of-plane to the in-plane
displacement at the surface of the plate is less than 1:10, compared to around 2:1 at the
maximum group velocity of the A0 mode. For the S4 mode, the ratio rises to around 1:5
and for the S5 mode the ratio rises further to around 1:4. On this basis, it was thought that
it would be exceedingly difficult to efficiently excite any symmetric mode below S4 using
PVDF IDTs. Hence a pair of IDTs with 2.7 mm wavelength was constructed to transmit
and receive the S4 mode at 2.21 MHz. The geometry of these IDTs is shown in
figure 4.23.
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Experimental set-up

The transducers were arranged as shown in figure 4.24. The remaining electrical
apparatus is the same as that described in section 4.4.2.

Results and comments

The received time-trace when transmitting a 20 cycle toneburst at 2.21 MHz is shown in
figure 4.25(a). It is interesting to compare this to the corresponding signal when using the
A2 mode (figure 4.22(a)) obtained previously. Although in both cases the amplitude of the
input signal was approximately the same, the amplitude of the first arrival is an order of
magnitude lower in the case of the S4 mode. Also, in the case of the S4 transducers, there
is no evidence of a second arrival, which is surprising, even taking into account the lower
amplitude of the first arrival. This suggests that there is significant attenuation in the pipe,
which affects the S4 mode to a greater extent than the A2 mode. The nature of this
attenuation has not been identified but contributions may be expected from three sources.
Firstly, there is likely to be ‘true’ attenuation due to material damping in the iron itself
which converts some fraction of the acoustic energy into heat. It is commonly assumed
that this type of attenuation increases with frequency when expressed per unit distance of
wave propagation. This would be consistent with the lower frequency A2 mode being less
attenuated over a fixed distance of propagation than the S4 mode, as the wavelength of the
latter is smaller. A second cause of attenuation is due to scattering of the propagating
waves. In the manufacturing process (spin casting), the outer surface of the ductile iron
pipe acquires a dimpled appearance, the diameter of the dimples being of a similar
magnitude to wavelength of the S4 mode. This is thought to lead to an increase in the
scattering attenuation of this mode. Although detailed investigations into this effect have
not been made here, the scattering theory recently developed by Chimenti and Lobkis
(1997) for propagating Lamb waves in plates with rough surfaces may well be applicable.
A third cause of the reduction in signal amplitude is due to geometric attenuation caused
by beam spreading. However, the work on IDT beam divergence which is described later
in chapter 6 has subsequently been used to show that, for an IDT of a given width, the
beam spreading of short wavelength Lamb waves should be less than that of longer
wavelength Lamb waves. As the IDTs for the A2 mode and the S4 mode are of equal
width and the S4 mode has a considerably shorter wavelength, it can be concluded that
geometric attenuation does not contribute to the lower amplitude of the S4 mode.

At the time when these experiments were performed the group velocity dispersion curves
for curved plates had not been obtained. However, reference to figure 2.7 shows that the
group velocity dispersion curves are significantly distorted at certain points even when the
curvature is not severe. One such point is close to the maximum group velocity of the S4

mode which is used here. Whether or not this has affected the results here is hard to say,
due to the problems of obtaining single mode propagation.

Before moving on from this topic, it is again interesting to observe the effect which the
number of cycles in the input signal has on the received signal which is shown in
figures 4.25(b) to (d). It can be clearly seen that as the number of cycles is increased from
10 to 50, the received signal becomes cleaner and more like the input signal. Furthermore,
the overall duration of the received signal is, if anything, reduced by increasing the
number of cycles. This is of course partly due to the dispersivity effects discussed in
chapter 2 and also partly to do with the improved modal selectivity. Reference to
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figure 2.17 indicates that the optimum number of cycles is around 50 at the least
dispersive point of the S4 mode in aluminium when the propagation distance is 100 d (d is
the plate thickness). In this experiment the propagation distance is only around 20 d,
hence it would be expected that the optimum number of cycles would be less than 50.
This is consistent with the  experimental measurements shown in figure 4.25(b-d), which
were made before the dispersivity work was carried out.

4.5.4 Conclusions

From the results in this section, it is clear that operating on higher order Lamb wave
modes is considerably more complex than on the fundamental modes. The combination of
the wavenumber and frequency of the transmitting IDT must be exactly correct in order to
excite the correct mode at the correct point on the dispersion curves. The tolerance on the
operating frequency is much tighter on higher modes than lower modes, because of the
need to operate at exactly the peak group velocity to avoid dispersion effects. Since the
frequency cannot be changed significantly, so the wavelength of the IDT must be exactly
correct for efficient operation. This is in contrast to operation on the A0 mode for
instance, where the operating frequency is less critical and the wavelength of the mode
can be matched to the wavelength of the IDT by tuning the frequency of excitation.

The work described in chapter 2, has shown that, in theory, the minimum resolvable
distance which may be attained when using a pure higher order mode is of similar
magnitude to that which may be attained when using the fundamental modes.
Unfortunately, it has also become clear that the point on a higher order mode where the
potential minimum resolvable distance can be achieved (i.e. the maximum in group
velocity) is always in very close proximity to adjacent modes in wavenumber space.
Hence it is hard, if not impossible, to build an IDT of reasonable dimensions which will
select a pure mode. Furthermore, the scattering and absorption effect which the fingers of
an IDT have on waves passing underneath them has been assumed negligible. Although,
experimental work has suggested that this is a justifiable assumption for the IDTs
constructed so far, it cannot remain the case as the number of fingers is increased
indefinitely. At some point, the effect of adding more fingers must become negligible, as
waves generated by fingers at the back of the IDT will not be able to propagate under it
and will therefore not contribute to the field in front of the IDT. This imposes a physical
limit on the wavenumber resolution which can be obtained by an IDT, regardless of its
size. If a pure mode cannot be selected, the minimum resolvable distance which is
predicted for the higher order modes is irrelevant.

The tendency for attenuation per unit distance to increase as the order of the mode (and
therefore the frequency) is increased is another factor against using a higher order mode in
preference to a lower one for long range testing.

Taking these factors into consideration, it was decided to abandon trying to excite higher
order modes, and instead try to reduce the operating frequency of the IDTs so that the
fundamental modes could be excited in thicker structures.

4.6 CONCLUSIONS

This chapter has explained the basic operation of inter-digital transducers (IDTs) for
transmission and reception of Lamb waves. The development of a first generation of IDTs
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which use PVDF as the active piezoelectric material have been described and their
successful use as transmitters and receivers of the fundamental A0 Lamb wave mode in
1.2 mm thick plate has been demonstrated. The success of this work has stimulated
further investigation into practical applications on similar structures by other workers in
the group. In particular, Mr. R. Dalton is currently investigating the use of rosette arrays
of high frequency IDTs for monitoring areas of aircraft fuselages (some measurements
from this work may be found in the Wilcox et al. 1998 paper) and Mr. P. Marty is
investigating the use of normal mode theory for predicting the efficiency of such IDTs. As
noted earlier in this chapter, the use of alternative piezoelectric materials with superior
performance to PVDF in similar IDTs is also being investigated. Initial results using
piezo-ceramic platelets in an epoxy matrix manufactured at Strathclyde University have
been extremely encouraging (Gachagan et al. 1996).

It was hoped that the same type of IDT technology could be transferred directly to
structures with thicknesses between 5 and 15 mm, where the IDTs would be used to
transmit and receive higher order Lamb wave modes. However, inspection of the
dispersion curves has indicated that excitation of a pure higher order mode is difficult and
experimental results on thick pipe have confirmed this. The experiments have also
highlighted several other effects which indicate that the use of higher order modes is
impractical. On this basis, chapter 6 will examine methods of reducing the frequency
response of PVDF IDTs further so that they can be used to transmit and receive the
fundamental Lamb wave modes on thicker structures. First however, the next chapter will
describe the development of a model based on Huygens’ principle of superposition which
enables the acoustic field from an IDT to be predicted.
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Figure 4.1 Example predictions of time-traces that would be measured 100 mm away
from a source on a 1 mm thick aluminium plate, if (a) the source was a
broadband pulse (b) the source was a 20 cycle toneburst and (c) the source
was a 20 cycle toneburst and only excited a single mode, in this case A1.

Figure 4.2 Excitation of Lamb waves by (a) immersion coupling and (b) variable
angle wedge transducer.
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Figure 4.3 (a) Excitation of Lamb waves by electromagnetic acoustic transducer.
(b) A surface acoustic wave device generating Rayleigh waves in a
piezoelectric substrate (after Kino 1987).
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Figure 4.4 Schematic cross section, showing the construction of a high frequency
PVDF IDT (a) before and (b) after assembly.

Figure 4.5 (a) Example electrode pattern for a single phase IDT and (b) the associated
distribution of surface tractions. (c) Example electrode pattern for a two
phase IDT and (d) the associated distribution of surface tractions.
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Figure 4.6 Experimental set-up to investigate effect of backing layer thickness on
bulk wave transducer response.
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Figure 4.7 (a) Experimentally measured and (b) predicted effect of increasing the
thickness of backing layer on acoustic response of the PVDF bulk wave
transducer system shown in figure 4.6.
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Figure 4.8 (a) Cross section through an IDT and plate and (b) the idealised
distribution of surface tractions associated with the IDT. (c) Shows the
wavenumber spectrum of the IDT.

Figure 4.9 Example dispersion curves showing operating lines and regions associated
with both an IDT and a toneburst.
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Figure 4.10 DLV plot for aluminium plate. The inset graphs indicate the temporal and
spatial bandwidths on the main graph which are associated with different
lengths of toneburst and different lengths of IDT respectively.
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Figure 4.11 (a) Phase and (b) group velocity dispersion curves for 1.2 mm thick
aluminium plate, showing the operating line of a 2.4 mm wavelength IDT.
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Figure 4.12 Geometry of 2.4 mm wavelength IDT.

Figure 4.13 Experimental set-up of 2.4 mm wavelength IDTs operating in pitch-catch
mode on 1.2 mm thick aluminium plate.
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Figure 4.14 Received time-traces from experiment shown in figure 4.13. The complete
received signal when using a 20 cycle toneburst at 1.02 MHz is shown in
(a). The effects of using 5, 10, 20 and 50 cycles are shown in (b), (c), (d)
and (e) respectively. The complete time-trace obtained using a 20 cycle
toneburst at 2.51 MHz is shown in (f).
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Figure 4.15 F-scan plot of the received signals from the experiment shown in
figure 4.13. The analytically predicted group velocity dispersion curves are
also superimposed after being mapped into group delay space and scaled
appropriately.
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Figure 4.16 (a) Phase and (b) group velocity dispersion curves for 1.2 mm thick steel
plate, showing the operating line of a 2.4 mm wavelength IDT.



4. High frequency PVDF inter-digital transducers

Page 120

Figure 4.17 Experimental set-up of 2.4 mm wavelength IDTs operating in pitch-catch
mode on 1.2 mm thick steel plate with an artificial defect.
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Figure 4.18 Received time-traces from experiment shown in figure 4.17. The complete
received signal when using a 20 cycle toneburst at 1.04 MHz is shown in
(a). The effects of using 5, 10, 20 and 50 cycles are shown in (b), (c), (d)
and (e) respectively. The complete time-trace obtained using 20 cycles at
2.58 MHz is shown in (f).
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Figure 4.19 (a) Phase and (b) group velocity dispersion curves for 6.5 mm thick ductile
iron plate, showing the operating lines of a 6.0 mm and 2.7 mm
wavelength IDTs.
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Figure 4.20 Geometry of 6.0 mm wavelength IDT.

Figure 4.21 Experimental set-up of 6.0 mm wavelength IDTs operating in pitch-catch
mode around circumference of ductile iron pipe. The details of the
electrical connections to the IDTs are omitted for clarity.
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Figure 4.22 Received time-traces from experiment shown in figure 4.21. (a) is the
complete received signal when the excitation was a 20 cycle toneburst at
1.05 MHz. The effects of using 5, 10, 20 and 50 cycles are shown in (b),
(c), (d) and (e) respectively.
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Figure 4.23 Geometry of 2.7 mm wavelength IDT.

Figure 4.24 Experimental set-up of 2.7 mm wavelength IDTs operating in pitch-catch
mode around circumference of ductile iron pipe. The details of the
electrical connections to the IDTs are omitted for clarity.
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Figure 4.25 Received time-traces from experiment shown in figure 4.24. (a) is the
complete received signal when the excitation was a 20 cycle toneburst at
2.21 MHz. The effects of using 5, 10, 20 and 50 cycles are shown in (b),
(c), (d) and (e) respectively.
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5. Use of Huygens’ principle to predict acoustic fields
generated by inter-digital transducers

5.1 INTRODUCTION

This chapter describes a model based on Huygens’ principle of superposition, which was
developed to predict the Lamb wave field which is generated in a plate structure when
excited with an inter-digital transducer (IDT). After assessing the suitability of two
alternative methods to predict the field from an IDT, section 5.2 describes the theory of
the Huygens’ model. The implementation of the model in software is briefly described in
section 5.3, and its validation against finite element results and experimental data is
presented in section 5.4. In the following chapter, predictions from the Huygens’ model
will be used in conjunction with further experimental data to elucidate general trends in
the design of two particular types of IDT.

5.1.1 Strategies for IDT modelling

Before describing the Huygens’ model in detail, two alternative methods which have been
(or could potentially be) employed for predicting the fields generated by IDTs should be
mentioned briefly. The first of these, using finite element modelling, makes exactly the
same assumptions about transducer-structure interaction as Huygens’ model and, as will
be shown later, gives results which are extremely close to the Huygens’ model. The
second method, using normal mode theory, means in principle that transducer-structure
interaction can be modelled much more accurately, and a brief appraisal of this technique
is given below.

Finite element techniques

One method of predicting the field generated by an IDT is to use time marching
3-dimensional finite element (FE) modelling of the plate which the IDT is acting on. This
is described in two previous publications (Monkhouse et al. 1997a and Wilcox et al.
1998b) in which the FE package Finel (Hitchings, 1997) was used. In general, the plate is
represented by a 3-dimensional mesh composed of brick elements, which, depending on
the exact element type, may have nodes in the centre of each edge as well as at the
corners. The size of the elements must be sufficiently small for there to be eight or more
nodes per wavelength for the shortest wavelength of waves which can propagate in the
system. An explicit time integration scheme is used. The time step is chosen to be
typically 80% shorter than the time taken for the fastest wave in the system (the bulk
longitudinal wave) to propagate between adjacent nodes. These limits on the element size
and time step are necessary for accurate results and stability.

The physical IDT itself is not currently included in the FE model, but its effect on the
structure is modelled as an array of time dependent forces acting at nodes on the surface
of the mesh. The amplitude of each force is scaled according to the area of IDT which it
represents. The output from the FE model can be examined in numerous different ways,
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but generally, the out-of-plane surface displacement is monitored with respect to time at a
number of nodes on the surface of the mesh.

The total time interval modelled must obviously be sufficiently long for waves to
propagate over the monitoring area. The overall size of the mesh in the plane of the plate
must be large enough for reflections of waves from the mesh boundaries not to interfere
with outgoing waves in the monitoring region during the time interval being modelled.
This is a particular problem when more than two or more modes are propagating with
different group velocities, as the total mesh size must always be based on the wave mode
with the fastest group velocity which may not necessarily be the mode of interest.

For making simple predictions of the acoustic field generated by an IDT, the FE model is
many times slower than the Huygens’ model, but it is also much more flexible. For
example, the FE model can be used to predict how the waves generated by a transducer
interact with defects, or how in an actual system, reflections from natural boundaries may
affect the area which an IDT can interrogate.

Perturbation method and normal mode expansion

An alternative method for the analysis of IDTs based on perturbation theory and normal
mode expansions is currently being developed by a colleague, Mr. P. Marty. Potentially,
this method will enable full account to be taken of the mechanical interaction between the
IDT and the substrate and in addition it could be readily extended to include a complete
model of the electro-mechanical transduction process taking place within the IDT. This
model is based on assuming that the effect of an IDT on a plate is to perturb the Lamb
wave modes which may propagate within it. The perturbations caused by the IDT are
added to the model in stages, firstly by adding the layers, then the electrodes and then the
electro-mechanical coupling. At each perturbation stage, advantage is taken of the
orthogonality (Auld 1990, volume 2) of the un-perturbed Lamb wave modes in order to
calculate the distribution of energy between them. In theory, a relationship can ultimately
be obtained between the input electrical voltage and the output mechanical displacements
in the plate. Some elements of this model have already been completed for a two
dimensional (plane strain) case, but the complete model is still some way off. In terms of
predicting the complete acoustic field from an IDT with an arbitrary finger pattern, this
approach is not likely to be practically viable, due to the enormous difficulties of
extending the theory to anything more complicated than an axi-symmetric three-
dimensional case.

Huygens’ model

The work of Christiaan Huygens was the foundation of the wave theory of light. Using
mostly geometric arguments, he showed how the future position of a wavefront of light
could be deduced from the current position of the wavefront. This was done by
considering the current wavefront as being composed of numerous coherent light sources,
each emitting a spherical wavefront. The position of the total wavefront at some later
point in time was a surface tangential to all of the spherical wavefronts. Using this
method, Huygens deduced the laws governing reflection and refraction of light. It was not
until long after the death of Huygens that his principle was completely justified
mathematically. A description of Huygens’ life and work may be found in the proceedings
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of a recent conference in which the contributions which he made to science were
reviewed (Wolf 1990).

In the context used here, Huygens’ principle is simply the concept that a wave source of
complex shape can be modelled as a number of point sources which is applied to an
acoustic problem.

5.2 THEORY

Huygens’ principle itself is nothing more than a linear superposition of vector fields from
a number of point sources to obtain the total vector field. This principle of superposition
may be applied to any vector field property for which the superposition principle is valid,
such as stress or particle displacement in a particular direction. It may not be applied
directly to scalar quantities such as energy density, which are not superposable.

The problem in the application of Huygens’ principle to IDTs is in calculating the
acoustic field in a plate due to a single point source. In optics, or acoustic calculations in
an unbounded isotropic medium, the field due to a point excitation source is
straightforward to calculate, since wave propagation is usually non-dispersive and at
most, only two modes can propagate. In the case of a plate, multiple Lamb wave modes
can be excited and these are generally dispersive. Section 5.2.1 describes how the acoustic
field in a plate due to a single frequency harmonic point source is calculated, and section
5.2.2 describes how this is extended to predict the acoustic field when a point source
excites a plate with an arbitrary time dependent function. Section 5.2.3 shows how the
superposition principle is applied to calculate the acoustic field due to multiple point
sources and section 5.2.4 shows how an IDT is modelled using this technique.

5.2.1  Calculation of displacements resulting from continuous excitation of a plate at
a point

Before being able to calculate the acoustic field in a plate due to a point source, it is
necessary to make two decisions, firstly on which vector field quantity will be used to
describe the acoustic field, and secondly on the nature of the point source.

For the acoustic field, either the displacement or the stress at some point within the
thickness of the plate would be a suitable vector field quantity, and depending on the
application either of these could be used. For delamination detection, for example, a
useful measure of the acoustic field would be the amount of shear stress at the depth of
interest. In practice, the easiest quantity to measure experimentally is the out-of-plane
displacement at the plate surface, and from here on that is what will be considered, and
referred to as the acoustic field.

The point source needs to be of a type which will be suitable to represent a small element
of an IDT. The IDTs described in this thesis may be generally regarded as applying only
normal stresses on the surface of the structure to which they are bonded. For this reason,
the point source considered from here onwards will be a time dependent normal force of
finite amplitude applied at an infinitely small point on the surface of the plate. Again, this
should not be considered a limiting case; if the acoustic field due to say an in-plane force
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acting at a point on the plate surface could be calculated, then Huygens’ principle could
still be applied, and the acoustic field due to a shear IDT could be modelled.

An advantage of taking the point source as being an out-of-plane force is that the problem
then becomes axi-symmetric and much easier to solve analytically. The acoustic field at a
particular point in a plate due to a point source is therefore only a function of the distance
of that point from the point source. This would clearly not be the case if the point source
was an in-plane force applied in a particular direction at the plate surface. In this case, the
acoustic field in the plate would exhibit both an angular and a radial variation.

Viktorov (1965) published expressions for the displacements associated with wedge
transducer excitation of a plate to generate straight crested waves. The relevant
calculations are summarised below; even though they are not directly applicable to the
Huygens’ model, the method of calculation follows a similar pattern to that for axi-
symmetric excitation performed by Ditri et al. (1994a and b) and the results of the two
calculations exhibit some interesting similarities. Both calculations are outlined, and their
extensions to the limiting cases of a line force in the plane strain calculation and a point
force in the axi-symmetric calculation are presented.

Application of Viktorov’s technique to line excitation of a plate

The initial stages of calculating the excitability of 2-dimensional Lamb waves in a plate
by a line source begin in the same manner as the modal solution of 2-dimensional Lamb
waves described in chapter 2. Equation 5.1 below, which was derived in chapter 2, relates
the stresses at the plate surfaces to the four arbitrary constants in the wave equations.
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For the modal solutions, there is no external input of energy and these stresses are all set
to zero, but for this calculation it is the forced response which is of interest. To investigate
the response of a plate to surface excitation, Viktorov considers a region between x = -b
and x = b on the surface z = d/2, over which a harmonic normal stress is applied at a
frequency ω. As this analysis was intended to model excitation by a wedge transducer, the
stress also has a spatial variation of exp(ik0x) over this region. Its peak amplitude at the
surface is σ0Φ (again this format results from the wedge transducer analysis, where σ0

is the peak normal stress in the direction of bulk wave propagation in the transducer, and
Φ is the ratio of this to the normal stress on the plate surface). All other surface stresses
are zero. Hence the boundary conditions may be written as:
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By writing the potential functions (given by equation 2.12 in chapter 2) as Fourier
integrals:
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and using these functions to calculate surface stresses which satisfy the boundary
conditions specified in equation 5.2, the functions Sl(k), Al(k), St(k) and At(k) may be
found. To calculate the displacement field, the integrals in equation 5.3 are evaluated
using residual calculus. It is then possible to obtain an expression for the out-of-plane
displacement, uz, at the surface of the plate:
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The 
( )k symmetric
∑ and 

( )k anti symmetric−
∑  symbols denote a summation over all the possible

symmetric and anti-symmetric Lamb wave modes which exist in the plate at the
frequency ω, and the terms ∆a and ∆s are again the factors in the determinant of the Lamb
wave matrix as given by equations 2.15 in chapter 2. The values of k(symmetric) and
k(anti-symmetric) which exist at the frequency ω must be calculated by solving the
dispersion equation 2.15 in chapter 2. The displacement amplitude at the surface of the
plate is a weighted sum of the displacements associated with each of the possible modes,
the weighting factor being the product of the two dimensionless fractions after each
summation sign. The first of these fractions is associated with the spatial distribution of
the excitation stress. In this analysis, the source of interest is an infinitely narrow line
source, exerting a harmonic force, F = F0exp(iωt), per unit distance. To incorporate this
in the calculation, the limit of the first fraction after each summation sign is taken as the
distance b is reduced to zero:
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and then making use of the fact that the total force F0 per unit length is equal to 2bσ0Φ
enables equation 5.4 to be written:
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The surface displacement amplitude, uz, associated with each mode at a particular
frequency is proportional to the normal excitation force, F0. The constant of
proportionality may be loosely termed the excitability of the mode, and is a function of
frequency. It is more elegant to rearrange equation 5.6 into dimensionless form, using the
following substitutions:

u
u

d
F

F

d

q q d q q d k kd
d

v

d d

x
x

d
t

tv

d

z
z

l l t t
t

s s a a

t

= =

= = = =

= =

= =

0
0

4 4

µ

ω
ω

∆ ∆ ∆ ∆
(5.7)

where vt is the bulk transverse wave velocity. Thus equation 5.6 becomes:
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or more simply:

( ) ( )( ) ( )u x t F E k ik x i tz s
k

, , , exp expω ω ω= −∑0 (5.9)

where 
k

∑ denotes a summation over each of the modes present at the dimensionless

frequency ω , and ( )E ks ,ω  is the excitability function for each mode (which is of one of

two forms depending on whether the mode is symmetric or anti-symmetric).

In chapter 2, the dimensionless wavenumber, k , was shown to be a function of

dimensionless frequency, ω , and the ratio of the bulk wave velocities of the material, vl .
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Hence it follows that the excitability function, Es , is also a function of ω  and vl  only. In

chapter 2, vl  was shown to be a function of the Poisson’s ratio of the material, thus the
dimensionless excitability curves are also only dependent on the Poisson’s ratio of the
material.

Figure 5.1(a) shows the plane strain excitability of Lamb wave modes for an aluminium
plate in vacuum. It is very interesting to note the similarity between these excitability
curves and the attenuation curves for an identical plate immersed in a non-viscous fluid
(i.e. water for example) as shown in Figure 5.1(b). A qualitative explanation for this
similarity is to observe that it is only the out-of-plane surface displacement of Lamb
waves which couples to a surrounding fluid and causes energy leakage. Hence modes
with large amounts of out-of-plane surface displacement will have high attenuation when
a plate is immersed in fluid. Conversely, applying an out-of-plane force to the surface of a
plate in vacuum will tend to couple best to modes with large amounts of out-of-plane
surface displacement. Thus one would expect that the more highly attenuating modes of a
plate in liquid would correspond to the more highly excitable modes of the same plate in
vacuum and vice versa.

The excitability is of key importance in the development of the Huygens’ model, but
equation 5.9 is for excitation of straight crested waves by a line source, and the Huygens’
model requires a corresponding function relating the amplitudes of circular crested waves
to the amplitude of a point force. As will be demonstrated, the results are very similar, but
exhibit certain key differences.

Application of Ditri’s technique to point excitation of a plate

For the point normal force exciting circular crested waves in an isotropic plate, the
problem is axi-symmetric about the location of the force. Hence cylindrical co-ordinates
are used, the z direction being normal to the plate, and the r and θ directions being in the
plane of the plate. Following the method of Ditri et al. (1994a), Hankel transforms are
used to solve the problem. The wave equations (equation 2.11 in chapter 2) become:
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where Φ0 and Ψ1 represent the zeroth and first order Hankel transforms of the scalar and
vector potential fields, ξ is the transform variable and kt and kl are again the wavenumbers
of the transverse and longitudinal bulk waves. Solution of the transformed wave
equations yields:
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where Sl, Al, At and St are arbitrary constants, and q kl l= −ξ 2 2 and q kt t= −ξ 2 2 .

Using an exactly analogous method to that for straight crested waves, expressions for the
stresses at the surfaces of the plate are written in terms of the potential fields:
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and by applying the appropriate Hankel transforms to these expressions, the transformed
boundary conditions (Σzz and Σrz) may be written in terms of the arbitrary constants:
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which is identical to the matrix equation 5.1 for the straight crested wave case, except that
the boundary conditions have been transformed and the transform variable, ξ, replaces k .
Clearly in the free plate case, when the surface stresses and their transforms are all zero,
exactly the same dispersion relations are found between k (or ξ) and ω in both cases.

The next step is to specify the excitation. In principle, the problem can be solved for any
harmonic axi-symmetric distribution of stresses, but in this instance, a uniform stress of
amplitude σ0 applied over a circular area of radius a, on the upper surface of the plate, is
sufficient. Hence, the boundary conditions are:
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After subjecting these boundary conditions to the appropriate Hankel transforms, the
method of Fourier integrals is again used (as in the case of straight crested waves) to
obtain the transformed potential funtions. Application of the appropriate inverse Hankel
transforms yields the actual potential functions from which the displacement field may be
calculated. Hence, an expression for the out-of-plane surface displacement at the plate
surface is obtained:
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where ξ has been replaced by k for comparison with equation 5.4. Again the first fraction
after each summation sign is associated with the geometry of the source, which in this
calculation is not of interest. Hence, the limiting case is taken as the radius of the source
is reduced to zero, while the total amplitude of the applied force, F0, is held constant.
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and using the fact that the total force, F0, is equal to πa2σ0 enables equation 5.15 to be
written as:

( )[ ] ( )
( )

( )[ ] ( )
( )

( )u F

k
q q k q d q d

k
H kr

k
q q k q d q d

k
H kr

i tz

l t t l

sk symmetric

l t t l

ak anti symmetric

= − ⋅

⋅
−

⋅












+

⋅
−

⋅










































−

∑

∑
−

0

2 2

0
1

2 2

0
1

1
4

2 2

2 2
µ

∂ ∂

∂ ∂

ω

sinh sinh

cosh cosh

exp

( )

( )

∆

∆

(5.17)

This is the analogous expression to equation 5.6, relating the amplitude of the out-of-
plane surface displacements for a particular mode to the amplitude of a normal excitation
force acting at a single point. Once again, it is instructive to re-write equation 5.17 in
dimensionless form, using the same substitutions as given in equation 5.7 but with the

important difference that dimensionless force is now written as F F d0 0
2= µ  since the

force is no longer a force per unit distance. This yields:
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The similarities between equation 5.8 and equation 5.18 are obvious, but there is an extra
occurrence of the wavenumber, k , in the latter case.

Simplifying equation 5.18 gives:

( ) ( ) ( ) ( )( ) ( )u r t F E k H kr i tz c
k

, , , expω ω ω= −∑0 0
1 (5.19)

where 
k

∑ denotes a summation over each of the modes present at the frequency ω , and

( )E kc ,ω  is again the excitability function for each mode, except this is not the same

excitability function as in equation 5.9, as this is for circular crested waves. Comparison
of equations 5.8 and 5.18 shows that the two excitability functions are related by:

( ) ( )E k
ik

E kc s, ,ω ω=
2

(5.20)

Figure 5.2 shows the excitability curves for circular crested Lamb waves excited by a
point source on an aluminium plate in vacuum. It is interesting to note that there is a
significant difference between figures 5.1(a) and 5.2 caused by the extra wavenumber
term. Degerketin and Khuri-Yakub (1996) appear to use, incorrectly in the opinion of the
current author, the straight crested analysis for their work on Lamb wave excitation by
Hertzian contacts, and as a result do not obtain particularly good agreement with their
experimental measurements.

Physically, the difference between the straight crested case and the circular crested case
means that at a particular distance from a source, the relative amplitudes of modes with
different wavenumbers depend on whether the source is an infinite line and the waves are
straight crested, or a point source and the waves are circular crested. It has also been
verified that the two solutions are consistent, this being achieved by numerically
integrating the fields from a series of point sources arranged in a long straight line to
obtain the solution for a line source.

Equation 5.19 is the foundation of the Huygens’ model for IDTs. It enables a graph of
out-of-plane surface displacement versus distance from source to be plotted, when a plate
is excited at a particular frequency. Such a graph will henceforward be referred to as a
displacement-distance curve.

Attention should be drawn to the fact that, in the preceding analysis, because the
harmonic force is expressed as F0 exp iωt, it contains both a real component, F0 cos ωt,
and an imaginary component, iF0 sin ωt, which are 90° out phase with each other. The
presence of the factor F0 exp iωt in equation 5.17 means that the surface displacement can
also be separated into the sum of two components, one associated with the real part of the
input force, F0 cos ωt, and one associated with the imaginary part of the input force,
iF0 sin ωt. Examination of equation 5.17  reveals that for point excitation of circular
crested waves, the surface displacement associated with the real part of the input force is
Re(uz). However, it should be noted that in the case of line excitation of straight crested
waves (equation 5.6) the surface displacement associated with the real part of the input
force is actually Im(uz) due to the presence of an extra i in equation 5.6. For subsequent
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computations, the imaginary component of the surface displacement is always retained as
well as the real part. The reason for this is that the spatial envelope of the surface

displacement at a particular instant in time is then simply uz .

As an example, figure 5.3 shows the displacement-distance curve for the case of an
aluminium sheet being excited at a dimensionless frequency of 0.4287 (the frequency at
which the A0 mode is at its maximum group velocity which is a commonly used centre
frequency in Lamb wave NDT applications), by a harmonic force of peak dimensionless
amplitude 1.0. This figure shows the real part and modulus of the displacement. Although
both A0 and S0 modes are being excited, S0 is not readily apparent due to it having
considerably lower excitability than A0 at this frequency. However, examination of the
modulus envelope reveals it to have a rippled appearance, this being the effect of the
presence of the lower amplitude S0 wave.

5.2.2 Use of model to predict acoustic fields due to inputs of finite duration

So far the calculation has been concerned with continuous excitation at a single
frequency. In an NDT testing application, the excitation is likely to be a toneburst with
finite duration and a finite bandwidth. It is not generally the case that over a particular
frequency range, the propagation characteristics (i.e. excitability, phase velocity and
group velocity) of a Lamb wave mode are constant. Although viewing the acoustic field
pattern produced by a transducer at its designed centre frequency is useful, the ability to
examine the acoustic field at different points in time after the transducer has been excited
with an input signal of finite duration is also valuable. The latter approach enables modes
with different group velocities to be separated in distance, which is obviously not possible
if continuous excitation is used.

To model the displacements associated with an input of finite duration, f(t), a Fourier
transform is used to decompose the input signal into its different frequency components,
f(ω). The displacement distance curves for each frequency component may be calculated
using equation 5.19, where the time, t, has its origin at the start of the input signal. The
total surface displacement as a function of time and distance from the source is then given
by:

( ) ( ) ( ) ( )( ) ( )u r t f E k H kr i t dz
k

, , exp= −∑∫ ω ω ω ω0
1 (5.21)

This equation enables the surface displacement to be plotted as a function of both distance
and time, when a plate is excited by a finite duration input at a point. A plot of
displacement vs. distance vs. time will be referred to as a displacement-distance-time
diagram. These are usually in the form of greyscale maps, where the x and y axes
represent distance and time respectively and the grey level indicates the magnitude of
either the real part of the displacement or the modulus. Figures 2.8 and 2.9 in chapter 2
are examples of such plots, and a further example is shown in figure 5.4. This is for the
excitation of an aluminium plate at a dimensionless centre frequency of  0.4287 and with
a 10 cycle Hanning windowed toneburst. The A0 and S0 modes are clearly visible and
distinguishable by their different group velocities (the group velocity of a mode is
manifested on a displacement-distance-time plot as the gradient at which the wave packet
crosses the plot). Obviously, a cross section through the displacement-distance-time plot
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parallel to the distance axis yields a displacement-distance plot, an example of which is
shown in figure 5.5. For comparison with figure 5.3, figure 5.5 shows the real part and
modulus of the displacement.

5.2.3 Calculation of acoustic field due to multiple sources

For the purposes of the Huygens’ model, the acoustic field due to multiple point sources
is required. All the sources are assumed to be excited simultaneously by the same input
signal, but they may be scaled by different amplitudes. As the amplitudes may be
complex, different sources can have mutual phase differences of anything between -180°
and 180°. To predict the total acoustic field, Uz, at a point with coordinates (x,y) in a plate
when n point sources at locations (x1,y1) ... (xn,yn) with amplitudes F1 ... Fn are excited
with an input signal, f(t), the contributions from each point source are calculated using the
displacement versus distance curve given in equation 5.21 and the results summed:

( ) ( ) ( )U x y t u x x y y tz z i i
i

n

, , ,= − + −



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=
∑ 2 2

1

(5.22)

It should be noted that in this case the acoustic field is the out-of-plane displacement and
the summation is trivial, since the contributions from all the sources are all in the z
direction. If instead the acoustic field was defined as being the in-plane displacement at
the surface, then the acoustic field would have components in both the x and y directions
and these would have to be considered separately.

Equation 5.22 gives the total acoustic field at a particular point on a plate surface. The
point (x,y) will be referred to as a monitoring point. Clearly, the acoustic field over an
array of monitoring points arranged in a raster pattern can be calculated and used to
provide a field map of the spatial distribution of acoustic energy at a point in time.
Alternatively, the acoustic field can be calculated along a line or arc of monitoring points
to provide a cross section through the overall acoustic field. It is the fact that the acoustic
field can be calculated independently at any location that gives the Huygens’ model a
major advantage over FE techniques, where the entire acoustic field must always be
calculated.

Equation 5.22 represents the actual implementation of Huygens’ principle. It also
encapsulates the assumption implicit in the Huygens’ model, which is that the field from
a single point source in a plate is unaffected by the presence of other point sources. In
practice, the acoustic waves from a single source are affected to some degree when
passing under the rest of the transducer. In the point source model of an IDT, this effect
could be regarded as point sources having point impedances (i.e. they apply a resisting
surface force proportional to the surface displacement of waves passing under them, in
addition to their own excitation force). The validity of the assumption that this effect is
minimal for the PVDF IDTs considered here will be demonstrated later in the validation
section.

The next issue which must be addressed is how to discretise an IDT into a number of
finite point sources.
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5.2.4 Application of Huygens’ principle to IDTs generating Lamb waves

The time taken to perform a Huygens’ calculation for a given number of monitoring
points is directly proportional to the number of sources, as indicated by the summation
sign in equation 5.22. Hence, for minimum computation time, the transducer should be
discretised into as few sources as possible. The rules that have been used in order to
minimise the number of sources needed to model an IDT are explained below.

Modelling a small area of an IDT

Consider an area from a single finger of an IDT bonded onto a structure as shown in
figure 5.6. Over the total area shown, the spatial distribution of stress exerted on the
structure is assumed to be either slowly varying or uniform. Therefore, a small area, δA,
can be assumed to exert a constant stress, σzz, on the structure, as shown. The Huygens’
model assumes that this distributed stress can be represented as a point force, δF, applied
to the structure at the centroid of the area, δA, the amplitude of δF being equal to σzzδA.
As long as the dimensions of the area are small compared to the shortest wavelength of
Lamb waves that will be excited the precise shape of the area is assumed to be
unimportant. In practice, a rectangular element is used rather than the circular element
shown in figure 5.6, since rectangular elements tessellate and obviously lend themselves
to modelling rectangular IDT fingers.

Discretisation of an IDT

In this section, an imaginary plate is considered, which can only support a single, non-
dispersive Lamb wave mode which has a wavelength of λ at some frequency ω. For
generality, all dimensions are given in terms of this wavelength, and the IDTs are
assumed to be excited continuously and only at the frequency ω.

The width of a finger in the physical IDTs considered here is always less than half a
wavelength of the Lamb wave mode which the IDT is designed to excite. Therefore, it
must be decided how many sources are required across the width of a finger. Consider a
single finger of an IDT, 5 λ long by 0.5 λ wide, generating continuous non-dispersive
waves of a single mode, with wavelength λ, as shown in figure 5.7. Figure 5.8 shows the
amplitude of the predicted acoustic fields when 1, 2, 3, 4 or 5 point sources are used
across the width of the finger (these correspond to 2, 4, 6, 8 and 10 sources per
wavelength). In all cases, 50 sources (i.e. 10 sources per wavelength) are used along the
length of the finger. To see the variations more clearly, figure 5.9 shows angular sections
through these acoustic fields taken at a radius of 100 λ (this distance being measured from
the geometric centre of the finger) on the same axes. Due to the symmetry of the fields, it
is only necessary to consider the sections from 0 to 90°. It can be seen that as soon as
more than one source across the width of the finger (i.e. more than two sources per
wavelength) is used, the amplitude of the field in front of the transducer (at 0°) decreases
quite sharply. This is to be expected as although the sum of the amplitudes from all the
sources is always a constant, the presence of multiple sources at different locations causes
interference which reduces the total amplitude in front of the finger.
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It would appear from these results that at least two sources should be used across the
width of each finger (i.e. four sources per wavelength) in an IDT. However, two reasons
can be suggested as to why this is an unnecessary complication. Firstly, although the use
of multiple sources causes a significant reduction in amplitude, the effect on the actual
shape of the field is minimal. As the practical application of Huygens’ model is not
usually concerned with absolute amplitudes, the loss of absolute accuracy is of little
importance. Secondly, it is not yet known whether modelling the stress across the
transducer finger as being uniform is any more accurate than assuming the stress is
concentrated along a line. For these reasons it is assumed that, for the time being at least,
a finger of an IDT may be modelled as single line of point sources. It may be that later, a
better model of the stress distribution will be established, in which case more sources
could be used with justification, but it seems unlikely based on the previous study that
this will have any significant effect on the field pattern.

The next consideration is the number of sources required along the length of a finger in an
IDT. Again a single finger 5 λ long is modelled, this time using a single line of point
sources as shown in figure 5.10. Figure 5.11 shows the effect on the acoustic field of
using 1, 2, 3, 4 and 10 sources per wavelength, along the length of the finger. It can be
seen that when only one source per wavelength is used, the fundamental shape of the field
pattern changes dramatically, due to constructive interference taking place along the
length of the finger. However, with more than three sources per wavelength the changes
to the field pattern reduce. Again this can be seen more clearly if angular sections of the
fields at 100 λ are compared as shown in Figure 5.12. On the basis of Figure 5.12 and
taking into account the other assumptions made in the Huygens’ model, it seems that
taking a minimum of four sources per wavelength along the length of a finger, is a
reasonable compromise between accuracy and computation time.

The guidelines for using Huygens’ principle to model IDTs may therefore be summarised
as follows:

• Only one row of sources is needed to model each finger of the IDT.

• Along the length of the row, the spacing of the sources should be
such that there are at least four per wavelength. If the transducer is
being operated at a frequency where multiple modes are being
generated with different wavelengths, then the shortest of these
wavelengths should be used when calculating the spacing of the
sources, even if this is not the wavelength of the mode which the
transducer is designed to excite.

5.3 SOFTWARE IMPLEMENTATION

The software to implement the Huygens’ model was written in two parts, the first to
predict the acoustic field due to a point source and the second to perform the Huygens’
superposition. Both parts were written in Pascal (Borland Delphi version 2.0) with
graphical user interfaces for use with the Microsoft Windows 95/NT operating system on
a PC.
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5.3.1 Program for calculating acoustic field due to a point source

A screen shot of the input screen for the program for calculating the acoustic field due to
a point source is shown in figure 5.13. The main inputs to this part of the program are the
input signal and the wave propagation data. The output is a text file containing a matrix of
complex surface displacements. Each row in the matrix represents displacement vs. time
data and each column represents displacement vs. distance data. The output may also be
viewed visually as a displacement-distance-time plot as shown in figure 5.14.

The top section of the screen in figure 5.13 is concerned with the nature of the input that
will be applied at the point source, and options for either continuous harmonic excitation,
toneburst excitation or arbitrary file input are possible. The Fourier transform of the input
signal is shown in the top right of the screen.

The middle section of the screen governs the propagation model which is used to predict
the displacement field. Both axi-symmetric (circular crested waves) and 2-dimensional
(straight crested waves) models are possible, although in practice, only the former is used
in the Huygens’ model. The phase velocity and excitability of the propagating waves may
be specified manually in which case both quantities are assumed to be frequency
independent. This idealised model was used for many of the general studies described in
this chapter. Alternatively, the phase velocity may be read from a file generated by
Disperse (Pavlakovic et al. 1997) and the excitability calculated using the method
described in section 5.2.1, this being illustrated in the screenshot shown in figure 5.13. In
either case, individual modes may be switched on or off so that effects particular to
individual modes may be isolated. To completely model the physics of point source
excitation of a plate, the propagation data must come from Disperse and all modes which
exist over the bandwidth of the input signal must be switched on.

The bottom portion of this screen shows the limits and step sizes of the calculation in
distance and time. The button marked ‘Execute’ begins the main calculation of the
displacement-distance-time matrix. When completed the displacement-distance-time
matrix is displayed as a displacement-distance-time plot in a new window as shown in the
screen shot in figure 5.14. Cross sections through the displacement-distance-time plot
may be viewed and the matrix may be saved for use in the Huygens’ superposition
program.

5.3.2 Program for performing Huygens’ superposition

A screen shot of the second part of the program which actually performs the Huygens’
calculation is shown in figure 5.15. The inputs to this part of the program are a text file of
the displacement-distance-time matrix and a second text file of the excitation points
representing the IDT being modelled. Several outputs are possible, including angular and
radial field cross sections as well as complete field maps.

The top left portion of the screen allows a displacement-distance-time file to be chosen
and a displacement-distance curve at a particular instant in time to be selected from it.
The displacement-distance curve which has been selected is plotted in this portion of the
screen.
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In the portion below, a transducer file is selected. Transducer files consist of a list of
excitation points, their x and y coordinates and their complex amplitudes. When a
transducer file is selected, a plot of the location of the excitation points is shown.

In the top right of the screen is space for the model output of acoustic field predictions.
The size and resolution of the field to be calculated may be selected and, when completed,
the output may be saved as either a text file of the actual complex surface displacements
or as a bitmap. Below is the output of angular or radial cross sections through the field.
These may also be saved as text files for analysis in other software.

5.4 VALIDATION

5.4.1 Validation of displacements resulting from point excitation of a plate

Comparison of displacement-distance curves with FE model

The displacement versus distance curves for several finite duration inputs predicted by the
analytic model described in section 5.2.1 have been compared with FE predictions, the
latter being performed by a colleague, Mr. P. Marty.

Taking advantage of the axi-symmetric nature of the problem, the FE model uses a two
dimensional mesh to represent a cross section through a length of plate, but with an axi-
symmetric geometry specified, the axis passing vertically through one end of the plate as
shown in figure 5.16. Ideally, the input force should be applied normal to the plate at the
node at a corner on the axis. Unfortunately, due to the way the condition of axi-symmetry
is implemented in FE models, this is not possible. Instead, the force must be applied at the
next node away from the axis, as shown in figure 5.16, which in fact represents force
applied around a small ring in the three dimensional case. However, the node spacing is
only 0.1 mm (considerably less than a wavelength); hence, it is assumed that the ring of
force is still sufficiently small to be regarded as a point source. Applying a force of
1.0 N/radian to the node indicated in the FE model is therefore equivalent to applying a
point force of 2π N in the analytical model.

The first case which was modelled was the input of a 10 cycle Hanning windowed
toneburst with a centre frequency of 1.0 MHz at a point on the surface of a 1.0 mm thick
steel plate. The resulting displacement versus distance curves 15 µs after the start of the
excitation signal from the analytical and FE models are shown in figure 5.17(a) and (b)
respectively. As can be seen, excellent agreement between the two models is obtained. In
particular, attention should be drawn to the amplitudes of the A0 and S0 modes, which are
predicted very accurately, thus validating the excitability calculations described
previously. The root-mean-square (RMS) discrepancy between the analytic and FE
models over the distance shown in figure 5.17 is 1.45 pm (pm = picometre), which is
approximately 1 % of the peak to peak amplitude of the A0 mode.

The second case which was examined was when the excitation was again a 10 cycle
Hanning windowed toneburst applied to a 1.0 mm thick steel plate, but this time with a
centre frequency of 2.5 MHz. Reference to the relevant dispersion curves (chapter 2
figure 2.3) show that this frequency is very close to the cut off frequency of the A1 mode.
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Figure 5.18(a) and (b) show the resulting displacement versus distance curves 10 µs after
the start of the excitation signal from the analytic model and the FE model respectively. It
is immediately apparent that the correlation between the analytic model and the FE model
is not as good as at 1.0 MHz. More surprisingly, the analytic model appears to be
predicting displacements ahead of the main signal, which would have to have propagated
faster than the bulk longitudinal wave speed in the material, and hence cannot exist in
reality. This anomaly can be explained by the presence of the A1 mode which has a group
velocity tending to zero and a phase velocity tending to infinity in this frequency range.
As such, it is thought that the Fourier decomposition technique described in section 5.2.2
is inaccurate in this case as it is not possible to obtain sufficient frequency points in the
high phase velocity region of A1 to accurately represent the behaviour of this mode. This
problem also explains the discrepancies in the region close to the source. As the A1 mode
is being excited at its cut off frequency, it exists as non-propagating reverberation through
the plate thickness in the region close to the source, as predicted by the FE model in the
region below 10 mm in figure 5.18(b). Modes at their cut off frequencies have few if any
practical applications in long range Lamb wave inspection, and hence their presence is at
best a distraction from the propagating Lamb wave modes and at worst they may cause
misleading results. For the purposes of the Huygens’ model, it is desirable to remove the
erroneous effects which cut off modes have on the calculation of displacement distance
curves. To do this, it is easy to discount any modes with a phase velocity in excess of
some value from the calculations. This method has been used to predict the displacement
distance curve in figure 5.18(c), which can be seen to now show only the propagating
modes, and these agree well with the FE predictions. It would seem that this is a
justifiable approach for the purposes of this calculation, although it should be borne in
mind that even if the cut off modes are not modelled, they will still exist in a physical
application.

Comparison of displacement-time curves with experiment

From equation 5.19, it can be seen that the analytical model can also produce predictions
of the variation of out-of-plane surface displacement with time (displacement-time curves
or time-traces) that would be measured at a particular distance from a point source. These
traces can be compared directly with experimentally obtained time-traces.

To do this two conical point contact transducers were used, one as a point source and the
other as a receiver. These transducers were developed by a colleague, Dr. M. Evans, for
the original purpose of making acoustic emission measurements and are of a similar
design to the NBS conical transducer (Greenspan 1987). A schematic diagram showing
the construction of one of these transducers is shown in figure 5.20. Due to the bandwidth
of these transducers and available material, the comparison had to be performed at lower
frequencies than in the comparison with the FE model, using a 5 mm thick aluminium
rather than steel plate. The experimental set-up is shown in figure 5.19. Although the
frequency response of the acoustic emission transducers is not flat, it was assumed to be
constant over the narrow bandwidth used in the experiments.

Figure 5.21 shows the predicted and measured time-traces when the excitation was a
5 cycle toneburst at a frequency of 0.2 MHz, this frequency being chosen such that
operating point on the dispersion curves for the system corresponded approximately to
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that used in the FE validation at 1.0 MHz for steel plate. As can be seen from figure 5.21
there is excellent correlation between the predicted and measured time-traces.

Figure 5.22 shows the predicted and measured time-traces when the excitation was a
5 cycle toneburst at 0.5 MHz, the frequency this time corresponding to that used in the FE
validation at 2.5MHz. Reasonable agreement is obtained, although some difficulty was
experienced in preventing echoes from the edges of the plate overlapping the signal of
interest when making the experimental measurements.

5.4.2 Validation of displacement field associated with an IDT

An IDT designed to excite the A0 mode in a 1.2 mm thick steel plate was modelled using
both a 3 dimensional FE model, and the Huygens’ model. The construction of the
transducer is of the type described in the previous chapter and the geometry is shown in
figure 5.23. Point measurements of the surface displacement were made experimentally
using the same point transducers described above by a colleague, Mr. R. Dalton. The
major source of experimental inaccuracy when making this type of measurement is the
coupling inconsistency between the point transducer and the plate. In the next chapter, an
improved technique developed by the present author will be described, but at the time
when these measurements were made, only a crude and somewhat subjective averaging
technique was used. The procedure is to place the point transducer at the desired location,
and then by rotating and fractionally adjusting its position, maximise the received signal.
Similar measurements at all the locations of interest are made and the entire procedure is
then repeated, usually four or five times. The final value of the acoustic field strength at a
particular location is taken as the average of all the measurements made at that location.

The complete field predicted by the Huygens’ model for this transducer is shown in
figure 5.24(a). Also shown in this figure are comparisons between theoretical,
experimental and FE measurements of field cross sections taken at distances of 50 mm,
100 mm and 150 mm in front of the transducer. The prediction of the complete map of the
acoustic field using Huygens’ model took around 5 minutes, and the computation of the
cross sections took around 5 seconds each. The FE model on the other hand took
approximately 3 days to run.

As can be seen from figure 5.24(b), (c) and (d), excellent agreement is obtained between
the two models, and reasonable agreement is obtained with the experimental
measurements. The results of this validation experiment indicated two things. Firstly they
showed that the Huygens’ model was far superior to FE modelling in terms of
computation speed for predicting the field due to an IDT. Secondly, the good agreement
with experimental results demonstrated that the assumptions inherent in the Huygens’
model were justified for the transducers in question. On this basis, the Huygens’ model
became the main design tool for IDTs.

5.5 CONCLUSIONS

This chapter has described the theoretical background and implementation of a model
based on Huygens’ principle for predicting the acoustic fields generated by IDTs.
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Beam cross sections predicted by the Huygens’ model for a typical IDT configuration and
the results predicted by an FE model for the same system have been shown to be almost
identical. However, the Huygens’ model took a few seconds to predict the beam cross
sections, whereas the FE model took around three days. The reason why the FE model is
so slow compared to the Huygens’ model is that in order to calculate the data of interest,
such as a beam profile at a certain point in time, the FE model must also calculate a vast
quantity of superfluous data including the stresses and displacements at every node in the
mesh at every time step. The Huygens’ model uses analytical techniques to provide
independent predictions of either displacement or stress at any point in time and at any
point in the structure without having to calculate the global displacement or stress field
and without having to iterate through time steps.

The correlation between the Huygens’ model and experimental measurements is very
good, especially considering that the Huygens’ model does not take any account of second
order interactions between the transducer and the structure. The speed with which the
Huygens’ model can be used has enabled detailed parametric studies of IDT design to be
made, which would have been impossible using existing FE techniques, due to the
computation time involved. These will be described in the following chapter.
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Figure 5.1 (a) Excitability of straight crested Lamb wave modes in aluminium plate
when the excitation is by an infinitely long line source. In (b) the
attenuation curves for the same plate immersed in water are shown for
comparison.
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Figure 5.2 Excitability of circular crested Lamb wave modes in aluminium plate
when the excitation is by a point source.

Figure 5.3 An example displacement-distance curve for the case of an aluminium
plate being excited at a dimensionless frequency of 0.4287, by a harmonic
force of dimensionless amplitude 1.0.
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Figure 5.4 An example displacement-distance-time plot for the case of an aluminium
plate being excited at a dimensionless frequency of 0.4287, by a harmonic
force of dimensionless amplitude 1.0.
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Figure 5.5 An example displacement-distance curve for the case of an aluminium
plate 14µs after excitation by a 10 cycle, Hanning windowed toneburst at a
dimensionless centre frequency of 0.4287 and a dimensionless peak
amplitude 1.0.

Figure 5.6 Representation of a small area of an IDT by a point source.
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Figure 5.7 Geometry of single finger of an IDT being modelled with varying numbers
of sources across its width.
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Figure 5.8 Effect of using (a) 2, (b) 4, (c) 6, (d) 8 and (e) 10 sources per wavelength
across the width of a finger of an IDT in Huygens’ model.
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Figure 5.9 Angular sections at a distance of 100 λ through the acoustic fields in figure
5.9.
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Figure 5.10 Geometry of single finger of an IDT being modelled with varying numbers
of sources along its length.



5. Use of Huygens’ principle to predict acoustic fields generated by inter-digital transducers

Page 154

Figure 5.11 Effect of using (a) 1, (b) 2, (c) 3, (d) 4 and (e) 10 sources per wavelength
along the length of a finger of an IDT in Huygens’ model.
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Figure 5.12 Angular sections at a distance of 100 λ through the acoustic fields in figure
5.11.
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Figure 5.13 Screen shot of the input screen for the software written to calculate
displacement-distance-time matrices.
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Figure 5.14 Screen shot of the output screen for the software written to calculate
displacement-distance-time matrices.
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Figure 5.15 Screen shot of the software written to perform the Huygens’ calculations.
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Figure 5.16 Geometry of the FE model used to validate analytic predictions of the
acoustic field due to a point source.
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Figure 5.17 Out-of-plane surface displacement vs. distance for a 1.0 mm thick steel
plate 15 µs after excitation with a 10 cycle toneburst at 1.0 MHz predicted
by (a) analytic and (b) FE model.

Figure 5.18 Out-of-plane surface displacement vs. distance for a 1.0 mm thick steel
plate 10 µs after excitation with a 10 cycle toneburst at 2.5 MHz predicted
by (a) analytic and (b) FE models. (c) Shows the results from analytic
model, but ignoring modes with phase velocities exceeding 10 mm/µs.
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Figure 5.19 Experimental set-up for measuring displacement-time curves.

Figure 5.20 Schematic diagram showing the construction of conical point contact
transducers used for making surface displacement measurements, after
Evans (1997).
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Figure 5.21 Time-traces (a) predicted using the analytic model and (b) measured
experimentally when a 5 mm thick aluminium plate was excited with a
5 cycle toneburst at 0.2 MHz, 250 mm away from the monitoring point.

Figure 5.22 Time-traces (a) predicted using the analytic model and (b) measured
experimentally when a 5 mm thick aluminium plate was excited with a
5 cycle toneburst at 0.5 MHz, 250 mm away from the monitoring point.
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Figure 5.23 Geometry of transducer used in validation, and experimental set-up.



5. Use of Huygens’ principle to predict acoustic fields generated by inter-digital transducers

Page 164

Figure 5.24 (a) Acoustic field predicted by the Huygens’ model. Comparison of field
cross sections at (b) 50 mm, (c) 100 mm and (d) 150 mm between
Huygens’ model, experimental point measurements and FE model.
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6. Low frequency inter-digital transducers

6.1 INTRODUCTION

This chapter contains three topics involving low frequency inter-digital transducers
(IDTs) starting with a description of their development, design and construction in
section 6.2. Because of their larger size and simpler construction compared to the high
frequency IDTs described previously, low frequency IDTs make an ideal experimental
tool for studying general aspects of IDT behaviour. An improved experimental method
for measuring the acoustic field from an IDT has been developed and this is described in
section 6.3. The use of this experimental technique in parallel with the Huygens’ model to
elucidate general guidelines for IDT design is discussed in section 6.4.

6.2 DESIGN AND TESTING OF LOW FREQUENCY INTER-DIGITAL TRANSDUCERS

Chapter 4 described the successful design, construction and testing of IDTs made from
the piezoelectric polymer PVDF (polyvinylidene fluoride) operating in the 0.75-2.5 MHz
range. Such IDTs were shown to work most satisfactorily when generating the A0 mode at
a frequency-thickness of around 1.34 MHz mm. Although their use to transmit and
receive certain higher order modes in a 6.5 mm thick structure was partially successful,
the problems of modal selectivity and dispersion associated with using these modes
would preclude their use in most practical long range testing applications. In order to
operate PVDF IDTs on thicker structures using lower order modes, the lower limit of
their operating frequency must be reduced. A typical operating frequency to aim for is
around 100 kHz, which is around ten times lower than the high frequency IDTs described
in chapter 4, and would thus enable the inspection of structures up to around 13 mm
thick.

In this section, the fundamental construction of PVDF IDTs is re-assessed from the
perspective of the one-dimensional transducer model described in chapter 3. Studies will
be presented which investigate how the operating frequency may be reduced, and the
construction and testing of monolithic transducers will be described. The results of these
experimental tests do not agree particularly well with the one-dimensional model
predictions, due to reasonable sized low frequency transducers failing to satisfy the
required assumptions. However, initial tests of low frequency IDTs of a similar
construction on 12.65 mm thick aluminium bar will show that the transducers
successfully transmit and receive the A0 mode at around 100 kHz. This section concludes
with a description of the most sophisticated IDT fabricated thus far, which incorporates
several of the features which have been discussed. This curved finger low frequency IDT
uses a quadrature drive system to produce a divergent acoustic field on one side of the
transducer only. An IDT of this type could potentially be used to inspect a 90° sector of a
structure.

6.2.1 Initial considerations using one-dimensional model

The basic construction of the high frequency IDTs described in chapter 4 consisted of a
110 µm thick layer of PVDF backed by a 125 µm thick layer of copper and these
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transducers were shown to operate most successfully at frequencies around 1 MHz. In
order to gain a greater insight into the frequency behaviour of a layered transducer system,
it is instructive at first to consider a simpler model than the complete one-dimensional
model.

Mass-spring model of the mechanical system

At low frequencies, where the wavelength of bulk waves in the backing layer is long
compared to its thickness, the transducer may be regarded as a mass-spring system for the
purpose of understanding its frequency response characteristics. In this model, the copper
layer is the mass, and the PVDF is a light spring connecting the copper to a substrate (the
aluminium) which is assumed to be rigid. In reality the aluminium is not rigid, but its
stiffness is sufficiently high compared to the combined stiffness of the PVDF and copper
layers for it to make little difference to the resonant frequency of the complete system.

Considering a unit area of the system, the spring stiffness, kPZ (i.e. the stiffness of the
PVDF layer or layers), is calculated as:
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where czz is the material stiffness of the PVDF in the thickness direction, dPZ is its
thickness,  ρPZ is its density and ZPZ is its characteristic acoustic impedance. The mass,
mCu (i.e. the mass of the copper layer) per unit area, is given by:

m dCu Cu Cu= ρ (6.2)

where ρCu is the density and dCu is the thickness of the copper layer. The resonant
frequency of the mass-spring system may be easily calculated to be:
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For the case of 110 µm thick layer of PVDF backed with a 125 µm thick layer of copper,
the resonant frequency may be calculated using this method to be 1.38 MHz. The
complete one-dimensional model predicts that the first peak in pulse-echo response will
occur at around 1.5 MHz. For the purposes of this argument, this small discrepancy may
be ignored.

Equation 6.3 indicates three options to reduce the resonant frequency of the mass-spring
system and therefore, hopefully, to improve the low frequency response of the actual
transducer system. The options are either to increase the mass, mCu, decrease the stiffness,
kPZ, or both.

From equation 6.3, it can be seen that the mass of the backing layer needs to be increased
by a factor of 100 in order to reduce the resonant frequency by a factor of 10. Increasing
the mass could be achieved either by increasing the density or the thickness of the backing
layer. There is obviously no possibility of finding a material 100 times denser than
copper, and increasing the thickness of the backing layer by a factor of 100 would result
in a backing layer 12.5 mm thick which is undesirable for a low profile transducer.
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Similarly, it can be seen from equation 6.3, that the stiffness of the spring also needs to be
reduced by a factor of 100 in order to reduce the resonant frequency by a factor of 10.
Clearly the material stiffness of PVDF could not be altered sufficiently to achieve this.
Increasing the thickness of the PVDF by a factor of 100 would cause a proportionate
decrease in the resonant frequency of the mass-spring system. Unfortunately, this would
require an 11 mm thick layer of PVDF, which is not readily obtainable and again would
make the transducer very thick.

The third option, which is perhaps the most intuitively obvious, is to increase the
thickness of both layers, thereby simultaneously decreasing the spring stiffness and
increasing the mass. In this case, only a factor of 10 increase in the thickness of both
layers is required in order to obtain a factor of 10 decrease in the resonant frequency. This
would require a 1.1 mm thick layer of PVDF and a 1.25 mm thick layer of copper to give
a total transducer thickness of 2.35 mm, which is a more reasonable dimension than that
suggested by the first two options.

Thus, in principle, this is an ideal way to proceed, as the thickness of plates which can be
inspected will also increase in proportion to the thickness dimension of the transducer.
Unfortunately, a supplier of 1.1 mm thick poled PVDF was not located. Hence the first
idea considered was to use two passive 0.5 mm thick layers of un-poled PVDF on either
side of the active poled 110 µm thick PVDF in order to obtain the required thickness.

Passive layers design

In figure 6.1, the complete one-dimensional model has been used to compare the response
of two systems: the first being a 1.1 mm thick layer of active PVDF backed with a
1.25 mm thick layer of copper. The second system is identical to the first except that the
single layer of PVDF has been replaced by a 0.1 mm thick layer of active PVDF
sandwiched between two layers of passive 0.5 mm thick PVDF. In the model, the passive
PVDF layers are treated in the same manner as other non-piezoelectric layers and are
assigned the same mechanical properties as the active PVDF. It can be seen from the
figure that the pulse-echo responses of the two systems are almost identical, in terms of
both frequency and amplitude. The similarity in frequency response would be expected
from the mass-spring model, but the similarity in amplitude is somewhat surprising. A
partial and somewhat simplified explanation for this similarity in amplitude can be
obtained by considering piezoelectric film suspended in free space, and observing that for
a given applied voltage, the electric field strength in a thin piezoelectric film will be
greater than in a thicker film. This increases the amount of piezoelectric induced strain in
thinner film, but the net change in displacement between the edges of thick and thin films
will be similar since the displacement is obtained by integrating the strain over the
thickness. However, a thicker active piezoelectric layer does have the advantage that it
can be driven with a higher voltage before electrical breakdown occurs, and hence the
maximum output is potentially higher than for a thinner layer.

Single layer design

While performing the experimental tests on monolithic transducers which will be
described shortly, a simpler transducer design was observed to produce a similar
amplitude of response at low frequencies to the passive layers design. In this design, the
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passive layers were simply omitted. The only difference between this design and the
design of the transducers in chapter 4 is a tenfold increase in the mass per unit area of the
backing layer. From the mass-spring model, this would only be expected to produce a √10
decrease in the resonant frequency of the system. However, the mass-spring model does
not predict the amplitude of the transducer response but the one-dimensional model does
do so. The predicted pulse-echo response of transducers with and without the passive
layers is shown in figure 6.2. It can be seen that although the device without passive
layers does have a resonance at higher frequency, its response is nonetheless of reasonable
amplitude around the resonant frequency of the passive layered device.

6.2.2 Initial experimental tests using bulk wave transducers

The two designs described above were investigated by constructing monolithic bulk wave
transducers and testing them in a similar manner to that already discussed in section 4.3.2.
Only sample results are presented in this section, as these tests were not particularly
conclusive and ultimately it was decided that a better test of the theory would be to
construct inter-digital transducers.

The reasons for the inconclusive nature of the experimental results from bulk wave
transducers mostly stem from problems of scaling up the experiments described in
section 4.3.2. Ideally, the planar dimensions of a bulk wave transducer to operate at low
frequencies should be around 300 mm (i.e. ten times larger than those used for the
transducers in section 4.3.2), which would be a somewhat wasteful use of PVDF. Instead,
similar sized transducers to those used in section 4.3.2 were again used. This leads to
several problems. Firstly, it becomes increasingly hard to resolve different echoes in the
received time-traces, even when using an aluminium substrate approximately 100 mm
thick. Secondly, the ratio of the transducer size to the wavelength of the waves
transmitted into the substrate begins to decrease significantly as the frequency is reduced.
This effect causes increased beam spreading and is manifested as an apparent roll-off in
the measured low frequency response, which of course is the frequency range of interest.

In these experiments, various materials for the passive layers were investigated including
0.5 mm thick un-poled PVDF (supplied by Goodfellow, UK) and 0.4 mm thick plastic
shim (supplied by RS, UK). As would be expected, within reason the exact choice and
thickness of material had little if any effect on results. 1.3 mm thick lead sheet (supplied
by a builder’s merchant as roofing lead flashing) was used as the backing material, as it is
less expensive and more dense than copper.

An example graph showing the experimentally measured pulse-echo response of a passive
layers design transducer with and without lead backing is shown in figure 6.3. The effect
of the lead layer appears to provide an extra peak in the response at around 125 kHz,
which is in reasonable agreement with the resonant frequency predicted using the mass-
spring model of 118 kHz. The low frequency roll-off which was mentioned above is
apparent, and the curves in the graph also exhibit smaller fluctuations. The latter can be
reasonably attributed to both the effect of resonances across the width of the PVDF and
the effect of overlapping signals in the time domain.

As would be expected, the effect of the bond layer thickness is not significant at low
frequencies, and it was observed experimentally that equally good results could be
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obtained by using double sided adhesive tape (supplied by RS, UK) instead of cyano-
acrylate adhesive to bond the transducer layers together.

6.2.3 Initial experimental  tests using inter-digital transducers

The bulk wave transducer designs with and without passive layers were both used as the
basis for trial low frequency IDTs to generate the A0 mode in thick aluminium bar.

Transducer construction

A 12.65 mm thick rectangular section aluminium bar was obtained. In this thickness of
material, the frequency thickness of 1.343 MHz mm occurs at a frequency of 106 kHz and
a wavelength of 23.1 mm on the A0 mode. For wavelengths as large as this, the IDT
finger pattern can be cut out by hand from a sheet of PVDF using a sharp knife or
scissors. The finger patterns for a two phase 4 finger IDT are shown in figure 6.4(a). The
two sets of fingers are cut from the PVDF in such a way that one set must be reversed (i.e.
the PVDF sheet must be turned upside down) for the IDT to be assembled as indicated in
figure 6.4(b). This means that the IDT can actually be driven from a single phase supply,
and still have the substrate earthed since the anti-phasing is achieved by the opposite
poling orientation of the two sets of fingers.

In the passive layers device (which will be referred to as T1), the passive layers were cut
from 0.5 mm thick un-poled PVDF and the lead backing was cut from 1.3 mm thick lead
sheet. The transducer was assembled as shown in figure 6.4(c) using double sided
adhesive tape to bond the layers together. The construction of the single layer device
(referred to as T2) was identical except for the omission of the passive layers. In both
these designs, it would be reasonable to be concerned about flexural resonances being set
up across the width of the monolithic backing layer. However, no such effects have been
observed experimentally, and this is thought to be due to the high internal losses of lead
which damp out any ringing. It should be noted that these losses within the lead should
not significantly affect the output of the transducer, since in the thickness direction the
lead is essentially moving as a rigid mass.

Experimental set-up

The transducers, T1 and T2 were bonded to the aluminium bar as shown in figure 6.5,
using double sided adhesive tape. The operating frequency was sufficiently low to enable
an existing switching device (a custom device built for another project) to be used, and
the IDTs tested in pulse-echo mode. The operating frequency was adjusted to maximise
the amplitude of the signal from the first end reflection. By this stage in the project, a
second custom device referred to as a ‘Wavemaker’ had been specified and
commissioned. The Wavemaker fulfils the roles taken by the arbitrary function generator,
controlling computer and power amplifier in the experiments described previously. The
wavemaker provides a high voltage (200 V p-p) output of various sizes of Hanning
windowed toneburst (5, 10, 20 and 50 cycles) over a continuously variable range of
frequencies from 50 kHz to 3.5 MHz.

The electrical connections to the PVDF film were made using specially constructed
‘crocodile’ clips, with one of the two electrically separated jaws wired to the core (live)
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and the other to the shield (earth) of the connecting coaxial cable. This alleviated the need
to make the connections with silver loaded epoxy (as used for the transducers in
chapter 3).

Results and comments

The received time-trace when T1 was operated in pulse-echo mode at 94 kHz is shown in
figure 6.6(a). The arrivals can be correlated to different lengths of paths in the beam as
indicated by the labels in figure 6.5. The first arrival corresponds to a reflection from the
near end, E1, of the bar. The second smaller arrival corresponds to a double echo between
T1 and the near end of the bar, E1. The next arrival is a reflection from T2 and the third
reflection is from the further end, E2, of the bar. After this, the reflections become too
numerous to identify accurately.

It is interesting to observe the effect of connecting either of the two sets of fingers
individually as shown in figures 6.6(b) and (c). The time-traces obtained in both cases are
almost identical in shape and approximately half the amplitude of that shown in
figures 6.6(a).

The same procedure was used to test T2 and the corresponding results are shown in
figure 6.7 - note the different vertical scales to the previous figure. Again the optimum
operating frequency was found to be 94 kHz. The first point to observe is that the
amplitude of the first arrival is almost twice (i.e. 6 dB greater than) the amplitude of the
first arrival observed with T1. In neither case is the first arrival affected by the presence of
the other transducer, hence it can be concluded that the frequency response of T2 is
around 3 dB (since the difference in amplitude of 6 dB was measured in pulse-echo
mode) greater than T1 at this frequency. Next the ratio of the amplitude of the third arrival
(the reflection from the second IDT) to that of the first arrival (the reflection from the near
end of the bar) should be compared to the corresponding ratio when T1 was tested. It is
clear that T2 is a bigger reflector than T1 which suggests that T2 has a greater perturbation
effect on the waves in the bar than T1.

The effect of connecting either of the two sets of fingers individually is shown in
figure 6.7(b) and (c). In this case, the time-traces are markedly different. In particular, the
reflection from the near end of the bar (first arrival) is mostly in the signal from the set of
fingers shown in (c), whereas the reflection from the second end  of the bar is mostly in
the signal from the other set of fingers shown in (b). Investigation has shown that,
unsurprisingly, the signal shown in (c) is from the set of fingers which are nearer to the
near end of the bar and that in (b) is from the set of fingers nearer to the far and of the bar.
This ‘directionality’ effect was not observed with T1, which is again consistent with T1

perturbing the Lamb waves in the structure less than T2.

It is interesting to note that the optimum experimental operating frequency is 94 kHz,
somewhat lower than the predicted operating frequency of 106 kHz, and is the same for
both IDTs. This observation will be discussed later in section 6.2.4.

It was hoped that at the low frequencies at which these IDTs operate, it would be possible
to use gel to couple the transducers to the structure rather than a bonding agent. This
possibility was investigated, but proved unsatisfactory for two reasons. Firstly, the gel
was found to have significant electrical conductivity which precluded its use with the
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single layer device, as the two sets of fingers were shorted out. Even when used with the
passive layers device, in which the lower passive layer acted as an insulator, the coupling
was found to be very poor unless weights were used to apply a significant downwards
pressure to the transducer. This was not a satisfactory approach, as the weights affect the
backing and frequency response characteristics of the IDT.

Conclusion

Due to its simpler construction and greater sensitivity, it was decided that the single layer
design of T2 was superior and this design was used as the basis for several more prototype
low-frequency IDTs, the most complex of which is described below.

6.2.4 Example of a four phase IDT

The final example of a low frequency IDT which is described in this section, embodies
many of the concepts previously discussed. It was designed to produce a uniformly
divergent beam over a 90° sector of plate on one side of the transducer only. This effect
was achieved by using a four phase supply as will be described below.

Design

To suit the availability of materials, the transducer was again designed to operate on
5 mm thick aluminium plate. In this plate, the wavelength of the A0 mode at its least
dispersive point at 269 kHz (a frequency thickness of 1.343 MHz mm) is 10 mm.
However, to drive an IDT from a four phase supply, requires the IDT to have four fingers
per wavelength, which at this frequency would mean that the fingers would have to be
less than 2.5 mm wide. Instead, it was decided to operate at a lower frequency of 91 kHz
and longer wavelength of 20 mm. Although, this frequency is below the frequency of
least dispersion, the dispersivity is still reasonably low as noted in chapter 2.

With a wavelength of 20 mm, the size of the IDT could easily become very large without
careful design. The number of fingers was limited to eight due to the physical difficulty of
constructing a four phase transducer. Several iterations using Huygens’ model yielded a
reasonably compact eight finger design which was predicted to produce a fairly uniform
uni-directional field over a 90° sector in front of the IDT. The geometry used is shown in
figure 6.8. The acoustic field predicted by Huygens’ model and the angular cross section
through it at a radius of 150 mm are shown in figure 6.9. It can be seen that the predicted
ratio of the amplitude of the field in front of the IDT to that behind is of the order of 20:1
(~25 dB).

Construction

The construction of the four phase IDT required considerable care. The eight fingers were
cut from a single PVDF sheet in pairs, the fingers in each pair being driven in phase in the
final IDT. For convenience the original PVDF sheet will be referred to as having an anode
side and a cathode side, and the final IDT as having a topside and an underside, the
underside being that bonded to the plate. The pairs of fingers driven at 0° and 180° were
cut so that, when the IDT was assembled, one pair was anode side up and the second pair
was cathode side up as shown in figure 6.10(a). A similar arrangement was made for the
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pairs of fingers at 90° and 270°. The fingers at 0° and 180° both had their undersides
connected to the earth and their topsides to the output of a single ended power amplifier
as shown in figure 6.10(b), the anti-phasing between the two pairs of fingers again arising
by virtue of their opposing poling directions. The fingers at 90° and 270° were connected
in a similar manner to the single-ended output of a second power amplifier. The first
power amplifier was then driven with a toneburst at the desired centre frequency and the
second power amplifier was driven with a 90° phase shifted copy of the signal to the first
amplifier. The transducer was assembled in-situ on a 5 mm thick aluminium plate as
shown in figure 6.10(c), the bond to the plate being made with double sided adhesive
tape. Finally, after confirming that there were no short circuits between the fingers, a
1.3 mm thick lead plate was bonded onto the back of the IDT, again using double sided
adhesive tape.

Experimental optimisation of four phase drive

There are four parameters in the drive of the IDT which can be varied: the centre
frequency of the excitation, the output level of either power amplifier and the exact phase
difference between the signals supplied to the two power amplifiers. Finding the optimal
driving conditions for the IDT was achieved by simultaneously monitoring the signals
measured by two conical point transducers of the type described in chapter 4, one of
which is located in front of the IDT at the point P in figure 6.10(c) and the other at point
Q behind the IDT. At the ideal driving condition, the ratio of the amplitude of the signal
at P to that received at Q should be a maximum. The associated time-traces measured at
the design frequency of 91 kHz at the points P, Q and a third point R to the side of the
IDT are shown in figure 6.11.

It is apparent from the figure that the degree of uni-directionality which the transducer
achieved at this frequency was poor. However, further experimentation revealed that at
the considerably lower frequency of 65 kHz, much better uni-directionality was acheived.
The corresponding time-traces received at this frequency are shown in figure 6.12.

Initially, this was thought to be because the wavelength had been incorrectly calculated
from the dispersion curves shown in figure 6.13, but a measurement of the phase velocity
using two conical point contact transducers revealed the wavelength in the plate to be
almost exactly 20 mm at 91 kHz as was expected. However, the thickness and mass of the
lead in IDTs of this type is significant and may perturb the wavelength. If the dispersion
curves are re-calculated for the case of a 5 mm thick layer of aluminium in perfect contact
with a 1.3 mm thick layer of lead as shown in figure 6.13, the wavelength of the A0 mode
(or to be more precise, the fundamental flexural mode in the layered system) at 91 kHz is
15.5 mm. This is significantly lower than the 20 mm which the spacing of the IDT fingers
was designed for and hence demonstrates why the uni-directionality achieved at 91 kHz
was so poor. However, at 65 kHz, the wavelength of the first flexural mode in the lead-
aluminium system is almost exactly 20 mm, while in 5 mm thick aluminium plate alone
the wavelength is 25 mm at this frequency, as can be seen in figure 6.13. When they reach
the boundary of the IDT, the waves propagating as the flexural mode in the lead-
aluminium system will be mode converted into the A0 mode in the aluminium plate.
Although the efficiency of this mode conversion is thought to be reasonably high, it will
not be unity. Some of the energy will be reflected back into the IDT as flexural mode
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waves propagating in the opposite direction and other modes may be generated in both
systems. This has not yet been investigated in detail.

This is a very interesting result, the consequences of which will be discussed below. For
the purposes of measuring the acoustic field from the IDT, it was decided to operate at
65 kHz rather than 91 kHz.

Experimental measurement of acoustic field

The experimental set-up is shown in figure 6.10(c). For measuring the acoustic field, the
excitation was a 10 cycle toneburst at 65 kHz. The angular cross section was measured at
36 points around a circle of radius 155 mm, centred on the focal point of the transducer
using the technique described in the previous chapter. The experimentally measured
points are plotted on figure 6.9(b), and it can be seen that excellent agreement with the
predicted cross section is obtained.

Comments

The construction of this IDT marks a significant stage in the development of IDTs for
monitoring large structures. A reasonably compact transducer has been built which can
efficiently excite low frequency Lamb waves in thick aluminium plate. The use of a four
phase drive to produce a divergent beam on one side of the transducer only has been
shown to be effective. In principle this IDT could be used to monitor one 90° sector of
structure.

The testing of this IDT has also exposed the limitations of Huygens’ model when it is
used to model transducers which cause a significant increase in the mass loading of a
structure. This discrepancy between the design frequency (91 kHz) and the operating
frequency (65 kHz) is definitely significant, but it was only observed because the acoustic
field behind the IDT could not be satisfactorily minimised at 91 kHz. Had the IDT not
been a uni-directional one, this situation would not have arisen and the IDT would
probably have been operated at its design frequency. A similar effect is likely to have
been the reason why a larger signal was also obtained at frequencies below the design
frequency in the case of T1 and T2 described previously.

6.3 IMPROVED EXPERIMENTAL METHODS FOR MEASURING THE ACOUSTIC FIELD

FROM INTER-DIGITAL TRANSDUCERS

The large size of low frequency, large wavelength IDTs makes them an ideal
experimental tool for investigating general effects of IDT geometry. To this end, it is
necessary to measure the spatial variations in the acoustic field strength from an IDT at
numerous locations. As described in chapter 5 this can be achieved by using a single
conical point contact transducer and recording the maximum amplitude of the signal it
receives when placed at various locations on a plate into which an IDT is transmitting
Lamb waves. This technique for measuring the strength of a Lamb wave acoustic field
will be referred to as technique 1.

The major problem in using point transducers to measure the acoustic field is that the
coupling between the point transducer and the plate is not consistent and is very sensitive
to numerous factors including the local surface condition of the plate and the exact
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manner in which the transducer was placed. Furthermore, the coupling has been observed
to exhibit a ‘creeping’ effect, whereby the coupling actually improves if the transducer is
left in one location for extended periods. Typically, this might result in a doubling of the
amplitude of the received signal over a period of around 30 minutes. Technique 1 thus
requires considerable skill and patience on the part of the operator and is not ideal for
performing large numbers of measurements.

6.3.1 Methods which correct for coupling inconsistencies

From the previous paragraph it is clear that some means of measuring the coupling of the
point transducer when it is placed at any location is necessary. A possible method which
has been investigated (Evans 1997) is to modify the point transducer so that a second
piezoelectric element is embedded in the transducer behind the backing material. This can
be used to detect the shift in resonant frequency of the system when the transducer is
coupled to a structure, and the magnitude of the shift can be used to estimate the degree of
coupling. This technique was developed for applications where the absolute degree of
coupling for the transducer must be measured.

However, for measuring the acoustic field from an IDT, only relative measurements of
acoustic field strength are needed at various locations on the same structure. Hence, only
the relative coupling as the point transducer is moved from one location to the next needs
to be found and this can be achieved more directly by either of the two methods described
below. In both cases, a series of measurements, M1, M2, ... is obtained, which specify the
relative strength of the acoustic field at different locations in the structure.

Improved method - technique 2

A second point transducer is placed at a fixed location to provide a reference signal of
constant amplitude. The movable point transducer with which the IDT field will be
mapped is placed at some location and the amplitude of the signal, B, from the reference
transducer which the movable transducer receives is measured. From this the coupling, C,
of the movable transducer is calculated from:

C B d∝ (6.4)

where d is the separation of the transducers. Τhe constant of proportionality is dependent
on the amplitude of the signal supplied to the reference transducer, the coupling of the
reference transducer and the transduction process within the movable transducer, all of
which are assumed to remain constant throughout the experiment. The square root of the
distance between the reference and the measurement transducers must be included, as the
amplitude of the signals generated by the reference transducer are circular crested Lamb
waves and therefore decrease in amplitude with the square root of distance from the
source, as discussed in the previous chapter.

A typical experimental layout is shown in figure 6.14. The details of the experimental
procedure using this technique (technique 2) are outlined below:
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Technique 2

1. The IDT under test is bonded at a suitable location on the plate which is
usually taken as being at the origin (0,0) of a Cartesian coordinate system.

2. The reference point transducer is placed at a suitable location (xr,yr).

3. The movable point transducer is moved to a measurement location (xi,yi),

and the separation ( ) ( )d x x y yr i r i= − + −2 2 2 2  calculated. The movable

transducer remains connected to the receiving amplifier throughout the
experiment.

4. The reference transducer is connected to the transmitting amplifier, from
which it is excited with the same signal as will be used to excite the IDT
(typically a 10 cycle toneburst at the required centre frequency).

5. The peak to peak amplitude of the first arrival of the A0 mode, B1, at the
movable transducer is measured, typically after 100-200 time averages. The
coupling, C1, of the movable transducer at this instant is calculated using
equation 6.4.

6. The reference transducer is disconnected (but not moved), and the IDT
under test is connected to the transmit amplifier.

7. The amplitude of the first arrival of the A0 mode, B2, at the movable
transducer is measured, again after 100-200 time averages.

8. The IDT is disconnected and the reference transducer is reconnected to the
transmit amplifier.

9. Step 5 is repeated, to gain a second measure of the amplitude, B3, of the
signal received from the reference transducer and hence a second measure, C3, of
the coupling may be obtained, using equation 6.4.

10. The measurement from the IDT is now scaled by the mean coupling, C2,
of the measurement transducer, to give a corrected measure of the acoustic field
strength, Mi:

( )M
B

C

B

C C
i = =

+
2

2

2

1
2 1 3

(6.5)

Steps 3 to 10 are now repeated for each of the required measurement locations.

Several further points need consideration when performing this type of experiment:
firstly, since the plate has finite dimensions, the location of both the reference transducer
and the IDT should be such that reflections from edges of the plate can be clearly resolved
in time, and do not confuse results. Secondly, if the received signal is complicated by
other the presence of other modes and reflections, it may be necessary to use the distance
between the reference transducer and the movable transducer to predict the time at which
the signal for the correct mode should arrive. Knowledge of the correct time of arrival of
a particular mode is a necessity if an automatic peak to peak amplitude measurement
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system is being used, so that only the correct portion of the signal is examined and
reflections (which may be of greater amplitude) are ignored.

In an ideal situation, C1 = C3, but in practice due to the creeping effect in the coupling
C3 > C1. However, as the measurement from the IDT is made between the two
measurements from the reference transducer, it is reasonable to assume that the coupling
for the IDT measurement, C2, is bracketed by the coupling from the two measurements
made with the reference transducer, so C1 < C2 < C3. If the three measurements have been
made with similar time intervals between, it is furthermore reasonable to assume that
C2 = (C1 + C3) / 2, as used in equation 6.5.

The measurement procedure described above is still reasonably slow, as three
measurements are required at each location, and for each of these the digital oscilloscope
needs a finite time to perform the required number of averages. An elegant way of
reducing the delay by almost a factor of three is described below.

Improved method - technique 3

Technique 2 measures the acoustic field from an IDT transmitting Lamb waves.
However, reciprocity dictates that when acting as a receiver, the sensitivity of an IDT to
incoming waves originating at some point in the plate must follow the same pattern.
Hence, the acoustic field from an IDT can also be mapped by using the IDT as a receiver
and measuring its sensitivity to a movable point source of constant amplitude. Again, the
practical success of this approach is largely dependent on being able to provide a point
source of constant, or at least known, amplitude. However, this can be readily achieved by
slight modifications to the experimental set-up described above and these are shown in
figure 6.15.

In this case, the movable transducer acts as the point source and is always connected to
the output from a power amplifier supplying a toneburst at the desired centre frequency.
Two pre-amplifiers are required, one to measure the signal from the reference transducer
and one to measure the signal from the IDT. The experimental procedure (technique 3) is
described below:

Technique 3

1. The IDT under test is bonded at a suitable location on the plate as before.
It is connected to the first receiving amplifier.

2. The reference point transducer is again placed at a suitable location (xr,yr),
and connected to the second receiving amplifier.

3. The movable point transducer is moved to a measurement location (xi,yi),

and the separation ( ) ( )d x x y yr i r i= − + −2 2 2 2  calculated. This transducer

remains connected to the transmitting amplifier throughout the experiment.

4. Time averaged signals from the IDT and the reference transducer are now
collected simultaneously by the oscilloscope. The peak to peak amplitude, Br, of
the desired mode in the signal from the reference transducer and the
corresponding amplitude, B, in the signal from the IDT is measured.
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5. The coupling factor, C is calculated from the amplitude Br, using
equation 6.4 and the corrected signal, Mi, from the IDT is calculated:

M
B

Ci = (6.6)

The major advantage of this technique over technique 2 is that, in this case, the reference
signal is measured simultaneously with the signal from the IDT, so there is no concern
over the coupling variability with time. Furthermore, the time taken for each measurement
is considerably reduced since the oscilloscope can average both signals simultaneously,
and all transducers remain connected throughout the experiment.

In both experimental set-ups, there were initial problems with very poor repeatability and
apparently random scattering of results. In some cases, the scatter on the corrected results
was greater then that which was obtained using only a single point transducer optimised
to give the largest signal. Further investigation suggests that these errors resulted from the
interference caused by the three supporting feet on the conical point contact transducers
(these are shown in figure 5.20). These problems of repeatability were completely
alleviated by constructing gantries which spanned the plate onto which the point
transducers were mounted, so that their only point of contact with the plate was the
measurement point at the apex of the cone.

Experimental demonstration of consistency of improved method

The field around a third conical point contact transducer was mapped using technique 3
described above. The geometry of the experimental set-up is shown in figure 6.16. The
field was mapped at 37 locations on a 180° arc, the separation between measurements
being 5°. Due to the axi-symmetric nature of the source, it is expected that the amplitude
of the acoustic field along such an arc will be constant

The measurement transducer was excited with a 10 cycle toneburst at 0.328 MHz, and the
field was mapped in the manner described above. Three passes were made around the arc,
the order in which the measurements were taken being changed with each pass. At each
location, 200 time-traces were sampled and averaged before the amplitude of the signal
was measured. Both these procedures were performed using functions built into the
oscilloscope (LeCroy 9310A). The measurements before the coupling correction was
applied are plotted in figure 6.17, and the results after the coupling correction has been
applied are plotted in figure 6.18. The results in the second figure have been normalised
so that their mean amplitude is the same as the mean amplitude in the first figure.

The standard deviation of the readings before correction is around 40 % of their mean
value. After the correction has been applied, this figure falls to around 5 %. The time
required to make a measurement at a single location is around 30 seconds, the majority of
which is the time taken for the oscilloscope to process the data.

6.4 FURTHER USE OF HUYGENS’ MODEL FOR INTER-DIGITAL TRANSDUCER DESIGN

In this chapter it has been shown that, with appropriate backing, PVDF can be used as an
inter-digital transducer material to transmit and receive Lamb waves at frequencies as low
as 100 kHz. Without backing, PVDF IDTs will still function at such frequencies and even
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though their sensitivity is significantly reduced, their acoustic fields may still be measured
using the technique described above. This means that very simple IDTs can be readily
manufactured by cutting out the appropriate shape from a sheet of PVDF and bonding it
to a structure using double sided adhesive tape. Although probably not sensitive enough
for most practical applications, such IDTs can be constructed very consistently and are an
excellent experimental tool for examining IDT behaviour.

In the following sections, unbacked PVDF IDTs are used in conjunction with the
Huygens’ model described in chapter 5 to investigate the effect of the geometry of an IDT
on the acoustic field which it produces. Several basic trends have been elucidated for the
cases of straight-finger IDTs producing collimated beams for line inspection and curved
finger IDTs producing divergent beams for sector inspection.

6.4.1 Design of straight-finger inter-digital transducers

It will be assumed in this section that the main use for straight-finger IDTs is to generate
collimated beams, which will propagate over reasonable distances with minimal
divergence. It is therefore desirable to obtain an expression for the beam divergence angle
for a straight-finger IDT, in much the same way as one can be found for a plane bulk
wave transducer (as given in the text by Silk 1984 for example). For simplicity, a single
finger IDT is considered first; the effect of adding multiple fingers will be addressed later.

Experimental measurements were performed using the A0 mode at 328 kHz on a 5 mm
thick aluminium plate using technique 3 described above. At this frequency thickness the
wavelength of the A0 mode is 8 mm. Single 4 mm wide fingers with lengths of 8 mm
(2 wavelengths), 40 mm (5 wavelengths) and 80 mm (10 wavelengths) were cut from
PVDF sheet and bonded to the aluminium sheet using double sided adhesive tape. Cross
sections through the acoustic field were measured on a straight line at a perpendicular
distance of 320 mm from each finger. These are shown in figure 6.19(a), (b) and (c) for
the three finger lengths, together with the Huygens’ model predictions. As can be seen,
the agreement between the experimental measurements and the predictions is good,
particularly when looking at the width of the main lobe of the beam.

The beam divergence angle is defined in the same way as for a bulk wave transducer, i.e.
the angle at which the first minima in the amplitude of the field on either side of the main
lobe of the beam diverge (such minima are marked by diamonds in figure 6.19(a),(b) and
(c)).

By using Huygens’ model to calculate the exact locations of the first minima on either
side of the main lobe of the beam (which are marked by diamonds in figures 6.19(a), (b)
and (c)) on cross sections at two different distances in front of a transducer, the beam
divergence angle, γ, can be calculated. These calculated divergence angles are plotted as a
function of finger length in figure 6.20. On the same figure two curves are also plotted.
The dashed line is the function sin-1(1.2λ/l), where λ is the wavelength and l is the finger
length. This is the function used to calculate the beam divergence angle for a circular bulk
wave transducer of diameter l. As can be seen from the figure, this curve does not fit the
measured data very well, although its basic shape is correct. By fitting a better curve to
the data, the following equation for the beam divergence angle of a single straight finger
was elucidated:
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γ
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−sin 1

l
(6.7)

This function is also plotted in the figure. The difference between this function and the
function describing the divergence angle of a circular bulk wave transducer is thought to
arise from the IDT system being for two-dimensional wave propagation whereas the bulk
wave transducer system is three-dimensional. From figure 6.20, it can be seen that for a
reasonably non-divergent beam, the finger length should be ten or more wavelengths.

The effect of adding more fingers to an IDT was investigated using Huygens’ model and
the results are shown in figure 6.21(a). This shows straight cross sections, taken at a
distance of 40 wavelengths, through the acoustic field of a straight-finger IDT (with a
finger length of 10 wavelengths) with different numbers of fingers. It can be seen that the
peak amplitude of the main lobe of the beam is approximately proportional to the number
of fingers in the IDT, and this is verified in figure 6.21(b), in which the cross sections are
normalised by the number of fingers in the IDT and re-plotted.

It can be seen from the figure that, perhaps surprisingly, the number of fingers makes little
or no difference to the width of the main lobe of the field and only starts to have
noticeable effects at the sides where the amplitude is some 20 dB below the peak
amplitude of the field. From this it can be concluded that the number of fingers in a
straight-finger IDT does not affect the relationship between the finger length and the
beam divergence angle given in equation 6.7. The advantages of using multiple fingers
are to increase the overall acoustic power entering the structure and to improve the
wavelength selectivity of the IDT.

6.4.2 Design of curved-finger inter-digital transducers

For a curved-finger IDT, general trends are more complicated to determine as there are
more design parameters than for a straight-finger IDT. Furthermore, the definition of a
measurable quantity with which to compare different acoustic fields is somewhat
difficult. The nomenclature which is used to describe curved finger IDTs is shown in
figure 6.22. As a starting point, it will be assumed that the goal when designing a curved-
finger IDT is to produce one which generates a field which diverges at the same angle as
that subtended by the fingers (hereafter referred to as the angle of the IDT). This ideal
field will, at a particular distance from the geometric centre of the IDT, have a constant
amplitude within the angle of the IDT and zero amplitude elsewhere. In the studies
presented here, only IDTs with concentric fingers, which all subtend the same angle about
their common centre, will be considered. This reduces the number of design parameters to
be investigated to three: the angle subtended by the fingers (the angle of the IDT), the
radius (which is taken as the mean of the innermost and outermost radii for IDTs with
more than one finger) and the number of fingers. The effect of radius and angle on the
beam from an IDT with a single curved finger are described below. The effect of the
number of fingers remains to be invesigated.

Consider an IDT with a single curved finger of angle 90°. Angular beam cross sections
predicted using Huygens’ model are plotted for several different radii of finger in
figure 6.23, all cross sections being taken at a radius of 30 wavelengths. The energy at a
point in the acoustic field is proportional to the square of the amplitude of the acoustic
field at that point. Integrating the energy in the acoustic field over a 180° cross section,
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enables the total energy to be found. The amplitude of an ideal beam containing the same
total energy can then be calculated. The ideal beams are plotted with lighter lines in the
figure. It can be seen that the general trend is that the actual beam becomes closer to the
ideal beam as the radius is increased. As this occurs, the cut-offs on either side of the
main beam become sharper and the fluctuations within the main beam become shallower
and more numerous.

Figure 6.24 shows some of the results from a similar study on an IDT with a single curved
finger, except that in this case, the radius of the finger was kept constant (and equal to
ten wavelengths) while its angle was varied. From these graphs it can be seen that the
field is closest to the ideal field when the angle is large, and deteriorates as the angle is
reduced.

For a selection of the IDT geometries shown in figures 6.23 and 6.24, experimental
measurements have been made using technique 3 described previously, and the results
plotted on the figures. Once again, good agreement is achieved between experimental
measurements and predictions made using Huygens’ model.

Beam quality

By integrating the magnitude of the discrepancy between the energy in the beam profile
predicted by Huygens’ model and the ideal beam profile over the angular range of each
cross section, and dividing this by the total energy in the beam, a numerical measure of
the beam quality can be obtained for any IDT. The beam quality enables a quantitative
comparison to be made between the acoustic fields of any curved-finger IDTs. This
concept is shown schematically in figure 6.25.

For a given angle of transducer with a single finger, the beam quality is a function of the
radius of the finger. The beam quality for various angles of finger is plotted as a function
of radius in figure 6.26. For all angles of transducer, it can be seen that if the radius of the
finger is large, the beam quality increases approximately monotonically with radius, as
the first study suggested. However, if the radius is small, the beam quality fluctuates both
up and down, the amplitude of the fluctuations increasing as the radius is reduced.

Critical radius

The minimum radius of a curved-finger IDT that is necessary to inspect a sector of a
structure over a particular angle is of considerable interest, since the radius determines the
overall size of the IDT. It can be seen from the inset graph in figure 6.26 that at some
critical radius, the beam quality reaches a final peak, before continuously decreasing as
the radius is reduced to zero. These peaks are marked by circles on the graph. This critical
radius has been found to occur when the distance between the centre of a chord joining
the ends of the finger and the centre of the finger equals half a wavelength as shown in
figure 6.27. From geometrical considerations, the critical radius, rc,  is then given by:

( )rc =
−

λ
θ2 1 2cos

(6.8)

where θ is the angle of the IDT and λ is the wavelength. Below this radius, a curved
finger IDT behaves more like a straight finger one. This critical radius gives the absolute
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minimum size of a curved-finger IDT which is necessary to produce a divergent beam.
Even in the region just above the critical radius, it can be seen from figure 6.26 that the
beam quality still fluctuates rapidly up and down.  Hence in practice, it would be
desirable to design curved finger IDTs whose radii were several times greater than the
critical radius.

Plotting contours of constant beam quality on a graph of radius vs. angle for an IDT with
a single curved finger enables the general trends from the above studies to be visualised,
and this is shown in figure 6.28. The critical radius is also plotted as a function of angle in
this figure, and the region where the beam quality is a rapidly fluctuating function of
radius is also indicated, the upper bound of this region being set, somewhat arbitrarily, at
four times the critical radius.

6.5 CONCLUSIONS

In this chapter, the development of lead backed low frequency PVDF IDTs has been
demonstrated. Successful use of such IDTs at frequencies as low as 65 kHz has been
described, including the development of a four phase IDT to produce a divergent beam on
one side of the transducer only.

The construction of low-frequency lead backed IDTs has also exposed the possible
shortcomings of Huygens’ model. The effect of bonding such a transducer to a structure is
twofold. Firstly, the increased mass loading modifies the wavelength of Lamb waves in
the structure immediately beneath the IDT which is indicated by a significant discrepancy
between the optimum experimental operating frequency and that predicted theoretically
for an unloaded plate. Secondly, the presence of the IDT attenuates the waves passing
under it. It is also interesting to observe that these two effects may not be directly coupled
as indicated by the results from the IDTs, T1 and T2. In both cases, the optimum
experimental operating frequencies were approximately 10 % lower than the theoretical
operating frequency, indicating that both IDTs caused a similar perturbation to the
wavelength of Lamb waves in the bar. However, T2 (with a single layer) was shown to be
have a much greater attenuating effect than T1 (with passive layers) and also appeared as a
bigger reflector of incident lamb waves. In this respect, the passive layered design of T2

may be beneficial. There is both the need and scope for considerably more work to be
done to investigate these phenomena, as they are important for any type of inter-digital
transducer.

In the case of Huygens’ model, neither of the above effects can be readily included, and it
is surprising that the agreement between predictions and measurements is so good,
particularly in the case of the 4 phase IDT, as shown in figure 6.9(b). This is almost
certainly due to the fact that the IDT has 8 fingers, and hence the sensitivity of the beam
quality to small changes in other parameters such as either the wavelength or mean radius
is small. It is possible to envisage a modified version of Huygens’ model which does take
into account the change in wavelength of waves under an IDT, but the development of
such a model is beyond the scope of this thesis. Nevertheless, the existing Huygens’
model is the only practical design tool for IDTs at present, and can certainly be used to
give a first approximation to the acoustic field from an IDT, as long as its limitations are
understood.
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An improved experimental technique for measuring the acoustic field strength at different
locations on a plate structure using conical point contact transducers has been developed,
which eliminates the coupling inconsistencies from the calculation. The use of this
technique to accurately measure the relatively weak signals generated by un-backed
PVDF has enabled the acoustic fields from a variety of simple IDT configurations to be
measured experimentally. In conjunction with the Huygens’ model described in the
previous chapter these results have enabled several guidelines for the design of straight
and curved finger IDTs to be deduced. In the case of a straight finger IDT, a relationship
between the beam divergence angle, finger length and wavelength has been found to exist
which is similar to that for plane bulk wave transducers. It has been shown that the
number of fingers does not affect this result, although it does increase the amplitude of
the signal generated by the IDT. Although not considered in this chapter, it should be
remembered that the number of fingers in an IDT also affects modal selectivity as
previously discussed in chapter 4.

In the case of curved finger IDTs designed to produce uniformly divergent beams of a
given angle, it has been shown that, for a single finger, the uniformity of the beam
improves as the radius of the finger is increased. The concept of beam quality has been
introduced, which enables the beams from different geometries of IDT to be
quantitatively compared to each other and to ideal beams. This has been used to show that
as the angle of the required divergent beam is decreased, the radius of the IDT must be
increased in order to maintain the beam quality. Furthermore, in order to produce a
particular angle of divergent beam, there is a definite minimum radius of IDT which is
required.
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Figure 6.1 Predicted pulse-echo response of a single 1.1 mm thick active PVDF layer
and a 0.1 mm thick layer of active PVDF sandwiched between two layers
of 0.5 mm thick passive PVDF. Both systems are backed by 1.25 mm thick
copper and mounted on an aluminium substrate. No bond layers are
included in the model.
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Figure 6.2 Predicted pulse-echo response of a 0.1 mm thick PVDF layer and a
0.1 mm thick PVDF layer sandwiched between two 0.5 mm thick passive
layers of PVDF. In both cases, the systems are backed by 1.25 mm thick
copper layers and bonded to aluminium substrates.

Figure 6.3 Typical measured pulse-echo response of a monolithic bulk wave
transducer, in this case showing a device with passive layers, with and
without lead backing.
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Figure 6.4 Construction of first low frequency IDTs. The fingers are (a) cut from
PVDF sheet and configured as shown in (b). The layered assembly of the
IDT is shown in (c), in this case for a passive layers design.

Figure 6.5 Experimental set-up for testing low frequency IDTs.
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Figure 6.6 Received time-traces obtained from T1 (passive layer device). The time-
trace shown in (a) is with both sets of fingers connected, and the time-
traces in (b) and (c) show the effect of connecting each set individually.
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Figure 6.7 Received time-traces obtained from T2 (single layer device). The time-
trace shown in (a) is with both sets of fingers connected, and the time-
traces in (b) and (c) show the effect of connecting each set individually.



6. Low frequency inter-digital transducers

Page 188

Figure 6.8 Geometry of a four phase IDT designed to produce a uni-directional
divergent beam over a 90° sector.
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Figure 6.9 (a) Predicted acoustic field from the four phase IDT shown in figure 6.8
and (b) angular cross section along the dotted line in (a). The
experimentally measured values are also plotted  in (b).
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Figure 6.10 Construction of four phase IDT showing (a) the electrode shapes and
polarity and (b) the electrical connections. The experimental set-up for
measuring the acoustic field from the IDT is shown in (c).
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Figure 6.11 Time-traces measured at the locations (a) P, (b) Q and (c) R from the IDT
in figure 6.10 when the IDT was driven at 91 kHz.
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Figure 6.12 Time-traces measured at the locations (a) P, (b) Q and (c) R from the IDT
in figure 6.10 when the IDT was driven at 65 kHz.
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Figure 6.13 Phase velocity dispersion curves for 5 mm thick aluminium plate (Al) and
5 mm thick aluminium  plate (Al) in perfect ‘welded’ contact with 1.3 mm
thick lead plate (Pb).

Figure 6.14 Technique 2 for measuring the acoustic field from an IDT, using two
conical transducers and the IDT as the transmitter.
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Figure 6.15 Technique 3 for measuring the acoustic field from an IDT, using two
conical transducers and the IDT as a receiver.

Figure 6.16 Geometry of experimental set-up to measure the acoustic field around a
point source by various methods.
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Figure 6.17 Three sets of angular cross section measurements through the acoustic
field from a point source before being corrected for coupling
inconsistencies.

Figure 6.18 The three sets of angular cross section measurements from figure 6.17
after being corrected for coupling inconsistencies by technique 3.
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Figure 6.19 Measured cross sections through the acoustic fields from single straight
fingers of lengths 2, 5 and 10 wavelengths. Predicted cross sections from
Huygens’ model are also shown. The diamonds on the cross sections
indicate the minima on either side of the main lobe of the beam.
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Figure 6.20 Predicted beam divergence angle as a function of finger length for a single
straight finger. The function for the beam divergence of a bulk wave
transducer with diameter equal to the finger length is indicated by the
dashed line. An improved curve fitted to the predicted beam divergences is
also plotted.
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Figure 6.21 Predicted beam cross sections though the acoustic field from a straight
finger IDT, 10 wavelengths wide, and with 1, 5 and 10 fingers. In (a) the
relative amplitudes of the three fields are correct, but in (b) the amplitude
of each cross section has been normalised by the number of fingers.
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Figure 6.22 Nomenclature used to describe a curved finger IDT.
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Figure 6.23 Predicted angular cross sections through the acoustic field from an IDT
with a single curved finger of angle 90° as the radius of the finger is
increased from (a) 1, (b) 2, (c) 3, (d) 4, (e) 5 and (f) 10 wavelengths. Cross
sections through the ideal fields are shown with lighter lines and where
applicable, experimental measurements are shown by black circles.
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Figure 6.24 Predicted angular cross sections through the acoustic field from an IDT
with a single curved finger of radius 5 wavelengths as the angle of the
finger is increased from (a) 15°, (b) 30°, (c) 45°, (d) 60°, (e) 75° and (f)
90°. Cross sections through the ideal fields are shown with lighter lines
and where applicable, experimental measurements are shown by black
circles.
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Figure 6.25 Schematic diagram illustrating the discrepancy between the actual and
ideal angular beam profiles from a  curved finger IDT.
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Figure 6.26 Predicted beam quality of a single curved finger IDT as a function of
radius of finger for various angles of finger. The critical radius is indicated
by circles in the inset graph of the low radius region.
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Figure 6.27 Critical radius of a single curved finger.

Figure 6.28 Radius and angle combinations required to produce particular beam
qualities for an IDT with a single curved finger. The critical radius is also
plotted.
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7. Conclusions and future work

7.1 REVIEW OF THESIS

This thesis has investigated several fundamental areas relevant to the general title ‘Lamb
wave inspection of large structures using permanently attached transducers’.

In chapter 2, Lamb wave theory was reviewed and two new areas were analysed. The first
of these concerned the development of equations which cover guided wave propagation in
curved plates. The second was an examination of the effect of dispersion on long range
inspection using Lamb waves. Several methods of making quantitative comparisons of
the degree of dispersion at different points on dispersion curves were presented.

Chapter 3 described the development of a one-dimensional model for a layered bulk wave
transducer system. This model was validated using 110 µm thick PVDF film which was
taken as a candidate material from which to construct permanently attached transducers.
The one-dimensional model was subsequently used in chapters 4 and 6 as a tool for
predicting the frequency response of inter-digital transducers (IDTs).

The first generation of high frequency PVDF IDTs to transmit and receive Lamb waves at
frequencies above 750 kHz was described in chapter 4. A modified form of Lamb wave
phase velocity dispersion curves plotted on dimensionless logarithmic axes was
introduced as a tool to assist in the initial design of an IDT to select a particular mode.
Results were presented which demonstrated the use of these IDTs to transmit and receive
the A0 mode in 1-2 mm thick plates, and to transmit and receive the A2 and S4 modes in
6.5 mm thick ductile iron pipe.

The development and validation of a model based on Huygens’ principle for predicting
the acoustic field for different IDT finger geometries was described in chapter 5. The
development of this model required an analytical investigation of the excitability of
different Lamb wave modes in order to be able to predict the axi-symmetric acoustic field
generated by the application of a time dependent point force normal to the surface of a
plate.

Chapter 6 returned to the subject of IDT construction, this time describing the
development of low frequency PVDF IDTs for transmitting and receiving the A0 mode in
thicker structures. Results were presented which illustrated the operation of these IDTs on
a 12.65 mm thick aluminium beam at around 100 kHz and on a 5 mm thick aluminium
plate at around 65 kHz. On the latter structure, a four phase IDT was described which
could transmit a uniformly divergent acoustic beam from one side of the transducer only.
The remainder of chapter 6 described experiments performed with very simple low
frequency IDTs, the results from which were used in conjunction with predictions
obtained from Huygens’ model to elucidate some general guidelines for the geometry of
IDT fingers. As part of this experimental work, an improved technique was developed for
measuring the strength of the acoustic field at a point in a plate.
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7.2 SUMMARY OF FINDINGS

7.2.1 Effect of curvature on Lamb wave propagation

The phase velocity curves for wave propagation in curved plates appear very similar to
those for a flat plate except when the ratio of the radius of curvature to the plate thickness
is below around 5:1. However, the group velocity dispersion curves for a curved plate
show much larger deviations from those for a flat plate, even when the radius of curvature
to the plate thickness is around 10:1. This is caused by some of the mode crossing points
in phase velocity space changing to being points of mode repulsion for curved plates even
when the curvature is only moderate. As the curvature is increased, the repulsion and
mode separation in these locations becomes greater and readily visible on the phase
velocity dispersion curves.

7.2.2 Effect of dispersion on Lamb wave propagation

Previous workers (Alleyne and Cawley 1992) have suggested that the points of maximum
group velocity on Lamb wave dispersion curves are ideal operating points from the point
of view of obtaining long range propagation with minimum dispersion. Here various
measures have been proposed which enable the amount of dispersion at different points to
be quantitatively compared. Firstly a quantity called dispersivity has been suggested as a
measure of the rate of spatial spreading of a single mode Lamb wave signal as it
propagates. This has been used to look at the original group velocity dispersion curves in
two different ways: for input signals of constant duration they should be plotted on a
linear frequency axis and for input signals of fixed shape (i.e. tonebursts with a fixed
number of cycles) they should be plotted on a logarithmic frequency axis. The former
case agrees with the original view that all points of maximum group velocity are potential
low dispersion operating points, but only on the extra condition that the number of cycles
used in input signals must be increased roughly in proportional to the operating
frequency. On the other hand, the latter case favours the lower order modes and of
particular interest is the fundamental A0 mode at low frequencies, which on a logarithmic
frequency axis appears to have a surprisingly slowly changing group velocity. This result
indicates that the A0 mode can be used for long range testing over a wide range of
frequencies rather than just at the frequency of maximum group velocity.

For a particular propagation distance, it has been shown that there is a minimum
resolvable distance associated with every point on the dispersion curves and a
corresponding optimum shape of input signal required to achieve this. The minimum
resolvable distance can be used as an unambiguous measure of the relative resolution
which may obtainable at any point on the dispersion curves for a given propagation
distance.

7.2.3 Inter-digital transducers

Although the first generation of IDTs worked very well as transmitters and receivers of
the A0 mode in 1-2 mm thick plates, their frequency response restricted them to higher
order modes when used on thicker structures. Although some success was demonstrated
when using these transducers to transmit and receive the A2 and S4 modes in a 6.5 mm
thick ductile iron pipe, serious problems of achieving modal selectivity were encountered.



7. Conclusions and future work

Page 207

Attenuation was also shown to severely limit the propagation distance of these modes
even in an air-loaded structure. From these results, it has been concluded that the use of
higher order Lamb wave modes is not likely to be suitable for long range inspection
purposes. If only lower order modes are used, it is clear that the operating frequencies
associated with transducers must be reduced as the thickness of plates is increased.

7.2.4 Inspection of thick plate-like structures

For low profile IDTs generating out-of-plane surface tractions, it has been shown that the
operating frequency can be reduced by using a thin layer of dense backing material behind
the piezoelectric layer to provide mass loading. The successful use of PVDF IDTs of this
construction has been demonstrated at frequencies as low as 65 kHz. It is hoped that
similar techniques of improving the low frequency response could be directly applied to
other piezoelectric materials suitable for IDTs such as 0-3 composites (Tran-Huu-Hue et
al. 1997) and ceramic platelet matrices (Gachagan et al. 1996). It has also been shown
that with careful design, a curved finger IDT driven from a four phase signal source can
be constructed that will emit a uniformly divergent beam from one side of the transducer
only. Such an acoustic field pattern would be ideal for monitoring a sector of a structure.

7.2.5 Huygens’ modelling of the field from inter-digital transducers

A model based on Huygens’ principle has been shown to be a fast and accurate method of
predicting the acoustic field generated by an IDT, subject to the IDT satisfying the
assumption that waves which pass beneath it are not significantly affected by the presence
of the IDT.

Using this model and experimental data, the design of straight and curved finger IDTs has
been investigated in more detail. It has been shown that a single straight finger of an IDT
is the Lamb wave analogue of a conventional plane bulk wave transducer. The beam
divergence angle associated with such a finger can be calculated using a similar formula
to that which is used to calculate the beam divergence angle from a conventional
transducer. The use of an IDT with multiple fingers of equal length does not affect the
beam divergence angle, nor does it significantly affect the overall acoustic field pattern.

In the case of an IDT with curved fingers generating a divergent beam, the situation is
more complicated, and a quantity called the beam quality has been introduced to enable
quantitative comparisons to be made between the beams generated by different IDTs. By
firstly investigating the acoustic field from a single curved finger, it has been shown that
the beam quality tends to improve as either the radius of the finger is increased or the
angle subtended by the finger is increased. It also appears that for a given angle of curved
finger, there is a minimum radius, below which the finger behaves more like a straight
finger. The practical implication for the design of a curved finger IDT to produce a
divergent beam over a given angle is that the mean radius of the IDT must be several
times greater than the minimum radius required for that angle.

7.3 FUTURE WORK

This thesis has investigated some aspects of the basic science necessary for the
development of an integral structural inspection system using Lamb waves. Several topics
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have been covered in some detail, and in this section future work in these areas is
proposed. This section does not attempt to address wider issues necessary for the
development of an integral structural inspection system such as telemetry and data
processing.

7.3.1 Effect of curvature on Lamb wave propagation

The dispersion curves for curved plates need validation either experimentally, or more
likely, by using finite element modelling. Such validation was not performed at the time
when the analytical work was done as the effect of curvature on the phase velocity
dispersion curves was minor at the degrees of curvature likely to be encountered in the
structures described here. However, the major effect which curvature appears to have on
the group velocity dispersion curves definitely warrants further investigation.

A practical use which is envisaged for the phase velocity dispersion curves of plates with
varying degrees of curvature is to obtain a first approximation of the likely transmission
or reflection coefficients for Lamb waves incident on a fold in an otherwise flat plate.
Whether or not the assumption that such coefficients can be inferred from the change in
phase velocity between a flat and curved section of plate is correct would again need
extensive finite element or experimental validation.

7.3.2 Inter-digital transducers

In addition to continuing investigations into other piezoelectric materials, the design of
IDTs to generate in-plane rather than out-of-plane surface tractions is a high priority. This
would increase the number of modes which could be used in long range Lamb wave
inspection, and would potentially enable liquid loaded structures such as pipes and oil
storage tanks to be inspected. Many options are being considered, including the idea of
exploiting Poisson’s ratio effects in thin piezoelectric films (including PVDF) in order to
obtain the necessary tractions. The use of piezoelectric materials that undergo a shearing
rather than expanding motion when an electric field is applied also needs to be examined.
Such materials would probably be employed in piezo-ceramic platelet matrices
(Gachagan et al. 1996) rather than in monolithic form.

7.3.3 Huygens’ modelling of inter-digital transducers

In the work described here, the predictions made using Huygens’ model have all used
continuous excitation of the IDT in order to calculate the acoustic field strength. This is
because if toneburst excitation is used the acoustic field must be recalculated at every
instant in time in order to calculate the peak amplitude at each point, which makes the
overall calculation take considerably longer. The difference between the acoustic fields
predicted by the two methods is usually minimal, but in certain cases it can be significant,
particularly when the dimensions of the IDT are large compared to the spatial length of
the toneburst. Since toneburst rather than continuous excitation is used in practical
applications, this area needs further investigation to determine under exactly what
conditions the continuous model ceases to be a valid approximation.

The examination of the acoustic fields from curved finger IDTs needs to be completed by
investigating the effect of multiple fingers.
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Appendix A: Equations for wave propagation in a curved plate

The following potential functions were shown to satisfy the wave equation
(equation 2.11):

( ) ( )( ) ( )
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(A.1)

where r is the radial coordinate, θ is the angular coordinate, kl is the bulk longitudinal
wavenumber, kt is the bulk transverse wavenumber, kθ is the angular wavenumber, ω is
the circular frequency, t is the time and the values of Al+, Al-, At+ and At- are the
amplitudes of longitudinal and transverse partial waves. From these, the particle
displacement fields may be calculated from the definition of the potential functions:
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To obtain:
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and
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The displacement field is the first of the two fields which is required in order to solve
multi-layered propagation problems using the global matrix method. The second field
required is the stress field and this is obtained firstly by calculating the strain field from
the displacement field using:
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The stress field is calculated from the strain field using Hooke’s law (Howatson et al.
1972):
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Which yields:
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and
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The expressions for ur, uθ, σrr and σrθ given by equations A.3, A.4, A.7 and A.8
respectively may now be used to obtain the components, aij, in the field matrix for
circumferential wave propagation in a cylindrical layer:

u

u

u

a a a a

a a a a

a a a a

a a a a

A

A

A

A

A

A

r

z

rr

r

rz

l

l

t

t

h

h

θ

θ

σ
σ
σ

























=



















































+

−

+

−

+

−

11 12 13 14

21 22 23 24

41 42 43 44

51 52 53 54

0 0

0 0

0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0

(A.9)

This matrix is in the correct form to be implemented in a global matrix algorithm for
computing modal solutions to wave propagation in cylindrical layered systems. For the
work described in this thesis, this solution for circumferentially propagating waves has
been implemented into Disperse (Pavlakovic et al. 1997). The terms Ah+ and Ah- are the
amplitudes of partial transverse waves polarised in the z direction. These are the curved
plate analogue of SH waves in a flat plate, and have not been considered here.
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Appendix B: Bandwidths of Hanning windowed tonebursts

Consider a Hanning windowed toneburst with centre frequency f0, n cycles and centred in
time at t = 0. Its duration, 2τ, is n/fo and its shape is thus given by:
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where h(t) is the Hanning envelope, and s(t) is the pure sine wave. Since this is the
product of two functions, the Fourier transform may be expressed as the convolution of
the transforms of each of the functions:

( ) ( ) ( )x f h f s f= ∗ (B.2)

The Fourier transform of the sine wave, s(f) is given by (Howatson et al. 1972):

( ) ( ) ( ){ }s f j f f f f= − − + +1
2 0 0δ δ (B.3)

and the Fourier transform of the Hanning window is given by (Howatson et al. 1972):
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(B.4)

The bandwidth, ∆f, of the Hanning window is defined by the frequencies, -∆f/2 and ∆f/2,
at which the amplitude of h(f) falls to some (fixed) fraction, β, of its maximum value, τ.
Thus from equation B.4:
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and so:
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Thus, for a fixed value of β:

∆f kτ = (B.7)

where k is a function of β.

The frequency spectrum of the original signal, x(f), given by the convolution described by
equation B.2 appears thus:

If the centre frequency, f0, is small compared to the bandwidth of h(f), then the two
portions of x(f) corresponding to convolution with the two delta functions in equation B.3
may overlap at low frequencies. However, in most cases (typically when the input signal
has more than 2 cycles) this overlap may be ignored for the purposes of calculating the
bandwidth of x(f). Thus equation B.7 may be re-arranged to give the bandwidth of the
original toneburst in terms of the number of cycles and the centre frequency:
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2 0 (B.8)

Hence the frequency spectrum of the original toneburst is defined by the limits:
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And the value of k necessary for different bandwidth measures may be calculated from
equation B.6 as illustrated in the graph below:
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