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You may use the following results without proof:

• Loop integral in d dimensions (Minkowskian):

In(m2) ≡ µε
∫

ddp

(2π)d
1

(p2 −m2)n
= (−1)n

iµεmd−2n

(4π)d/2
Γ(n− d/2)

Γ(n)

• Gamma functions: zΓ(z) = Γ(z + 1) and

Γ
(
−m+

ε

2

)
=

(−1)m

m!

(
2

ε
+

m∑
p=1

1

p
− γ +O(ε)

)
for integer m ≥ 0

• Feynman parameters:
1

ab
=

∫ 1

0

dx

[xa+ (1− x)b]2

• Gaussian path integrals

– Real ∫
Dφ e−

1
2

∫
ddxddyφ(x)M(x,y)φ(y) =

const√
detM

– Grassmannian ∫
Dθ∗Dθ e−

∫
ddxddyθ∗(x)M(x,y)θ(y) = detM

• Gamma matrices:
trγµ = 0, {γµ, γν} = 2gµν ,

trγ5 = 0, (γ5)† = γ5,
{
γ5, γµ

}
= 0.
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1. Scalar electrodynamics is a theory of an electrically charged (complex) scalar field φ. It has
the bare Lagrangian

L = −1

4
(∂µABν − ∂νABµ)(∂µAνB − ∂νA

µ
B)

+(∂µφB + ieBABµφB)∗(∂µφB + ieBA
µ
BφB)−m2

Bφ
∗
BφB −

1

4
λB(φ∗BφB)2.

The superficially divergent 1PI correlation functions at one loop in bare perturbation theory
(in the Lorentz gauge) are

�µ ν = − ie2B
48π2

(k2gµν − kµkν)
(

2

ε
+ log

4πµ2

m2
B

− γ + finite

)
,

� = −3ie2B
16π2

k2
(

2

ε
+ log

4πµ2

m2
B

− γ + finite

)
+
iλB
16π2

m2
B

(
2

ε
+ log

4πµ2

m2
B

− γ + finite

)
,

�
k

p

q

µ

= ieB(pµ + qµ)− 3ie3B
16π2

(pµ + qµ)

(
2

ε
+ log

4πµ2

m2
B

− γ + finite

)
,

�
µ ν

= 2ie2Bg
µν − 6ie4B

16π2
gµν
(

2

ε
+ log

4πµ2

m2
B

− γ + finite

)
,

� = −iλB +

(
3ie4B
4π2

+
5iλ2B
32π2

)(
2

ε
+ log

4πµ2

m2
B

− γ + finite

)
,

where γ is the Euler-Mascheroni constant.

(i) In renormalised perturbation theory, one defines

AµB = Z
1/2
A Aµ, Z2

φλB = λ+ δλ,

φB = Z
1/2
φ φ, ZφZ

1/2
A eB = Z1e,

Zφm
2
B = m2

R + δm2, ZφZAe
2
B = Z2e

2.

and ZX = 1 + δZX for any X. Write the Lagrangian in terms of renormalised fields,
renormalised couplings and counterterms. [4 marks]

(ii) Write down the Feynman rules for all vertices in renormalised perturbation theory. (Hint:
For some of these you can make use of the correlators given above.) [6 marks]

(iii) Write down the same 1PI correlators as above in renormalised perturbation theory (Hint:
Again, make use of the correlators given above!), and show that the counterterms in the

3
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MS scheme are

δZA = − e2

48π2

(
2

ε
+ log

4πµ2

M2
− γ
)
,

δZφ =
3e2

16π2

(
2

ε
+ log

4πµ2

M2
− γ
)
,

δm2 =
λ

16π2
m2

(
2

ε
+ log

4πµ2

M2
− γ
)
,

δλ =

(
3e4

4π2
+

5λ2

32π2

)(
2

ε
+ log

4πµ2

M2
− γ
)
,

δZ1 =
3e2

16π2

(
2

ε
+ log

4πµ2

M2
− γ
)
,

δZ2 =
3e2

16π2

(
2

ε
+ log

4πµ2

M2
− γ
)
.

[5 marks]

(iv) Calculate the leading non-trivial terms in the beta functions of the two couplings

βλ =
dλ

d logM
, βe =

de

d logM
,

where M is the renormalisation scale. [5 marks]

[Total 20 marks]
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2. The Lagrangian of the pseudoscalar Yukawa theory is

L =
1

2
∂µφ∂

µφ− 1

2
m2
φφ

2 − 1

4!
λφ4 + ψ̄(i/∂ −m)ψ − igψ̄γ5ψφ,

where φ is a real (pseudo)scalar field and ψ is a fermion field.

(i) Using the expressions for the Gaussian two-point functions in the rubric, derive the
propagators for the two fields in bare perturbation theory. [5 marks]

(ii) Find the Feynman rules for the interaction vertices. [4 marks]

(iii) The superficially divergent correlators are

���	 .

Draw the one-particle irreducible diagrams that contribute to these at one-loop level.
[4 marks]

(iv) Use the Feynman rules to write the corresponding integrals. [6 marks]

[Total 19 marks]
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3. The gauge-fixed Lagrangian of the Yang-Mills theory is

L = −1

4
(∂µA

a
ν − ∂νAaµ)(∂µAaν − ∂νAaµ)

+
g

2
fabc(∂µA

a
ν − ∂νAaµ)AbµAcν − g2

4
fabcfadeAbµA

c
νA

dµAe ν

− 1

2ξ
(∂µAaµ)2 + ∂µca∗

(
∂µc

a − gfabcAbµcc
)
. (1)

(i) Using the ghost-gluon vertex



ca∗(k1) cc(k3)

Abµ(k2)

↔ gfabck1
µ.

and the ghost propagator

�cb∗(k) ca(k) ↔ iδab

k2
,

show that the ghost one loop correction to the gluon two-point correlator is given by the
integral

� = −g2facdf bcdµε
∫

ddp

(2π)d
(p+ k)µpν

(p+ k)2p2
.

[5 marks]

(ii) Show that this can be written as


 = −g2facdf bcd
∫ 1

0

dx

[
µε
∫

ddp

(2π)d
pµpν

(p2 −∆(x))2

− x(1− x)kµkνµε
∫

ddp

(2π)d
1

(p2 −∆(x))2

]
,

where ∆(x) = −x(1− x)k2. [5 marks]

(iii) Show further that

� = −g2facdf bcd
∫ 1

0

dx

[
gµν

d− 2
∆− x(1− x)kµkν

]
µεI2(∆), (2)

where the function I2(∆) is given in the rubric. [5 marks]

(iv) Using the integral ∫ 1

0

dx x(1− x) log x = − 5

36
,

calculate this diagram in d = 4− ε dimensions (including the finite piece). [5 marks]

[Total 20 marks]
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4. (i) Considering scalar electrodynamics with the Lagrangian

L = −1

4
FµνF

µν + (Dµφ)∗(Dµφ)−m2φ∗φ− λ

4
(φ∗φ)2 ,

explain how you would usually calculate the propagator Dµν
F (k) defined by

〈Aµ(k)Aν(q)〉 = (2π)4δ(k + q)Dµν
F (k),

and show that this procedure fails. [5 marks]

(ii) Show that for a given gauge condition G[Aµ, φ] = 0, the path integral

IO =

∫
DAµDφO[Aµ, φ]eiS[Aµ,φ],

where O[Aµ, φ] is a gauge-invariant observable, can be written as

IO ∝
∫
DAµDφ δ(G[Aµ, φ]) det

(
δG[Aαµ, φ

α]

δα

)
O[Aµ, φ]eiS[Aµ,φ],

where Aαµ is the gauge transform of Aµ,

Aαµ = Aµ +
1

e
∂µα, φα = eiαφ.

[6 marks]

(iii) Choosing G[Aµ, φ] = G̃[Aµ, φ] − ω(x), where ω(x) is an arbitrary function in spacetime
and G̃ is independent of ω, show that you can write

IO ∝
∫
DAµDφ det

(
δG̃[Aαµ, φ]

δα

)
O[Aµ, φ]eiSξ[Aµ,φ],

where

Sξ[Aµ, φ] = S[Aµ, φ]−
∫
d4x

1

2ξ
G̃2.

Discuss the ξ-dependence of individual Feynman diagrams, renormalisation counterterms
and scattering amplitudes. [5 marks]

(iv) Show that you can express IO as a path integral

IO ∝
∫
DAµDφDc∗DcO[Aµ, φ]eiSgf [Aµ,φ,c],

where the full gauge-fixed action is

Sgf [Aµ, φ, c] = S[Aµ, φ]−
∫
d4x

[
1

2ξ
G̃2 + c∗

(
δG̃

δα

)
c

]
.

What are the properties of the new field c? What type of particle does it describe?
[4 marks]

[Total 20 marks]
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