

Problem Session Zsofi April 2014

Named Reactions:

Give reaction name and/or mechanism.

1.

a) What is the origin of enantioselectivity? Draw a diagram.

2.

a) What needs to be changed to yield the E-isomer?
 b) Give the name and mechanism for a modification which includes *in situ* halogenation.

3.

4.

a) What is the name of the lab-scale modification to form ketones, and what are the reagents/catalysts?

NMR Problems:

Eight structure elucidation problems based on ^1H nmr, ^{13}C nmr and some infrared spectroscopic data are presented below. In each case, from the 15 formulas shown at the bottom of the page (**A** through **O**), select that one which best fits the evidence.

1. A $\text{C}_5\text{H}_{12}\text{O}_2$ compound has strong infrared absorption at 3300 to 3400 cm^{-1} . The ^1H NMR spectrum has three singlets at δ 0.9, δ 3.45 and δ 3.2 ppm; relative areas 3:2:1. The ^{13}C NMR spectrum shows three signals all at higher field than δ 100 ppm. Suggest a structure for this compound.
2. A $\text{C}_4\text{H}_8\text{O}_2$ compound has a strong infrared absorption at 1150 cm^{-1} , but no absorption at 3300 to 3400 cm^{-1} . Its ^1H NMR spectrum shows a singlet at δ 3.55 ppm. The ^{13}C NMR spectrum shows one signal at δ 66.5 ppm. Suggest a structure for this compound.
3. A $\text{C}_9\text{H}_{12}\text{O}$ compound has strong infrared absorption at 3300 to 3400 cm^{-1} . The ^{13}C NMR spectrum of this compound has six discrete signals. Its ^1H NMR spectrum has three sets of lines: singlets at δ 1.1 (6H), 1.9 (1H) and 7.3 (5H) ppm. Suggest a structure for this compound.
4. A $\text{C}_{10}\text{H}_{14}$ compound. The ^1H NMR spectrum has two singlets at δ 2.45 and 7.0 ppm (ratio = 6:1). The ^{13}C NMR spectrum shows three signals at δ 132.9, 130.5 and 18.9 ppm. Suggest a structure for this compound.
5. A $\text{C}_8\text{H}_4\text{N}_2$ compound shows a sharp infrared absorption at 2230 cm^{-1} . Its ^1H NMR spectrum has a singlet at δ 7.6 ppm. The ^{13}C NMR spectrum shows three signals at δ 132, 119 and 117 ppm. Suggest a structure for this compound.
6. A $\text{C}_{14}\text{H}_{22}$ compound. The ^1H NMR spectrum has two singlets at δ 1.1 and 7.25 ppm (ratio = 9:2). The ^{13}C NMR spectrum shows four signals at δ 147, 125, 39.3 and 30.8 ppm. Suggest a structure for this compound.
7. A $\text{C}_9\text{H}_{12}\text{O}_3$ compound has strong infrared absorption near 1100 cm^{-1} . Its ^1H NMR spectrum has sharp singlet peaks at δ 3.6 and 6.6 ppm (intensity ratio 3:1). Its ^{13}C NMR spectrum shows three lines at δ 165, 115 and 55 ppm. Suggest a structure for this compound.
8. A $\text{C}_9\text{H}_{18}\text{O}$ compound has a strong infrared absorption at 1710 cm^{-1} . Its ^1H NMR spectrum has a single sharp peak (a singlet) at δ 1.2 ppm. Its ^{13}C NMR spectrum shows three lines at δ 210, 45 and 25 ppm. Suggest a structure for this compound.

Total Synthesis

(+)-Seimatopolide A is a 10-membered lactone isolated from the fungus *Seimatosporium discosoides*. Seimatopolides are shown to activate the γ -subtype peroxisome proliferator-activated receptors (PPAR- γ), which is an apparent pivotal process in the regulation of type 2 diabetes. Give the mechanism, and reagents or structure where appropriate for all steps.

