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1. (i) (5 marks)

The Schwarzschild metric for a black hole of mass M in Schwarzschild coordi-

nates (t, r, θ, φ) is

ds2 = −
(

1−
2M

r

)
dt2 +

(
1−

2M

r

)−1
dr 2 + r 2(dθ2 + sin2 θdφ2)

in units in which the speed of light c = 1 and Newton’s constant G = 1.

Write down two Killing vectors of the metric and describe the symmetries that

these correspond to. Does the metric have any other symmetries?

(ii) (6 marks)

Define the ingoing radial null Eddington-Finkelstein (EF) coordinate, v and

calculate the Schwarzschild metric in terms of (v , r, θ, φ). Find the inverse

metric. Hence show that r = 2M is a coordinate singularity.

How do we know that the singularity at r = 0 is not a coordinate singularity?

(iii) (16 marks)

(a) Explain briefly what a Penrose diagram is, what physical information it

captures and what physical information it does not convey.

(b) Draw the Penrose diagram for the maximally extended Schwarzschild

spacetime, also known as the Kruskal spacetime. Show on the diagram:

the black hole (interior, horizon and singularity) the white hole (inte-

rior, horizon and singularity), the exterior regions, I± (“scri-plus and scri-

minus”), i± and i0, r = 2M and r = 0.

(c) Explain the physical meaning of all the features you have labelled on the

diagram.

(d) Where in the Kruskal spacetime are Schwarzschild coordinates defined?

Where in the Kruskal spacetime are ingoing EF coordinates defined?

(e) Which features of this spacetime will not be present in the spacetime of a

black hole formed by gravitational collapse of a star?

(iv) (7 marks)

Draw a copy of the Penrose diagram of the Kruskal spacetime ( you don’t need

to copy all the labels).

(a) Explain, using this diagram, why a massless or massive particle inside the

black hole cannot get out and why it must inevitably reach the singularity.

Explain, using this diagram, why a particle inside the white hole must leave

the white hole and why a particle outside it cannot get inside.

(b) Explain qualitatively, using another copy of the relevant part of this dia-

gram, why an observer far from the black hole sees light from a object

falling into the black hole become arbitrarily highly redshifted as the object

nears the horizon.

(v) (6 marks)
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Two astronauts, Aliya and Biff, both fall freely from rest, radially into a very

large Schwarzschild black hole of mass M.

Intially, they are both together, following a stationary trajectory at constant

radial coordinate r = r0 > 2M and at the same angular position θ = θ0, φ = φ0.

Aliya starts to fall first. Biff waits at r = r0 for some time after Aliya starts

falling and then falls in after Aliya.

Sketch a Penrose diagram of the relevant portion of the black hole spacetime

showing the worldlines of Aliya and Biff. Does Biff lose sight of Aliya as Aliya

crosses the event horizon? Justify your answer using the diagram.
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2. The vacuum solution for a 5-dimensional spherically symmetric black hole with mass

parameter µ is the Schwarzschild-Tangherlini metric:

ds2 = −f (r)dt2 + f (r)−1dr 2 + r 2dΩ23

where

f (r) = 1−
µ

r 2
,

and dΩ23 is the round metric on the 3-sphere

dΩ23 = dχ2 + sin2 χ(dθ2 + sin2 θdφ2) .

The subquestions below refer to this black hole spacetime.

(i) (15 marks) State the definitions of a null hypersurface, a Killing vector field

and a Killing horizon.

Prove that r =
√
µ is a null hypersurface and a Killing horizon. Calculate the

surface gravity, κ, of this horizon.

(ii) (9 marks)

(a) The Stefan-Boltzmann law for the power, P , radiated by a hot body at

temperature T in 4 spacetime dimensions is

P = σ4AT
4 ,

where A is the surface area of the body and σ4 is a constant.

Given that σ4 = ζ~pkqc r where ζ is a dimensionless constant, k is Boltz-

mann’s constant and c is the speed of light, find the integers p, q and r .

(Hint: the average kinetic energy of a particle in an ideal gas of tempera-

ture T is equal to a dimensionless constant times kT .) Why does this tell

us that this is a relativistic, quantum law?

(b) The surface gravity of a 4-d Schwarzschild black hole of mass M is κ = 1
4M

.

Show that, if a black hole loses energy as it radiates according to Stefan’s

law and if it can be approximated by a Schwarzschild black hole at all times,

the time it takes to radiate away all its mass is proportional to M30 , where

M0 is the original mass.

(c) Assuming that the exact same relationship holds in 5 dimensions between

the temperature of a black hole and its surface gravity as in 4 dimensions,

what is the temperature of the 5 dimensional black hole?

Suppose that in 5 dimensions the power radiated by a hot body of tem-

perature T is proportional to T 5. Given that the mass parameter µ is

proportional to the mass M of a 5-d black hole – µ = ξM where ξ is a

constant, show that the time a 5-d black hole of original mass M0 takes to

radiate away all its mass is proportional to Mα
0 . What is the value of α?
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(iii) (6 marks) Let τ = i t be Euclidean (or imaginary) time in which the metric

becomes

ds2 = +f (r)dτ2 + f (r)−1dr 2 + r 2dΩ23 ,

with signature (+,+,+,+).

Consider coordinate r ′ where

r ′ = r −
√
µ , r ′ > 0

and expand the metric in small r ′ to find the leading order behaviour of the

metric close to the horizon. Find a new coordinate ρ as a function of r ′ in

which the leading order behaviour of the metric is

ds2 = 2
√
µ

[
dρ2 + ρ2

dτ2

µ

]
+ µdΩ23 + . . . .

Explain why considering τ as a periodic coordinate with a particular period

makes this geometry nonsingular at ρ = 0.

Why is this result physically consistent with the black hole radiating with the

temperature calculated previously?
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3. The Painlevé-Gullstrand (PG) metric in Painlevé-Gullstrand (PG) coordinates

{T,R, θ, φ} is

ds2 = −dT 2 + (dR +

√
2Z

R
dT )2 + R2(dθ2 + sin2 θdφ2) ,

where Z > 0 is a constant. The spacetime is spherically symmetric and a solution

of the vacuum Einstein equations. It is not flat.

(i) ( 5 marks) Calculate the inverse metric and show the metric is regular for all

values of R > 0. What is the metric of a T = constant hypersurface? Show

that this hypersurface is spacelike.

(ii) ( 2 marks) Explain why Birkoff’s theorem means that the PG metric must be

a Schwarzschild black hole in alternative coordinates.

(iii) (8 marks) The event horizon is located at R = R0. Find the value of R0 and

prove, using only the metric given above in PG coordinates, that the surface

R = R0 is an event horizon. In particular, prove that if a massive or massless

particle is in region R < R0 then it can never reach region R ≥ R0. Hint: T =

constant surfaces are spacelike everywhere and so T must increase along any

future pointing worldline.

Given that the angular coordinates θ and φ of the PG coordinates are equal to

the angular Schwarzschild coordinates θ and φ, what is the PG parameter Z in

terms of the mass of the black hole M?

(iv) (15 marks)

Consider a radial (i.e. constant θ and φ) worldline, γ, in the PG coordinates

along which dR = −
√
2Z
R
dT .

(a) Show that γ is a timelike trajectory.

(b) Show that T is proper time along γ.

(c) Show that γ is a geodesic (you can assume the θ and φ Euler Lagrange

equations hold for radial motion).

(d) Show that the tangent vector of γ is normal to the T = constant hyper-

surfaces.

(e) Show that the total proper time taken for a massive particle to fall freely

along one of these geodesics radially in from initial radial coordinate R =

Rmax to R = 0 is finite. Calculate the value of this proper time. [Note:

the particle does not fall from rest at R = Rmax.]
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4. Consider the Kerr metric for a rotating black hole of mass M and angular momentum

J = Ma,

ds2 = −
(∆− a2 sin2 θ)

Σ
dt2 − 2a sin2 θ

(r 2 + a2 − ∆)

Σ
dt dφ

+
((r 2 + a2)2 − ∆a2 sin2 θ)

Σ
sin2 θdφ2 +

Σ

∆
dr 2 + Σdθ2

where

Σ = r 2 + a2 cos2 θ

∆ = r 2 − 2Mr + a2

and M > a.

(i) (5 marks) Show that the Killing vector k = ∂
∂t

is timelike for large enough r

and any value of the angular coordinates. Show also that k is spacelike in a

region, called the ergoregion, outside the horizon. Derive the equation for the

boundary of the ergoregion and sketch the ergoregion and show its relation to

the event horizon.

(ii) (15 marks)

(a) Consider a process in which a black hole, well approximated by a Kerr metric

with mass M1 and angular momentum J1 changes to another black hole

well approximated by a Kerr metric with mass M2 and angular momentum

J2. Assuming that the Second Law of Black Hole Mechanics holds, prove

that if J1 = J2 = 0 then M2 ≥ M1, but if J1 > 0 the black hole’s mass can

decrease.

(b) Describe the Penrose process for extraction of energy from a Kerr black

hole with initial mass M and angular momentum J.

What is the limiting minimum mass that the resulting black hole can have if

the initial mass and angular momentum are M and J? Deduce the limiting

maximum amount of energy that can be extracted from the black hole.

(iii) (10 marks)

(a) In the event observed by the LIGO experiment on Sept 14th 2015, two

black holes merged to form a single black hole. The data is consistent

with predictions from General Relativity if the final black hole is a Kerr

black hole of mass M = 62Ms , where Ms is the mass of the sun, and the

angular momentum per unit mass is a = 0.67M. The best fit values of the

masses of the two initial black holes are M1 = 29Ms and M2 = 36Ms .

Assume that initially the two black holes are far enough apart that they

can each be well-approximated by a Kerr black hole. Show that no matter

what initial angular momenta they each had, this event does not violate

the Second Law of black hole mechanics.

(b) Will we ever observe an event in which a single uncharged, non-rotating

black hole splits into two uncharged black holes? Justify your answer.
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