

ICF research at the University of York in 2010/11

John Pasley

Presented at the CIFS workshop, AWE, 15/3/2011

Plasma physics at York

FUSION DOCTORAL TRAINING NETWORK

- Currently 7 academic staff soon to be 10, with 3 new technological plasma appointments
- Cover IFE and MFE
- New building under construction for 'York Plasma Institute'
- MSc in plasma physics
- Doctoral training network involving York, Durham, Manchester, Liverpool

ICF related work at York

- Laser to electron coupling + electron transport and heating studies relevant to fast ignition
- Warm and hot dense matter studies
- IFE reactor vessel radiation transport and damage related studies
- Hydrodynamics driven by short pulse lasers, relevant to FI heater beam interaction
- Small local laser laboratory (0.5 J, 170 ps) set-up for diagnostics testing, training and experiments
- Other things

Shock waves driven by intense LPI

- Analytic and 1-D MHD calculations of the effect of intense beams of hot electrons propagating through matter
- Ohmic heating found to be dominant effect (compared to jxB)
- Shocks can be generated; most easily at lower densities. $j_0^2/
 ho$ ratio determines rate at which shocks form

Bush, Robinson, Kingham and Pasley, PPCF, 2010

Shock waves driven by intense LPI

Pump-probe experiment employed, using Doppler shift of 2 ω probe to record hydrodynamics driven by interaction of 1 ω pump beam

1-D electromagnetic PIC calculation coupled to simple hydrodynamics model shows a reasonable match to the experimental measurements

£120K EPSRC grant recently awarded to further this work

Mondal, Lad, Ahmed, Narayanan, Pasley, Rajeev, Robinson, Ravindra Kumar, PRL, 2010

3D view factor modelling

- Mphys final year project conducted by student Matt Fisher
- 3D view factor code with graphical interface for defining geometry and laser beam input
- Gives good match to historical data (e.g. Nova hohlraum illustrated)

On-going collaboration with Fast Ignition Studies at ILE

November 2010 experiments appear to show enhanced neutron yield compared to previous those of Sept 2009 experiment and also 2003 experiment; results still under analysis

For results of 2009 experiment see: M. Koga et al, Nucl. Instrum. Meth 2011

MCNP-FISPACT linking code developed (MCNPACT)

Application to reactor-like problems will be the next step

Preliminary experimental investigations into neutron damage in optical components

- Preliminary studies carried out using small doses (at UK National Physical Laboratory 17.6 MeV neutron source) for the purpose of developing experimental techniques
- A range of diagnostic approaches investigated including interferometric investigation of surface damage (above) and spectrophotometry

Other Pasley activities

 Continued collaboration with UCSD/ LLNL / Univ Alberta group on electron transport in warm/cold matter experiments

 Shock wave modelling/experiments in collaboration with BARC (India)

Interferometry of warm dense plasmas

- Phase shift drops below $0 \rightarrow$ 'non-plasma' refractive index associated with C+

Exp. at PALS, Czech Republic

L. M. R. Gartside, 1.* G. J. Tallents, A. K. Rossall, E. Wagenaars, D. S. Whittaker, M. Kozlová, 2 J. Nejdl,^{2,3} M. Sawicka,^{2,3} J. Polan,² M. Kalal,³ and B. Rus²

OPTICS LETTERS / Vol. 35, No. 22 / November 15, 2010 Extreme ultraviolet interferometry of warm dense matter in laser plasmas

Phase shift vs time during irradiation

Time from peak of pulse (ps)

1000

1500

2000

500

Modelling XFEL heating of solid targets

- Volumetric heating expansion occurs on 10 ps timescale
- Photo-ionisation/Auger decay dominate – other collisional and radiative process occur at much slower rates
- Rate modelling opposite assumes electrons are thermal and uses modified Lotz formula

Photo-ionisation of iron dominates collisional ionisation by at least an order-of-magnitude at 10¹⁸ Wcm⁻². Figure shows the rates of photo-lonisation/collisional ionisation of different states for 3 keV photons

Predictions of temperatures in XFEL heating (after LTE equilibration)

Time dependent populations of iron and carbon upon XFEL irradiation are modelled. Result for 1.75 keV photons at 10¹⁷ Wcm⁻² are shown

PHYSICS OF PLASMAS 18, 013105 (2011)

Temperatures following x-ray free-electron-laser heating of thin low- and medium-Z solid targets

D. S. Whittaker, ^{a)} E. Wagenaars, and G. J. Tallents Department of Physics, University of York, York YO10 5DD, United Kingdom

Local laser-plasma at York shows 4x increase of x-ray flux focussed into target 'hole'.

Image of laser scatter and emitted light onto plane and 'hole' targets

(a) (b) Target burn through X-ray dlode X-ray Flux (mV on diode) Aluminium Target 5Hz, 1.06μm, 170ps, 0.5J Visible (SLR) 20 80 100 (c) (d) **Shot Number**

Experimental set-up and the x-ray flux at 5 keV as a hole is created in the 2 mm thick target

Double slit interferometry to measure EUV refractive indices of solids using high harmonics

Real and imaginary parts of Aluminium refractive index measured

$$n(\omega) = 1 - \delta(\omega) + i\beta(\omega)$$

- Measurements of EUV refractive indices from 17 – 40 eV for Iron and Aluminium samples.
- Double slit interferometry used to measure δ from phase shift and β from fringe visibility.
- Results compared to previous experimental work and CXRO database values.
- Potential for further work on laser heated materials.

Return current – beam component

- Vulcan TAP experiments at 5 × 10²⁰ W cm⁻²
- Employed polarisation spectroscopy to study Ly- α of S (Z=16) and Ni (Z=28) at 2.6 keV and 8.1 keV
- Sulphur (lower excitation energy) records large positive (+0.22) polarisation, Ni Ly- α records negative polarisation (-0.5)

Return current beam component is exists

k _B T _b (eV)	k _B T _{rc} (eV)	Р
200	400	+0.07
200	500	+0.12
200	600	+0.14

$k_B T_b$ (eV)	$k_B T_{rc}$ (eV)	Р
600	2400	+0.007
800	3200	+0.003
1400	5600	+0.001
2000	8000	+0.0007

- Interpretation uses combination of plasma (ZEPHYROS, Alex Robinson, CLF) and sub-level atomic kinetics (POLAR, Peter Hakel, Reno)
- Return current temperature: Isotropic part ~ 200eV, beam part ~600eV
- Unambiguous indication of return current EDF structure

Currents, heating and beam divergence

- <u>Current</u> TAP experiment (AWE, Strathclyde, Jena, RAS)
 - employ high luminosity, imaging spectrometers
- Extending buried layer techniques to measure fast electron beam current and divergence, and deep target resistive heating

Laboratory astro (shocks and jets)

500 Distance / µm

- - Particle (CR) acceleration at shocks: 3 facets
 - collisionless shocks (MHD plasma)
 - wave-particle (including B field generation)
 - supra-thermal particles (accelerating particles)

Summary

 We pursue a wide range of IFE related activities at the University of York

 I have attempted to give you some feel for the breadth of our activities

Thank you for your attention!