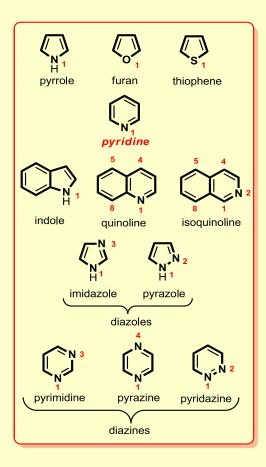
Chemistry II (Organic)

Heteroaromatic Chemistry LECTURE 6

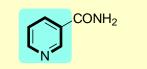
Pyridines: properties, syntheses & reactivity

Alan C. Spivey a.c.spivey@imperial.ac.uk

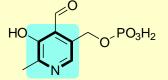

Imperial College London

Mar 2012

Format & scope of lecture 6


• Pyridines:

- structure, bonding & properties
- syntheses
 - via cycloadditions
 - via cyclisations
- reactivity
 - electrophilic addition at N (N-oxides etc.)
 - S_EAr
 - S_NAr
 - Metallation
- Supplementary slides 1-4
 - Hybridisation and pKa
 - *N*-oxides reactivity
 - revision of S_NAr mechanism

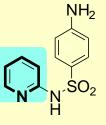


Pyridines – Importance

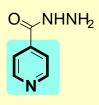
Natural products:

niacin - vitamin B3 (skin growth promotor)

pyridoxal phosphate (cofactor for transaminases)



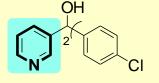
nicotine (tobacco alkaloid stimulant)


Pharmaceuticals:

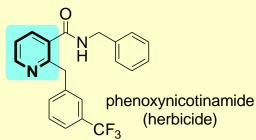
C

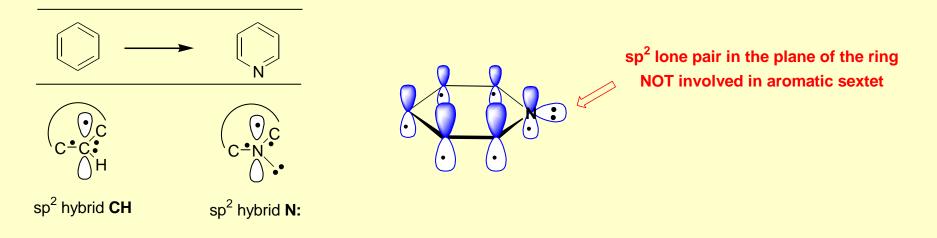
5-HT_{1A} receptor antagonist (antidepressant)

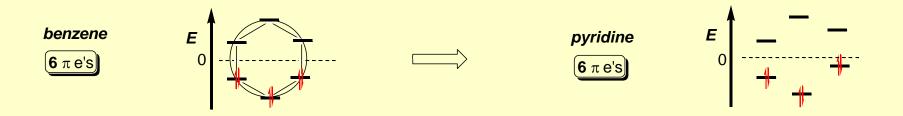
sulpharpyridine (antibacterial)



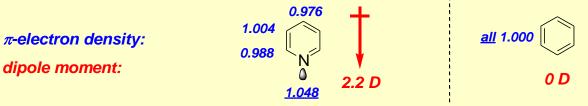
isoniazide (antituberculosis)


Agrochemicals:

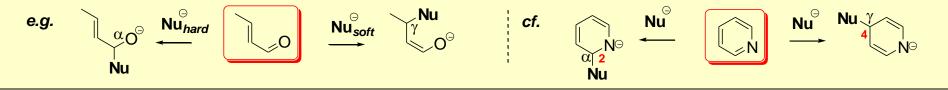

dowco 263 (fungicide)


parinol (fungicide)

Pyridine can be considered as benzene in which one CH unit has been replaced by an iso-electronic N unit
it is no longer C6-symmetric but it retains 6p electrons and is still aromatic:


The MO diagram for pyridine resembles that for benzene (lecture 1) but loss of symmetry \rightarrow loss of degeneracy:

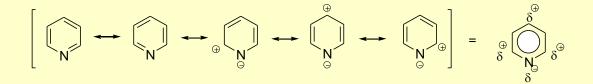
As for pyrrole the energy match and orbital overlap between the N-centred p-orbital and the adjacent C-centred p-orbitals is relatively poor so the resonance energy is lower than for benzene: 117 kJmol⁻¹ cf. 152 kJmol⁻¹


Like benzene, pyridine has 6 π-electrons distributed over 6 atoms; However, both *induction* and *resonance* effects draw electron density towards the *N* atom so that the carbon framework is *ELECTRON DEFICIENT*

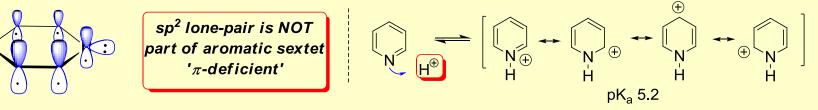
The distribution of π -electron density is manifested in its *calculated* π -electron density and dipole moment (although this latter property is dominated by the sp² lone pair):

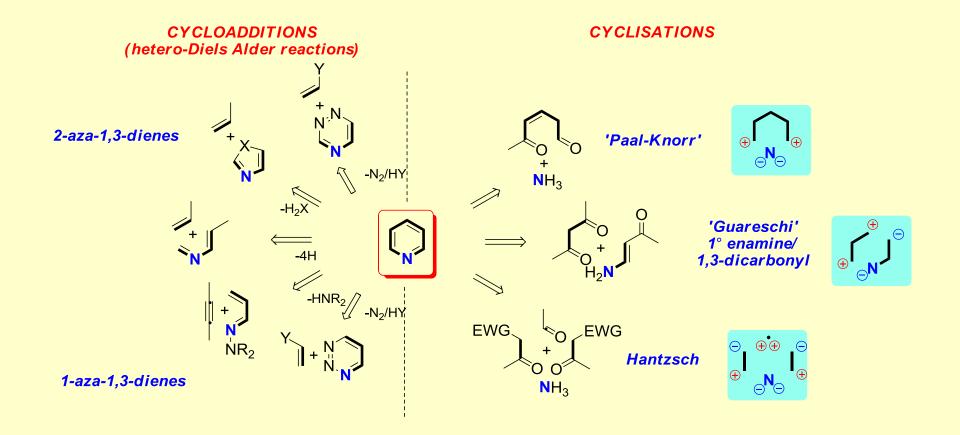
- The REACTIVITY of pyridine shows aspects which resemble the reactivity of:
 - **benzene:** substitution reactions; resistance to addition/ring-opening (to avoid loss of resonance energy)
 - **tert-amines:** protonation, alkylation, *N*-oxide formation & co-ordination to Lewis acids by the *N* lone pair:

• conjugated imines/carbonyl compounds: susceptibility to attack by nucleophiles at α /C2 and γ /C4 positions:

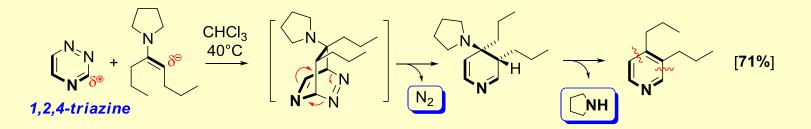


Pyridine – Structure and Properties

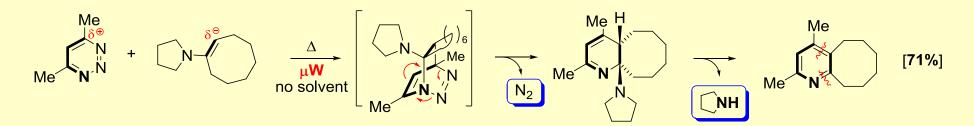

- A liquid bp 115 °C
- **Bond lengths**, ¹*H* and ¹³*C NMR chemical shifts* and *coupling constants* as expected for an aromatic system:


- **Resonance energy:** 117 kJmol⁻¹ [*i.e.* lower than benzene (152)]
 - \rightarrow can undergo *nucleophilic addition* reactions (particularly pyridinium salts)
- Electron density: electron deficient cf. benzene
 - $\Box \rightarrow$ reactive towards nucleophilic substitution (S_NAr), poorly reactive towards electrophilic substitution (S_EAr)

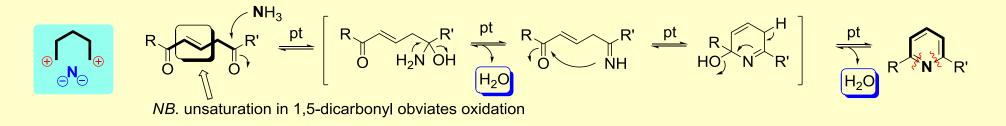
Basic (pK_a 5.2) because the N lone pair is NOT part of the aromatic sextet of electrons. Less basic than a tert-amine (e.g. Et₃N, pK_a 11) because of difference in hybridisation (sp² vs. sp³; see supplementary slide 1):



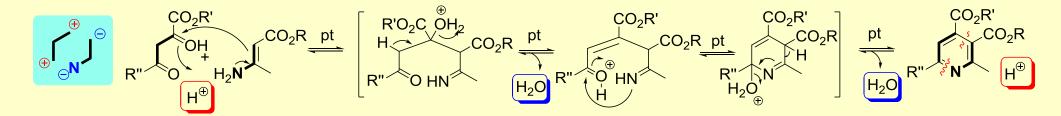
- **Pyridines** can be prepared by **cycloaddition** or **cyclisations/cyclocondensation**:
 - □ some common approaches are:

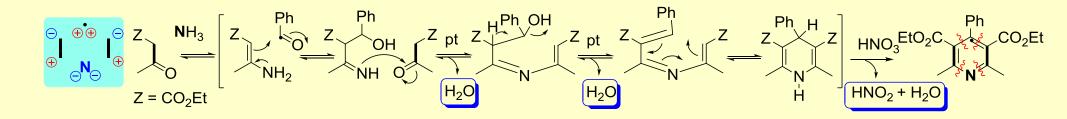

CYCLOADDITION REACTIONS:

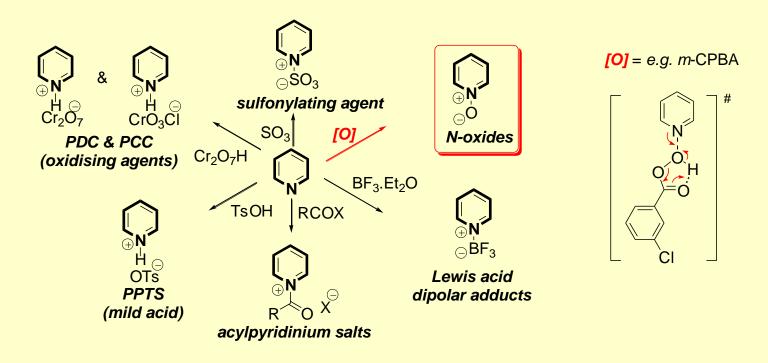
- aza-Diels-Alder between aza-1,3-dienes and alkenes/alkynes (usually inverse electron demand)
- **\Box** generally give non-aromatic heterocycles \rightarrow extrusion of small molecule(s) \rightarrow aromatic species
- 2-Aza-1,3-dienes:
 - *e.g.* inverse electron demand hetero-Diels-Alder cycloaddition of <u>1,2,4-trazine</u> with an <u>enamine</u>:



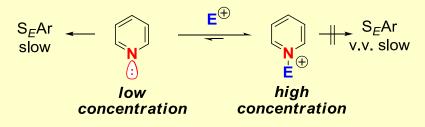
1-Aza-1,3-dienes:


• *e.g.* inverse electron demand hetero-Diels-Alder cycloaddition of a <u>1,2,3-trazine</u> with an <u>enamine</u>:

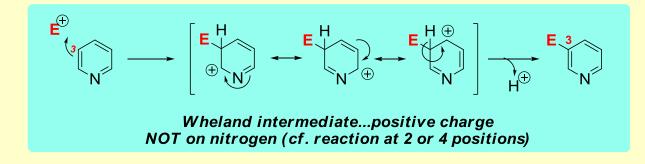

Paal-Knorr (Type I): <u>1,5-dicarbonyl</u> with <u>NH₃</u>


'Guareschi' (Type II): 1,3-dicarbonyl with 1° enamine

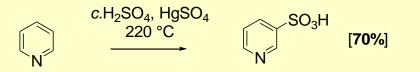
Hantzsch: 1,3-dicarbonyl(×2) & aldehyde with NH₃ then oxidation (typically with HNO₃, lecture 2)



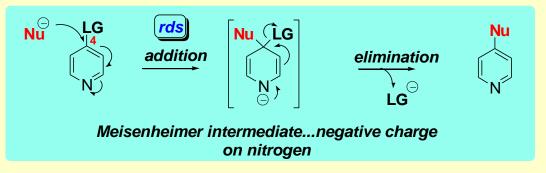
Electrophilic <u>addition</u> to the pyridyl N:



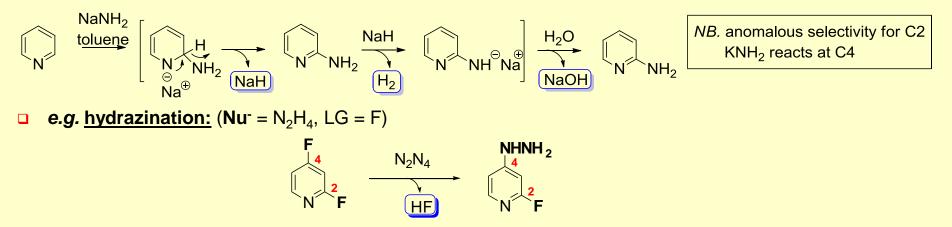
- □ *N*-oxides are particularly valuable because they:
 - are more susceptible to S_EAr than pyridines: but react at C4 cf. C3 for pyridines (see later)
 - are more susceptible to S_NAr than pyridines: same selectivity: *i.e.* C4 > C2 >> C3 (see later)
 - promote ortho-metallation (*i.e.* deprotonation)
 - allow some synthetically useful rearrangements
 - for details see supplementary slides 2-3


- *Electrophilic substitution: via* addition-elimination (S_EAr)
 - **<u>reactivity</u>**: unreactive towards most electrophiles (E+); << benzene (relative rate ×10⁻¹²); similar to nitrobenzene
 - **Two factors:** 1) 'π-deficient'; 2) salt formation *via* **N** lone pair:

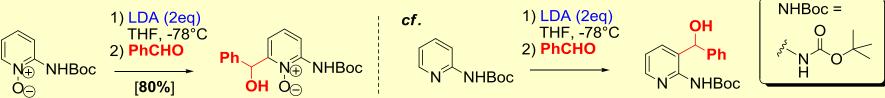
regioselectivity: the kinetic 3- & 5-products predominate; reaction at these positions avoid unfavourable positive charge build-up on nitrogen in the Wheland-type intermediate:



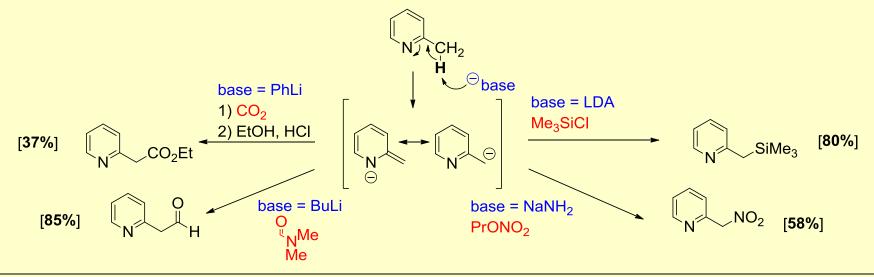
• e.g. sulfonylation: $(E^+ = SO_3H^+)$

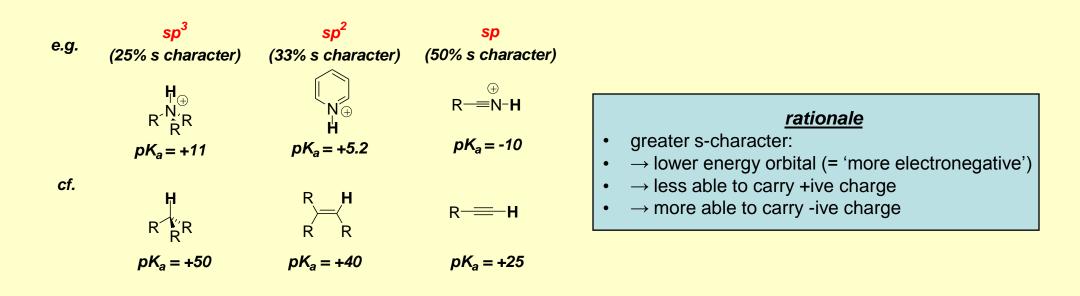


Pyridines – Reactivity cont.


- *Nucleophilic substitution: via* addition-elimination (S_NAr)
 - reactivity: reactive towards strong nucleophilies (Nu⁻)
 - <u>regioselectivity</u>: substitution at 4 & 2 positions (C4 > C2) → Meisenheimer intermediates have negative charge stabilised on the electronegative nitrogen
 - 'leaving group' (LG) can be H but Cl, Br, NO₂ etc. more facile
 - nucleophiles include alkoxides, amines, thiolates, organolithiums and Grignard reagents

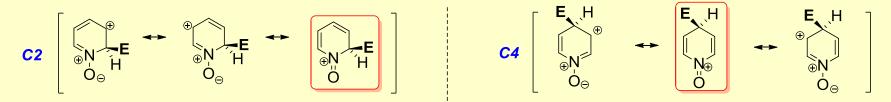
• e.g. the Chichibabin reaction: $(Nu^- = NH_2^-, LG = H)$


- Metallation ortho to N:
 - deprotonation by strong bases ortho to the N with lithium amide bases possible but more facile on N-oxide derivatives:


- *i.e.* the ortho directing effect of the 'NLiBoc' group overrides that of the ring N but not that of the N-oxide
- □ *NB*. For an overview & mechanistic discussion see *LECTURE* 7 (also: Joule & Smith (5th Ed) chapter 4).

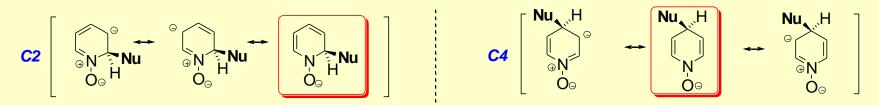
Metallation at benzylic C2 & C4 positions:

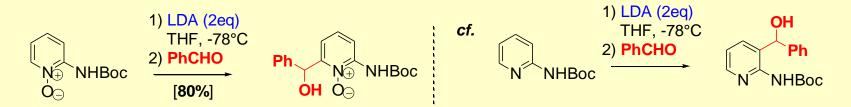
• have similar acidity to protons α -to a carbonyl (pK_a ~25) and can be readily deprotonated (even with alkoxides) to give enaminate anion:


The basicity of a N lone pair depends critically on its hybridisation state:

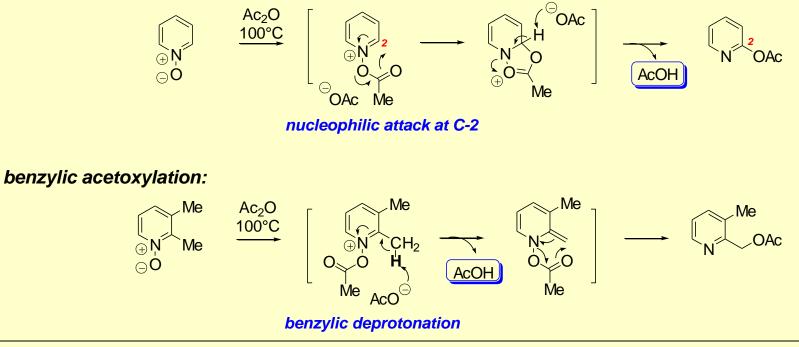
Supplementary Slide 2 – Pyridine-N-oxide reactivity – $S_EAr \& S_NAr$

Pyridine-N-oxides are more reactive towards S_EAr than pyridines & react at C4 (cf. C3) because:

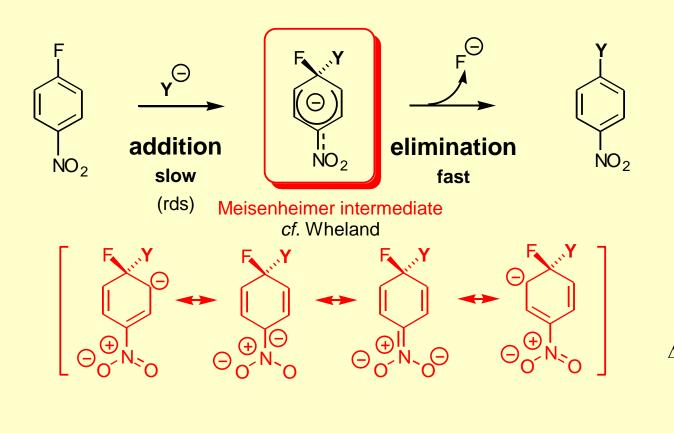

- **1**) the N lone pair is no longer available to form unreactive salts (\rightarrow faster reactions)
- 2) a resonance form in which an oxygen lone pair can help stabilise the positive charge in the Wheland intermediate is possible for reaction at C4 (& C2) (→ different regioselectivity):


reaction at C2 & C4 allows resonance forms involving oxygen reaction at C4 favoured in practice, mainly for steric reasons

Pyridine-N-oxides are also more reactive towards S_NAr than pyridines because a resonance form in which the negative charge in the Meisenheimer intermediate is localised on the electronegative oxygen is possible for reaction at C4 & C2 (*i.e.* same regioselectivity as for pyridine):

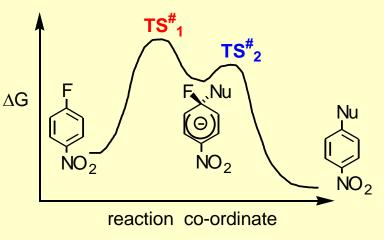


- Pyridine-*N*-oxides are *more readily metallated* (*i.e. deprotonated*) at the *ortho* positions than pyridines
 - this is because the N-oxide decreases pair-pair electron repulsions and increases chelation:



Pyridine-*N*-oxides also undergo some useful rearrangements to give oxygenated pyridines:

2-acetoxylation:



- Mechanism: addition-elimination
 - **Rate** = $k[ArX][Y^-]$ (bimolecular <u>but</u> rate determining step does *NOT* involve departure of LG (*cf.* S_N2)
 - *e.g.* 4-fluoro nitrobenzene:

<u>notes</u>

- Intermediates: energy minima
- Transition states: energy maxima
- Meisenheimer intermediate is NOT aromatic but stabilised by delocalisation
- Generally under kinetic control

