Preliminaries

We will need various concepts from differential geometry. For more details one can
consult chapter 2 of Wald.

Manifold
An n-dimensional smooth manifold M can be covered with a set of local coordinate charts
{O4, ¥} with O, open subsets in M and v, maps from O, to open subsets of R", in a
1-1 and onto manner. For any two sets O, and Op that overlap, the composition maps
g © @Z)B_l, which map an open subset of R” to another, are taken to be C'*°.

Tangent Vectors
The key idea of a tangent vector is that it is a directional derivative. Let F = {f : M —
R, f € C™}. A vector V at a point p € M is defined to be a map V : F — R taking f to
V(f) which satisfies

1. Linearity: V(af 4 bg) = aV (f) + bV (g), where a,b € R and f, g € F.

2. Leibniz rule: V(fg) = f(p)V(9) + g()V (f)

In local coordinates we can write V' = V“%, where V# € R are the components of V

and V(f) = V*#0,f. More precisely, {0z*} are a basis set of vectors and V*# are the

components with respect to this basis. Notice that V' = V#9, = V# %ﬁ; Oy = V"0, gives

the usual transformation law for the components.

A wvector field on M is a specification of a vector at each point on M. The vector field
is said to be smooth if V(f), which is now a function on M, is smooth. This is equivalent
to that statement that in a local coordinate patch, the components V#(z) are smooth
functions of .

Consider a smooth curve v : R — M, taking A to y(\). Observe that for any function
f € F we have the composition f o~ is a map from R to itself. Thus, for each point p that

lies on the curve in M we can specify a vector V using the rule: V(f) = %(f 0 ) ’v*l(p)'

In local coordinates we have V(f) = %‘?—; and hence the components of the vector are
given by V# = % = M.

Conversely, given a vector field V' we can construct the integral curves which have the
property that one and only one curve passes through each point p and the tangent vector
to the curve at p is V(p).

A useful fact is that for a given vector field V' it is possible to choose local coordinates
such that V' = % ie. V#=(1,0,...,0).

Tensors

We can define co-vectors or one-forms (more on forms later). The co-vectors at a point



p € M live in the vector space dual to the vector space of vectors at p. Since they live
in the dual vector space they are linear maps taking vectors to the real numbers. The
basis of co-vectors that are dual to the basis of vectors {0, } is denoted by {dz"}, with
the action giving d,,. We can then write a general co-vector at a point as W' = W ,dz",
where IV, are the components of the co-vector. The action of this on an arbitrary vector
V = V*#9, is simply the contraction V*W,. A co-vector field is a specification of a
co-vector at each point on M.

Tensors of type (7, s) have components T##r, , We can define higher rank tensors
by taking tensor products. Eg if S and T are two co-vectors then W = S ® T' is a tensor
of type (0,2) with components B,, = S5,71,.

Symmetrisation and antisymmetrisation Tensors with indices in the same po-
sition (i.e either up or down) can have symmetry properties. For example we say that
S, is symmetric if S, = S,,. Similarly, 7" is symmetric if 7" = T"*. We also say
that A,, (or B") is anti-symmetric if A,, = —A,, (or B* = —B""). Tensors with
additional indices can be symmetric or anti-symmetric in some or all of the indices in the
same position eg we could have T*,, =T, .

We can define symmetrisation and antisymmetrisation of the indices of a tensor 7'

with two indices as follows:

1
Tyw) = 5 (Tw +Tou) T =

2 (Tl“’ o TVN)

N | —

Clearly T{,,) is a symmetric tensor and 7j,,) is an antisymmetric tensor (a two-form). Note
that T}, = T{,) + T If S* is a symmetric tensor and A" is an antisymmetric tensor,
Sr = Sw) and A" = AW and for an arbitrary tensor T, we have ST, = SHT(,.,
AT, = AW, I S#is a symmetric tensor and A, is an antisymmetric tensor then
St A, = 0.

For a tensor with three indices we can similarly define

1
Tywp) = g(Tuw + Tpw + Topw + Tovp + Topp + Tuup) )
1

T[Wp} = g(Tulm - Tupv + Tp;w - pr + TVpu - Tvup)

Note, however, that T}, # T(uwp) + T We can also define (anti)symmetrisation on a
subset of indices if desired eg T},

Lie derivative
For a given vector field V' we can define a Lie derivative £y, which acts on tensors. If T
is a tensor of type (r,s) then L£yT is also a tensor of type (r,s). It is a linear map. The
idea of the definition is that one is taking the derivative along the integral curves of V'

(see Wald). Instead of following that route, lets see it in action.



1. Acting on a function, f, we have Ly (f) =V (f).

2. Acting a vector field W, we have LyW = [V, W], where [V, W](f) = V(W(f)) —
W(V(f)). In components we have (LyW)” = V*9,W" — WH09,V" (exercise)

Furthermore, £y, commutes with contraction and also satisfies the Leibniz rule: Ly (S ®
T)=(LyS)RT+S®(LyT). To take an example, in components if we have B, = 5,1,
then (LvB) = (LvS), T, + S, (LyT),. In fact, given the action on functions and vector
fields, these properties are sufficient to define the action of £y on any type of tensor. As
an exercise you can verify that, for example,

(LyT), =V*,T, +1,0,V* )

(LvB),, =V*"0,B,,+ B,,0,V" + B,,0,V*".
Metric

We now assume that we have a metric g,, on the manifold M. This is a symmetric
tensor that is non-degenerate everywhere on M. As such the inverse metric g" also
exists with the defining property that g,,g"” = ¢£. The metric can be used to raise and
lower indices of a tensor. eg Given a vector V# we can define a covector V, = ¢, V"
and note that we will use the same letter to denote the vector and the co-vector. The
metric can also be used to define the Levi-Civita covariant derivative V. For example,
recall that V, V¥ = 9,V" + T} V? and V, W, = 9,W, — ', W, where I'}, = T are the
Christoffel symbols defined by

1 ag
Fllfp = §gﬂ (gO'V,/J + gop,u - gup,o') .

By definition we have V,g,, = 0. For an arbitrary vector field we also have
(V,V, =V, V)V, =R,V (2)

where R,,”, are the components of the Riemann tensor.
While the Lie derivative does not depend on the metric, and hence V, when a metric
is present it can be useful to write the Lie derivative using V. For example, we have

(exercise)
1. Ly(f) =VHV,f
2. (LyW)y =vev, Wy —Wwev, v
Killing vector
A Killing vector field V has the property that (£ g) = 0. In components we can calculate
('Cvg);w = vapg;w + gpuvuvp + g,upvyvp
=V,.V, +V,V,
=2V



and hence a Killing vector is equivalent to the condition V(,V,) = 0.

Working in local coordinates such that V = %, from (??) the condition that V' is
a Killing vector is simply that %gw = 0 (exericse). This gives a useful way to spot
whether a metric admits any Killing vectors. One should be careful though, since the
coordinates that the metric is presented in may not be of this type.

Geodesic motion of test particles
We now consider a spacetime (M, g) with g a Lorentzian metric. We will mostly be using
units for which G = h = ¢ = 1 in this course. We are interested in a particle of rest
mass m moving on a curve vy, with parameter A, from point A to point B in M. In local
coordinates the curve is specified via z#(\).

The action for the test particle is determined by the proper time in moving from A

to B:
B
I=m / dr
TA
where dr? = —ds* = —g,,,dz"dz”. We can thus write
AB
Iz" N =m | d\[=gu(x(\))i"i*]"?
Aa
The test particle moves on a geodesic which extremises this action —2.— = 0, where the

dxH(N)
variations are anchored at the end points: dz(A4) = dz(Ap) = 0.

It is convenient to use an alternative action by introducing a new object along the

curve, the “einbein”, e(\) > 0 via:

. 1 /B
I[z# (M), e(N)] = —/ d\e g dti” —m?e]
2y,
This new action gives equivalent equations of motion. To prove this we note that we have
the two variations Mi—{/\) =0 and 55(1;\) = 0 to impose. Now the latter equation can be
solved for e as:
1 1d
e = —[gula (V)i = — 5 = ela()]
We also have that I[z*, e[z]] = —I[z]. So we calculate
6 6l N /AB IV o1 de[z(\)]
Sar(N)  dar(N) W de(N) w ox(N)
9
—dan(N) .
Thus, the condition for geodesics, % = 0, is equivalent to Mi—{/\) o = 0 combined

with imposing e = e[z], which completes the proof.



By explicit calculation of % = 0 we thus find (exercise) that the condition for

geodesics is

D 1d
Tt = (e, e= Eé
where %x'“ = 1PV, at = i* + F‘)fp:tAx'p. Now there is a freedom in the choice of the

parametrisation, A, of the curve which is equivalent to the choice of e. To obtain an
affinely parametrised geodesic we choose é = 0 which is equivalent to choosing A = a7 +0b
where a,b are constants and such geodesics satisfy %jj“ = 0. It is worth noting that
we can obtain the equations for an affinely parametrised geodesic using proper time, by
varying the action [ dT(‘Zx—:Cﬁf—:gW) and separately imposing df—:%gw = —1.

Recall that a vector V' is said to be a parallely transported along a curve with tangent
vector T# = z* if and only if TV, V# = fV*# for some function f. This is the same
as %V“ = fV*#. Thus a geodesic is a curve that has a tangent vector that is parallely
transported along it.

We note that we cannot use the action I[z] when m = 0 but we can still use [z, €]
and hence I is more general. In this case we find we still have Bt = (e7'e)i” but g—g =0
now implies that ds* = g, @*2" = 0, i.e. it moves along a null curve.

To summarise, affinely parametrised geodesics satisfy %5&” = 0. If m = 0 then
ds* = g,4"#” = 0 and we have a null affinely parametrised geodesic. If m # 0 then
ds* = g, i*i" = —d7r* and A\ = a7 + b giving a time-like affinely parametrised geodesic.

Killing vectors and conservation laws
Let V#* be a Killing vector. Consider the shift in coordinates x* + eV#, where € is

infinitesimal. We calculate
6 = Iz + €V, e] — I[x, €]

= e/d)\e_lm'“x'”\/ml,

€ / dhe ' Vi) = 0

where to get the second lines requires some calculation. Noether’ theorem implies that

there is a conserved charge () defined by @) = p,V* where p, = 5% = e '4"g,,. As an
exercise one can directly check that % = 0 and hence @ is indeed a conserved quantity.



