Biosynthesis

Key Aspects

Alan C. Spivey
a.c.spivey@imperial.ac.uk

Imperial College
London

Dec 2014
Format & Scope of Lecture

• **Enzyme cofactor chemistry:**
 – ATP, CoASH, SAM, DMAPP, biotin, NAD(P)+, NAD(P)H, FAD, FADH₂, peroxo-FADH₂, P₄₅₀ & PLP

• **Shikimate pathway:**
 – PEP + E-4-P → aromatic α-amino acids

• **Alkaloids**
 – Lys & Orn pathways to pyrrolidine & piperidine alkaloids – PLP chemistry
 – Phenolic coupling

• **Fatty acids and polyketides:**
 – The fatty acid synthase (FAS) iterative cycle
 – The polyketide synthase (PKS) iterative cycle(s)

• **Isoprenoids:**
 – The mevalonate pathway: 3× acetyl CoA → IPP & DMAPP
 – Pathways to linear C10, C15 & C20 isoprenoids: geranyl PP, farnesyl PP, geranylgeranyl PP
 – C30 isoprenoids via squalene synthase C15 head-to-head dimerisation
 – Basic carbocation chemistry: alkene cyclisation, elimination, trapping water, 1,2-alkyl & hydride shifts and modes of enzyme control thereof
ATP - Free Energy Releasing Couple

- **Key process:**

 \[
 \text{adenosine triphosphate (ATP)} + \text{ROH} \xrightarrow{\text{enzyme}} \text{ADP} + \text{P}_i
 \]

 \[\Delta G^\circ = -31 \text{ kJmol}^{-1}\]

- e.g. activation of bicarbonate in malonyl CoA biosynthesis (FA + PK lectures)

 \[
 \text{bicarbonate} \xrightarrow{\text{ATP}} \text{P}_i \xrightarrow{\text{biotin carboxylase}} \text{enolate of acetyl CoA} = \text{Nu}^\circ
 \]

 \[
 \text{bicarbonate} \xrightarrow{\text{ATP}} \text{P}_i \xrightarrow{\text{biotin carboxylase}} \text{transcarboxylase} \xrightarrow{\text{malonyl CoA}}
 \]
CoASH - C-C Bond Formation

- **Key processes:**

- e.g. iterative decarboxylative Claisen condensations in fatty acid biosynthesis (FA + PK lectures)

Diagram:

- **Coenzyme A (CoASH):**
 - Pantetheinate
 - Coenzyme A (CoASH)

- **Adenosine:**

- **Enzyme:**
 - ACYL TRANSFER
 - α-CARBON ALKYLATION
 - ALDOL REACTIONS
 - CLAISEN-type C-ACYLATION

Diagram Description:

- **Malonyl CoA**
 - **Decarboxylative Claisen condensation (dCoA):**
 - **2x NADPH**
 - **2x NADP**
 - **CO₂**
 - **Reduction [R]**
 - **Fatty acids**
DMAPP - Dimethylallylation

- **Key process:**
 - *NB. via allylic carbocation with trapping by nucleophile at either most or least substituted end...*

- *e.g. prenylation & reverse prenylation of alkaloids (alkaloid lectures)*

- **dimethylallyl pyrophosphate (DMAPP)**

- **lysergic acid** (halucinogen)

- **roquefortine** (blue cheese mould)

- **histidine**

- **tyrosine**
SAM - Methylation

Key processes:

- S-adenosyl methionine (SAM)

- e.g. ketone C-methylation in citrinin biosynthesis (FA + PK lectures)

Reaction Scheme:

1. **SAM Mediated Methylation**
 - **4x CoAS**
 - **5x CO₂**
 - **PKS**
 - **3x SAM**

2. **Citrinin Biosynthesis**
 - **Pentaketide**
 - **EnzS**
 - **Me**
 - **Me**
 - **CO₂**

Enzyme Reactions:

- **enzyme**
 - **Nu-Me**
 - **Nu**
 - **Me**
 - **R₂N**
 - **Me-SR₂**
 - **Me-SR₂**
 - **Me-SR₂**

SAM - S-adenosyl methionine; **PKS** - Polyketide Synthase; **SAM Mediated Methylation** - Methylation process facilitated by SAM; **Citrinin** - A type of mycotoxin.
Biotin - Carboxylation

- **Key process:**

 - *e.g.* carboxylation of acetyl CoA to give malonyl CoA (FA + PK lectures)

 ![Diagram of carboxylation reaction involving biotin and bicarbonate]

 - **bicarbonate**
 - **ATP** → **ADP**
 - **Nu** (bicarbonate)
 - **CoA**
 - **Mg²⁺**
 - **transcarboxylase**

 - **enolate of acetyl CoA = Nu[−]**
 - **malonyl CoA**

 - **biotin carboxylase**

 - **Nu = biotin**

 - **enolate of acetyl CoA**
NAD(P)⁺ - Oxidation

- Key process:
 - e.g. 1° alcohol to carboxylic acid oxidation in citrinin biosynthesis (FA + PK lectures)

Nicotinamide-adenine dinucleotide (NAD⁺) R = H

NB. NADP⁺: R = PO₃H⁻
Flavin - Oxidation

- Key process:
 - e.g. dehydrogenation of succinate \rightarrow fumarate (citric acid cycle, alkaloid lectures)

- succinate \rightarrow fumarate (Krebs cycle)
 - anti conformation imposed by enzyme via arginine salt bridges

\[
\begin{align*}
\text{succinate} & \rightarrow \text{fumarate} \\
\text{gauche} & \rightarrow \text{anti}
\end{align*}
\]
Peroxyflavin - Oxidation

- Key process:

 \[
 \text{O}_2 + \text{FADH}_2 \rightarrow \text{H}_2\text{O} + \text{FAD}
 \]

 - *e.g.* squalene \rightarrow 2,3-oxidosqualene (isoprenoid lectures)

 - **squalene oxidase**

 \[
 \text{O}_2 + \text{FADH}_2 + \text{squalene} \rightarrow \text{2,3-oxidosqualene} + \text{H}_2\text{O} + \text{FAD}
 \]
P_{450} Iron oxo - Oxidation

- **Key process:**

- **e.g. 1)** benzylic hydroxylation in citrinin biosynthesis (FA + PK lectures)
P_{450} Iron oxo – Oxidation cont.

- *e.g.* 2) unactivated oxidative demethylation: 14α demethylation in steroid biosynthesis (isoprenoid lectures)

- *e.g.* 3) activated oxidative demethylation: $4\alpha/\beta$ demethylation in steroid biosynthesis (isoprenoid lectures)
P₄₅₀ Iron oxo – Oxidation cont.

- *e.g. 4)* unactivated aromatic hydroxylation: phenylalanine → tyrosine in barley (alkaloid lectures)

 ![Diagram of unactivated aromatic hydroxylation]

- *e.g. 5)* activated aromatic hydroxylation: tyrosine → DOPA in opium (alkaloid lectures)

 ![Diagram of activated aromatic hydroxylation]
NADPH - Reduction

- **Key process:**

 - e.g. iminium ion to amine reduction in pyrrolizidine alkaloid biosynthesis (alkaloid lectures)

- **Formulae:**

 - Hydro-nicotinamide-adenine dinucleotide (NADPH) \(R = \text{PO}_3\text{H}^- \)

 - NB. NADH: \(R = \text{H} \)

- **Examples:**

 - NAD(P)H

 - 2x ornithine

- **Diagram:**

 - Spermidine \(\rightarrow \) NADH \(\rightarrow \) Homospermidine \(\rightarrow \) Retronecine

Diagram Notes:

- **NB.** \(H^2 = \text{H}^2 + 2\text{e} \)
PLP - Transamination

- Key process:

 e.g. oxidative deamination of cadaverine *en route* to piperidine alkaloids (alkaloid lectures)
PLP - Decarboxylation

- **Key process:**

 - e.g. lysine decarboxylation to cadaverine (alkaloid lectures)

- **Diagram:**

 - Enzyme-dependent decarboxylation process involving pyridoxal phosphate (PLP) as the coenzyme.
PLP - Dealkylation

- **Key process:**

 - e.g. serine side-chain cleavage → methanal (alkaloid lectures)

- **Diagram:**

- **PLP dependent dealkylation**

 - serine → methanal → N5-methyl-tetrahydrofolate → methionine → S-adenosyl methionine (SAM)
Primary Metabolism - Overview

Primary metabolism

1. **Photosynthesis**
 - CO₂ + H₂O → ATP and NADH
 - 'light reactions': hv → ATP and NADH
 - 'dark reactions': CO₂ → sugars (Calvin cycle)

2. **Glycolysis**
 - Glucose & other 4, 5, 6, & 7 carbon sugars

3. **Citric Acid Cycle**
 - Pyruvate → CO₂
 - Acetyl CoA → CO₂

Primary metabolites

- Oligosaccharides
- Polysaccharides
- Nucleic acids (RNA, DNA)

Secondary metabolites

- Shikimate metabolites
 - Cinnamic acid derivatives
 - Aromatic compounds
 - Lignans, flavonoids

- Alkaloids
 - Penicillins
 - Cephalosporins
 - Cyclic peptides

- Fatty acids & polyketides
 - Prostaglandins
 - Polycyclics
 - Aromatic compounds, polyphenols
 - Macrolides

- Isoprenoids
 - Terpenoids
 - Steroids
 - Carotenoids
The Shikimate Biosynthetic Pathway

- **Phosphoenol pyruvate & erythrose-4-phosphate → shikimate → chorismate → prephenate:**
Oxidative Phenolic Coupling

- **e.g. Morphine biosynthesis:** \(\sigma-/p\)-oxidative phenolic coupling:

- **e.g. Erysodine biosynthesis:** \(p-/p\)-oxidative phenolic coupling & dienone-phenol rearrangement:
Biosynthesis of Fatty Acids

- **Iterative oligomerisation via:**
 - Decarboxylative Claisen condensation
 - 3-step ketone reduction

```
CoAS
O
EnzS
O
SEnz
O
CO2
O
EnzS
EnzS
O O
EnzS
Malonyl CoA

2x NADPH
2x NADP+
+ H2O

Fatty acids
```

- **decarboxylative Claisen condensation**
 - dCc#1

- **reduction**
 - [R]#1
 - dCc#2

- **[R]#3**
- **dCc#3**
Introduction of Unsaturation

ANAEROBIC ROUTE (bacteria)
(dehydrogenation occurs during chain elongation)
mainly MUFAs but some PUFAs

AEROBIC ROUTE (mammals, insects & plants)
(dehydrogenation occurs after chain elongation)
MUFAs & PUFAs

NB. in both cases cis-alkenes are produced

vaccenic acid

oleic acid

PUFAs

plants

animals

C₁₁-C₁₂
Biosynthesis of Polyketides

- **Iterative oligomerisation via:**
 - Decarboxylative Claisen condensation
 - Variable levels of reductive ketone processing in each iteration

![Chemical reaction diagram involving CoA, enzymes, and polyketides](image)

- **Example:**
 - $R' = H$
 - $R' = Me$
 - $R' = Et$

- **Decarboxylative Claisen condensation** dCc^1

- **Linear & cyclised polyketides**

- **[funct]3**
 - $\text{EnzS} \rightarrow \text{EnzS}$
 - EnzS

- **[funct]2**
 - EnzS
 - EnzS

- **[funct]1**
 - EnzS
 - EnzS

- **no KR**
- **no DH**
- **no ER**

- **dCc^1**
- **dCc^2**
- **dCc^3**
Biosynthesis of IPP & DMAPP

- acetyl CoA → acetoacetyl CoA → HMG CoA → mevalonate → IPP → DMAPP:

\[\begin{align*}
&\text{acetyl CoA} \\
\rightarrow &\text{acetoacetyl CoA} \\
\rightarrow &\text{HMG CoA} \\
\rightarrow &\text{mevalonate} \\
\rightarrow &\text{IPP} \\
\rightarrow &\text{DMAPP:}
\end{align*}\]
‘Head-to-tail’ Oligomerisation → Isoprenoids

DMAPP $\xrightarrow{S_n_1}$ intimate ion pair

DMAPP $\xrightarrow{S_n_1}$ IPP

IPP $\xrightarrow{S_n_1}$ geranyl pyrophosphate (C_{10})

IPP $\xrightarrow{S_n_1}$ farnesyl pyrophosphate (C_{15})

IPP $\xrightarrow{S_n_1}$ geranylgeranyl pyrophosphate (C_{20})

DMAPP $\xrightarrow{S_n_1}$ MONOTERPENES (C_{10})

IPP $\xrightarrow{S_n_1}$ SESQUITERPENES (C_{15})

IPP $\xrightarrow{S_n_1}$ TRITERPENES (C_{30})

IPP $\xrightarrow{S_n_1}$ DITERPENES (C_{20})

IPP $\xrightarrow{S_n_1}$ CAROTENOIDs (C_{40})
Triterpenes – $2 \times FPP \ 'head-to-head' \rightarrow Squalene$

EnzB:

FPP (donor) → presqualene PP

Squalene synthase:

Presqualene PP → Squalene

NADPH + PP_i → NAD + P_i

Squalene → Triterpene derivatives e.g. steroids
Terpene Cyclases – Control of Cyclisation

- **Functional aspects of terpenoid cyclases:**
 - **Templating:** Active site provides a template for a specific conformation of the flexible linear isoprenoid starting material.
 - **Triggering:** Cyclase initiates carbocation formation.
 - Metal-assisted leaving group departure (e.g. pyrophosphate ionization aided by Mg^{2+})
 - C=C bond protonation (e.g. squalene-hopene cyclase, see later).
 - Epoxide protonation (e.g. oxidosqualene cyclase, see later).
 - **Chaperoning:** Chaperones conformations of carbocationic intermediates through the reaction sequence, ordinarily leading to one specific product.
 - **Sequestering:** Sequesters the carbocation intermediates by burying the substrate in a hydrophobic cavity that is generally solvent-inaccessible. Carbocations are concomitantly stabilized by the presence of aromatic residues in the active site that exert their effects via cation-\pi interactions.
Primary Metabolism - Overview

Primary metabolism

\[\text{CO}_2 + \text{H}_2\text{O} \]

1) ‘light reactions’: \(\text{hv} \rightarrow \text{ATP and NADH}\)
2) ‘dark reactions’: \(\text{CO}_2 \rightarrow \text{sugars (Calvin cycle)}\)

<table>
<thead>
<tr>
<th>Glycolysis</th>
<th>Glucose & other 4,5,6 & 7 carbon sugars</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{PHOTOSYNTHESIS})</td>
<td>(\text{hv} \rightarrow \text{ATP and NADH})</td>
</tr>
<tr>
<td>(\text{CO}_2 \rightarrow \text{sugars (Calvin cycle)})</td>
<td>(\text{glycolysis})</td>
</tr>
<tr>
<td>(\text{phosphoenol pyruvate} \rightarrow \text{pyruvate})</td>
<td>(\text{emanose-4-phosphate} \rightarrow \text{shikimate})</td>
</tr>
<tr>
<td>(\text{citric acid cycle (Krebs cycle)})</td>
<td>(\text{aromatic amino acids} \rightarrow \text{peptides})</td>
</tr>
<tr>
<td>(\text{acetyl coenzyme A} \rightarrow \text{malonyl coenzyme A})</td>
<td>(\text{allphatic amino acids} \rightarrow \text{proteins})</td>
</tr>
<tr>
<td>(\text{mevalonate})</td>
<td>(\text{saturated fatty acids} \rightarrow \text{lipids})</td>
</tr>
<tr>
<td>(\text{malonyl coenzyme A})</td>
<td>(\text{unsaturated fatty acids})</td>
</tr>
<tr>
<td>(\text{citric acid cycle (Krebs cycle)})</td>
<td>(\text{tetrapyrroles (porphyrins)})</td>
</tr>
<tr>
<td>(\text{acetyl coenzyme A})</td>
<td>(\text{alkaloids})</td>
</tr>
<tr>
<td>(\text{SHIKIMATE METABOLITES})</td>
<td>(\text{cinnamic acid derivatives})</td>
</tr>
<tr>
<td>(\text{malonyl coenzyme A})</td>
<td>(\text{aromatic compounds})</td>
</tr>
<tr>
<td>(\text{mevalonate})</td>
<td>(\text{lignans, flavonoids})</td>
</tr>
<tr>
<td>(\text{phosphoenol pyruvate})</td>
<td>(\text{alkaloids})</td>
</tr>
<tr>
<td>(\text{glycolysis})</td>
<td>(\text{penicillins})</td>
</tr>
<tr>
<td>(\text{SHIKIMATE METABOLITES})</td>
<td>(\text{cephalosporins})</td>
</tr>
<tr>
<td>(\text{CO}_2 + \text{H}_2\text{O})</td>
<td>(\text{cyclic peptides})</td>
</tr>
<tr>
<td>(\text{malonyl coenzyme A})</td>
<td>(\text{fatty acids & polyketides})</td>
</tr>
<tr>
<td>(\text{mevalonate})</td>
<td>(\text{prostaglandins})</td>
</tr>
<tr>
<td>(\text{SHIKIMATE METABOLITES})</td>
<td>(\text{polyacetylenes})</td>
</tr>
<tr>
<td>(\text{mevalonate})</td>
<td>(\text{aromatic compounds, polyphenols})</td>
</tr>
<tr>
<td>(\text{mevalonate})</td>
<td>(\text{macrolides})</td>
</tr>
<tr>
<td>(\text{mevalonate})</td>
<td>(\text{isoprenoids})</td>
</tr>
<tr>
<td>(\text{mevalonate})</td>
<td>(\text{terpenoids})</td>
</tr>
<tr>
<td>(\text{mevalonate})</td>
<td>(\text{steroids})</td>
</tr>
<tr>
<td>(\text{mevalonate})</td>
<td>(\text{carotenoids})</td>
</tr>
</tbody>
</table>
Acknowledgements

• I would like to acknowledge the following for kindly allowing me to consult and use material from their lecture courses on various aspects of biosynthesis:

 - Dr Finian Leeper, Dept. of Chemistry, University of Cambridge
 http://www-leeper.ch.cam.ac.uk

 - Dr John McKendrick, Dept. of Chemistry, University of Reading
 http://www.chem.rdg.ac.uk/dept/staff/org/jem.html

 - Dr David Widdowson, Dept. of Chemistry, Imperial College London
 http://www.ch.ic.ac.uk/widdowson/

• Additionally, I have adapted ideas from several web-sites & in particular I have adapted material from two biological chemistry courses at Harvard University & MIT:
 - http://www.courses.fas.harvard.edu/%7echem27/
 - http://ocw.mit.edu/OcwWeb/Chemistry/5-08JSpring2004/CourseHome/index.htm

• Other reference sources have been the books cited in the ‘course overview’, particularly:
 - J. Mann, ‘Chemical Aspects of Biosynthesis’, Oxford Chemistry Primer No. 20, 1994
 - J. Mann, ‘Secondary Metabolism’, Oxford University Press, 2nd ed. 1987