Format & scope of lecture 3

• **The conformation of functional groups**
 – Amides
 – Acetals
 • the anomeric effect, Bohlmann IR bands
 – X-C-C-Y and R-X-Y-R’ systems & nucleosides
 • gauche effects
Functional groups - amides

- **Amides** prefer to adopt **s-cis** conformations in which all atoms of the group are **co-planar**

 - **Co-planarity** is stabilised by $n_{Np} \rightarrow \pi^*_{C=O}$ resonance which is stronger than the corresponding $n_{Op} \rightarrow \pi^*_{C=O}$ resonance in esters because the nitrogen lone pair is a better donor than the oxygen lone pair
 - This is manifested in the high barrier to rotation about the acyl nitrogen bond ($\Delta H^\# \sim 85\, \text{kJmol}^{-1}$, cf. $\sim 50\, \text{kJmol}^{-1}$ for esters)

 - The **s-cis** conformer is preferred over the **s-trans** conformer but the enthalpic difference in ground state energy is less pronounced than in the case of esters ($\Delta H^o \sim 10\, \text{kJmol}^{-1}$, cf. $\sim 25\, \text{kJmol}^{-1}$ for esters)

 - This is because the only significant factor favouring the **s-cis** conformation over the **s-trans** is **$A_{1,2}$ strain** (cf. esters where there is an anomeric effect and for which dipole effects are significant):
The anomeric effect – 6-ring acetals

- **6-ring acetals prefer to adopt chair conformations in which the anomeric oxygen is axial**
 - This is in contrast to the situation for cyclohexanes in which the substituent adopts an equatorial position 1) to avoid unfavourable 1,3-diaxial or ‘1,3-flagpole’ interactions, & 2) to minimise gauche interactions:

 - Two factors favour the α-anomer:
 - An $n_{Osp3} \rightarrow \sigma^*_{C-X}$ **anomeric effect** which stabilises the α-anomer
 - The better the σ^*_{C-X} orbital is as an acceptor, the stronger the effect
 - The α-anomer has a smaller overall dipole moment than the β-anomer

- **NB.** There are 2 of the indicated gauche interactions for isomer C: looking along the 'red' bond (as shown) and also looking along the 'blue' bond (not shown)
The generalised anomeric effect & structural evidence

- **The anomeric effect in its most general form explains the conformational behaviour of systems containing two heteroatoms bound to a single carbon atom**
 - *i.e.* X-C-Y where X and Y are electronegative groups (e.g. acetals, where X = Y = O below)

- **Evidence for the anomeric effect comes from e.g. bond length analysis of fluoro sugars**

Diagram

- Generalised anomeric effect
 - Preferred conformation

Bond Lengths

- X-ray bond lengths of fluorosugars...evidence for lengthening (and weakening) of the 'acceptor' C-F bond.
The anomeric effect – *alkaloid ‘Bohlmann bands’*

- **Geometrically rigid alkaloids** having at least 2 x C-H bonds anti-periplanar to nitrogen lone pairs display characteristic low frequency infra-red stretching frequencies of the C-H bonds
 - This is because of multiple $n_{N\text{sp}^3} \rightarrow \sigma^*_{C-H}$ **anomeric interactions** which weaken the acceptor (i.e. C-H) bonds
 - That these bands (2700-2800 cm$^{-1}$) only occur when there are at least 2 appropriately orientated C-H bonds presumably reflects the weak nature of the interaction
The gauche effect – 1,2-disubstituted ethanes

- **X-C-C-Y** containing compounds (where X and Y are electronegative groups) adopt **gauche** rather than **anti** conformations – despite this conformation having a larger overall dipole
 - Stabilisation accrues from \(\sigma \rightarrow \sigma^* \) interactions between the best combinations of anti-periplanar donor and acceptor bonds (**the gauche effect**)

\[
\begin{align*}
\text{donor} & : C/H = \text{best } \sigma \text{ donor} \\
\text{acceptor} & : C-X/Y = \text{best } \sigma \text{ acceptor}
\end{align*}
\]

- **NB.** In the case of 1,2-ethanediol an **intramolecular H-bond** also stabilises the **gauche form**
- Also, 1,4-hypercoordination has been proposed as an additional factor stabilising **gauche conformations**, particularly when X or Y is a second row element: Inagaki Org. Lett. 1999, 1, 1145 (DOI)

\[
\begin{align*}
\text{Donor} = \text{OR, NR}_2 \\
\text{Acceptor} = \text{P, Si}
\end{align*}
\]
The gauche effect – *peroxides, hydrazines, disulfides*

- **X-Y containing compounds** (where X and Y are electronegative groups) also adopt **gauche** rather than **anti** conformations
 - Stabilisation accrues from $n \rightarrow \sigma^*$ interactions between antiperiplanar donor lone pairs on X and Y and acceptor bonds (also referred to as the gauche effect)
 - *e.g. hydrogen peroxide* (H_2O_2) and *hydrazine* (H_2NNH_2)

- **Disulfides** adopt a *quasi gauche* conformation (dihedral angle $\Theta_{\text{C-S-S-C}}$ of $\sim 90^\circ$, cf. $\sim 60^\circ$ as expected)
 - This is because sulfur is in the second row of the periodic table and the geometry of the sp3 sulfur centres are distorted such that the angle between the lone pairs is $>109^\circ$ and that between the two substituents is $<109^\circ$. Anti-periplanarity for $2 \times n_\text{S} \rightarrow \sigma^*_\text{S-C}$ interactions results in the observed conformational geometry
1,2-, 1,3- & 1,4-Diheteroatom arrays - summary

1,4- \[
\begin{array}{c}
\text{app} \\
\text{C/H} & \text{C/H} \\
X & Y
\end{array}
\]

= \[
\begin{array}{c}
\sigma \\
n \\
\text{C/H} & \text{C/H} \\
X & Y
\end{array}
\]

diameter \quad \text{app} \quad \text{app}

\begin{array}{c}
\text{gauche-favoured} \\
\text{X} & \text{Y}
\end{array}

\text{the gauche effect}

2x (\sigma \rightarrow \sigma^*)

1,4- \[
\begin{array}{c}
\text{C-H/C} = \text{best } \sigma \\
\text{C-Y} = \text{best } \sigma^* \\
\text{app} \\
\text{app}
\end{array}
\]

= \[
\begin{array}{c}
\text{gauche-favoured} \\
\text{X} & \text{Y}
\end{array}
\]

1,3- \[
\begin{array}{c}
\text{app} \\
\text{app} \\
\text{X} & \text{Y}
\end{array}
\]

= \[
\begin{array}{c}
\text{app} \\
n \\
\text{X} & \text{Y}
\end{array}
\]

\begin{array}{c}
\text{nX} \text{ and } nY = \text{best donors} \\
\text{C-Y and C-X = best } \sigma^*_\text{ acceptors}
\end{array}

\text{the anomeric effect}

2x (n \rightarrow \sigma^*)

1,2- \[
\begin{array}{c}
\text{app} \\
\text{X} & \text{Y} \\
\text{C/H} & \text{C/H}
\end{array}
\]

= \[
\begin{array}{c}
n \\
\text{X} & \text{Y} \\
\text{C/H} & \text{C/H}
\end{array}
\]

\begin{array}{c}
nX \text{ and } nY = \text{best donors} \\
\text{C-C/H = best } \sigma^*_\text{ acceptors}
\end{array}

\text{the gauche effect}

2x (n \rightarrow \sigma^*)
Nucleos(t)ides - gauche & anomeric effects

- The conformation of the furanosyl rings in RNA & DNA is important because small changes in conformation are amplified along a strand to give gross differences in structure and hence properties. Hydrogen bonding & dipole minimisation effects are important as are anomeric & gauche effects
 - There are two extreme conformers of nucleoside furanosyl rings that interconvert by Berry pseudorotation: a north-type (N) and a south-type (S)

- DNA tends to adopt an S-type conformation
 - The N-type conformation allows an $n_O \rightarrow \sigma^*_C-N$ anomeric interaction between a lone pair on the furanosyl ring oxygen and the C1-N glycosidic bond whereas the S-type conformation allows the oxygen substituents at C3' and C4' to benefit from a gauche effect. The gauche effect is the stronger and so an S-type conformation is generally preferred.

- RNA tends to adopt an N-type conformation
 - The additional C2' hydroxyl group allows additional gauche effects to operate as well as additional hydrogen bonding opportunities and the net result is that the N-type is generally preferred

- For a brief review see: Plavec ‘How do the Energetics of the Stereoelectronic Gauche and Anomeric Effects Modulate the Conformation of Nucleos(t)ides?’ Pure Appl. Chem. 1996, 68, 2137