Control systems for centrifugal compressors with an emphasis on CO₂ compression

Sara Budinis
'Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London
South Kensington Campus, London SW7 2AZ
E-mail address: s.budinis11@imperial.ac.uk

My project in SmartOps

Energy SmartOps: energy savings from smart operation
WP2: integrated automation for energy saving

Aims:
- Reduce energy consumption
- Increase overall stability of the system

Problem statement

In the gas compression industry the control of the compressor has a key role in affecting the performance of the machine and its operative cost. The antisurge controller is the part of the control system that protects the compressor against surge. However the surge phenomenon is not well understood yet and therefore wide safety margin is usually adopted. This lack of confidence of the design engineer is due to his difficulty in fully understanding the dynamic behaviour of the machine, especially when it is inserted in the broad and unsteady context of a process plant. The necessity of further analysis in this area is evident.

Methodology

Dynamic simulation of the system under different plant loads such as:
- Low Pₛ (suction pressure)
- High P₅ (discharge pressure)
- Low Vₒₕ (inlet flow rate)

Dynamic Simulation Model

Case studies
Initial design
Verification
Modification
Implementation analysis
New design

Results

Initial design:
- Input data from case study, courtesy of ESD Simulation Training Ltd.
- Verification

- Shut down: what happens to CO₂?
 - Normal operation: CO₂ from subcritical to supercritical phase
 - Shut down: from supercritical to subcritical phase

Conclusions

- Compressor: the operating range varies between surge and choke point. However industrial conservative approach places constraints on the lower limit. A better understanding of the problem can widen the operating range
- Process: the presence of a recycle loop protects the machine but affects the overall stability of the system. It is essential to examine this trade-off
- Carbon dioxide: the phase transition (subcritical to supercritical and vice versa) affects the volumetric flow rate and therefore the sizing of the plant.

Future Work

- Sensitivity analysis varying boundary conditions
- Analysis of a multistage system (series of compressors)
- Implementation of multiple speed map
- Modification of the basic layout to reduce the time lag
- Review of start-up and shut-down steps

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme PITN-GA-2010-26940