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Answer 3 out of the following 4 questions.
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© Imperial College London 2009 1 Turn over for questions



You may use the following results without proof:

e Loop integral in d dimensions (Minkowskian):

o [ ' 1T (n - d)2)
I,(m?) = / (2m)d (p? — m2)" (=1) (4m)4/2  T(n)

Gamma functions: 2I'(z) =I'(z + 1) and
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e Feynman parameters:
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e Gaussian two-point function
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Gaussian Grassmann integral

/ (H d03d9i> exp (—0; B;;0;) = det B.



1. This question deals with Feynman integrals in d-dimensional Minkowski space.

(i) (a) Show that, if A is a scalar quantity,

/ dp _p'pr g™ / dp  p?
@m)*(p> = AP d ) 2m)t (= AP

[4 marks]
(b) Using
2
L(A) = mﬁfz(A),
Show that i
p " 9"
= AL (A
/(27r) TN ST
[3 marks]
(ii) Consider now the integral
dp  p'p’
(k) = / |
(2m)4 p*(p + k)?
(a) Show that
[ (k) / / Y +x2k“k”
4p? + (1 — 2)k*
[6 marks]
(b) Show further that
1 1—
M (kP) = / dr (x%“k” _ %k%{]’“’) L(—z(1 — x)kQ)
o _
[5 marks]
(c¢) Show that in d = 4 — ¢ dimensions, the divergent piece is
1 1 v 2
THY (EPY — TRy o pv 2 Z
(k") (3’“ M1 k) 1672 ¢
[2 marks]

[Total 20 marks]
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2. Scalar electrodynamics is a theory of an electrically charged (complex) scalar field ¢. It has

the bare Lagrangian

£:

1 v 174
—1OuApy — 0, Ap,) (0" A — 0" Al)

H(0ubp + ienAnudn)"(0"05 + ien Alybn) — Mo — Ap(G505)"

The superficially divergent 1PI correlation functions at one loop in naive perturbation theory

(in the Lorentz gauge) are
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where v is the Euler-Mascheroni constant.

(i) In renormalised perturbation theory, one defines

Al
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Zy 7\ en
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Zie,
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and Zx = 1+ 0Zx for any X. Write the Lagrangian in terms of renormalised fields,
renormalised couplings and counterterms. Identify the piece that is treated as the free

Lagrangian £, in renormalised perturbation theory.

[4 marks]

(ii) Draw all counterterm vertices. The Feynman rules for the two-point counterterms are

024
(2!)

(kg™ — k"k") and  i(6Zyk* — 6m?).



Write down the Feynman rules for the other counterterms. (Note that you can deduce
them from the correlators shown above, by comparing the forms of different terms in the
Lagrangian.) [4 marks]
(iii) What are the values of the same 1PI correlators as above in renormalised perturbation
theory? [4 marks]
(iv) Explain how the values of the counterterms are determined in the AMS scheme, and
calculate them. [4 marks]

(v) Calculate the leading non-trivial terms in the beta functions of the two couplings

dX de

= Togir: %~ dlogar’

where M is the renormalisation scale. You should find

63
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[4 marks]

[Total 20 marks]
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3. The action of the electromagnetic field can be written as
1
S=-3 / d'qd' kA, (q)(2m) 6 (k + q) (K2 g™ — K'k") A, (k).

(i) Explain how you would calculate the propagator D%’ (k) defined by
(A"(k)A"(q)) = (2m)*o(k + q) DR’ (k),

and show that it cannot be done in this case. [3 marks]

(ii) Show that for a given gauge fixing function G(A,), the path integral can be written as

SG(A2)

/ DA,O[A,]e M) / DAué(G(A“))det< )@[A#}eisw’
(6%

where O[A,] is a gauge-invariant observable and Af, is the gauge transform of A,
o 1
Au = Au + g@ua.

[5 marks]

(iii) Choosing G(A,) = G(A,) — w(x), where w(x) is an arbitrary function in spacetime and
G is independent of w, show that you can write

4 6G (A ,
/ DA,O[A,]e M) o / DA, det( 5(04“)> O[A, JeiSel,

where

Se[A,] = S[A,] - / d%%@?

[4 marks]

(iv) Express the determinant as a path integral, and show that
/'DAMO[AH]eiS[Au] o /’DAMDC*DCO[AN]GZ'S%HA“’C},

where the full gauge-fixed action is

Set[Ay, c] = S[A,] — /d4x [2—2(}2 +c* <%> c] :

What are the properties of the new field ¢, which you introduced? [4 marks]

(v) Write down the gauge-fixed action Sy for the gauge fixing function
G(A,) = 0, A" + A, A",

where 7 is a constant number. Draw the corresponding interaction vertices. Do they
represent real, physical interactions? [4 marks]

[Total 20 marks]



4. The Lagrangian of the SU(N) Georgi-Glashow model is
1
L= —5TrF,, F" + Tr[D,,, ®|[D", ®] — m*Trd* — NTrd*,

where D, = 0, +igA, is the covariant derivative. The scalar field ®, which is in the adjoint
representation, and the SU(N) gauge field A, can be written as ® = ®%* and A, = Ajt?,
where a € {1,...,N? —1}.

(i) Draw the interaction vertices of this theory (in naive perturbation theory) and indicate
which term in the Lagrangian each of them corresponds to. [3 marks]
(ii) Use the identities
1
Trtatb — §5ab7 [ta’ tb] —_ Z-fabctc’
where fo¢ are the SU(N) structure constants, to show that in terms of the field compo-
nents, the scalar-gauge interaction terms are

2
L= 4 gf (OB AL + Tg f OB ALAL
[4 marks]

(iii) Derive the Feynman rules corresponding to these two terms and write them in their
symmetric form. [4 marks]

(iv) Draw all one-loop 1PI diagrams that contribute to the scalar two-point correlator
(D(k)®*(q)). [3 marks|

(v) Using the propagators

o g [ kb kY
5b‘D;’ (k): L2 g,U» _(1_5) L2 )
and sab
ab 00"
6’ Dp(k) = gy

and the identity f?f*d = N§®, show that the two diagrams that involve the gauge
field correspond to the integrals

d
—1
92N5ab/<dk d +5

2m)d k2
and ik (2p0 — B9 (2p — ) ok
B MY (2 — kY
o 2N(5ab/ P 14 L — 1 — purvv
R N ] e e B Y
[5 marks]
(vi) Explain why one of these integrals vanishes in dimensional regularisation. [1 mark]

[Total 20 marks]
7 End of examination paper



