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You may use the following results without proof:

• Loop integral in d dimensions (Minkowskian):

In(m2) ≡
∫

ddp

(2π)d
1

(p2 −m2)n
= (−1)n

imd−2n

(4π)d/2
Γ(n− d/2)

Γ(n)

• Gamma functions: zΓ(z) = Γ(z + 1) and

Γ
(
−m+

ε

2

)
=

(−1)m

m!

(
2

ε
+

m∑
p=1

1

p
− γ +O(ε)

)
for integer m ≥ 0

• Feynman parameters:
1

ab
=

∫ 1

0

dx

[xa+ (1− x)b]2

• Gaussian path integrals

– Real ∫
Dφ e−

1
2

∫
ddxddyφ(x)M(x,y)φ(y) =

const√
detM

– Grassmannian ∫
Dθ∗Dθ e−

∫
ddxddyθ∗(x)M(x,y)θ(y) = detM

• Gamma matrices:
trγµ = 0, {γµ, γν} = 2gµν ,

trγ5 = 0, (γ5)† = γ5,
{
γ5, γµ

}
= 0.
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1. Consider a simple harmonic oscillator with action

S =

∫ ∞
−∞

dt

(
1

2
mẋ2 − 1

2
mω2

0x
2

)
.

The amplitude for the oscillator to move from point xa at time ta to point xb at time tb is
given by the path integral

U(xa, xb; tb − ta) ≡ 〈xb; tb|xa; ta〉 =

∫ x(tb)=xb

x(ta)=xa

Dx(t)eiS,

where |x; t〉 = exp(iĤt)|x〉 is an eigenstate of the coordinate operator x̂(t) with eigenvalue x.
Furthermore, we have for any operator Ô[x̂]

〈xb; tb|T Ô|xa; ta〉 =

∫ x(tb)=xb

x(ta)=xa

Dx(t)O[x(t)]eiS.

(i) Show that you can write the ground state |0〉 as

|0〉 ∝ lim
T→∞

|xa;−T 〉,

with an appropriate rotation of the time coordinate on the complex plane. [4 marks]

(ii) Show that the ground state two-point correlator 〈x(0)x(t)〉 ≡ 〈0|T x̂(0)x̂(t)|0〉 can be
expressed in terms of path integrals as

〈x(0)x(t)〉 =

∫
Dx x(0)x(t) eiS∫
Dx eiS

.

[4 marks]

(iii) How can the two-point correlator 〈x(0)x(t)〉 be obtained from the the generating func-
tional

Z[J ] ≡
∫
Dx eiS+i

∫
dtJ(t)x(t) ?

[4 marks]

(iv) For the harmonic oscillator, we have

Z[J ] = C exp

[
−1

2

∫
dω

2π

dω′

2π
J(ω)

i2πδ(ω + ω′)

m(ω2 − ω2
0 + iε)

J(ω′)

]
,

where C is a constant and J(ω) =
∫
dteiωtJ(t). Calculate the two-point function

〈x(ω)x(ω′)〉 of the Fourier transformed coordinate variable

x(ω) =

∫ ∞
−∞

dteiωtx(t).

[4 marks]

(v) Take the Fourier transform of your result to show that you obtain the standard result
for zero-point fluctuations

〈x(t)2〉 =
1

2mω0

.

[Hint: To do the integral, you may make use of Γ(1/2) =
√
π.] [4 marks]

[Total 20 marks]
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2. The Lagrangian of the SU(N) Yang-Mills field Aaµ coupled to a complex scalar (Higgs) field
φi in the fundamental representation is

L = −1

4
(∂µA

a
ν − ∂νAaµ)(∂µAaν − ∂νAaµ)

+
g

2
fabc(∂µA

a
ν − ∂νAaµ)AbµAcν − g2

4
fabcfadeAbµA

c
νA

dµAe ν

+∂µφ
∗
i∂

µφi + igtaijA
a
µ [(∂µφ∗i )φj − φ∗i (∂µφj)] + g2taijt

b
jkg

µνφ∗iA
a
µA

b
νφj,

where g is the gauge coupling constant, fabc are the structure constants and taij are the group
generators. The colour indices are i, j ∈ {1, . . . , N} and a, b, c, d, e ∈ {1, . . . , N2 − 1}.

(i) Find the dimensionalities of the fields φi and Aaµ and the coupling g in d spacetime
dimensions. [3 marks]

(ii) Draw the interaction vertices. Find the corresponding Feynman rules in their symmetric
form, labelling all indices and momenta carefully. [12 marks]

(iii) Gauge fixing introduces an extra factor

det
[
i∂µ(δab∂µ + gfabcAcµ)

]
in the path integral. Explain how this determinant can be represented by a ghost field c,
and describe the properties of this field. Write down the new terms that appear in the
Lagrangian and the Feynman rules for the new vertex/vertices. [5 marks]

[Total 20 marks]
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3. The bare Lagrangian of Quantum Electrodynamics is

L = −1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 + ψ̄(i/∂ −m)ψ − eψ̄γµψAµ,

where ψ is the electron field, Aµ is the U(1) gauge field, Fµν = ∂µAν − ∂νAµ is the field
strength tensor, γµ are the Dirac gamma matrices and /∂ = γµ∂µ.

At one-loop level in naive perturbation theory, the superficially divergent one-particle irre-
ducible correlation functions are

� = − ie2

12π2
(k2gµν − kµkν)

(
2

ε
+ log

4πµ2

m2
− γ
)

+ finite.

� =
ie2

16π2
(ξ/k + (3 + ξ)m)βα

(
2

ε
+ log

4πµ2

m2
− γ
)

+ finite.

� = −ieγµαβ −
ie3ξ

16π2
γµαβ

(
2

ε
+ log

4πµ2

m2
− γ
)

+ finite. (1)

(i) Consider the same theory in renormalised perturbation theory. The renormalised fields

are defined by ψ = Z
1/2
ψ ψR and Aµ = Z

1/2
A AµR, and renormalised parameters eR, mR and

ξR by

Z
1/2
A Zψe = eR + δe,

Zψm = mR + δm,

ZA/ξ = Zξ/ξR.

The renormalisation constants are written in terms of counterterms as ZA = 1 + δZA,
Zψ = 1 + δZψ and Zξ = 1 + δZξ.

Doing these changes of variables explicitly, write the Lagrangian in terms of renormalised
fields, renormalised parameters, and counterterms.

Identify the terms that are treated as interactions in renormalised perturbation theory.
[5 marks]

(ii) Using the counterterm Feynman rules

� ↔ −i
[
δZA

(
k2gµν − kµkν

)
− δZξ

ξR
kµkν

]

� ↔ i (δZψ/k − δm)βα

� ↔ −iδeγµαβ,

write the correlation functions (1) in renormalised perturbation theory in terms of renor-
malised parameters and counterterms (i.e., without imposing a renormalisation condition
yet). Then determine the values of the counterterms in the MS scheme, and use them to
write the correlation functions (1) in terms of renormalised parameters only. [7 marks]
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(iii) Show that, to leading order in e, the beta function of the theory is

β(e) ≡M
∂eR
∂M

∣∣∣∣
B

=
e3

12π2
.

Assuming that at M = 0.5 MeV, e = 0.3, and that there is only one species of charged
particles (i.e. electron/positron), find the Landau pole of the theory (a rough approxi-
mate value is enough). Discuss the implications of your answer. [8 marks]

[Total 20 marks]
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4. Consider the d-dimensional (Minkowskian) integral

Iµ2 (k;m, 0) =

∫
ddp

(2π)d
pµ

(p2 −m2)(p+ k)2
.

(i) Explain why Iµ2 (k;m, 0) has to be parallel to kµ. [2 marks]

(ii) Show that

Iµ2 (k;m, 0) =

∫ 1

0

dx

∫
ddp

(2π)d
pµ

[(p+ kx)2 − (1− x)(m2 − xk2)]2
.

[5 marks]

(iii) Show that

Iµ2 (k;m, 0) = −kµ
∫ 1

0

dx x

∫
ddp

(2π)d
1

[p2 − (1− x)(m2 − xk2)]2
.

[3 marks]

(iv) Carry out the momentum integration to express Iµ2 (k;m, 0) as an integral over x only.
[2 marks]

(v) Using ∫ 1

0

dx x ln(1− αx) =
1

2

(
1− 1

α2

)
ln(1− α)− 1

4

(
1 +

2

α

)
,

calculate the integral in d = 4− ε dimensions (with ε� 1). You should find

Iµ2 (k;m, 0) = − ikµ

32π2

[
2

ε
+ log

4π

m2
− γ + 2 +

m2

k2
−
(

1− m4

k4

)
ln

(
1− k2

m2

)]
+O(ε).

[8 marks]

[Total 20 marks]
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