
Preliminaries

We will need various concepts from differential geometry. For more details one can

consult chapter 2 of Wald.

Manifold

An n-dimensional smooth manifold M can be covered with a set of local coordinate charts

{Oα, ψα} with Oα open subsets in M and ψα maps from Oα to open subsets of Rn, in a

1-1 and onto manner. For any two sets Oα and Oβ that overlap, the composition maps

ψα ◦ ψ−1β , which map an open subset of Rn to another, are taken to be C∞.

Tangent Vectors

The key idea of a tangent vector is that it is a directional derivative. Let F = {f : M →
R, f ∈ C∞}. A vector V at a point p ∈M is defined to be a map V : F → R taking f to

V (f) which satisfies

1. Linearity: V (af + bg) = aV (f) + bV (g), where a, b ∈ R and f, g ∈ F .

2. Leibniz rule: V (fg) = f(p)V (g) + g(p)V (f)

In local coordinates we can write V = V µ ∂
∂xµ

, where V µ ∈ R are the components of V

and V (f) = V µ∂µf . More precisely, {∂xµ} are a basis set of vectors and V µ are the

components with respect to this basis. Notice that V = V µ∂µ = V µ ∂xν
′

∂xµ
∂ν′ = V ν′∂ν′ gives

the usual transformation law for the components.

A vector field on M is a specification of a vector at each point on M . The vector field

is said to be smooth if V (f), which is now a function on M , is smooth. This is equivalent

to that statement that in a local coordinate patch, the components V µ(x) are smooth

functions of x.

Consider a smooth curve γ : R→M , taking λ to γ(λ). Observe that for any function

f ∈ F we have the composition f ◦γ is a map from R to itself. Thus, for each point p that

lies on the curve in M we can specify a vector V using the rule: V (f) = d
dλ

(f ◦ γ)
∣∣
γ−1(p)

.

In local coordinates we have V (f) = ∂f
∂xµ

dxµ

dλ
and hence the components of the vector are

given by V µ = dxµ

dλ
= ẋµ.

Conversely, given a vector field V we can construct the integral curves which have the

property that one and only one curve passes through each point p and the tangent vector

to the curve at p is V (p).

A useful fact is that for a given vector field V it is possible to choose local coordinates

such that V = ∂
∂x1

i.e. V µ = (1, 0, . . . , 0).

Tensors

We can define co-vectors or one-forms (more on forms later). The co-vectors at a point
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p ∈ M live in the vector space dual to the vector space of vectors at p. Since they live

in the dual vector space they are linear maps taking vectors to the real numbers. The

basis of co-vectors that are dual to the basis of vectors {∂µ} is denoted by {dxν}, with

the action giving δνµ. We can then write a general co-vector at a point as W = Wµdx
µ,

where Wµ are the components of the co-vector. The action of this on an arbitrary vector

V = V µ∂µ is simply the contraction V µWµ. A co-vector field is a specification of a

co-vector at each point on M .

Tensors of type (r, s) have components T µ1...µrν1...νs We can define higher rank tensors

by taking tensor products. Eg if S and T are two co-vectors then W = S ⊗ T is a tensor

of type (0, 2) with components Bµν ≡ SµTν .

Symmetrisation and antisymmetrisation Tensors with indices in the same po-

sition (i.e either up or down) can have symmetry properties. For example we say that

Sµν is symmetric if Sµν = Sνµ. Similarly, T µν is symmetric if T µν = T νµ. We also say

that Aµν (or Bµν) is anti-symmetric if Aµν = −Aνµ (or Bµν = −Bνµ). Tensors with

additional indices can be symmetric or anti-symmetric in some or all of the indices in the

same position eg we could have T µρσ = T µσρ.

We can define symmetrisation and antisymmetrisation of the indices of a tensor T

with two indices as follows:

T(µν) ≡
1

2
(Tµν + Tνµ) , T[µν] ≡

1

2
(Tµν − Tνµ)

Clearly T(µν) is a symmetric tensor and T[µν] is an antisymmetric tensor (a two-form). Note

that Tµν = T(µν) +T[µν]. If Sµν is a symmetric tensor and Aµν is an antisymmetric tensor,

Sµν = S(µν) and Aµν = A[µν] and for an arbitrary tensor Tµν we have SµνTµν = SµνT(µν),

AµνTµν = AµνT[µν]. If Sµν is a symmetric tensor and Aµν is an antisymmetric tensor then

SµνAµν = 0.

For a tensor with three indices we can similarly define

T(µνρ) ≡
1

3!
(Tµνρ + Tµρν + Tρµν + Tρνµ + Tνρµ + Tνµρ) ,

T[µνρ] ≡
1

3!
(Tµνρ − Tµρν + Tρµν − Tρνµ + Tνρµ − Tνµρ)

Note, however, that Tµνρ 6= T(µνρ) + T[µνρ]. We can also define (anti)symmetrisation on a

subset of indices if desired eg Tµ[νρ]

Lie derivative

For a given vector field V we can define a Lie derivative LV which acts on tensors. If T

is a tensor of type (r, s) then LV T is also a tensor of type (r, s). It is a linear map. The

idea of the definition is that one is taking the derivative along the integral curves of V

(see Wald). Instead of following that route, lets see it in action.
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1. Acting on a function, f , we have LV (f) = V (f).

2. Acting a vector field W , we have LVW = [V,W ], where [V,W ](f) ≡ V (W (f)) −
W (V (f)). In components we have (LVW )ν = V µ∂µW

ν −W µ∂µV
ν (exercise)

Furthermore, LV commutes with contraction and also satisfies the Leibniz rule: LV (S ⊗
T ) = (LV S)⊗T +S⊗ (LV T ). To take an example, in components if we have Bµν ≡ SµTν

then (LVB)µν = (LV S)µTν +Sµ(LV T )ν . In fact, given the action on functions and vector

fields, these properties are sufficient to define the action of LV on any type of tensor. As

an exercise you can verify that, for example,

(LV T )ν = V µ∂µTν + Tµ∂νV
µ

(LVB)νρ = V µ∂µBνρ +Bµρ∂νV
µ +Bνµ∂ρV

µ.
(1)

Metric

We now assume that we have a metric gµν on the manifold M . This is a symmetric

tensor that is non-degenerate everywhere on M . As such the inverse metric gµν also

exists with the defining property that gµνg
νρ = δρµ. The metric can be used to raise and

lower indices of a tensor. eg Given a vector V µ we can define a covector Vµ ≡ gµνV
ν

and note that we will use the same letter to denote the vector and the co-vector. The

metric can also be used to define the Levi-Civita covariant derivative ∇. For example,

recall that ∇µV
ν = ∂µV

ν + ΓνµρV
ρ and ∇µWν = ∂µWν − ΓρµνWρ where Γµνρ = Γµρν are the

Christoffel symbols defined by

Γµνρ =
1

2
gµσ(gσν,ρ + gσρ,ν − gνρ,σ) .

By definition we have ∇µgρσ = 0. For an arbitrary vector field we also have

(∇µ∇ν −∇ν∇µ)V ρ = Rµν
ρ
σV

σ (2)

where Rµν
ρ
σ are the components of the Riemann tensor.

While the Lie derivative does not depend on the metric, and hence ∇, when a metric

is present it can be useful to write the Lie derivative using ∇. For example, we have

(exercise)

1. LV (f) = V µ∇µf

2. (LVW )ν = V µ∇µW
ν −W µ∇µV

ν

Killing vector

A Killing vector field V has the property that (LV g) = 0. In components we can calculate

(LV g)µν = V ρ∇ρgµν + gρν∇µV
ρ + gµρ∇νV

ρ

= ∇µVν +∇νVµ

= 2∇(µVν)
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and hence a Killing vector is equivalent to the condition ∇(µVν) = 0.

Working in local coordinates such that V = ∂
∂x1

, from (??) the condition that V is

a Killing vector is simply that ∂
∂x1
gµν = 0 (exericse). This gives a useful way to spot

whether a metric admits any Killing vectors. One should be careful though, since the

coordinates that the metric is presented in may not be of this type.

Geodesic motion of test particles

We now consider a spacetime (M, g) with g a Lorentzian metric. We will mostly be using

units for which G = h̄ = c = 1 in this course. We are interested in a particle of rest

mass m moving on a curve γ, with parameter λ, from point A to point B in M . In local

coordinates the curve is specified via xµ(λ).

The action for the test particle is determined by the proper time in moving from A

to B:

I = m

∫ τB

τA

dτ

where dτ 2 ≡ −ds2 = −gµνdxµdxν . We can thus write

I[xµ(λ)] = m

∫ λB

λA

dλ[−gµν(x(λ))ẋµẋν ]1/2

The test particle moves on a geodesic which extremises this action δI
δxµ(λ)

= 0, where the

variations are anchored at the end points: δx(λA) = δx(λB) = 0.

It is convenient to use an alternative action by introducing a new object along the

curve, the “einbein”, e(λ) > 0 via:

Î[xµ(λ), e(λ)] =
1

2

∫ λB

λA

dλ[e−1gµν ẋ
µẋν −m2e]

This new action gives equivalent equations of motion. To prove this we note that we have

the two variations δÎ
δxµ(λ)

= 0 and δÎ
δe(λ)

= 0 to impose. Now the latter equation can be

solved for e as:

e =
1

m
[−gµν(x(λ))ẋµẋν ]1/2 =

1

m

dτ

dλ
≡ e[x(λ)]

We also have that Î[xµ, e[x]] = −I[x]. So we calculate

− δI

δxµ(λ)
=

δÎ

δxµ(λ)

∣∣∣∣∣
e[x]

+

∫ λB

λA

dλ′
δÎ

δe(λ′)

∣∣∣∣∣
e[x]

δe[x(λ′)]

δx(λ)

=
δÎ

δxµ(λ)

∣∣∣∣∣
e[x]

Thus, the condition for geodesics, δI
δxµ(λ)

= 0, is equivalent to δÎ
δxµ(λ)

∣∣∣
e[x]

= 0 combined

with imposing e = e[x], which completes the proof.
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By explicit calculation of δÎ
δxµ(λ)

= 0 we thus find (exercise) that the condition for

geodesics is
D

dλ
ẋµ = (e−1ė)ẋµ, e =

1

m

dτ

dλ

where D
dλ
ẋµ ≡ ẋρ∇ρẋ

µ = ẍµ + Γµλρẋ
λẋρ. Now there is a freedom in the choice of the

parametrisation, λ, of the curve which is equivalent to the choice of e. To obtain an

affinely parametrised geodesic we choose ė = 0 which is equivalent to choosing λ = aτ + b

where a, b are constants and such geodesics satisfy D
dλ
ẋµ = 0. It is worth noting that

we can obtain the equations for an affinely parametrised geodesic using proper time, by

varying the action
∫
dτ(dx

µ

dτ
dxν

dτ
gµν) and separately imposing dxµ

dτ
dxν

dτ
gµν = −1.

Recall that a vector V is said to be a parallely transported along a curve with tangent

vector T µ = ẋµ if and only if T ν∇νV
µ = fV µ for some function f . This is the same

as D
dλ
V µ = fV µ. Thus a geodesic is a curve that has a tangent vector that is parallely

transported along it.

We note that we cannot use the action I[x] when m = 0 but we can still use Î[x, e]

and hence Î is more general. In this case we find we still have D
dλ
ẋµ = (e−1ė)ẋµ but δÎ

δe
= 0

now implies that ds2 = gµν ẋ
µẋν = 0, i.e. it moves along a null curve.

To summarise, affinely parametrised geodesics satisfy D
dλ
ẋµ = 0. If m = 0 then

ds2 = gµν ẋ
µẋν = 0 and we have a null affinely parametrised geodesic. If m 6= 0 then

ds2 = gµν ẋ
µẋν = −dτ 2 and λ = aτ + b giving a time-like affinely parametrised geodesic.

Killing vectors and conservation laws

Let V µ be a Killing vector. Consider the shift in coordinates xµ + εV µ, where ε is

infinitesimal. We calculate

δÎ ≡ Î[x+ εV, e]− Î[x, e]

= ε

∫
dλe−1ẋµẋνVµ;ν

= ε

∫
dλe−1ẋµẋνV(µ;ν) = 0

where to get the second lines requires some calculation. Noether’ theorem implies that

there is a conserved charge Q defined by Q ≡ pµV
µ where pµ ≡ δL

δẋµ
= e−1ẋνgµν . As an

exercise one can directly check that d
dλ
Q = 0 and hence Q is indeed a conserved quantity.
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