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You may use the following results without proof:

e Chain rule for functional differentiation:

OF(x) :/d4z OF(x) 6A(z).

0B(y)
e Minkowski-space loop integral in d = 4 — ¢ dimensions:

€

dp 1 iuem=2nT(n — 1d)

— (-1

W) = | omi (= e ey

(4m)a T (n)

where '(z + 1) = z['(z), such that [(m) = (m — 1)! if m is a positive integer and

M) =06"1—v+0(5), M(=140)=—(0"

L4+ 1—9)+009),

for small § where v = 0.577216... is the Euler—Mascheroni constant.

e Gaussian path integrals:

real:

/ D ek [ dxd?y pGMx)aty) — CONSt:

Vdet M’

Grassmannian: /D@* DY e~ [ dxdYEIMIW) — (et M

Go to the next page for
questions



1. Consider a particle with action

S[q; ta, ty) = /ttb dt [$md® — V(q)]

Let |g, t) be the eigenstate of the position operator G(t)|q; t) = q|qg; t) at time t.
The amplitude for the particle to evolve from position g, at time t, to position g,
at time t, Is given by the path integral

q(tp)=as - .
U(qa- dpb, tb - ta) = <Qb, tb’qa' ta> = / Dq e' [q-tavtb]/ .
q(fa)ZQa

(i) Discuss briefly the physical interpretation of this path integral. In the limit
h — 0, which paths g(t) in the integral give the largest contribution to the
amplitude? Why?

By inserting factors of 1 = [dq|q, t){q, t|, show that

(ab; t|G(1)]qa; ta) = /dq U(q, gu; ts — t) qU(qa, q; t — t,)

a(ts)=a» _
_ / Dq q(t)eSlatstal/h,
q

(ta):q;a
Hence argue that in general one gets the time-ordered expression

q(tp)=qp .
/ Dq q(ty) -~ q(t,) el = (g | TG(t1) - - G(t0)|a; ta).
Q(ta):CIa

[7 marks]
(i) Setting i = 1 and given |q; t) = e'|q) where A is the Hamiltonian, show that
lim70o(1—ie) |q; —T) o< |2) where |€2) is the ground state. Hence show that

[Dq q(ty) - q(t,) e°le=TT]

QTq(ty)---4(tn)|2) = i _
< ’ Q( 1) Q( )’ > T—)olor(Tj]L—ie) fDq eIS[q;—T,T]
[6 marks]
(iii) The generating functional is given by
ZUl=  lim /quis[q]+ifdtq(t)J(t)_
T—oo(1—i€)

By considering a change of integration variables in Z[J] from q(t) to ¢'(t) =
q(t) + a(t) for arbitrary, small a(t), show that

/dta(t) T_}li@r(q_ie)/l)q (%([g _|_J(t)) eiSlal+i [dea(t)J(t) _ o

(You may assume Dq = Dq'.) [3 marks]
(iv) Hence show that

d? dv(t)

m g @ATaDAIR) + QT3 a(t)IR) = —is(t — 1)

[4 marks]

[Total 20 marks]
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2. The generating functionals Z[J], E[J] and T'[¢] for a scalar theory are related by

inZ[J] = E[J] = —T[¢a] — /d4xd>c|(><)J(X),

where ¢q(x) = —0E[J]/dJ(x), and the corresponding correlation functions are given
by
GO 248
Grl - %0) = 0T 5304) - 0000)
— n+1 5”E[J]
Golxt, ..., xp) = (=) 5J0a) - 0J0a) | g
0" r[¢d]
Ma(xa, ..., n '
(Xl X ) 5¢c| (Xl) 6¢C|(Xf7) ¢q=0

(i) In a perturbation expansion, what kind of Feynman diagrams contribute to G,,?
What about G, and ,?

Consider A\¢* theory. Argue that Gs(x1, xo) = Go(X1, X») and draw the tree-level
and one-loop Feynman diagrams that contribute to the functions G4, G4 and
M4 [6 marks]

(i) If Ais a constant, the effective potential Vig(A) is defined by

fellpya = = [ ¢ Vir(A).

Ignoring terms independent of A, show that
~ 1l .~
Ver(A) = |ZHA .0, ..., 0),
n=1

where the Fourier transform of [',(xq, . . ., Xp) is (21)4 6@ (32 p)T (1, - - -, Pn)-
[4 marks]

(iii) Draw the Feynman diagrams that give the one-loop contribution to Vii(A) in
A¢* theory. Using the standard Feynman rules show that

Y n
1-loop 0 2n
Verr " (A) = Z 2”+1n/ (2m)4 ( —m3 + ie’) AT

/ 0g p? —m3 — XA+ i¢
=3 (2 )40 p2 — mi +ie

(You do not have justify the symmetry factors.) Which terms in the power
series expression are divergent? [5 marks]

(iv) Show that, using dimensional regularisation,
8Valfrloop Ao oo 2 Amp’
= — INA?) | = +1 — | - 1.
A2 6472 (75 + 3204%) ¢ %9 mg + $XA2 v

[5 marks]

[Total 20 marks]
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3. The action for electromagnetism is

1
S[AL = ——/d4x Fu, F*

where F,, = 9,A, — 0,A,. It is invariant under gauge transformations

(i)

(it)

(iii)

(iv)

A A = A, + 18,0
Show that in momentum space
d*p d%q
(2m)* (2

where M“(p, q) = i(2m)*6™ (p — q) (p*n* — pp*) and A,(p) = A%(—p) is
the Fourier transform of A, (x).

S[AL] = ii

Ty AL (PYMH (p, 9)A,(q),

Show that /\7/‘“’(,0, q) is not invertible and hence argue that the standard pro-
cedure for defining the propagator (0|T AL(x)A,(y)|0) fails. [5 marks]

Let G[AL](x) = w(x) be some (local) gauge-fixing condition. By inserting

1= /D d t( [A(a)]> 3(GIAM] = w)

show that the partition function of A,(x) can be written as

(@)
Z[Jp,] — DA det 5G[AH ] eiS§[Au]+ifd4XJ“'(X)A,_,,(X)'
# dor

where S¢[A,] = S[A.] — 3¢ [ d*x G[A,]” for some constant £.

Do you expect correlation functions of A, to depend on G[A,] and £7 What
about correlation functions of F,,7 [4 marks]

Locality implies that 6G[Aff)](x)/6a(y) = 6™ (x — y)A(x) for some operator
A(x). Show that Z[J#] can be rewritten as

Z[) = / DA,Dc*De eSWwe T a5 (A )

where S[A,, ¢, ¢*] = S¢[Au] — [ d*x c*Ac. What are the properties of the new
fields c(x) and c*(x)? What type of particle do they describe? [3 marks]

Show that
Z[] /DAMDC*DCDBeiS[Au,c,c*,B]Jrifd4xJu(x)Au(x)
where
S[Au. c.c*, Bl = /d4x (—3FuF* — c*Ac+ 3¢B* 4+ BG[A,]) .
What are the properties of the new field B(x)? [3 marks]

[This question continues on the
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(v) Take G[A,] = 0*A, and show that S[A,, c, c¢*, B] is invariant under the in-
finitesimal BRST transformations, parameterised by a constant Grassmannian
variable e,

0cAL = Led,c, d.c=0, d.c* =€B, 5.B =0.

Defining an operator Q such that acting on fields eQ - A, = 6.A,, and eQ - c =
d.c etc., show that Q% = 0. Outline how the physical states of the theory are
defined using Q. [5 marks]

[Total 20 marks]
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4. The Lagrangian density for A¢* theory is given by
L=10,00"¢ — 1mi” — ="
(i) In renormalised perturbation theory one defines
b= ZY2¢r, Zmg = m% +6m?, Z°Xo = Ar + 0N,

where Z = 14§ Z. Rewrite the Lagrangian density in terms of the renormalised
field, renormalised couplings, and counter terms. [2 marks]

(i) Let GR(x,y) = (QTdr(x)dr(y)|2) be the renormalised two-point function.
Using the standard Feynman rules, show that the Fourier transform can be
written as

GX(p. q) = (2m)*®(p+ q)p2 | 3 ( M (p) )

_ 2 ol 2 2 ol
Mg +1€" 7=\ p* — mp + 1€

= (2m)*6® (p + —
(2m) (b q)p2—m,2?—irg(p)—|—ie’

where T,(p) is the one-particle irreducible (1PI) two-point function.
[5 marks]

(iii) By considering one-loop and counter-term diagrams, show that
To(p) = IAph(m3) +i(p?6Z — 6m?) + O(N%).
(where /1(m?) is defined on page 2). Hence show that in the MS scheme

Arm% [ 2 AT
R R(E—I—Iog e —’y)+O(>\,2?).

6Z =0+ O(\3) om? =

[4 marks]

(iv) Now consider the renormalised four-point vertex function Ff(pl, P>, P3, Ps). By
considering one-loop and counter-term diagrams, show that

75(0,0,0,0) = —ixg + 2A%h(m2) — i6X + O(AD).
(where I,(m?) is defined on page 2). Hence show that in the MS scheme

_ 3i (2 AT

< 3
ON = 3o \ ¢ + log Ve ’y) + O(N\3).

[4 marks]

(v) Using the relation between bare and renormalised quantities given in part (i),
show that v, = (M/m32)(8m%/8M) and 3 = M(8Xr/OM) are given by

M 85m2R >\R 5

"T T oM T 162 + OO,
6N 3)% .

b=- oM 1672 + O,

[This question continues on the
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where the derivatives are defined holding the bare quantities fixed. Hence argue
that Ar is a marginally irrelevant coupling.

These equations also imply that the mass m% is a marginal coupling. Is this
correct? Would we have found the same result if we had used a simple cut-off
to regulate the theory? [5 marks]

[Total 20 marks]
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