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You may use the following results without proof:

• Loop integral in d dimensions (Minkowskian):

In(m2) ≡
∫

ddp

(2π)d
1

(p2 −m2)n
= (−1)n

imd−2n

(4π)d/2
Γ(n− d/2)

Γ(n)

• Gamma functions: zΓ(z) = Γ(z + 1) and

Γ
(
−m+

ε

2

)
=

(−1)m

m!

(
2

ε
+

m∑
p=1

1

p
− γ +O(ε)

)
for integer m ≥ 0

• Feynman parameters:
1

ab
=

∫ 1

0

dx

[xa+ (1− x)b]2

• Gaussian integral

– Normal ∫
dNq qiqje

− 1
2
qTMq∫

dNq e−
1
2
qTMq

=
(
M−1

)
ij
,

where q = (q1, . . . , qN) and M is an N ×N matrix.

– Grassmannian ∫
dNc∗dNc cic

∗
je
−c†Mc∫

dNc∗dNc e−c†Mc
=
(
M−1

)
ij
,

where c = (c1, . . . , cN) and M is an N ×N matrix.

• Gaussian two-point function

– Normal ∫
Dφφ(x)φ(y)e−

1
2

∫
d4xd4yφ(x)M(x,y)φ(y)∫

Dφ e− 1
2

∫
d4xd4yφ(x)M(x,y)φ(y)

= M−1(x, y).

– Grassmannian∫
Dψ̄Dψ ψα(x)ψ̄β(y)e−

∫
d4xd4yψ̄α(x)Mαβ(x,y)ψβ(y)∫

Dψ̄Dψ e−
∫
d4xd4yψ̄α(x)Mαβ(x,y)ψβ(y)

=
(
M−1

)
αβ

(x, y).

• Gamma matrices:
trγµ = 0, {γµ, γν} = 2gµν ,

trγ5 = 0, (γ5)† = γ5,
{
γ5, γµ

}
= 0.
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1. (i) Show that in 4− ε dimensions

µε
∫

d4−εp

(2π)4−ε
1

p2 −m2
=

im2

16π2

(
2

ε
+ ln

4πµ2

m2
+ 1− γ +O(ε)

)
,

and

µε
∫

d4−εp

(2π)4−ε
1

(p2 −m2)2
=

i

16π2

(
2

ε
+ ln

4πµ2

m2
− γ +O(ε)

)
.

[6 marks]

(ii) Consider the integral

Iµνρ2 = µε
∫

d4−εq

(2π)4−ε
qµqνqρ

((k + q)2 −m2)(q2 −m2)
.

(a) Show that the divergent part is

Iµνρ2 = − i

64π2

[
(kµgνρ + kνgµρ + kρgµν)

(
m2 − k2

6

)
+ kµkνkρ

]
2

ε
+ finite.

[8 marks]

(b) Use the integrals ∫ 1

0

dx x ln(1− 2x)2 = −1,∫ 1

0

dx x2 ln(1− 2x)2 = −5

9
,∫ 1

0

dx x3 ln(1− 2x)2 = −1

3
,

to show that for k2 = 4m2, the full integral, including finite parts, is

Iµνρ2 = − im2

192π2
(kµgνρ + kνgµρ + kρgµν)

(
2

ε
+ ln

4πµ2

m2
− γ +

5

3

)
− im2

64π2
(kµkνkρ)

(
2

ε
+ ln

4πµ2

m2
− γ +

4

3

)
. (1)

[6 marks]

[Total 20 marks]
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2. The Lagrangian of scalar electrodynamics (theory of an electrically charged scalar field) is

L = −1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 + (Dµφ)∗(Dµφ)−m2φ∗φ− λ

4
(φ∗φ)2 ,

where φ is a complex scalar, Aµ is an Abelian gauge field, Dµ = ∂µ + ieAµ is a covariant
derivative, and Fµν = ∂µAν − ∂νAµ is the field strength tensor.

(i) Show that the Feynman rules for the interaction vertices are

� ↔ −iλ, (1)

�
q

kk′

µ

↔ −ie(kµ + k′µ), (2)

�
µ ν

↔ 2ie2gµν . (3)

Indicate also the momenta of the legs and show how momentum is conserved at each
vertex. [6 marks]

(ii) Draw the 1PI diagrams that contribute to the scalar and photon two-point functions ,

� and � ,

at one-loop level. [3 marks]

(iii) Use the Feynman gauge propagators

�k
µ ν ↔ −igµν

k2
,

�k
↔ i

k2 −m2
,

to write down the integrals corresponding to the 1PI diagrams in (ii) in dimensional
regularisation. [7 marks]

(iv) Using the expressions given in Question 1.(i), calculate the photon two-point function at
k = 0. Explain the significance of your result. [4 marks]

[Total 20 marks]
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3. Consider again scalar electrodynamics (see Question 2)

L = −1

4
FµνF

µν + (Dµφ)∗(Dµφ)−m2φ∗φ− λ

4
(φ∗φ)2 ,

this time in d spacetime dimensions.

(i) Find the dimensionalities of the fields Aµ and φ and parameters e, λ and m. [3 marks]

(ii) Show that the dimensionality of the momentum-space 1PI correlator Γ̃EA,Eφ with EA
external photon legs and Eφ external scalar legs is

[Γ̃EA,Eφ ] = d− (EA + Eφ)
d− 2

2
.

[4 marks]

(iii) Using momentum conservation or other arguments, show that the number of loops in a
diagram with EA external photon legs and Eφ external scalar legs, and V1, V2 and V3

vertices of the types (1), (2) and (3), respectively (see Question 2) is

L = V1 +
1

2
V2 + V3 −

1

2
(EA + Eφ) + 1. [4 marks]

(iv) Using dimensional analysis, show that the the superficial degree of divergence of the
diagram is

D = 4− (EA + Eφ) + (d− 4)L.

[4 marks]

(v) Use the previous result to explain how the renormalisability of the theory depends on
d? [3 marks]

(vi) What counterterms do you need to introduce to renormalise the theory in d = 3 dimen-
sions? Explain. [2 marks]

[Total 20 marks]
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4. Consider the Georgi-Glashow model, with an SU(2) gauge field Aµ and a scalar field Φ in the
adjoint representation. The Lagrangian is

L = −1

2
TrFµνF

µν + Tr (DµΦ)(DµΦ)− λ
(
TrΦ2 − v2

)2
,

with field strength tensor Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] and covariant derivate DµΦ =
∂µΦ + ig[Aµ,Φ]. This Lagrangian is invariant under the SU(2) gauge symmetry

Aµ → AUµ = UAµU
† − i

g
U∂µU

†, Φ→ ΦU = UΦU †.

(i) Express the kinetic terms of the gauge field Aµ in terms of its components Aaµ defined as
Aµ = Aaµt

a, where the 2 × 2 matrices T a satisfy [ta, tb] = (i/2)εabctc and Tr tatb = δab/2.
Show that without gauge fixing the tree-level two-point function 〈Aaµ(k)Abν(q)〉 is not well
defined, and explain why. [6 marks]

(ii) Explain why any gauge-invariant expectation value can be calculated using the modified
Lagrangian

Lξ = L − 1

2ξ
(∂µAaµ)2 + ∂µca∗∂µc

a − gεabc∂µca∗Abµcc.

What are the properties of the field c, and what type of particle does it describe? How
is the value of the parameter ξ determined? [11 marks]

(iii) Show that with Lagrangian Lξ, the tree-level gauge-field two-point function is

〈Aaµ(k)Abν(q)〉 = (2π)4δ(k + q)
−iδab

k2

[
gµν − (1− ξ)kµkν

k2

]
.

[3 marks]

[Total 20 marks]

6 End of examination paper


