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1.

(a) (5 marks) The Schwarzschild black hole metric is

ds2 = −
(

1−
2M

r

)
dt2 +

(
1−

2M

r

)−1

dr 2 + r 2(dθ2 + sin2 θdφ2)

in units in which the speed of light c = 1 and Newton’s constant G = 1.

• What the physical interpretation of the parameter M?

• What is the metric in units in which c and G are not equal to 1 and appear

explicitly in the metric?

• What symmetries does the spacetime have?

(b) (12 marks) Write down the (3+1)-dimensional flat Minkowski metric in spherical

polar coordinates, (t, r, θ, φ). Define ingoing and outgoing radial null coordinates,

transform the metric into these coordinates and state the ranges of these coordinates

paying attention to the fact that r ≥ 0.

Explain in detail how to derive the Penrose diagram for this spacetime by first

doing a coordinate transformation to coordinates which have finite ranges, using

the trigonometric tan function. Draw the Penrose diagram and label and explain its

boundaries. What happens if you want to draw on the diagram the world line of a

photon that comes in radially from infinity, goes through the origin of the original

radial coordinates on a straight line and goes out to infinity again?

What physical aspect of spacetime does a Penrose diagram capture? Name one

type of physical information which cannot be deduced from a Penrose diagram.

(c) (13 marks)

Consider a model for a collapsing star which is a spherically symmetric ball of dust

of total mass M. Explain how the Schwarzschild metric is relevant to this model.

Sketch the Penrose diagram for the spacetime of the star collapsing to form a black

hole. Show on the diagram: r = 2M and r = 0, the surface of the star, the interior

of the star, the black hole (interior, event horizon and singularity), the exterior

region, I± (“scri-plus” and “scri-minus”), i± and i0, and the singularity. Explain the

physical meaning of all these features.

Explain, using your diagram, why an astronaut who falls across the event horizon

cannot avoid the singularity.

(d) (10 marks)

In a thought experiment, an astronaut falls radially and feet first to earth from

the top floor of the Imperial College Blackett Laboratory. In a second thought

experiment, the same astronaut falls radially and feet first into a Schwarzschild

black hole. Assuming that the tidal force, between head and feet, on the astronaut

falling from the Blackett lab would be equal to the tidal force on the astronaut as
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he/she falls across the horizon of the black hole, estimate the order of magnitude

of the mass of the black hole. Use Newtonian gravity (not General Relativity) in

your estimation of the tidal forces in both cases.

What is the approximate Schwarzschild radius of this black hole in metres?

You may use these approximate values:

G = 6.7× 10−11N m2kg−2

c = 3× 108ms−1

mass of earth = 6× 1024kg

radius of earth = 6× 106m .
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2.

(a) (10 marks)

A free, massive, real scalar field, φ, in a globally hyperbolic spacetime with metric

gµν satisfies the Klein Gordon equation

gµν∇µ∇νφ−m2φ = 0 .

Describe how this free field theory may be quantised using the fact that there is a

Hilbert space of complex solutions of this equation with Klein Gordon inner product

(f , g)KG = i

∫
Σ

dSµ(f ∗
∂

∂xµ
g − g

∂

∂xµ
f ∗) ,

where Σ is a Cauchy surface. Explain why the notions of “vacuum state” and

“particle” are in general ambiguous in a curved spacetime.

Now suppose the spacetime is stationary. Explain how this allows the identification of

physically meaningful positive frequency modes and show how one can now quantise

the field and define a quantum state which is a physically meaningful vacuum state

of the field.

(b) (8 marks) Suppose a spacetime (M, g) has the form of a “sandwich”: there are two

non-intersecting Cauchy surfaces, Σ1 and Σ2, such that the spacetime is stationary

to the past of Σ1 and to the future of Σ2, and in between it is time dependent.

Describe how this may lead to particle production. Derive the formula, in terms of

Bogoliubov coefficients, for the expectation value of the number of particles in a

certain mode as measured by a stationary observer in the far future, in the vacuum

state as defined by a stationary observer in the far past?

(c) (4 marks)

With reference to a relevant Penrose diagram, explain why the sandwich spacetime

example in part (b) is relevant to to the process in which a black hole is formed from

gravitational collapse if there is a free scalar quantum field in the spacetime.

(d) (8 marks)

A finite reservoir of radiation at temperature T and fixed volume V has energy

Eres = σV T 4

where σ is a constant.

Consider an uncharged, non rotating black hole in a reservoir of fixed volume V .

Initially, let the mass of the black hole be M, and let the reservoir have the same

initial temperature as the black hole, i.e. the Hawking temperature T = 1
8πM

( in

units in which G = c = ~ = 1 and in which Boltzmann’s constant is equal to one).

Let the total energy of the system Etot = Eres + M be constant. Find the critical

value, Vc , of the volume of the reservoir below which the black hole is in stable

thermal equilibrium with the reservoir and above which the black hole is in unstable

equilibrium. Express Vc in terms of Etot.
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3.

(a) (8 marks)

Let tµ be the tangent vector field of an affinely parametrised null geodesic congru-

ence and let nµ be a null vector field such that nµtµ = −1 and tµ∇µnν = 0 i.e.

nµ is parallely propagated along the congruence. Let ηµ1 and ηµ2 be two spacelike

connecting vector fields for the congruence which are orthogonal to each other and

to tµ and nµ and which satisfy

tµ∇µηνi = ηµi ∇µt
ν , i = 1, 2 .

Let P µν = δµν + tµnν + nµtν.

Prove that

tµ∇µηνi = B̂νρη
ρ
i , i = 1, 2 ,

where B̂µρ = P µαP
β
ρ∇βtα.

Raychaudhuri’s equation for the congruence is

dθ

dλ
= −

1

2
θ2 − σ̂µνσ̂µν + ω̂µνω̂µν − Rµνtµtν .

What is λ? Give the definitions of θ, σ̂µν and ω̂µν in terms of B̂µν and interpret

these quantities geometrically.

(b) (10 marks)

The future event horizon, H+, of a stationary black hole is the Killing horizon of a

future pointing Killing vector ξµ and is a null geodesic congruence. Using part (a)

and assuming Frobenius’ theorem, show that B̂µν = B̂(µν) on H+ (where the braces

( ) around the indices denote symmetrisation). Hence show that B̂µν = 0 and θ = 0

on H+. Hence show that Rµνξ
µξν = 0 on H+.

(c) (4 marks)

Prove that if a vector field vµ is tangent to a Killing horizon of Killing vector ξµ,

then vµ cannot be timelike. Hint: for each point p on the horizon, work in an

orthonormal basis of the tangent space at p in which the metric is the Minkowski

metric, gµν(p) = diagonal(−1, 1, 1, 1), and in which the Killing vector has compo-

nents ξµ = (1, 1, 0, 0) at p.

(d) (4 marks) The Dominant Energy Condition on a non-zero energy momentum tensor,

Tµν, states that the vector wµ = −T µνv ν is future pointing and non-spacelike for

any vector vµ which is future pointing and non-spacelike. (Non-spacelike means

timelike or null.)

Assuming that the stationary black hole spacetime satisfies the Einstein equations

and Tµν satisfies the Dominant Energy Condition, use parts (b) and (c) to show

that −T µνξν is proportional to ξµ on H+.
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(e) (4 marks) The zeroth law of black hole mechanics states that the surface gravity

κ is constant on the future event horizon of a stationary black hole satisfying the

Einstein equations and the Dominant Energy Condition.

Given that ξ[µRν]
ρξρ = −2ξ[µ∂ν]κ (where the square braces [ ] around indices denote

antisymmetrisation) on H+, and using the result of part (d), prove the zeroth law

of black hole mechanics.

You may assume that if v and u are vectors and v[αuβ] = 0 and v is nonzero then

u is proportional to v .
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4. The Reissner-Nordstrom solution of the Einstein-Maxwell equations has metric

ds2 = −
(

1−
2M

r
+
Q2

r 2

)
dt2 +

(
1−

2M

r
+
Q2

r 2

)−1

dr 2 + r 2dΩ2
2,

and electric potential At = Q
r

, where Q > 0, and all other components of Aµ are

equal to zero.

(a) (4 marks) With reference to the metric, explain briefly why there are different phys-

ical interpretations of the solution depending on the relative sizes of M and Q.

(b) (18 marks) The First Law of Black Hole Mechanics for a charged, non-rotating

black hole is

dM =
1

8π
κdA+ ΦHdQ,

where A is the area of the horizon, κ is the surface gravity of the horizon and ΦH is

the horizon potential, which is the difference between the electric potential at the

horizon and at infinity.

By transforming to ingoing null radial Eddington-Finkelstein coordinates, calculate

the surface gravity κ as a function of M and Q.

Calculate A and ΦH for the Reissner-Nordstrom black hole as functions of M and

Q.

Hence prove the First Law of Black Hole Mechanics, carefully stating what result

you are assuming.

(c) (8 marks) What is the “Generalised Second Law” of Black Hole Thermodynamics?

Consider a charged, non-rotating Black Hole of initial mass M and assume it evap-

orates completely by Hawking radiation into massless particles. Working in units in

which G = c = ~ = 1 and Boltzmann’s constant is also equal to 1, what is the

initial entropy of the system? By considering the typical energy of a particle emitted

by a black hole of Hawking temperature T = 1
8πM

, estimate of the total number of

Hawking particles emitted by the black hole over its lifetime and hence estimate the

total entropy of the resultant Hawking radiation.
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