NTEC Module: Water Reactor Performance and Safety
Lecture 9: Critical flow

G. F. Hewitt
Imperial College London

Summary

- Isentropic processes
- Propagation of small amplitude pressure wave
- Isentropic flow
- Critical flow
- Example of critical flow of steam
- Homogeneous equilibrium model (HEM) for two-phase flow

Isentropic processes I

Ideal gas law

\[p v = R T \quad R = \frac{R_u}{M} \]

\(v \) = specific volume \(\left(\frac{1}{\rho} \right) \) (m³/kg)

\(p \) = pressure (Pa)

\(R \) = gas constant (Nm/kg.K)

\(T \) = temperature (K)

\(R_u \) = Universal gas constant

\(= 8314 \) (Nm/kmole.K)

\(M \) = Molecular weight (kg/kmole)

Isentropic processes II

Definition of specific enthalpy

\[h = u + pv = u + RT \] (ideal gas)

\(u \) = specific internal energy (J/kg)

Definition of \(c_p \) and \(c_v \)

\[dh = c_p dT \]

\[du = c_v dT \]

Thus:

\[dh = c_p dT = du + RdT = c_v dT + RdT \]

\[c_p - c_v = R \]
Isentropic processes III

Define

\[\frac{c_v}{c_p} = k \quad (\gamma \text{ often also used}) \]

\[c_v = \frac{kR}{k-1} \quad c_p = \frac{R}{k-1} \]

Change in internal energy \(du \) given by

\[du = dq - dw \]

- \(dq \) = heat added per kg (J/kg)
- \(dw \) = work done by system (J/kg)

Isentropic processes IV

Work done given by

\[dw = pdv \]

Thus

\[du = dq - pdv \]

Define:

\[ds = \frac{dq}{T} \]

Thus:

\[Tds = du + pdv \]

Isentropic processes V

But

\[dh = d(u + pv) = du + pdv + vdp \]

\[\therefore Tds = dh - vdp \]

Thus

\[ds = \frac{du}{T} + \frac{p}{T}dv = c_p \frac{dT}{T} + R \frac{dv}{v} \]

\[ds = \frac{dh}{T} + \frac{v}{T}dp = c_v \frac{dT}{T} + R \frac{dp}{p} \]

Isentropic processes VI

For an adiabatic, reversible ("isentropic") process \(ds = 0 \). Thus:

\[\frac{dT}{T} + \frac{R}{c_v} \frac{dp}{p} = 0 \quad (1) \]

\[\frac{dT}{T} + \frac{R}{c_p} \frac{dv}{v} = 0 \quad (2) \]

Subtracting (2) from (1) and dividing by \(\frac{R}{c_v} \):

\[\frac{dp}{p} + \frac{c_v}{c_p} \frac{dv}{v} = 0 \]

Integrating

\[\ln \frac{p + \frac{c_v}{c_p} \ln v}{c_v} = \text{constant} \]

\[\frac{p v^\gamma}{c_v} = \text{constant} \]
Propagation of small amplitude pressure wave I

- Long cylinder filled initially with motionless fluid
- Piston at one end given infinitesimal velocity \(dV\)
- Pressure wave moves at velocity \(a\) separating fluid moving at velocity \(dV\) and fluid which remains stationary

\[
p + dp \\
p + dp \\
T + dT \\
V = 0 \\
\rho, \rho, T
\]

\[
dV \\
a
\]

Propagation of small amplitude pressure wave II

Consider frame of reference moving with wave

\[
p + dp \\
p + dp \\
T + dT \\
\rho, \rho, T
\]

Continuity equation on control volume

\[
ap = (a - dV) \rho + d \rho
\]

\[
gap = a \rho + ad \rho - \rho dV - dV d \rho
\]

\[
ad \rho = \rho dV
\]

--- (3)

Propagation of small amplitude pressure wave III

Momentum equation for control volume:

\[
pA - (p + dp)A = - \rho a^2 A + (\rho + d \rho)(a - dV)^2 A
\]

Dividing through by \(A\) and expanding:

\[
p^2 - p^2 - dp = - \rho a^2 + (\rho + d \rho)(a^2 - 2adV + (dV)^2)
\]

\[
= - \rho a^2 + \rho a^2 - 2 \rho dV + \rho (dV)^2 + a^2 d \rho - 2a d \rho d \rho + d \rho (dV)^2
\]

Thus

\[
dp = -2 \rho a dV + a^2 d \rho
\]

Propagation of small amplitude pressure wave IV

But from equation 3 (continuity), \(\rho dV = ad \rho\)

\[
dp = -2a^2 d \rho + a^2 d \rho
\]

\[
a^2 = \frac{dp}{d \rho}
\]

For thin region around wave with a disturbance of infinitesimal amplitude, the process is essentially ADIABATIC AND REVERSIBLE, hence ISENTROPIC

\[
a^2 = \left(\frac{dp}{d \rho}\right)_S
\]
Propagation of small amplitude pressure wave \(V \)

For ideal gas, isentropic process gives

\[
pV = \frac{p}{\rho} = \text{constant (X)}
\]

\[
dp = \Xi k \rho^{\Xi-1} d \rho = \frac{p}{\rho} - k \rho^{k-1} d \rho
\]

\[
= k \frac{\rho}{\rho} \frac{d \rho}{d \rho}
\]

\[
\left(\frac{dp}{dp} \right)_v = \frac{kp}{\rho} = kRT
\]

\[
a = \sqrt{kRT}
\]

Isentropic flow I

Procedure: Derive continuity and momentum equations for element of length \(dx \).

Isentropic flow II

Continuity equation (steady flow)

\[
\frac{d}{dx} (\rho V A) = 0
\]

or \(\rho V A = \text{M} = \text{const} \)

Differentiating

\[
V Ad \rho + \rho V dA + \rho AdV = 0
\]

or

\[
\frac{d \rho}{\rho} + \frac{d A}{A} + \frac{d V}{V} = 0
\]

Isentropic flow III

Momentum equation (steady flow without body or shear forces)

\[
\frac{d}{dx} \left(\frac{\rho V^2 A}{2} \right) dA = \left(\rho + \frac{1}{2} \frac{\rho V}{c_v} \right) \frac{d A}{dx} \frac{d A}{dx} + \frac{\rho}{c_v} \frac{d (\rho V A)}{dx}
\]

Momentum flux out = momentum flux in

\[
= \text{sum of (pressure) forces on element}
\]
Isentropic flow IV

\begin{align*}
\rho V^2 A + \frac{d}{dx} \left(\rho V^2 A \right) - \rho V^2 A &= \rho \frac{d}{dx} \left[p + \frac{1}{2} \frac{d \rho}{dx} \right] dx \frac{dA}{dx} - \left[\rho A + \frac{d}{dx} \left(\rho A \right) \right] \\
\rho V^2 A + \frac{d}{dx} \left(\rho V^2 A \right) - \rho V^2 A &= \rho \frac{d}{dx} \left(p \frac{dA}{dx} \right) - p \frac{d}{dx} \left(\rho \frac{dA}{dx} \right) - \rho A \frac{d}{dx} \left(\frac{dA}{dx} \right) \\
\frac{d}{dx} (\rho A) &= -Adx \frac{dA}{dx}
\end{align*}

Isentropic flow V

\begin{align*}
\frac{d}{dx} (\rho V^2 A) &= -Adx \frac{dA}{dx} \\
or\frac{\partial}{\partial x}(\rho V^2 A) + A \frac{dp}{dx} &= 0 \\
or\frac{\partial}{\partial x}(V \cdot \rho V A) + A \frac{dp}{dx} &= 0 \\
\rho V A \frac{\partial}{\partial x} (\rho V A) + V \frac{\partial}{\partial x} (\rho V A) + \frac{\partial}{\partial x} (\rho V A) + A \frac{dp}{dx} &= 0 \quad \text{--- (4)}
\end{align*}

Isentropic flow VI

But from the continuity equation

\[
\frac{\partial}{\partial x} \left(\rho V A \right) = 0
\]

Thus equation 4 becomes (eliminating \(A\))

\[
\rho V \frac{\partial V}{\partial x} + \frac{\partial p}{\partial x} = 0
\]

or \(dp = -\rho V dV\)

or \(\frac{dV}{V} = -\frac{dp}{\rho V^2}\) \quad \text{--- (5)}

Isentropic flow VII

\[
\frac{dV}{V} \quad \text{also follows from the continuity expression}
\]

\[
\frac{dV}{V} = -\frac{dA}{A} \frac{d\rho}{\rho}
\]

and introducing this into equation 5 we have:

\[
\frac{dA}{A} \frac{d\rho}{\rho} = \frac{dp}{pV^2}
\]

\[
\frac{dA}{A} = -\frac{d\rho}{\rho} \frac{dp}{pV^2} - \frac{dp}{pV^2} \left[1 - \frac{V^2}{(dp/\rho)} \right]
\]
Isentropic flow VIII

But $a^2 = \{dp/\rho d\}$ and $V^2/a^2 = M^2$ where M is the MACH NUMBER. Thus

$$\frac{\dot{p}}{\rho V^2} = \frac{dA/A}{1 - M^2}$$

Thus:

Subsonic flow $M < 1$: \dot{p} positive if dA positive

dp negative if dA negative

Supersonic flow $M > 1$: dp negative if dA positive

dp positive if dA negative

Critical flow I

$P_o > P'_o > P_a$

When $V = M$ at throat of nozzle, further decrease in downstream pressure does not change velocity (or mass flux) at throat or vena contracta or p'_o.

Hence MAXIMUM or CRITICAL flow observed in these conditions.

Critical flow II

Kinetic energy per unit mass of fluid $= V^2/2$.

First law of thermodynamics:

$$h_o = \text{constant} = h + \frac{V^2}{2}$$

$h_o = \text{STAGNATION ENTHALPY}$

enthalpy of fluid brought to rest (upstream enthalpy if $V_o \uparrow \sigma$)

$k = c_p T = \frac{RT}{(k-1)}$ (Slide 5)

Thus:

$\frac{kRT}{(k-1)} \frac{V^2}{2} = \frac{kRT}{(k-1)}$

Critical flow III

$\frac{kRT}{(k-1)} \frac{V^2}{2} = \frac{kRT}{(k-1)}$

If $V = a = \sqrt{\frac{kRT}{(k-1)}}$ then $V^2 = kRT$.

Thus:

$\frac{kRT}{(k-1)} \frac{V^2}{2} \frac{kRT}{(k-1)}$

Dividing through by kRT and multiplying through by $(k-1)$

$$\frac{k}{k-1} + \frac{T}{T_o} = \frac{1+\sigma}{2}$$
Critical flow IV

To obtain p_1 and p_2 we use

- $p_1' = \text{constant} = c_i$ (isentropic expansion)
- $p_1 = RT$ (ideal gas law)
- $\frac{RT}{V} = \text{constant} = c_i$
- $T_0 = \text{constant} = \frac{c_i}{R}$
- $V_0 = \frac{c_i}{p}$

Thus

$$\frac{p_1 - p_2}{R} = \text{constant}$$

Critical flow V

Maximum (critical) mass rate of flow

$$M_{\text{max}} = \frac{aA}{v} = aA \rho^* = A' p^* \sqrt{kRT'}$$

A' is flow area at which $V = a$ ($A' = CA$, $C = \text{coefficient of discharge}$)

We express T' and ρ^* in terms of (known) p_1 and T_1

$$T' = \frac{2T_1}{k + 1}$$

$$\rho^* = \frac{\rho}{RT'}$$ (ideal gas law)

Critical flow VI

$$T' = \frac{2T_1}{k + 1}$$

$$\rho^* = \frac{\rho}{RT'}$$ (ideal gas law)

$$p' = \frac{p_1}{\left(\frac{1 + k}{2}\right)}$$

$$\rho^* = \frac{p_1}{\left(\frac{1 + k}{2}\right)} \frac{1}{RT'\left(\frac{1 + k}{2}\right)}$$

$$= \frac{p_1}{RT'} \frac{1}{\left(\frac{1 + k}{2}\right)^{1 + \frac{1}{k}}}$$

Critical flow VII

$$M_{\text{max}} = A' \frac{p_1}{RT'} \frac{1}{\left(\frac{k + 1}{2}\right)^{1 + \frac{1}{k}}} \sqrt{kRT'\left(\frac{k + 1}{2}\right)^{1 + \frac{1}{k}}}$$

$$= A' \frac{p_1}{RT'} \left(\frac{k + 1}{2}\right)^{\frac{1}{k}}$$

$$= A' \frac{p_1}{RT'} \left(\frac{k + 1}{2}\right)^{\frac{1}{k}}$$
Example of critical flow of steam I

- A 1100 MW(e) reactor operating at 150 bar is shut down due to a small break corresponding to an area of 0.011m². A short time after the shutdown, the rate of power generation has reduced to 200 MW(t).
- The reactor has remained pressurised and the steam generators are not operating. Heat removal is by "feed and bleed" with water being injected by the HPIS and the heat being removed in the form of steam which flows through the break.
- Assuming that the specific heat ratio \(k = \frac{c_p}{c_v} \) is 1.3 for steam and that the steam is saturated at 343 C, calculate the maximum flow rate of steam which could occur. Also, assuming a latent heat of vaporisation of 1000 kJ/kg, calculate the maximum amount of heat which could be removed. Is this sufficient?
- The molecular weight of water should be taken as 18 kg/kmole and the break treated as a nozzle with a discharge coefficient of unity. The Universal Gas Constant is \(R_u = 8314 \) J/kmole K.

Example of critical flow of steam II

For steam
\[
R = \frac{R_u}{M} = \frac{8314}{18} = 461.9
\]
\[
p_u = 150 \text{ bar} = 1.5 \times 10^5 \text{ Pa}
\]
\[
T_u = 342 + 273 = 615 \text{ K}
\]
\[
A' = CA = 1 \times 0.011 = 0.011
\]

Example of critical flow of steam III

\[
M_{max} = A' p_u \left(k \frac{k + 1}{2} \right)^{1/2} \left(k \frac{k + 1}{2} \right)^{1/2} \left(\frac{k + 1}{2} \right)^{1/2} \left(\frac{k + 1}{2} \right)^{1/2}
\]
\[
= 0.011 \times 1.5 \times 10^5 \times \left(\frac{1.3}{461.9 \times 615} \right)^{1/2} \left(1.3 \times 1.3 \right)^{1/2} \left(1.3 \times 1.3 \right)^{1/2}
\]
\[
= 0.011 \times 1.5 \times 10^5 \times 0.002139 \times (1.15)^{1.585}
\]
\[
= 206 \text{ kg/s}
\]

Example of critical flow of steam IV

Maximum rate of heat removal
\[
= M_{max} \times h_{LG} = 206 \times 1000 \times 10^3
\]
\[
= 206 \text{ MW}
\]
(i.e. just sufficient to remove decay heat)
Homogeneous equilibrium model (HEM) for two phase flow I

- **Gas**
 - Temperature T_g
 - Velocity u_g
 - Composition $x_i = \text{mole fraction of } i^{th} \text{ component}$

- **Liquids**
 - Temperature T_l
 - Velocity u_l
 - Composition $x_i = \text{mole fraction of } i^{th} \text{ component}$

Assumptions:
- $T_g = T_l$
- $u_g = u_l$
- x_i's in equilibrium with x_i's

Applied along path of flow from upstream to throat

Homogeneous equilibrium model (HEM) for two phase flow II

Density of fluid (ρ) given by

$$\rho = \left[\frac{x}{\rho_g} + \left(1 - x\right)/\rho_l \right]^{-1}$$

(ρ_g and ρ_l are liquid and gas densities)

$x = \text{quality (vapour mass flow as a fraction of total flow)}$

Homogeneous equilibrium model (HEM) for two phase flow III

Method general and applies to both single component and multi-component fluids

Homogeneous equilibrium model (HEM) for two phase flow IV

- Calculate velocity of sound
 $$v = \sqrt{\frac{\mu}{\rho}}$$

- Check whether energy balance equation is obeyed
 $$\dot{\mu} - \dot{\lambda} = \left(\alpha - \beta\right)/\alpha \geq 0$$

- Calculate critical mass flow
 $$M_{\text{crit}} = \dot{\alpha}^\# m_{\#}$$
Homogeneous equilibrium model (HEM) for two phase flow V

- Thermodynamic Equilibrium: \(T_a = T_i \)
- Mechanical Equilibrium: \(u_i = u_j \)
- Phasic Equilibrium: \(\xi_k \) in equilibrium with \(\xi_i \)

Example: Dispersed Flow Model (DSM) (Lemnitzer and Selmer Olsen)