I. Introduction

Keywords: immunoglobin (β2), high affinity receptor, ligand, allergen, preimmune

Abstract: Antibody immunoglobulin responses characterized by the synthesis of antibodies of the immunoglobulin E (IgE) subtype have been implicated in the development of allergic reactions. The high-affinity IgE receptor, FceRI, which mediates the mast cell degranulation, is a critical component of the allergic inflammatory process. This receptor is composed of two α-chains (FcεRIα and FcεRIβ) and a β-chain (FcεRIβ) that is crucial for the high-affinity binding of IgE. The FcεRIα chain contains the immunoglobulin domain that interacts with the Fc portion of IgE, while the FcεRIβ chain contains the signaling motifs that mediate the signal transduction pathways.

Protein and cell engineering of components for therapy and diagnostics

receptor/effector system: applications of the human immunoglobulin E

Address for correspondence: Rahmati, A. (Tel: +44 114 222 3066; Fax: +44 114 222 3067; Email: rahmati@sheffield.ac.uk)
Despite impressive efforts, there are no effective medications to treat allergies and asthma. Currently, the mainstay of treatment involves the use of medications, environmental control, and avoidance of allergens. Over-the-counter medications, such as antihistamines and decongestants, provide symptomatic relief. For more severe cases, prescription medications, including corticosteroids and leukotriene modifiers, are necessary.

Pharmacological response is a common feature of allergic diseases. The histamine released during an allergic reaction binds to histamine receptors on mast cells and basophils, leading to the release of inflammatory mediators such as cytokines, chemokines, and enzymes. These mediators cause vasodilation, edema, and increased vascular permeability, resulting in symptoms such as sneezing, rhinorrhea, and conjunctivitis.

Despite these efforts, the development of effective medications has been challenging. The immune system, through its ability to recognize and respond to foreign substances, is a critical factor in allergic reactions. However, the complexity of the immune response and the diversity of allergens make it difficult to develop effective treatments.

In conclusion, while significant progress has been made in managing allergic diseases, gaps remain in our understanding of immune responses and the development of effective medications. Further research is needed to address these challenges and improve the quality of life for individuals with allergies and asthma.
3. **Results**

The methodology has been described in earlier publications [10,11,19,22].

2.3. **Expression of mAb cell mediations by potential alleles**

The methodology has been described in earlier publications [19].

2.2. **Identification of the high- and low-affinity receptor binding site in hIFN$^\gamma$**

This has been described in earlier publications [11-18].

3.1. **Significance for the development of therapeutic interventions in allergy and asthma**

Although the natural Fc receptors already know of similar death as a result of these shunts, the dramatic

2.1. **Generation of order cell lines expression the high affinity domain of the high-affinity receptor**

Real Bosophile lettuce cell lines (RBL) expressing the human (h) order of the FcγRII complex for human FcγRII

2. Materials and methods

D'A. Helen et al. Human immunodeficiency receptor system

81
Fig. 3. Identification of the receptor binding regions in human IgE. For experimental details see [1,7].

Receptor binding regions:

[Diagram showing receptor binding regions with amino acid positions labeled.]

Interaction

Mappling of receptor binding regions in human IgE

200
Large amount of information regarding the molecular structure of many allergens and pesticide proteins, no preference to the synthesis of antibodies to IgE eggs in susceptible individuals. However, despite a

The exposure to several types of antigens including pollen grains, mold spores, house dust, and

3;2. Corroborating a link between the name of substances that activate cells of mast cells/specific IgE

activity and enhance IgE antibody synthesis is also a contributing factor. Exposure to certain allergens, particularly those associated with occupational allergies, can have profound

2,2;9;7. There is also compelling evidence that allergens in such as dust, exudate particles, pollens, and

2,7;4. Although some observations suggest an increase in the incidence of IgE hypersensitivity responses, the allergenic effects appear to be the most important factor in developing allergic disease since the genetic pool of the population cannot have changed sufficiently to explain the
difference between the two groups. Environmental factors play a decisive role in the development of allergy.

The development of such vaccines is very important in view of the dramatic rises in IgE-mediated allergic

Fig 2. Structural models of IgE in complex with human IgG-Fab or Fc epsilon RI. A: An

180° mm

71° mm

190° mm
4. Discussion and conclusion

Although the RBL cell line preserves a cellular mode of action for the study of cell proliferation, we
continue to find it useful in dissecting mechanisms of cell cycle regulation and the role of
mitotic apparatus dysfunction [27,28]. The results from this study, however, do not escape the
set of permissive conditions that promote cell proliferation, and in some cases, cell survival.
Indeed, growth of growth-extracted RCCs into well-defined colonies in the absence of
either mitotic apparatus dysfunction or permissive conditions for cell proliferation is
required for the development of iflumycin-resistant RCCs. Interestingly, we have observed
that RCCs that display permissive conditions for cell proliferation continue to
proliferate in the absence of the mitotic apparatus, whereas RCCs that display permissive
conditions for cell survival continue to grow in the absence of the mitotic apparatus.

These observations suggest that the mitotic apparatus is not required for cell
proliferation, but is required for cell survival. This is consistent with previous studies that
have shown that the mitotic apparatus is required for cell survival [29,30].

In conclusion, these results provide evidence for the existence of a class of
RCCs that are resistant to iflumycin, but are sensitive to other mitotic apparatus inhibitors.
These RCCs are characterized by the presence of a mitotic apparatus, which is required for
cell survival, but not for cell proliferation. This suggests that the mitotic apparatus is
required for cell survival, but not for cell proliferation. This is consistent with previous
studies that have shown that the mitotic apparatus is required for cell survival [29,30].
4.1. Assessment of anti-idiotypic drugs

In IL-4, the cytokine was detected by Western blotting. In the presence of a gamma-ray assay for IL-4, the cytokine was detected by Western blotting. The results were expressed as the mean ± standard deviation. The cytokine was detected in the absence of a gamma-ray assay for IL-4. The cytokine was detected by Western blotting. The results were expressed as the mean ± standard deviation.

<table>
<thead>
<tr>
<th>Condition</th>
<th>IL-4 (pg/ml)</th>
<th>IL-4 (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Treatment 1</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Treatment 2</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Treatment 3</td>
<td>81</td>
<td>12</td>
</tr>
<tr>
<td>Treatment 4</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Treatment 5</td>
<td>61</td>
<td>12</td>
</tr>
<tr>
<td>Treatment 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Treatment 7</td>
<td>61</td>
<td>18</td>
</tr>
<tr>
<td>Treatment 8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Treatment 9</td>
<td>88</td>
<td>90</td>
</tr>
</tbody>
</table>

Table 1

Effect of different IL-4 concentrations on the expression of anti-idiotypic antibodies.
Acknowledgements

4.2. Design of vaccination schedules in allergic and parasitic diseases

We acknowledge support from the European Union: NRT, the Medical Research Council, the N-...

pattern, 96 (1999), 2690-2713.