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You may use the following results without proof:

• Loop integral in d dimensions (Minkowskian):

In(m2) ≡
∫

ddp

(2π)d
1

(p2 −m2)n
= (−1)n

imd−2n

(4π)d/2
Γ(n− d/2)

Γ(n)

• Gamma functions: zΓ(z) = Γ(z + 1) and

Γ
(
−m+

ε

2

)
=

(−1)m

m!

(
2

ε
+

m∑
p=1

1

p
− γ +O(ε)

)
for integer m ≥ 0

• Feynman parameters:
1

ab
=

∫ 1

0

dx

[xa+ (1− x)b]2

• Gaussian two-point function ∫
dNq qiqje

− 1
2
qTMq∫

dNqe−
1
2
qTMq

=
(
M−1

)
ij
.

• Gaussian Grassmann integral∫ (∏
i

dθ∗i dθi

)
exp (−θ∗iBijθj) = detB.
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1. The Lagrangian of scalar electrodynamics (theory of an electrically charged scalar field) is

L = −1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 + (Dµφ)∗(Dµφ)−m2φ∗φ− λ

4
(φ∗φ)2 ,

where φ is a complex scalar, Aµ is an Abelian gauge field, Dµ = ∂µ + ieAµ is a covariant
derivative, and Fµν = ∂µAν − ∂νAµ is the field strength tensor.

(i) Show that the Feynman rules for the interaction vertices are

� ↔ −iλ,

�
q

kk′

µ

↔ −ie(kµ + k′µ),

�
µ ν

↔ 2ie2gµν .

[6 marks]

(ii) Draw the 1PI diagrams that contribute to the photon two-point function at one-loop
level. [3 marks]

(iii) Use the propagators

�k
µ ν ↔ −i

k2

[
gµν − (1− ξ)k

µkν

k2

]
,

�k
↔ i

k2 −m2
,

to write down the integrals corresponding to the 1PI diagrams in (ii). Show that the
whole one-loop correction is

�µ ν = e2

∫
ddp

(2π)d
(2p+ k)µ(2p+ k)ν − 2gµν [(p+ k)2 −m2]

(p2 −m2)((p+ k)2 −m2)
.

[7 marks]

(iv) Show that this integral vanishes for k = 0 in arbitrary number of dimensions d. (Hint:

m2I2(m2) =
d− 2

2
I1(m2).)

[4 marks]

[Total 20 marks]
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2. The bare Lagrangian of Quantum Electrodynamics is

L = −1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 + ψ̄(i/∂ −m)ψ − eψ̄γµψAµ,

where ψ is the electron field, Aµ is the U(1) gauge field, Fµν = ∂µAν − ∂νAµ is the field
strength tensor, γµ are the Dirac gamma matrices and /∂ = γµ∂µ.

At one-loop level in naive perturbation theory, the superficially divergent one-particle irre-
ducible correlation functions are

�µ ν = − ie2

12π2
(k2gµν − kµkν)

(
2

ε
+ log

4πµ2

m2
− γ
)

+O(k4).

�α β =
ie2

16π2
(ξ/k + (3 + ξ)m)βα

(
2

ε
+ log

4πµ2

m2
− γ
)

+O(k2).

	
q

k

k + q

µ

α β

= −ieγµαβ −
ie3ξ

16π2
γµαβ

(
2

ε
+ log

4πµ2

m2
− γ
)

+O(q). (2.1)

(i) Consider the same theory in renormalised perturbation theory. The renormalised fields

are defined by ψ = Z
1/2
ψ ψR and Aµ = Z

1/2
A AµR, and renormalised parameters eR, mR and

ξR by

Z
1/2
A Zψe = eR + δe,

Zψm = mR + δm,

ZA/ξ = Zξ/ξR.

The renormalisation constants are written in terms of counterterms as ZA = 1 + δZA,
Zψ = 1 + δZψ and Zξ = 1 + δZξ.

Doing these changes of variables explicitly, write the Lagrangian in terms of renormalised
fields, renormalised parameters, and counterterms. [3 marks]

(ii) Identify the terms that are treated as interactions in renormalised perturbation theory.
[3 marks]

(iii) The Feynman rules for the counterterm vertices are


µ ν ↔ −i
[
δZA

(
k2gµν − kµkν

)
− δZξ

ξR
kµkν

]

�α β ↔ i (δZψ/k − δm)βα

�
µ

α β

↔ −iδeγµαβ

Write the correlation functions (2.1) in renormalised perturbation theory in terms of
renormalised parameters and counterterms (i.e., without imposing a renormalisation con-
dition yet). [3 marks]
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(iv) Determine the values of the counterterms in the MS scheme. Using them, write the
correlation functions (2.1) in terms of renormalised parameters only. [8 marks]

(v) Show that, to leading order in e, the beta function of the theory is

β(e) ≡M
∂eR
∂M

∣∣∣∣
B

=
e3

12π2
.

[3 marks]

[Total 20 marks]
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3. Consider the d-dimensional (Minkowskian) integral

Iµ2 (k;m, 0) =

∫
ddp

(2π)d
pµ

(p2 −m2)(p+ k)2
.

(i) Explain why Iµ2 (k;m, 0) has to be parallel to kµ. [2 marks]

(ii) Show that

Iµ2 (k;m, 0) =

∫ 1

0

dx

∫
ddp

(2π)d
pµ

[(p+ kx)2 − (1− x)(m2 − xk2)]2
.

[5 marks]

(iii) Show that

Iµ2 (k;m, 0) = −kµ
∫ 1

0

dx x

∫
ddp

(2π)d
1

[p2 − (1− x)(m2 − xk2)]2
.

[3 marks]

(iv) Calculate the momentum integral to express Iµ2 (k;m, 0) as an integral over x only.
[2 marks]

(v) Calculate the integral in d dimensions at k2 = m2.

(Hint: ∫ 1

0

dx x(1− x)a =
1

(a+ 1)(a+ 2)
.)

[3 marks]

(vi) In d = 4− ε dimensions and at k2 = m2, show that

Iµ2 (k;m, 0) = − ikµ

32π2

(
2

ε
+ log

4π

m2
− γ + 3

)
+O(ε).

[5 marks]

[Total 20 marks]
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4. Consider a Euclidean scalar field theory with action

SE =

∫
d4x

(
1

2
∂µφ∂

µφ+
1

2
m2φ2 +

1

4!
λφ4

)
and a momentum cutoff Λ. The generating functional is given by the path integral

Z[J ] =

∫
0<k<Λ

Dφe−SE−
∫
d4xJ(x)φ(x),

where the subscript indicates that only the Fourier modes φ(k) with 0 < k < Λ are non-zero.

(i) Derive an expression for the two-point correlation function 〈φ(x)φ(y)〉 in terms of the
generating functional Z[J ]. [3 marks]

(ii) In Wilsonian renormalisation, one derives an effective theory that has a lower cutoff Λ′ <
Λ but describes the same physics at low energies. Its action SΛ′

eff [φ] is defined by∫
0<k<Λ′

Dφe−SΛ′
eff [φ]−

∫
d4xJ(x)φ(x) = Z[J ],

where J(x) is an arbitrary external field with J(k) = 0 for k > Λ′. Show that SΛ′

eff is
given by the expression

SΛ′

eff [φ] = SE[φ]− log

∫
Λ′<k<Λ

Dφ̂e−∆S[φ,φ̂], (4.1)

where φ̂(k) = 0 for k < Λ′ and k > Λ. Write down ∆S[φ, φ̂]. Explain why some of the
terms vanish in the derivation of Seff . [4 marks]

(iii) Draw the interaction vertices that arise when you calculate Eq. (4.1) perturbatively.
Explain the different types of propagator lines that appear in them. (You do not need
to derive the Feynman rules.) [3 marks]

(iv) Draw all connected diagrams that contribute to SΛ′

eff up to order λ2, and identify the term
each of them contributes to. [3 marks]

(v) Imagine being able to do the integral (4.1) to all orders in λ. What new terms would
you expect to obtain? [2 marks]

(vi) Consider now a rescaling of lengths by factor b = Λ′/Λ < 1, i.e.,

x′ = bx, k′ = k/b.

How does the kinetic term

SΛ′

eff =

∫
d4x

1 + ∆Z

2
∂µφ∂

µφ+ . . .

scale? [2 marks]

(vii) Rescaling the field to take the kinetic term back to its canonical form, show that the
coefficient G of a general term with n powers of φ and m derivatives becomes

G′ =
G+ ∆G

(1 + ∆Z)n/2

(
Λ′

Λ

)m+n−4

,

where ∆G and ∆Z are the loop corrections to G and the kinetic term, respetively, from
the integral in Eq. (4.1). [3 marks]

[Total 20 marks]
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