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You may use the following results without proof:

• Chain rule for functional differentiation:

δF (x)

δB(y)
=

∫
d4z

δF (x)

δA(z)

δA(z)

δB(y)
.

• Minkowski-space loop integral in d = 4− ε dimensions:

In(m2) := µε
∫

ddp

(2π)d
1

(p2 −m2 + iε′)n
= (−1)n

iµεmd−2n

(4π)d/2

Γ(n − 1
2
d)

Γ(n)
,

where Γ(z + 1) = zΓ(z), such that Γ(m) = (m − 1)! if m is a positive integer and

Γ(δ) = δ−1 − γ +O(δ), Γ(−1 + δ) = −(δ−1 + 1− γ) +O(δ),

for small δ where γ = 0.577216... is the Euler–Mascheroni constant.

• Gaussian path integrals:

real:

∫
Dφ e−

1
2

∫
ddx ddy φ(x)M(x,y)φ(y) =

const.√
detM

,

Grassmannian:

∫
Dθ∗Dθ e−

∫
ddx ddy θ∗(x)M(x,y)θ(y) = detM
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1. Consider a particle with action

S[q; ta, tb] =

∫ tb

ta

dt
[

1
2
mq̇2 − V (q)

]
Let |q, t〉 be the eigenstate of the position operator q̂(t)|q; t〉 = q|q; t〉 at time t.

The amplitude for the particle to evolve from position qa at time ta to position qb
at time tb is given by the path integral

U(qa, qb; tb − ta) := 〈qb; tb|qa; ta〉 =

∫ q(tb)=qb

q(ta)=qa

Dq eiS[q:ta,tb]/~.

(i) Discuss briefly the physical interpretation of this path integral. In the limit

~ → 0, which paths q(t) in the integral give the largest contribution to the

amplitude? Why?

By inserting factors of 1 =
∫

dq |q, t〉〈q, t|, show that

〈qb; tb|q̂(t)|qa; ta〉 =

∫
dq U(q, qb; tb − t) qU(qa, q; t − ta)

=

∫ q(tb)=qb

q(ta)=qa

Dq q(t)eiS[q;ta,tb]/~.

Hence argue that in general one gets the time-ordered expression∫ q(tb)=qb

q(ta)=qa

Dq q(t1) · · · q(tn) eiS[q;ta,tb]/~ = 〈qb; tb|T q̂(t1) · · · q̂(tn)|qa; ta〉.

[7 marks]

(ii) Setting ~ = 1 and given |q; t〉 = eiĤt |q〉 where Ĥ is the Hamiltonian, show that

limT→∞(1−iε) |q;−T 〉 ∝ |Ω〉 where |Ω〉 is the ground state. Hence show that

〈Ω|T q̂(t1) · · · q̂(tn)|Ω〉 = lim
T→∞(1−iε)

∫
Dq q(t1) · · · q(tn) eiS[q;−T,T ]∫

Dq eiS[q;−T,T ]
.

[6 marks]

(iii) The generating functional is given by

Z[J] = lim
T→∞(1−iε)

∫
Dq eiS[q]+i

∫
dt q(t)J(t).

By considering a change of integration variables in Z[J] from q(t) to q′(t) =

q(t) + α(t) for arbitrary, small α(t), show that∫
dt α(t) lim

T→∞(1−iε)

∫
Dq

(
δS[q]

δq(t)
+ J(t)

)
eiS[q]+i

∫
dt q(t)J(t) = 0.

(You may assume Dq = Dq′.) [3 marks]

(iv) Hence show that

m
d2

dt2
〈Ω|T q̂(t)q̂(t ′)|Ω〉+ 〈Ω|T

̂dV (t)

dq
q̂(t ′)|Ω〉 = −iδ(t − t ′).

[4 marks]

[Total 20 marks]
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2. The generating functionals Z[J], E[J] and Γ[φcl] for a scalar theory are related by

i lnZ[J] = E[J] = −Γ[φcl]−
∫

d4xφcl(x)J(x),

where φcl(x) = −δE[J]/δJ(x), and the corresponding correlation functions are given

by

Gn(x1, . . . , xn) =
(−i)n

Z[0]

δnZ[J]

δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

,

Gn(x1, . . . , xn) = (−i)n+1 δnE[J]

δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

,

Γn(x1, . . . , xn) = i
δnΓ[φcl]

δφcl(x1) · · · δφcl(xn)

∣∣∣∣
φcl=0

.

(i) In a perturbation expansion, what kind of Feynman diagrams contribute to Gn?

What about Gn and Γn?

Consider λφ4 theory. Argue that G2(x1, x2) = G2(x1, x2) and draw the tree-level

and one-loop Feynman diagrams that contribute to the functions G4, G4 and

Γ4. [6 marks]

(ii) If A is a constant, the effective potential Veff(A) is defined by

Γ[φcl]|φcl=A
= −

∫
d4x Veff(A).

Ignoring terms independent of A, show that

Veff(A) = i

∞∑
n=1

1

n!
AnΓ̃n(0, . . . , 0),

where the Fourier transform of Γn(x1, . . . , xn) is (2π)4δ(4)(
∑

i pi)Γ̃n(p1, . . . , pn).

[4 marks]

(iii) Draw the Feynman diagrams that give the one-loop contribution to Veff(A) in

λφ4 theory. Using the standard Feynman rules show that

V 1-loop
eff (A) =

∞∑
n=1

i

2n+1n

∫
d4p

(2π)4

(
λ0

p2 −m2
0 + iε′

)n
A2n,

= −1
2

i

∫
d4p

(2π)4
log

(
p2 −m2

0 − 1
2
λ0A

2 + iε′

p2 −m2
0 + iε′

)
(You do not have justify the symmetry factors.) Which terms in the power

series expression are divergent? [5 marks]

(iv) Show that, using dimensional regularisation,

∂V 1-loop
eff

∂A2
= −

λ0

64π2

(
m2

0 + 1
2
λ0A

2
) [2

ε
+ log

(
4πµ2

m2
0 + 1

2
λ0A2

)
− γ + 1

]
.

[5 marks]

[Total 20 marks]
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3. The action for electromagnetism is

S[Aµ] = −
1

4

∫
d4x FµνF

µν

where Fµν = ∂µAν − ∂νAµ. It is invariant under gauge transformations

Aµ 7→ A(α)
µ = Aµ + 1

e
∂µα.

(i) Show that in momentum space

S[Ãµ] = 1
2

i

∫
d4p

(2π)4

d4q

(2π)4
Ã∗µ(p)M̃µν(p, q)Ãν(q),

where M̃µν(p, q) = i(2π)4δ(4)(p − q) (p2ηµν − pµpν) and Ãµ(p) = Ã∗µ(−p) is

the Fourier transform of Aµ(x).

Show that M̃µν(p, q) is not invertible and hence argue that the standard pro-

cedure for defining the propagator 〈0|TAµ(x)Aν(y)|0〉 fails. [5 marks]

(ii) Let G[Aµ](x) = w(x) be some (local) gauge-fixing condition. By inserting

1 =

∫
Dα det

(
δG[A

(α)
µ ]

δα

)
δ(G[A(α)

µ ]− w)

show that the partition function of Aµ(x) can be written as

Z[Jµ] =

∫
DAµ det

(
δG[A

(α)
µ ]

δα

)
eiSξ[Aµ]+i

∫
d4xJµ(x)Aµ(x),

where Sξ[Aµ] = S[Aµ]− 1
2ξ

∫
d4x G[Aµ]2 for some constant ξ.

Do you expect correlation functions of Aµ to depend on G[Aµ] and ξ? What

about correlation functions of Fµν? [4 marks]

(iii) Locality implies that δG[A
(α)
µ ](x)/δα(y) = δ(4)(x − y)∆(x) for some operator

∆(x). Show that Z[Jµ] can be rewritten as

Z[Jµ] =

∫
DAµDc∗Dc eiS[Aµ,c,c∗]+i

∫
d4xJµ(x)Aµ(x)

where S[Aµ, c, c
∗] = Sξ[Aµ]−

∫
d4x c∗∆c . What are the properties of the new

fields c(x) and c∗(x)? What type of particle do they describe? [3 marks]

(iv) Show that

Z[Jµ] ∝
∫
DAµDc∗Dc DB eiS[Aµ,c,c∗,B]+i

∫
d4xJµ(x)Aµ(x)

where

S[Aµ, c, c
∗, B] =

∫
d4x

(
−1

4
FµνF

µν − c∗∆c + 1
2
ξB2 + BG[Aµ]

)
.

What are the properties of the new field B(x)? [3 marks]
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(v) Take G[Aµ] = ∂µAµ and show that S[Aµ, c, c
∗, B] is invariant under the in-

finitesimal BRST transformations, parameterised by a constant Grassmannian

variable ε,

δεAµ = 1
e
ε∂µc, δεc = 0, δεc

∗ = εB, δεB = 0.

Defining an operator Q such that acting on fields εQ ·Aµ = δεAµ, and εQ · c =

δεc etc., show that Q2 = 0. Outline how the physical states of the theory are

defined using Q. [5 marks]

[Total 20 marks]
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4. The Lagrangian density for λφ4 theory is given by

L = 1
2
∂µφ∂

µφ− 1
2
m2

0φ
2 − 1

4!
λ0φ

4.

(i) In renormalised perturbation theory one defines

φ = Z1/2φR, Zm2
0 = m2

R + δm2, Z2λ0 = λR + δλ,

where Z = 1+δZ. Rewrite the Lagrangian density in terms of the renormalised

field, renormalised couplings, and counter terms. [2 marks]

(ii) Let GR2 (x, y) = 〈Ω|TφR(x)φR(y)|Ω〉 be the renormalised two-point function.

Using the standard Feynman rules, show that the Fourier transform can be

written as

G̃R2 (p, q) = (2π)4δ(4)(p + q)
i

p2 −m2
R + iε′

∞∑
k=0

(
iΓ̃2(p)

p2 −m2
R + iε′

)k
= (2π)4δ(4)(p + q)

i

p2 −m2
R − iΓ̃2(p) + iε′

where Γ̃2(p) is the one-particle irreducible (1PI) two-point function.

[5 marks]

(iii) By considering one-loop and counter-term diagrams, show that

Γ̃2(p) = 1
2
λRI1(m2

R) + i
(
p2δZ − δm2

)
+O(λ2

R).

(where I1(m2) is defined on page 2). Hence show that in the MS scheme

δZ = 0 +O(λ2
R) δm2 =

λRm
2
R

32π2

(
2

ε
+ log

4πµ2

M2
− γ

)
+O(λ2

R).

[4 marks]

(iv) Now consider the renormalised four-point vertex function Γ̃R4 (p1, p2, p3, p4). By

considering one-loop and counter-term diagrams, show that

Γ̃R4 (0, 0, 0, 0) = −iλR + 3
2
λ2
RI2(m2

R)− iδλ+O(λ3
R).

(where I2(m2) is defined on page 2). Hence show that in the MS scheme

δλ =
3λ2

R

32π2

(
2

ε
+ log

4πµ2

M2
− γ

)
+O(λ3

R).

[4 marks]

(v) Using the relation between bare and renormalised quantities given in part (i),

show that γ2 = (M/m2
R)(∂m2

R/∂M) and β = M(∂λR/∂M) are given by

γ2 = −
M

m2
R

∂ δm2
R

∂M
=

λR
16π2

+O(λ2
R),

β = −M
∂ δλ

∂M
=

3λ2
R

16π2
+O(λ3

R),
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where the derivatives are defined holding the bare quantities fixed. Hence argue

that λR is a marginally irrelevant coupling.

These equations also imply that the mass m2
R is a marginal coupling. Is this

correct? Would we have found the same result if we had used a simple cut-off

to regulate the theory? [5 marks]

[Total 20 marks]
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