Focus on free, real scalar field ϕ

Eq of motion

$$\nabla^2 \phi - m^2 \phi = 0$$

$$\begin{cases}
\text{+ve frequency solutions} \\
\psi_p = \frac{N_p}{\sqrt{p^2 + m^2}} e^{-i\omega t + i\mathbf{k} \cdot \mathbf{x}} \\
\quad \omega = \sqrt{p^2 + m^2}, \quad \mathbf{k} = \frac{\mathbf{p}}{m}
\end{cases}$$

$$\begin{cases}
\text{-ve frequency solutions} \\
\psi_p^* = \frac{N_p}{\sqrt{p^2 + m^2}} e^{i\omega t - i\mathbf{k} \cdot \mathbf{x}} \\
\text{plane waves in an inertial frame.}
\end{cases}$$

Note: $\mathbf{k} = \mathbf{p}/m$

$$\begin{align*}
\mathbf{\nabla} \cdot \mathbf{\psi}_p &= -i \omega \mathbf{\psi}_p \\
\mathbf{\nabla} \cdot \mathbf{\psi}_p^* &= +i \omega \mathbf{\psi}_p^*
\end{align*}$$

$$\{ \psi_p, \psi_p^* \} \text{ is a complete basis. Hence we can expand}$$

$$\phi(x) = \int d^3 p \left[a_p \mathbf{\psi}_p(x) + a_p^* \mathbf{\psi}_p^*(x) \right] \text{ real}$$

Introduce the bracket

$$(f, g) \equiv \int d^3 x \left(\frac{f^*}{\mathbf{k}} \cdot \mathbf{\nabla} + 3 \mathbf{\nabla} f \right) g / \mathbf{k} \quad \text{(by definition)}$$

$$(f, g) = (g, f)^* = - (f^*, f) + (g^*, f) + (f, g^*)$$

Choose $N_p = \frac{1}{\sqrt{2p^0 (2\pi)^3}}$

$$\begin{align*}
(\psi_p, \psi_q) &= \delta^3(\mathbf{p} - \mathbf{q}) \\
(\psi_p, \psi_q^*) &= 0 \\
(\psi_p^*, \psi_q^*) &= -\delta^3(\mathbf{p} - \mathbf{q})
\end{align*}$$

$$(\psi_p^*, \psi_q)$$

The def. of

$$- \left(\psi_p^*, \psi_p \right)$$

$$- \left(\psi_p^*, \psi_p^* \right)$$

$$- \left(\psi_p, \psi_q \right)$$

$$- \left(\psi_p, \psi_q^* \right)$$
Quantiation

ETCR's
\[
\begin{align*}
[\mathbf{r}(x), \pi(y)] &= i\hbar \delta(x-y) \\
[\mathbf{r}(x), \phi(y)] &= 0 \\
[\pi(x), \pi(y)] &= 0 \\
\pi(x) &= \mathbf{r}(x)
\end{align*}
\]

\[\alpha_p^a \rightarrow \text{ operator with } \alpha_p^a, \alpha_p^a \]
\[(\mathbb{2}) \quad \left[\alpha_p^a, \alpha_p^b \right] = \hbar^2 \left(\delta^2(x-y) \right) \]
\[
\left[\alpha_p^a, \alpha_q^a \right] = 0
\]

Vacuum: \(|0\rangle \) defined via \(\alpha_p^a |0\rangle = 0 \)

1. Particle states \(\alpha_p^a |0\rangle \)
2. \(\alpha_p^a \alpha_q^a |0\rangle \) basis for \(\mathcal{H} \)

Number operator
\[N = \int d^3r \alpha_p^a \alpha_p^a \]

One can show \(|0\rangle \) is Lorentz invariant

1. Suppose we had worked in another inertial frame \(\mathbf{x}' = \mathbf{\Lambda} \mathbf{x} \) then \(|0\rangle' = |0\rangle \).
OFT in curved spacetime

Klein–Gordon eqn \((\Box \Phi - m^2) \Phi = 0\)

We will assume that the spacetime is globally hyperbolic & \(\Sigma\) a Cauchy surface.

Inner product
\[(f, g) = \int_{\Sigma} ds^\mu f^* \overline{g}^\mu \]

is complex.

Then for solutions of Klein–Gordon eqn this is independent of Cauchy surface \(\Sigma\). \(\Sigma'\)

\[(f, g)_{\Sigma'} = \int_{\Sigma'} ds^\mu f^* \overline{g}^\mu \]

\[= \int_{\Sigma} ds^\mu f^* \overline{g}^\mu \]

\[= i \int_{\Sigma} ds^\mu m^2 f^* \overline{g}^\mu \]

\[= i \int_{\Sigma} D\mu (f^* \overline{g}) \]

\[= i \int_{\Sigma} [f^* \overline{Dg} - (\overline{Df}^*) g] \]

\[= f^* m^2 g - (m^2 f^*) g \]

\[= 0 \]

Fact: consider that we have a highly non-unique basis of solutions such that

\((\psi, \psi) = 0 \)

\((\psi^*, \psi^*) = - \delta_j^i \psi_i^* \psi_j + (\psi_i, \psi_j) \infty \)

where \(i,j\) are indices.
We can expand

\[
\langle \psi_i, \phi \rangle = a_i \langle \psi_i, \phi \rangle \quad \text{for all } \phi
\]

Can expand \(\phi = \sum_i q_i \psi_i(x) + a_i^* \psi_i(x) \)

quantize \(\rightarrow \sum_i q_i \psi_i(x) + a_i^* \psi_i(x) \)

with \(\langle a_i, a_j^* \rangle = 0 \quad \text{and} \quad \langle a_i, a_j \rangle = \delta_{ij} \)

Basis for Hilberts are \(a_i/|0\rangle = \psi_i \), \(10 \rangle, a^*/|0\rangle, \ldots \)

Note: In general is a preferred choice of basis
satisfying \(\phi \) and hence \(A \) a preferred vacuum state!

hence\(A \) the notion of particle-like states is
natural

Consider another basis \(\psi'_i \)

\[
\psi'_i = \sum_j A_{ij} \psi_j + B_{ij} \psi_j^* \quad \psi'_i^* = \sum_j A_{ij}^* \psi_j^* + B_{ij}^* \psi_j
\]

Thus satisfies \(\dagger \) for \(\psi'_i \) provided that

\[
\begin{bmatrix}
A A^* - B B^* = I \\
A^* A - B^* B = 0
\end{bmatrix}
\]

Meeting \(\dagger \)

\[
\psi'_i = \sum_j A'_{ij} \psi'_j + B'_{ij} \psi'_j^*
\]

with \(A' = A^* + B' = -B^* \)

check.
\[\psi_i' = \sum_j A_{ij} \left(\sum_k A_{jk} \psi_k' + B_{jk} \psi_k'' \right) \\
+ B_{ij} \left(\sum_k A_{jk} \psi_k' + B_{jk} \psi_k'' \right) \\
= \sum_{jk} \left[(AA')_{ik} \psi_k' + (BB')_{ik} \psi_k'' \right] + \left[(AB')_{ik} \psi_k'' + (BA')_{ik} \psi_k' \right] \\
= \sum_{ik} \left[AA^+ + BB^+ \right]_{ik} \psi_k' \\
+ \left[-ABT + BAT \right]_{ik} \psi_k'' \\
= \psi_i' \]

Since \(A^+ + B^+ \) must satisfy same conds as \(A^*B \),
we have

\[
\begin{bmatrix}
AA^+ - BB^+ & = 1 \\
A^*B - BTA^* & = 0
\end{bmatrix}
\]

Note directly implied by other conds.

Use invertibility.

\[\phi = \sum [a_i \psi_i' + a_i^+ \psi_i''] = \sum (\psi_i' + a_i^+ \psi_i') \\
\Rightarrow a_i = \sum_j (A_{ij} a_j + B_{ij} a_j^*) \\
\]

\[[a_i^*, a_j^+] = 0 \]

\[[a_i^*, a_j^+] = \delta_{ij} \Rightarrow AA^+ - BB^+ = 1 \\
AB^* - BAT = 0. \]

The above change of basis, involving \(A^*B \) satisfying conds is called a "Bogoliubov transform."
(Note $\beta = 0$ have $AA^T = AA^+ = 1$ → unitary trans.)

Why doesn't this come up in \mathbb{M} (or \mathbb{C}^E?)

For stationary space-times there is a preferred choice of vacuum. Vacuum that utilises the frequency cut to Killing vector k.

To see this:

1. $(\delta^\mu_{\nu} - \eta^\mu_{\nu}) L_k \phi = 0$ so $L_k \phi$ solves \mathcal{L}-Gordon ϕ does

2. L_k is anti-hermitian $\langle f, L_k g \rangle = -\langle L_k f, g \rangle$

\Rightarrow it has imaginary eigenvalues \mathcal{L}-eigenbasis

- Eigenfunctions with distinct eigenvalues are orthogonal

Can choose a basis $\{\psi_i\}$

We can choose a basis of positive frequency eigenfunctions with

$$\mathcal{L} \psi_i = -i \omega_i \psi_i \quad \text{with} \quad \omega_i > 0$$

3. Anti-hermitian \Rightarrow can normalise $\langle \psi_i, \psi_j \rangle = \delta_{ij}$

also \Rightarrow distinct eigenvalues orthogonal

$$\langle \psi_i^*, \psi_j \rangle = 0.$$
Particle production in non-stationary spacetime

Globally hyperbolic sandwich spacetime

\[t > t' \quad \text{M+ stationary} \rightarrow \text{preferred basis} \ U^+(x) \]

\[t < t' \quad \text{M- stationary} \rightarrow \text{preferred basis} \ U^-(x) \]

\[\psi(x) \text{ solves Klein-Gordon eqn everywhere in } M \]

\[\Phi(x) = \sum a^+_i U^+_i(x) + a^-_i U^-_i(x) \quad \text{in } M^+ \]

But we have shown

\[U^+_i(x) = \sum A^+_{ij} U^-_j + B_{ij} U^+_j \]

\[a^+_i = \sum A^+_i a^-_j - B^+_i a^+_i \]

Suppose we start with the vacuum state \(10^- \)

defined by \(a^- 10^- = 0 \quad \forall i \)

What is expected number of particles \(\phi^- \) associated with late time media defined by \(N^- = a^- a^+ ? \)
$$\langle N^2 \rangle_{10^{-7}} = \langle 0 - 1 \ a^+_i a^+_j a_i a_j \rangle_{10^{-7}}$$

$$= \sum_{jk} \langle 0 - 1 \ a^-_k (B^{i k}) (-B^*_i j a^-_j) \rangle_{10^{-7}}$$

$$= \sum_{jk} \langle 0 - 1 \ a^-_k a^-_j \rangle (B^{i k} B^*_i j)$$

$$= \sum_j B_{i j} B^*_{i j} = \text{trace} (B B^*)_{i i}$$

Expected the total # of particles at late times do $\text{trace} B B^*$ which vanishes if $B = 0$. We take $B = 0$.

The time dependent grav. field results in particle production. Emphasis: this within possible because stationary in for past or future.

Comment. One would see $\langle N^2 \rangle$ particles if in a lab stationary wrt to K.
Black holes from grav. collapse are not stationary, so expect particle creation. But the exterior spacetime is stationary at late times

late time phenomenon determined by collapse? ??

But if a time dilation at H^+ is particle creation take as \mathcal{H} only long to escape escape

late time particle production due to H^+ independent of details of collapse. There is such a flux, called it turns out to be thermal. This is
due to Hawking radiation.

Consider massless scalar fields

1) spacetime is globally hyperbolic specifying data on \mathcal{H}-sufficient since massless.

2) For \mathcal{H} can construct modes on $g-$ (for past apparent)

$$(\phi, \phi^*)$$

3) It is not a Cauchy surface but A^+ exists.

Define modes $$(g, g^*) \phi (h, h^*)$$

Actually I'm same

ambiguity in defining PE frequency on H^t. However, the results we are after don't depend on the choice.

We just require ϕ, h^* form a complete basis.
\(\phi(x) = \sum a_i \phi_i + \text{h.c.} \)
\[= \sum b_i \phi_i + c_i \phi_i + \text{h.c.} \]

Consider a state in vacuum at early times.
Assume 3 mass particles.
Assume we are in state \(10 > \) corresponding to vacuum at early times
\[a_1 \phi_1 = 0 \]

Observer at late time will observe the number of particles in \(i \)th mode:

\[\langle N_i \rangle = \langle 0 | b_i^+ \phi_i | 0 \rangle = (BB^*)_ii \]

\(\text{Note we can write} \quad g_i = \sum_j A_{ij} f_j + B_{ij} f_j \)

\(\text{Want to calculate} \quad B_{ij} \quad \text{(sure fit complete!)} \)

If we could solve KG exactly \(\phi \) Schwarzschild this would be straightforward, but this is not possible.

Instead consider: the frequency solution to KG at \(9^+ \) and ask for its form on \(9^- \).

\(\text{Impose} \quad b.c. \quad \text{on} \quad 9^+ \quad \text{degenerate its form on} \quad 9^- \)
Recall that \(ds^2 = \frac{1}{\chi^2} (dt - \omega dx)^2 - dr_x^2 + r^2 d\Omega^2 \).

And recall \(u = t - r_x \),
\[v = t + r_x \]

\[+ \quad \text{EX} \quad \phi = e^{-i\omega t} R_{\omega e}(r_x) Y_{lm}(\theta, \phi) \]

The equation is
\[(\partial_{r_x} + \omega^2) R_{\omega e}(r_x) = V_e R_{\omega e}(r_x) \]

where
\[V_e(r_x) = \left(\frac{-2M}{r} \right) \left[\frac{\ell(\ell + 1)}{r^2} + \frac{2M}{r^3} \right] \]

Notice:
\[A^+ H^+ \lim_{r_x \to -\infty} V_e \to 0 \]
\[A^+ H^+ \lim_{r_x \to +\infty} V_e \to 0 \]

Have a potential barrier.

\[V_e \text{ at } r_x \]

\[-\infty \quad r_x \quad +\infty \]
Near g^\pm solutions are plane waves.

On g^- define

$$f_{\pm}(x) = \frac{1}{\sqrt{2\pi\omega}} e^{-i\omega t} Y_{\pm\mu}$$

Outgoing

$$f_{\pm}(x) = \frac{1}{\sqrt{2\pi\omega}} e^{-i\omega t} Y_{\pm\mu}$$

Ingoing

On g^+ define

$$g_{\pm}(x) = \frac{1}{\sqrt{2\pi\omega}} e^{i\omega t} Y_{\pm\mu}$$

Interesting: $g_{\pm} \equiv 9_{\pm} f_{\pm}(x)$ at late times on g^+ (to get outgoing mode), will see it is related to $f_{\pm} \equiv f_{\pm}(x)$ on g^-.

Subtlety: Plane waves such as g_{\pm} are delocalized — they have support everywhere on g^+. However, can assemble superposition to construct a local wave packet on g^+ localized around some wave number.

Keeping this in mind, we phrase argument in terms of g_{\pm} below for simplicity.

Key idea

Need to trace g_{\pm} the solution f_{\pm} back in time in order to express it in terms of the f_{\pm}.
As waves travel inwards from \(9^+ \), decreasing values of \(r^+ \), it encounters a barrier in \(V_e \).

One part of the wave will be reflected and end up on \(9^- \) with same \(k \), but with \(9^- \) gives which gives different \(\phi_0 \) (this leads to a Bogoliubov coefficient \(A \)).

The other part of the wave is transmitted \(g \).

\(\text{This gives rise to a Bogoliubov coefficient } A \text{ which is not the focus.} \)

We then need to expand the transmitted wave in terms of the \(\phi_0 \) frequency modes on \(g^- \) (the \(0+ \)).

\(8^- \) a generator of \(11^+ \) continues it back until it intersects \(g \).

\(\phi^0 \) can always shift to \(\phi^0 = 0 \).
for fixed \(u_0 \), the wave packet is localized around \(u_0 > 0 \) on \(\mathbb{R} \).

Note from

Field is oscillating very rapidly near \(\mathbb{R} \) all the way back to \(\mathbb{R} \). Thus can use geometric optics approx.

Write \(\Phi(x) = A(x) \exp(i S(x)) \) and assume \(i \ll 1 \)

Leading order \(i \ll 1 \)

\[0 \ll i \Rightarrow (iS)^2 \ll 0 \]

\[\Rightarrow \text{surfaces of constant } S \text{ are null hypersurfaces. (hence geodesics)} \]

Consider null congruence containing these hypersurfaces also \(H^+ \) (which is \(S = \infty \))

Let us introduce \(\mathbb{R} \)

\(2 \) so tangent geodesics \(\mathbb{R} \) introduce connecting null vector with \(L \cdot N = -1 \)

\[\mathbb{R} \]
Outside matter know we can choose \(\ell^u = (\frac{\partial}{\partial u}) \) as affinely parametrised generator of \(H^+ \)

d hence \(N^u = c \frac{\partial}{\partial v} \) for some (constant \(c > 0 \)).

Hence, outside matter \(-3N^u\) connects to a null geodesic \(g \) with \(u = -c \).

Now, we know, from definition \(\theta = \frac{-1}{\log(-\xi)} \)

\(\Rightarrow \) at late times \(\xi \rightarrow \infty \) outgoing null geodesic with

\(u = \frac{-1}{k} \log(\xi) \)

phase of \(g \sim e^{-i\omega u} + i\omega u = \frac{i\omega \log(\xi)}{k} \).

phase every photon

At \(g \), in \(u, \phi \) coords we have \(\ell^u \sim du \)

\(d \theta = e^{i\omega u} \theta \) for constant \(D > 0 \)

\(\phi \) here

\(\theta = \frac{i\omega \log(-c \xi)}{k} \)
Thus we have

\[g^T_w(n) = \begin{cases} 1 & w > 0 \\ \frac{iw \log(w)}{K} & w < 0 \end{cases} \]

Now want to decompose it further.

Take Fourier transform

\[\widehat{g^T_w}(w) = \int_{-\infty}^{\infty} e^{iwn} g^T_w(n) \, dn \]

\[= \int_{-\infty}^{0} \exp\left(iw n + \frac{iw \log(w)}{K} \right) \, dn \]

Lemma

\[\widehat{g^T_w}(-w) = -\exp(-\pi w/k) \widehat{g^T_w}(w) \quad w > 0. \]

Inverse Fourier transform

\[g^T_w(n) = \int_{-\infty}^{\infty} \frac{dw}{2\pi} e^{-iwn} \widehat{g^T_w}(w) \]

\[= \int_{0}^{\infty} \frac{dw}{2\pi} e^{-iwn} g^T_w(w) \]

\[+ \int_{-\infty}^{0} \frac{dw}{2\pi} e^{iwn} g^T_w(-w) \]

\[= \int_{0}^{\infty} \frac{dw}{2\pi} \frac{Nw}{2\pi} f(w) \widehat{g^T_w}(w) \]

\[+ \int_{-\infty}^{0} \frac{dw}{2\pi} \frac{Nw}{2\pi} f(w) \widehat{g^T_w}(-w) \]

\[N = \text{norming factor} \]
\[A \omega \omega' = N \omega \omega' \delta^\top \omega (\omega') \quad \omega > 0 \]
\[B \omega \omega' = N^* \omega \omega' \delta^\top (-\omega') \]

\[|B \omega \omega'| = \exp\left(-\frac{\pi \omega}{K}\right) / |A \omega \omega'| \quad \text{because of lemma} \]

Normalisation of \(\delta^\top \omega \):

\[\Pi \omega = T^2 = (\delta^\top \omega, \delta^\top \omega) \]

\[= \sum_{\omega'} \left(A \omega \omega' f_{\omega'} + B \omega \omega' f_{\omega'}^* \right) \left(A \omega \omega' f_{\omega'} + B \omega \omega' f_{\omega'}^* \right) \]

\[= \sum_{\omega'} |A \omega \omega'|^2 - |B \omega \omega'|^2 \]

\[= \left(e^{2\pi \omega / K} - 1\right) \sum_{\omega'} |B \omega \omega'|^2 \]

\[= \left(e^{2\pi \omega / K} - 1\right) (BB^+)_{\omega \omega} \]

\[(BB^+)_{\omega \omega} = \frac{\Pi \omega}{e^{2\pi \omega / K} - 1} - \text{can argue \(\Pi \omega \) is the absorption cross section for more few} \]

This is exactly the black body spectrum with \(T_H = K / h \)}
\(g_{\omega} \cdot g_{\omega} = \text{orthogonal} \)

\[T_{\omega} = (g_{\omega}^T, g_{\omega}) \]

\[L_{\omega} = (g_{\omega}, g_{\omega}^T) \]

\[T_{\omega}^2 + L_{\omega}^2 = 1 \]

Now start with mode \(\omega \).

Some gets absorbed by black hole.

Some gets reflection, thus is the same as \(R_{\omega} \).

Hence \(P_{\omega} = T_{\omega}^2 \) is the absorption cross section for the mode \(\omega \) - i.e., the fraction absorbed by the black hole.
Information Paradox

State with matter in pure state. Let it collapse, it forms a black hole & then radiates thermally. It seems after it has evaporated pure → mixed state

Thus is impossible according to unitary evolution in QM.

Originally Hawking argued that QM's would need modification in Q gravity. Most physicists think that there are subtle correlations even in the Hawking radiation that one could in principle reconstruct the initial state.

Contrast with burning a lump of coal: If we studied carefully the final radiation both one would have pure → pure.

This AGKST point of view is hard to implement for black holes as the information going into making the black seems to be lost (uniqueness theorem) & for very long times the radiation is exactly thermal.

(!) not a causal interlude
$T_H = \frac{K}{2\pi}$

Comments

1. Derivation can be generalised to other fields, fermions, bosons, $m = 0, m \neq 0$.

2. Non-spherical collapse

3. Collapse to rotating or charged black holes

$2c. \quad T_H \sim 6 \times 10^{-8} \left(\frac{M_\odot}{M} \right)^{1/3} \text{K}$

- Astrophysical black holes would absorb CMB.
- Micro black holes?! Perhaps formed after Big Bang?

$3c. \quad \frac{dE}{dt} < 0$ / Heats up as it evaporates!!

Thermodynamics: 1st law promoted to thermodynamic law

$\Delta E = T_H dS_{bh} + \mu dJ + \mathcal{E} dQ$

With $S_{bh} = \frac{1}{4} A$

General second law

$S_{bh} + S_{\text{matter outside}} > 0$

Black hole
A riddle

Derivation emphasises role of horizon.

A close closely related phenomenon with observer dependent horizons.

Eg: Riddle - acceleration horizon

World line of uniformly accelerated observer

Also exist in

Eg: de Sitter

Can obtain \(T \) via "Euclideanising" geometry. \(t \rightarrow i \tau \). See page sheet 6.
\[S_{BH} = k_B \left(\frac{M}{m_0} \right)^2 \]

by comparison \[S_{Sun} \approx k_B \times 10^{58} \]

Entropy would be much greater if all matter was in black holes, i.e. we live in a low-entropy state.

Comment: This Sun data were the work of other

In statistical mechanics

\[S = k_B \ln W \]

\# of microstates.

What are these?!

For this we need a theory of quantum gravity & is a major topic of research.

A state counting has been achieved for a special class of supersymmetric & near supersymmetric black holes in string theory. The key idea is the prediction that the black holes are "built" from configurations of intersecting branes & wrapped branes.
Black hole evaporation

Hawking's calculation neglected back reaction
but this should be ok for \(\Delta M \ll M \) but
will not be good in final stage when we need
a theory of Q gravity.

Can estimate time taken to evaporate.
using Stefan-Boltzmann law for rate of energy
loss for black body

\[
\frac{dE}{dt} = - \sigma A T^4
\]

\[
\sigma = \frac{\pi^2 \kappa \hbar^4}{30 c^3}
\]

\[
E = M c^2
\]

area of event horizon \(\approx \left(\frac{M \pi}{c^2} \right)^2 \)

\[
\approx \frac{1}{M} \sim \left(\frac{\hbar c^2}{G} \right) \frac{1}{M^2}
\]

\[
\approx T \sim \frac{c^2}{\hbar} \left(\frac{M}{M_0} \right)^3 \frac{1}{M_0^3}
\]

\[
\sim 10^{30} \left(\frac{M}{M_0} \right)^3 \text{s}
\]

\[
\sim 10^{-44} \left(\frac{M}{M_{\text{pl}}} \right) \text{s}
\neq 10^3 \text{ s}
\]